14,542 research outputs found

    Autonomous 3D object modeling by a humanoid using an optimization-driven Next-Best-View formulation

    Get PDF
    International audienceAn original method to build a visual model for unknown objects by a humanoid robot is proposed. The algorithm ensures successful autonomous realization of this goal by addressing the problem as an active coupling between computer vision and whole-body posture generation. The visual model is built through the repeated execution of two processes. The first one considers the current knowledge about the visual aspects and the shape of the object to deduce a preferred viewpoint with the aim of reducing the uncertainty of the shape and appearance of the object. This is done while considering the constraints related to the embodiment of the vision sensors in the humanoid head. The second process generates a whole robot posture using the desired head pose while solving additional constraints such as collision avoidance and joint limitations. The main contribution of our approach relies on the use of different optimization algorithms to find an optimal viewpoint by including the humanoid specificities in terms of constraints, an embedded vision sensor, and redundant motion capabilities. This approach differs significantly from those of traditional works addressing the problem of autonomously building an object model

    Active Vision for Scene Understanding

    Get PDF
    Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot\u27s view in order to explore interaction possibilities of the scene

    Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    Get PDF
    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Active Mapping and Robot Exploration: A Survey

    Get PDF
    Simultaneous localization and mapping responds to the problem of building a map of the environment without any prior information and based on the data obtained from one or more sensors. In most situations, the robot is driven by a human operator, but some systems are capable of navigating autonomously while mapping, which is called native simultaneous localization and mapping. This strategy focuses on actively calculating the trajectories to explore the environment while building a map with a minimum error. In this paper, a comprehensive review of the research work developed in this field is provided, targeting the most relevant contributions in indoor mobile robotics.This research was funded by the ELKARTEK project ELKARBOT KK-2020/00092 of the Basque Government

    Surface Edge Explorer (SEE): Planning Next Best Views Directly from 3D Observations

    Full text link
    Surveying 3D scenes is a common task in robotics. Systems can do so autonomously by iteratively obtaining measurements. This process of planning observations to improve the model of a scene is called Next Best View (NBV) planning. NBV planning approaches often use either volumetric (e.g., voxel grids) or surface (e.g., triangulated meshes) representations. Volumetric approaches generalise well between scenes as they do not depend on surface geometry but do not scale to high-resolution models of large scenes. Surface representations can obtain high-resolution models at any scale but often require tuning of unintuitive parameters or multiple survey stages. This paper presents a scene-model-free NBV planning approach with a density representation. The Surface Edge Explorer (SEE) uses the density of current measurements to detect and explore observed surface boundaries. This approach is shown experimentally to provide better surface coverage in lower computation time than the evaluated state-of-the-art volumetric approaches while moving equivalent distances
    corecore