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Abstract—This paper focuses on optimizing the linearity in 

known RF circuits, by exploring the circuit design space that is 
usually available in today’s deep submicron CMOS technologies. 
Instead of using brute force numerical optimizers we apply a 
generalized weak nonlinearity model that only involves AC 
transfer functions to derive simple equations for obtaining design 
insights.  

The generalized weak nonlinearity model is applied to three 
known RF circuits: a cascode common source amplifier, a 
common gate LNA and a CMOS attenuator. It is shown that in 
deep submicron CMOS technologies the cascode transistor in 
both the common source amplifier and in the common gate 
amplifier significantly contributes IM3 distortion. Some design 
insights are presented for reducing the cascode transistor related 
distortion, among which moderate inversion biasing that 
improves IIP3 by 10 dB up to 5 GHz in a 90nm CMOS process. 
For the attenuator, a wideband IM3 cancellation technique is 
introduced and demonstrated using simulations. 
 

Index Terms—Attenuators, cascode amplifier, IIP3, linearity, 
circuit optimization, nonlinearity model. 
 

I. INTRODUCTION 

N recent years, the need for RF ICs with demanding 
performance specifications has been increasing significantly.  

Low intermodulation distortion is one of the most desirable 
design targets for the current wireless front-ends. Optimizing 
RF front-end circuits may be done using brute force numerical 
optimizers with a proper set of optimization constraints, or can 
(partly) be done by hand if sufficient design insight is present.  
Circuit distortion analyses such as Volterra series have been 
used to either provide design insights on the RF circuit linearity 
[1] or to get numerical/symbolic solutions for the behavioral 
modeling of the front-end [2-4]. To reduce the complexity of 
Volterra kernels, [5] uses nonlinear system order reduction 
algorithms to produce compact macromodels based on Volterra 
series. 

As alternative for the Volterra series, in [6] we presented a 
general weak nonlinearity model that was applied to relatively 
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small RF circuits: the low noise amplifier (LNA). This model 
can easily be used to derive e.g. the circuit’s intermodulation 
distortion in a compact closed-form expression. Due to the 
nature of the method, this closed-form expression is a linear 
combination of a number of nonlinearity coefficients of each 
MOS transistor and of terminal AC transfer functions. Since the 
AC transfer functions involve no complex calculations, it is 
straightforward to utilize the general distortion model for 
various topologies. Nevertheless, [6] only shows the accuracy 
benchmarking of this general model for different LNAs while 
no further circuit design insights are provided.  
 This paper extends the general weak nonlinearity analysis 
method in [6] to a number of small RF circuits with 
four-terminal transistors; the method is applied to explore the 
design space to optimize RF circuits and to provide design 
insights. Section II presents the closed-form expressions for the 
general nonlinearity model. Using this model, we introduce a 
nonlinearity cutoff frequency that indicates the relative 
significance of capacitive nonlinearities with respect to 
resistive terms for MOS transistors. This is used to simplify the 
general model by removing many insignificant terms from the 
weakly nonlinear circuit model. Section III and IV discuss 
insights on the linearity optimization for the cascode common 
source RF amplifier and common gate LNA. It is shown that 
the distortion generated by the cascode transistor easily become 
dominant in the amplifier’s overall distortion behavior due to 
the relatively large output conductance and its associated large 
nonlinearities. The analytical expressions indicate an IM3 
cancellation scheme for amplifiers biased in the moderate 
inversion region. In section V the model is applied to the 
analysis and optimization of a CMOS attenuator consisting of 
two switches and two resistors. It is shown that proper sizing of 
the two switches leads to a process-robust wideband IM3 
distortion cancellation between these two switches. The overall 
conclusions are summarized in section VI. 

II. THE GENERAL WEAK NONLINEARITY MODEL  

A. The MOS transistor nonlinearity model 

The dominant source of nonlinearity in RF circuits is usually 
the transistors’ nonlinearity. A MOS transistor is a 
four-terminal device, in which all currents into the terminals 
and charges attributed to the terminals are nonlinear functions 
of the voltages across any two terminals. Mathematically the 
transistor can be modeled as a three-port network with the 
gate-source, drain-source and bulk-source voltage as the input 
ports and gate current, drain current and bulk current as outputs 
for any given DC bias, see Fig. 1. For analytical weakly  
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nonlinear distortion analyses, Taylor series have been 
dominantly used to describe MOS transistor nonlinearity, 
where typically only the resistive nonlinearity is modeled [1-4, 
7-11]. Here we present a complete weak nonlinearity model of 
the MOS transistor taking into account both the resistive and 
capacitive nonlinearity, which is given by 

 
 
 

, , | , , ∈ ; ∈ 1,2,3  and ∈ , ,  
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! ! !
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,  

are respectively the capacitive and resistive coefficients.  is 
the charge attributed to the terminal  (gate, drain or bulk)  and 

 is the current into terminal . For the first order Taylor series 
terms we have 1 , which implies that a first 
derivative is taken with respect to just one port voltage. For the 
second order terms 2, which means that either 
one second derivative is used or that two first order derivative 
are taken with respect to port voltages. In this paper we use only 
the first, second and the third order terms, for the latter of which 

3 . For the drain terminal, the first-order 
coefficients ,  and  correspond to the linear small 
signal parameters ,  	and  	while ,  and  
are their capacitive counterparts. The higher order resistive 
coefficients ( , ), ( , ),  and ( , )  
describe second-order and third-order dependency of the 
resistive drain-source current respectively on VGS, VDS and VBS 
while ( , ), ( , ),  and ( , )  are their 
capacitive counterparts. The other coefficients are the 
cross-modulation conductive and capacitive terms describing 
the dependency of drain-source current on either any two 
terminal or three terminal voltages. These cross-modulation 
terms are significant in deep sub micron CMOS technologies. 

B. Generalized weakly nonlinear analysis 

 In the circuit example we analyzed in [6], the transistors are 
assumed to be three-terminal devices with interconnected bulk 
and source terminals. Here, we assume four-terminal transistors 
obeying the weakly nonlinear model given in (1). It is assumed 
that these transistors are dominant in the nonlinear behavior of 
the circuit with N transistors. We assume a two-tone input 
voltage 	 e e  with sufficiently small amplitude 
	  to ensure circuit operation in the weakly nonlinear 

region. The voltage swing at each port (vgs, vds and vbs) of each 
transistor results in distortion currents (igs,D, ids,D and ibs,D) by 
that transistor as described by (1). These distortion currents in 
turn generate a voltage at the ports of all transistors: 

 

 

 

 

where N is the number of transistors in the circuit, ,
,  is the 

transfer function from the current in port (x,s) of transistor p to 
the terminal voltage  of transistor j, and ,  is the transfer 
function from voltage input to port (k,s) of transistor j, with 
, ∈ , , . Since (2) is carried out in the frequency domain, 

(1) is rewritten into an admittance notation, 
∑ with . The 
generated distortion voltages result in additional distortion 
currents. The recursive dependency of (1) and (2) can be 
numerically solved by the harmonic balancing technique [7], 
which is often implemented in simulators. A known issue with 
harmonic balancing is that oversampling is required to prevent 
significant aliasing of higher harmonics. For the weakly 
nonlinear analyses done in this paper, we assume a maximum 
mixing order of 3: all terms higher than third order are truncated. 
For weakly nonlinear systems this does not introduce 
significant errors, while by truncating the terms higher than 
third order, the number of terms remains finite and the set of 
equations can be analytically solved.  
 After truncation of higher order terms, only the terms with 
fundamental tones contribute to the second-order distortion, 
while the second-order distortion is proportional to ; 
similarly, only the terms with fundamental tones and 
second-order distortion components tones contribute to the 
third-order distortion components resulting in the third-order 
distortion proportional to . Now, a next step in the reduction 
of computational effort is the selection of only the frequency 
components leading towards the output signal component at the 
desired frequency (denoted as ). As a result, the set of 
equations consisting of (1) and (2) can be analytically solved; 
the distortion at the circuit output is now a linear combination 
of the distortion contributions of each individual transistor.   
 
 
 
 

where 		 , ∑ ∙ ,  with  the 
function that selects only the  components from the product 
of voltages:  ≜ . For IM2 calculations 
the function  thus is (with n+m+l=2):  

 

 

 
 

where v* denotes the complex conjugate of v. The 
corresponding  for IM3 calculations is somewhat more 

(2) , , , ,  
 

Fig. 1 The MOSFET as a three-input-three-output network 
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A. Optimizing the cascode transistor gate bias voltage 

One approach for linearization is to adjust the gate bias of 
cascode transistor M2. Usually the gate voltage is equal to the 
supply voltage VDD. In this section it is shown that other (DC-) 
voltages may result in better performance; we do not address 
applying AC-variations (e.g. gain boosting) for simplicity 
reasons.  
 It can be derived from (6) and the relations between the 
transistor nonlinearities and biasing conditions that by 
adjusting the gate bias of M2 (VB2) the overall circuit linearity 
can be optimized. For low cascode gate bias levels, M1 is biased 
between the saturation region and triode region where its output 
conductance nonlinearity , and the cross-modulation 

nonlinearity ( ,  and ,  ) are high, resulting in rather 
low IIP3. At high cascode gate bias voltage levels the cascode 
transistor M2 may go out of saturation which increases its 
nonlinearities , , ,  and  , . In between these 
two extremes, the total distortion of the two transistors is 
minimum, and typically dominated by the third-order 
transconductance nonlinearity  of M1. Fig. 5 shows that for 
the reference LNA design a cascode transistor gate bias in the 
range of 1 V to 1.05V yields maximum IIP3 with slightly 
degraded NF and voltage gain. 

 
Fig. 5. The simulated noise figure, voltage gain and IIP3 of the cascode amplifier 
shown in Fig. 2 as a function of the gate bias VB2 of M2 for a constant power 
consumption. For M1, W/L=50/0.1um, VB1=0.6 V; for M2, W/L=50/0.1um.  

B. Usage of bypass components 

One of the dominant effects with respect to distortion is the 
limited voltage headroom for either M1 or M2, which is among 
others limited by the DC-voltage drop across the resistor. Using 
components to bypass part of the DC-current increases the 
headroom and hence decreases distortion.  

One way to implement this is to add a pMOS load or an 
(on-chip) inductor in parallel to . A parallel pMOS load 
(M3) conducts a part of the DC current and lifts up the drain 
voltage of M2. As a result, the output conductance nonlinearity 

,  and the cross-modulation nonlinearity terms ( ,  

and , ) of M2 decrease. For the first-order approximation 
the output IM3 of the cascode amplifier given by (6) changes to 

 

, , , ,
	

 

∙ , ∙ ,

, ∙ ,

1 ∙ ∙ ,

 

where the last term represents the distortion contribution from 
M3 via its output conductance nonlinearity , . Although 
M3 contributes additional distortion, the circuit linearity can 
still be improved with a proper design. Fig. 6 shows the 
simulation result for the cascode amplifier with pMOS load M3 
in parallel to  by sweeping the width of M3 (W3). A 
channel length three times the minimum length is used to 
increase the output resistance of M3 for keeping the voltage gain 
almost unchanged. As W3 increases, the drain voltage of M2 
increases since less dc current passes through . The IIP3 
increases as M2 enters further into the saturation region. More 
DC current through M3 further increases the drain voltage of 
M2. This pushes M3 out of deep saturation and causes more 
distortion and noise from M3. The IIP3 is optimum at the region 
where both the cascode transistor M2 and the M3 are in 
saturation. Then the output conductance nonlinearity , , 

the cross-modulation nonlinearity ( ,  and  , ) of M2 

and  the output conductance nonlinearity ,  of M3 are less 

significant than the third-order transconductance ,  of 
M1.  Alternatively an on-chip stacked inductor load can also be 
used to increase the drain voltage of M2 [32]. However, for 
frequencies in the lower GHz range, the low quality factor 
introduces rather small shunt parasitic resistance that limits the 
amplifier gain. Moreover, on-chip stacked inductors typically 
consume much more area than a pMOS load [32-33].  

 
Fig. 6. Simulation results of the cascode amplifier with the pMOS load as a 
function of the width M3. (a) NF, voltage gain and IIP3. (b) IIP3 and the dc 
current supplied by the pMOS load M3 divided by the total dc current. 

C. Optimal bias in moderate inversion region  

Assuming that the main nonlinearity of a MOS transistor 
arises from transconductance nonlinearity , the IIP3 sweet 
spot of the single transistor amplifier coincides with the setting 
at which  is zero [9]. Due to increasingly nonlinear output 
conductance and cross terms in submicron CMOS 

(7),
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technologies, the actual IIP3 sweet spot of a single transistor 
amplifier however does not coincide with zero-  [9, 11]. As 
the cascode transistor may contribute significant distortion, the 
effect of the cascode transistor on the IIP3 sweet spot needs to 
be included.   

The simplified model in (6) is used to estimate the IIP3 sweet 
spot of the cascode amplifier. Fig. 3(a) shows that in moderate 
inversion the nonlinearities ,  and  are positive 
and  is negative. Thus the distortion generated by  of 
M1 and M2 cancels the distortion of all the other nonlinearities 
within M1 and M2 as suggested by (6). As illustration for this, 
Fig. 7 shows the simulation and calculation result for the 
cascode amplifier where M1 and M2 are set to have a constant gm 
of 20mS at 1GHz, which is the same as in the reference design. 
Firstly, Fig. 7(a) shows that the model given by (6) including 
only the third-order transistor nonlinearity provides an accurate 
IIP3 estimation for the moderate inversion bias region. As 
shown in (6) and Fig 4(a), for very low VGS, ,  and 

, are large and dominantly contribute to the output 

distortion. As VGS increases, ,  and  ,  start to 
decrease and their distortion cancels the distortion generated by 
the other transistor nonlinearities; this enables a high-IIP3 
region around VGT=70mV, which is about 20mV away from the 
zero-  setting illustrated by the dashed line in Fig. 7(a). For 
large VGS when the transistors enter strong inversion, ,  

 
Fig. 7. (a) The simulated IIP3 and the calculated IIP3 modeling only third-order 
nonlinearity. (b) NF, voltage gain and transistor width as a function of VGT for a 
constant 1.17 mA current. 

 
and ,  get negative and there is no distortion cancellation. 
Based on Fig. 7 we choose one optimal design 
(W1/L1=W2/L2=104/0.1um, VGT=70mV, IDC=1.17mA). 
Compared to the reference cascode amplifier design, the 
transistor width is doubled while the DC current is about 
halved. 
 Fig. 8 shows that for a set of 200-time Monte Carlo 
simulation with mismatch and process corner spread the 

moderate inversion optimal region enables mean IIP3 of 
12.5dBm at 1GHz, which is an improvement of about 16dB 
compared to the reference design operating in strong inversion. 
To illustrate frequency-dependencies, Fig. 9 shows the 
simulated results of this optimal design for input signal 
frequency from 0.1GHz to 10GHz. Fig. 9 shows that optimal 
bias in the moderate inversion improves IIP3 by more than 
10dB for frequencies up to 10GHz. The cancellation degrades 
at higher frequencies because of increasing phase shifts 
between the distortion components generated by  and by 
the other nonlinearity components. The simulated IM3 and 
HD1 for varying input power in Fig.10 shows that the IM3 
cancellation in the moderate inversion region becomes less 
effective for input signals larger than -15dBm. This is due to 
higher-order transistor nonlinearities. Since the voltage drop 

  

 
Fig. 8 Simulated IIP3 of the cascode amplifier optimized in the 
moderate inversion region in Monte Carlo simulation (200run) for 
mismatches and process corner at 1GHz. 

 

Fig. 9 Simulated IIP3 of the cascode amplifier optimized in the 
moderate inversion region over input frequency. 

 
 

Fig. 10. (a) Simulated HD1 and IM3 for varying input power. (b) 
Simulated HD1 for varying input power denoting the 1dB compression. 
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, 1 ,  

1 , 1 ,  
 

Assuming that 1/2 ≫  and 	 ≫
1, (8) can be simplified to 

 

8 , , 2 , 4 ,  

														 8 , ,  

, ,  

 
For the common gate LNA, (9) suggests a similar IM3 
cancellation scheme as for the cascode CS amplifier discussed 
in section III. In the moderate inversion region the 
transconductance nonlinearities  turn into positive values. 
Thus the distortion generated by  of M1 and M2 cancels the 
distortion of all the other nonlinearities within M1 and M2. Fig. 
13 shows the simulated IIP3 of the CG LNA as well as the 
calculated IIP3 using (8). Both M1 and M2 have the same 
dimension and a constant transconductance (gm=9mS for 
S11<-25dB) for different overdrive voltage VGT. The load  
is set to 600 to achieve 18dB voltage gain and 2.3dB NF. The 
two-tone signals are at 1 GHz and 1.01 GHz and the IIP3 is 
extrapolated by sweeping the input power from -35 to -25 dBm. 
Fig. 13 shows that the model given by (8) provides a good 
prediction on the IIP3 changing trend. For very low VGT, 

,  and ,  are large and dominantly contribute to 

theoutput distortion. As VGT increases, ,  and  ,  
start to decrease and their distortion cancels the distortion 
generated by the other transistor nonlinearity terms. This 
cancellation enables a high-IIP3 region around VGT =50mV. 
For large VGT the transistors enter the strong inversion region, 
and ,  and ,  become negative and as a result no 
distortion cancellation can take place between M1 and M2. For 
comparison we simulate two LNA designs at 1GHz. The load 

 is set to 600 and a 100nH inductor with Q=80 is used to  
model the off-chip inductor. In both designs M1/M2 are set to 
gm=9mS, while in LNA1 the transistors are biased in strong 
inversion region and in LNA2 the transistors are biased in 
moderate inversion. Table II shows that in the optimal 
moderate inversion region, IIP3 is improved by 15dB, the DC  
 

 
 

Fig. 13 The simulated and the calculated IIP3 and  as a function of  
overdrive voltage of M1 and M2. 

current is decreased by 50% while NF, gain and input matching 
stay the same. However, the price to be paid is about 3dB 
smaller bandwidth since the transistor width increases by about 
two times in the optimal moderate inversion region.  
 A 200-sample Monte Carlo simulation with mismatch and 
corner spread shows in Fig. 14 that moderate inversion biasing 
yields a mean IIP3 of 9.4dBm, which is about 14dB higher than 
biasing in saturation. Fig. 15 shows the IIP3 for the designs as a 
function of frequency from 0.1GHz to 10 GHz. It is shown that 
the optimal bias in the moderate inversion improves IIP3 by 
more than 10dB up to 5GHz. The distortion cancellation 
degrades towards higher frequencies because of phase shifts 
between the distortion components due to   and due to the 
other nonlinearity terms. Fig. 16 shows the simulated IM3 and 
HD1 as a function of input power; the IM3 cancellation in 
moderate inversion becomes less effective for input signals  
 

TABLE II 
COMPARISION OF CG LNA IN DIFFERENT BIAS REGIONS 

 VGT 
[mV] 

Idc  
[mA] 

IIP3 
[dBm] 

Gain 
[dB] 

NF 
[dB] 

S11 

[dB] 
P1-dB 

 dBm] 
WM1/M2 
[um] 

LNA1 170 1.92 -5 18.2 2.35 -29 -15.5 26 
LNA2 48 1 10 18 2.32 -26 -13.5 56 

 

 

Fig. 14 Simulated IIP3 of the cascode amplifier optimized in the moderate 
inversion region in Monte Carlo simulation (200run) for mismatches and 
process corner. 

 

 
Fig. 15 Simulated IIP3 of the CG LNA optimized in the moderate inversion 
region over input frequency. 

 
 

Fig. 16 Simulated HD1 and IM3 for varying input power. 
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larger than -18dBm. This is due to transistor nonlinearities 
higher than third-order. Since the voltage drop across Rload is 
halved in the moderate inversion region, there is more 
headroom for the output swing and hence this increases P1-dB 
from -15.5dBm to -13.5dBm. 

V. ATTENUATOR LINEARITY OPTIMIZATION  

Many RF receivers such as mobile TV receivers experience 
input signals with high dynamic range. This large input power 
variation can be decreased using precise gain control circuits, 
which is traditionally implemented as variable-gain amplifiers 
(VGAs). However, CMOS-switch-based attenuators can 
provide precise gain control, and may show superior 
performance in linearity and power consumption [40-43].  

One way to set the attenuation factor in a CMOS attenuator is 
to implement voltage controlled resistances in one resistive 
division network [40-42]. Another way is to switch between 
different (mainly passive) attenuator branches [43] where each 
individual attenuator branch provides one specific attenuation 
value. One advantage of this latter implementation is that each 
attenuator branch can be highly optimized (individually). 

This section focuses on the linearity optimization of the 
CMOS attenuator shown in Fig. 17 that is used in attenuator 
networks. The input power source is modeled by the voltage 
source 2  with source impedance . Note that this 
attenuator can be regarded as a part of a PI- or T-attenuator, but 
with one transistor/resistor less because there is no inverse 
matching (typically not needed on-chip). Assuming perfect 
input matching provided by the attenuator, the input voltage for 
the attenuator is  and the attenuation is defined by 

/ . When the switch transistors M1 and M2 enable the 
input-matching, the signal attenuation is provided via the 
network of resistor R1, resistor R2, transistor M1 and transistor 
M2. The large resistors  and  are used to minimize the 

 
 

Fig. 17. The schematic of the CMOS attenuator 

 
 

Fig. 18. Simulated third-order nonlinearity ratio ( / , /  and 
/  ) of an NMOS switch as a function of the drain-source voltage VDS. 

W/L=100/0.1 um, and VGS = 1.2V. 

source-gate voltage swing and source-well voltage swing: with 
sufficiently large resistors these voltages are purelyAC-coupled 

[40]. In that case ≅ 0.5  and ≅ 0 . This firstly 
extends the bandwidth of this attenuator, and secondly 
minimizes the nonlinearity related to  and  . 

As a first-order approximation (see Appendix V for the 
derivation) the output IM3 of the attenuator is   
 

 

∙

2
∙ 8 ,

,

2
,

4
,

8
 

2 ∙ 1

2
∙ ,  

Both transistors operate either in the off-state which is not very 
relevant for distortion analyses or in deep triode. In deep triode 
the dominant nonlinearity is the third-order output conductance 
nonlinearity , as suggested in Fig. 18. This allows for 
simplification of (10) into: 

∙ ,  

																																 2 1 ∙ ,  

To the first order approximation, the  is inversely 
proportional to the transistor width  and the third-order 
output conductance nonlinearity  is proportional to , we 
use /  and ∙  which yields: 

																	
∙ ∙

 

																																								
2 1

 

From (12) it follows that: 
1) The IM3 distortion from the switch is inversely 

proportional to .  
2) With any sensible attenuation value, ∈ 0,1 , the 

IM3 distortion from the switch transistor M1 can cancel 
the distortion from switch M2 for a specific ratio 

between the widths of the two switch transistors . 

With the simplified expression above, the optimum switch 
width is: 

, ∙ 1 ∙ 	

 For demonstration purposes, we simulate the attenuator 
circuit in Fig. 17 by sweeping the width of M2 for three 
attenuation values (A=-6dB, A=-12dB and A=-20dB). For the 
simulations, the width of M1 is fixed to 200um while the values 
for R1 and R2 are set in such a way that both input impedance 
matching and the specified attenuation are obtained. The 
two-tone signals are at 1GHz and 1.006GHz and the IIP3 is 
extrapolated by sweeping the input power from -10 to 0 dBm. 
Fig. 19(a) shows that the attenuator achieves the targeted 
attenuation with very good input matching. Fig. 19(b) shows 
that for every attenuation level an optimal IIP3 can be achieved 

at certain . In Table III the optimal  obtained by 
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simulation in Fig. 19(b) is compared with the optimal  
estimated by (13),which shows the good accuracy of our model. 
As suggested by (12), for small WM2 the distortion generated by 
M2 is much larger than that from M1. Therefore IIP3 is 
determined by M2. As WM2 increases, IIP3 increases until its 
highest value when the amplitude of the distortion from M2 is 
equal to that of the distortion from M1. For large WM2  the IIP3 is 
determined by M1 and because in this simulation WM1 is fixed, 
the IIP3 does not change as WM2 increases to very large values. 
The simulation results show that in higher attenuation setting 
the IM3 cancellation is effective for wider M2, which also 
follows from (13).  
 The demands on linearity are usually the highest for high 
attenuation setting (i.e. small levels of A). Therefore, we 
simulate the effect of mismatch and process spread and 
operation frequency on this IM3 cancellation scheme for the 
attenuator with -20dB attenuation, The two-tone signals at 
1GHz and 1.006GHz are used and the IIP3 is extrapolated by 
sweeping the input power from -10 to 0dBm. Equation (12) 
shows that near the minimum distortion setting of the attenuator 
circuit the sensitivity towards spread and mismatch may be 
large, which is shown in Fig. 20(a) that for small switches 
(WM1=30um and WM2=74um) the IIP3 peak is narrower than 
for wide switches (WM1=200um and WM2=475um). Note that 
the calculated IIP3 using our model in (14) matches simulation 
very well. The overall result of spread and mismatch on the 
IIP3 is estimated using 200-time Monte-Carlo simulations 
 

 
 

Fig. 19. The simulation results of the attenuator designed for three attenuation 
values (-6dB, -12dB and -20dB) as a function of the width of M2. (a) S21 and S11 
and (b) IIP3.  
 

TABLE III  
MODEL ESTIMATION OF WM2,OPT FOR IIP3 OPTIMIZATION 

Attenuation[dB] Estimated WM2,OPT [um] Simulated WM2,OPT [um] 

-6 113 110 

-12 260 250 

-20 464 475 

 
Fig. 20. The simulation results of the attenuator designed for high attenuation 
values (-20dB). (a) Simulated IIP3 (line) and calculated IIP3 (line with symbol) 
as a function of the width of M2 for small M1 (WM1=30um) and wide M1 

(WM1=200um) repectively. IIP3 in Monte Carlo simulation for mismatch& 
process corner at 1GHz for small switches (b) and wide switches (c).  
 

 
Fig. 21. The simulated IIP3 of the attenuator (A=-20dB) for 0.2GHz-10GHz 
band.   
 

shown in Fig. 20(b-c). For the optimal design with small 
switches (WM1=30um and WM2=74um) the mean IIP3 is 
38dBm (nominal IIP3 is 45dBm). For the optimal design with 
wide switches (WM1=200um and WM2=475um) the mean IIP3 
is 62dBm (nominal IIP3 is 62dBm). As a result, the sensitivity 
of this IM3 cancellation scheme can be reduced by using wide 
switches. Note that for small switches optimized with IM3 
cancellation (WM1=30um and WM2=74um), the worst-case IIP3 
in the Monte-Carlo simulation still reaches 34dBm, which is 12 
dB higher than in the design with the same WM1 (30um) but 
wider WM2 (250um). In this analysis it was assumed that there is 
no significant frequency dependency. An illustration of this is 
given in Fig. 21, where the IIP3 is shown as a function of WM2 
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with a fixed WM1 (200 um) for frequencies from 0.2 GHz to 
10GHz.  
 In summary, the general weak nonlinearity model provides 
an accurate analytical expression for the linearity optimization 
of the CMOS attenuator in Fig. 17. 

VI. CONCLUSION 

We introduced a generalized weak nonlinearity analysis 
method, which is somewhat related to harmonic balance 
analyses. It can obtain closed-form expressions for circuit 
distortion. Due to the nature of the method, the obtained 
expressions consist of technology dependent transistor 
nonlinearity parameters and topology-dependent AC transfer 
functions only. Simple techniques were introduced to 
maximally decrease computational effort, such as limiting 
calculations in such a way that only signals leading to the 
targeted distortion component are included in the calculations. 
Secondly a  nonlinearity cutoff frequency  was used to 
determine the relative importance between the resistive 
nonlinearity and its capacitive counterpart and to allow for 
omission of nonlinearity terms. The characterization results of 

 is topology-independent and can be (re)used for all the 
circuit designs in the same process, which improves the 
efficiency of numerical circuit optimization.  

The general weak nonlinearity model is applied to three RF 
circuits to explore the design space for linearity optimization 
insights that is usually available in today’s deep submicron 
CMOS technologies. We show that in a standard cascode LNA 
circuit, the cascode transistor can significantly contribute to 
distortion in deep submicron CMOS technologies. This is due 
to the low supply voltage and the decreasing output resistance. 
A number of ways to decrease the distortion with (almost) 
unchanged NF and gain are discussed, including DC-current 
bypass components and biasing the transistor in the moderate 
inversion region to get distortion cancellation. For both 
common source amplifier and common gate LNA, this IM3 
cancellation scheme provides robustly more than 10dB IIP3 
improvement for signal frequencies up to 5GHz in a 90nm 
CMOS process. For a CMOS attenuator circuit, a novel and 
robust IM3 cancellation technique is demonstrated; with a 
proper sizing, the distortion from the two switches in the 
attenuator can cancel each other, yielding more than 10dBm 
IIP3 improvement from 0.2GHz to 10GHz. 
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APPENDIX I 

 For calculating the output IM3, the following function takes 
into account only the terms leading to the signals at 
2  
 

 

∙ ∙ ∗  

∙ ∗  

∙ ∗ 	 	 
 

 

4
∙ ∙ ∗  

									 ∙ ∗  
									 ∙ ∗  

									 ∙ ∗ 2 2 2  
								 ∙ 2 ∗ 2 2  

								 ∙ 2 2 ∗ 2  

In this, ∗ denotes the complex conjugate function. 

APPENDIX II 

The MOS transistor resistive nonlinearity can be extracted in 
many ways in time domain or in frequency domain. In this 
work we derived the non-linearity coefficients from 
simulations using Spectre and a well fitted PSP model. The PSP 
model is known to be able to correctly fit at least up to the third 
derivative [12, 13, 18]. Using a PSP model has advantages over 
getting derivatives from measurements mainly because 
measurement noise is largely eliminated: the PSP model can be 
used to accurately smoothen measurement results.  

The resulting nonlinearity parameters scale (as a good 
approximation) linearly with transistor width which allows 
normalization with respect to transistor width. Furthermore, 
transistor length is assumed to be minimum. Then the 
nonlinearity parameters are mainly functions of port voltages, 
and need to be determined just once for each technology. 
Storing them in e.g. a look-up table then allows for 
computational efficient use in e.g. calculations.  

As an example, the  is extracted from simulations, as a 
function of VGS and VDS for a minimum length transistor, for 
the 90nm CMOS process used throughout this paper. The 
resulting contour plot of  is shown in Fig. A1; for 
readability, lg /1  is plotted; the minimum value of 2 
in the plot hence corresponds to 100GHz. The plot 
indicates that at frequencies lower than 10 GHz,  is 
dominant compared to  and hence  can be neglected. 

 
Fig. A1. Contour plot of lg /1  with different gate and drain bias.  

APPENDIX III 

The drain-source resistive nonlinearity of M1, the 
drain-source resistive nonlinearity of M2, the gate-source 
capacitive nonlinearity of M2 and the bulk-source capacitive 
nonlinearity of M2 contribute to the IM3 of the cascode 
amplifier shown in Fig. 2. Applying the general weak (A1) 
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nonlinearity model given in (3) to the cascode amplifier yields   
 

∙ , ,  

, ∙ ∙ , 					 ∙ ,

∙ , . 
 

Using the model shown in Fig. A2(a) to calculate the H 
function, (A3) can be rewritten into 
 

∙

1
∙ , ,  

1
∙ , ∙ , ∙ ,

∙ , . 

For e.g. M2, the relative importance between the gate-source 
capacitive nonlinearity, the bulk-source capacitive nonlinearity 
and the drain-source resistive nonlinearity can be determined 
by 

 .
,

, / ∙ , ,  

																 , / 10 ∙ , ,                            (A5). 
 

Characterization of .
/ ,  shows that for M2 in the cascode 

amplifier the dominant nonlinearity is the drain-source resistive 
nonlinearity. Then (A4) can be simplified to 
 

∙

1
∙ , ,

1
∙ , ∙ ,  

 
Firstly assuming that the drain-source resistive nonlinearity 
related to the bulk-source voltage swing can be neglected, and 
secondly only including the third-order nonlinearity, we use the 
model shown in Fig.A2b to calculate the  functions, yielding 
equation (5) in section III.  
 

 
Fig.A2. (a) the equivalent model for calculating the H function. (b) the 
equivalent model for calculating the  functions.   
 

 
 
Fig.A3. (a) the equivalent model for calculating the  function and (b) the H 
functions in the CG LNA.   

APPENDIX IV 

For the CG LNA shown in Fig. 11b, assuming firstly that the 
resistive nonlinearity is dominant between the drain-source 
terminal, and secondly including only the third-order 
nonlinearities, the general weak nonlinearity model given in (3) 
can be rewritten as  

∑ ∙ , ,  

∙ , ,  

Assuming perfect input matching ( ), we 

use the model shown in Fig. A3 to calculate the H and 
	functions. Then (A7) can be rewritten as equation (8) in 

section IV. 

APPENDIX V 

The characterization of  is performed for minimum 
length MOS transistors with 1.2 and ∈
1 , 0.1 . It shows for the intermodulation distortion 

below 10GHz that the resistive nonlinearity is dominant 
between the drain-source terminal.  

For the switch M2 in Fig. 17 the nonlinearity between the 
gate-source terminal and bulk-source terminal can be neglected 
since the gate, bulk and source are ac connected. For the switch 
M1 the gate-source terminal and bulk-source terminal can also 
be neglected since two large series resistors minimize the 
voltage swing vgs and vbs. As a result, only the drain-source 
resistive nonlinearities in M1 and M2 are considered. Applying 
the general weak nonlinearity model given by (3) to the 
attenuator yields 
 

			 ∙ , , ∙ , ,  

 
In the equivalent model shown in Fig. A4, the input power 

source is modeled by the voltage source 2  in series 
with . Assuming a perfect input matching provided by the 
attenuator, the input voltage for the attenuator is  and the 

attenuation is defined by / . Let , 

(A3) 

(A7). 

(A8).

(A6) 

(A4) 
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, , for the input matching to , we  

 
 
Fig.A4. (a) the equivalent model for calculating the H function. (b) the 
equivalent model for calculating the  functions.   

have 1  and ∙ / 1 . Using the 
model shown in Fig. A4, the  functions and the voltage 
transfer functions for  functions in (A9) are given by 

																					
∙

                                     (A9)  

																					
∙

                      (A10) 

																					                                                      (A11) 

                                                 (A12)                  

																										                                            (A13) 

To the first-order approximation we only include the 
third-order nonlinearity, substituting (A9-A13) to (A8) yields 
equation (10) in section V. 
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