11 research outputs found

    On Limits of Dense Packing of Equal Spheres in a Cube

    Full text link
    We examine packing of nn congruent spheres in a cube when nn is close but less than the number of spheres in a regular cubic close-packed (ccp) arrangement of ⌈p3/2⌉\lceil p^{3}/2\rceil spheres. For this family of packings, the previous best-known arrangements were usually derived from a ccp by omission of a certain number of spheres without changing the initial structure. In this paper, we show that better arrangements exist for all n≀⌈p3/2⌉−2n\leq\lceil p^{3}/2\rceil-2. We introduce an optimization method to reveal improvements of these packings, and present many new improvements for n≀4629n\leq4629

    Vödrök optimålis pakolåsa raklapokra

    Get PDF

    A new verified optimization technique for the “packing circles in a unit square” problems

    No full text
    Abstract. The paper presents a new verified optimization method for the problem of finding the densest packings of non-overlapping equal circles in a square. In order to provide reliable numerical results, the developed algorithm is based on interval analysis. As one of the most efficient parts of the algorithm, an interval-based version of a previous elimination procedure is introduced. This method represents the remaining areas still of interest as polygons fully calculated in a reliable way. Currently the most promising strategy of finding optimal circle packing configurations is to partition the original problem into subproblems. Still as a result of the highly increasing number of subproblems, earlier computer-aided methods were not able to solve problem instances where the number of circles was greater than 27. The present paper provides a carefully developed technique resolving this difficulty by eliminating large groups of subproblems together. As a demonstration of the capabilities of the new algorithm the problems of packing 28, 29, and 30 circles were solved within very tight tolerance values. Our verified procedure decreased the uncertainty in the location of the optimal packings by more than 700 orders of magnitude in all cases

    Véhicules connectés contributions à la communication véhicule-réseau mobile et la localisation coopérative

    Get PDF
    RÉSUMÉ VĂ©hicules connectĂ©s, ou « connected vehicles », est un nouveau paradigme des systĂšmes de transport intelligents (STI) qui vise Ă  amĂ©liorer la sĂ©curitĂ© et l’efficacitĂ© du trafic routier en utilisant les communications sans fil. Les communications des vĂ©hicules connectĂ©s (ou, V2X) englobent les communications sans fil entre vĂ©hicules et infrastructures (V2I), entre vĂ©hicule et vĂ©hicule (V2V), et entre les vĂ©hicules et les dispositifs sans fil (V2D). ConsidĂ©rĂ© comme la norme de facto pour les communications V2X, le DSRC/WAVE est le principal standard de communication sans fil spĂ©cifiquement conçu pour les communications vĂ©hiculaires. L’efficacitĂ© du DSRC/WAVE pour les communications V2V et V2I a Ă©tĂ© prouvĂ©e par de nombreuses Ă©tudes et bancs d'essai dans le monde rĂ©el. En ce qui concerne la communication V2V, le passage au stade de dĂ©ploiement Ă  grande Ă©chelle est prĂ©vu Ă  l’horizon 2020. En ce qui a trait Ă  la communication V2I, bien que le dĂ©ploiement d’une infrastructure DSRC (RSU) soit critique pour plusieurs applications STI, il n'y a toujours pas de plan pour son dĂ©ploiement Ă  grande Ă©chelle, essentiellement en raison de la nĂ©cessitĂ© d'investissements publics considĂ©rables. Avec les progrĂšs rĂ©alisĂ©s au niveau des derniĂšres versions du rĂ©seau mobile 4G LTE-A, les rĂ©seaux mobiles Ă©mergent comme l'une des principales technologies pour les communications V2I. En effet, le rĂ©seau mobile LTE-A permet aujourd’hui un plus grand dĂ©bit (100Mb/s - 1Gb/s) avec relativement un faible dĂ©lai (10ms) grĂące Ă  une Ă©volution au niveau de l’architecture du rĂ©seau et l’introduction de nouvelles technologies telles que la densification du rĂ©seau Ă  l'aide de petites cellules, relais (fixes et mobiles), la connectivitĂ© double (Dual Connectivity, DC), l’agrĂ©gation de porteuses (Carrier Aggregation, CA), etc.; des Ă©volutions qui ouvrent la voie vers la 5G Ă  l’horizon 2020 avec la promesse d’un dĂ©bit encore plus Ă©levĂ© (10Gb/s) et d’un plus faible dĂ©lai (1ms), ce qui renforce ainsi la tendance pour une future intĂ©gration vĂ©hicule et rĂ©seau mobile. Afin d’atteindre une plus grande efficacitĂ© spectrale, les petites cellules sont largement adoptĂ©es par les opĂ©rateurs de rĂ©seaux mobiles, dans les rĂ©seaux dits hĂ©tĂ©rogĂšnes (HetNets), comme une solution clĂ© pour dĂ©sengorger le trafic au niveau des macrocellules et amĂ©liorer la capacitĂ© et la couverture du rĂ©seau d’accĂšs. Cependant, bien que l’utilisation des petites cellules soit une solution intĂ©ressante pour les communications V2I, Ă©tant donnĂ© leur faible portĂ©e, cela provoque des relĂšves frĂ©quentes qui mĂšnent Ă  une surcharge Ă©levĂ©e de signalisation vers le rĂ©seau cƓur. De plus, Ă©tant donnĂ© que les petites cellules sont gĂ©nĂ©ralement connectĂ©es au rĂ©seau cƓur via une connexion Internet, celle-ci devient le goulot d'Ă©tranglement pour la relĂšve et le transfert de donnĂ©es. D’oĂč l’importance de complĂ©ter un maximum de relĂšve localement. Cette thĂšse s'inscrit dans le cadre de l’étude de l’intĂ©gration vĂ©hicule infrastructure. L'objectif gĂ©nĂ©ral est de proposer une architecture pour vĂ©hicule connectĂ© basĂ©e sur la localisation coopĂ©rative, la communication V2I et la gestion de relĂšve pour une meilleure intĂ©gration VANET – rĂ©seau mobile. Cette thĂšse fait Ă©tat de trois principales contributions. 1. La premiĂšre contribution concerne la proposition d’algorithmes de localisation coopĂ©rative, basĂ©s sur une approche ensembliste, qui permettent d’amĂ©liorer la prĂ©cision de localisation. Le premier algorithme appelĂ© (CLES) est un algorithme gĂ©nĂ©rique pour la localisation coopĂ©rative basĂ©e sur une approche ensembliste. Le deuxiĂšme algorithme, appelĂ© (CLEF), est une application de l’algorithme CLES Ă  la localisation par approche des signatures. De plus, nous caractĂ©risons leur prĂ©cision en Ă©valuant la rĂ©duction du diamĂštre maximal et l’aire du polygone en fonction de diffĂ©rents paramĂštres tels que le nombre de polygones, la configuration gĂ©omĂ©trique, la proximitĂ© du nƓud par rapport Ă  la frontiĂšre de son polygone, et l’incertitude sur les mesures de distances. 2. La deuxiĂšme contribution porte sur la sĂ©lection des passerelles mobiles pour connecter efficacement les vĂ©hicules aux petites cellules du rĂ©seau mobile. Nous formulons le problĂšme de sĂ©lection des passerelles mobiles sous forme d’un problĂšme de programmation linĂ©aire binaire multi-objectif (MO-BIP). Ensuite, nous Ă©valuons l’efficacitĂ© de l’algorithme au niveau du temps de calcul pour diffĂ©rents degrĂ©s de connectivitĂ© et un nombre variable de vĂ©hicules. 3. La troisiĂšme contribution concerne la gestion de la relĂšve dans les petites cellules du rĂ©seau mobile (LTE-A) afin de supporter efficacement les communications des vĂ©hicules connectĂ©s et rĂ©duire la surcharge de signalisation vers le rĂ©seau cƓur. Pour ce faire, nous proposons un nouveau schĂ©ma basĂ© sur le transfert local de trafic en utilisant les liens X2 et les nƓuds d’ancrage. Trois procĂ©dures sont proposĂ©es, Ă  savoir: 1) intra-domaine, 2) inter-domaines, 3) et K-sauts inter-domaines. Ensuite, en utilisant un modĂšle analytique, nous Ă©valuons l’efficacitĂ© du schĂ©ma proposĂ©.----------ABSTRACT Connected Vehicles are a new intelligent transportation paradigm that uses wireless communications to improve traffic safety and efficiency. It has received a great deal of attention in recent years, across many communities. While the DSRC is widely recognized as the de facto standard for V2V, other wireless technologies are required for large-scale deployment of V2I communications. Thanks to its high data rates and large scale deployment, the LTE-A enhanced by small cells densification, is positioned as one of the major candidate technologies for V2I communications. However, using LTE-A small cells for V2I communications is challenging due to their small coverage which lead to frequent handoffs and more signaling overhead. Thanks to recent advances in LTE-A Releases-10/11/12, the 4G LTE-Advanced (LTE-A) mobile network appears as one of the major candidate technologies for V2I communications. In fact, the LTE-A promises to deliver reduced connection setup time and lower latency (10ms) and higher data rates (up to 1Gbps) by using new physical layer technologies and new network elements and functions such as, network densification using Small Cells (SCs), Dual Connectivity (DC), Relaying functionality, Carrier Aggregation (CA), Device to Device (D2D) communication, etc.; developments that pave the way to 5G in the Horizon 2020, with the promise of an even higher data rates (more than 10 Gbps) and even much lower latency (1ms), which reinforces the trend for future integration between VANET and mobile networks for V2I communications. Although the macrocell will remain the major Radio Access Network (RAN) element for wide-area coverage and high-mobility users, it is no longer sufficient to meet user's demand in many high-density areas. Indeed, due to the proliferation of mobile devices and applications, mobile data demand continues to grow exponentially. Small cells, which include microcells, picocells, and femtocells, are widely recognized as a key solution for enhancing RAN capacity and coverage. They are increasingly used by mobile operators, in the so-called Heterogeneous Network (HetNet), to offload traffic from their macrocells. A HetNet is typically composed of several layers (macrocells, small cells), and in some cases different access technologies (e.g., LTE-A, UMTS, WiFi). SCs densification involves deploying more small coverage base stations in high demand areas to bring higher spectral efficiency per coverage area. Nevertheless, the SCs deployment faces a number of problems relevant to mobility handling that have to be addressed. More specifically, the use of SCs with limited coverage causes frequent handovers that lead to high signaling overhead toward the core network. In addition, since the small cells are generally connected to the EPC via a network Internet connection, this one becomes the bottleneck for handovers and data forwarding, hence the importance of completing a maximum of handover locally. This thesis therefore aims to propose solutions for VANETs and mobile networks integration. The main contributions of this thesis are summarized as follows: The first contribution concerns the proposed cooperative localization algorithms, based on a set-membership approach which improves the location accuracy. The first algorithm called (CLES) is a generic algorithm for cooperative localization based on a set-membership approach. The second algorithm called (CLEF) is an application of CLES algorithm to fingerprinting localization. In addition, we characterize their accuracy by evaluating the reduction of the maximum diameter and the area of the polygon depending on various parameters such as the number of polygons, the geometric configuration, the nearest node in relation to the boundary of the polygon, and the uncertainty of distance measurements. The second contribution concerns the selection of mobile gateways to effectively connect vehicles to small cells of the mobile network. In fact, while each vehicle may directly uses its LTE-A interface for V2I communications, we argue that by selecting a limited number of GWs, we can effectively reduce the mobility signaling overhead. Hence, we propose a new network-based mobile gateway selection scheme with one-hop clustering to efficiently relay the traffic from neighbouring vehicles toward the serving SC. The selection problem is formulated as a multi-objective binary linear programming problem. Using linear programming solver, we show that, for realistic number of vehicles per small cell and GW connectivity degree, the execution time is relatively short. As a third contribution of this thesis, we focus on challenges relevant to mobility for VANETs using LTE-A network. Specifically, a novel architecture that integrates VANET and 4G LTE-A Heterogeneous Network for enhanced mobility in LTE-A small cells is introduced. First, we propose a new network-based mobile gateway selection scheme with one-hop clustering to efficiently relay traffic from neighbouring vehicles toward the serving SC. The problem is formulated as a multi-objective binary programming problem. Then, for seamless mobility of connected vehicles, we propose a local k-hops anchor-based mobility scheme with three procedures, namely intra-domain, k-hops inter-domain and inter-domain procedures. Numerical results show the effectiveness of the proposed mobility schemes for reducing the generated signaling load towards the core network

    Rigorous techniques for continuous constraint satisfaction problems

    Get PDF
    Diese Arbeit beschĂ€ftigt sich mit rigorosen Techniken fĂŒr das Lösen kontinuierlicher ZulĂ€ssigkeitsprobleme. Das heißt, wir suchen nach einem oder allen Punkte, genannt zulĂ€ssige Punkte, die eine Familie von Gleichungen und/oder Ungleichungen erfĂŒllen, die wir im Weiteren Nebenbedingungen nennen werden. Zahlreiche Anwendungen fĂŒhren auf kontinuierliche ZulĂ€ssigkeitsprobleme. Neue und bereits existierende moderne Methoden werden prĂ€sentiert und integriert in GloptLab, eine neue, leicht bedienbare Test- und Entwicklungsplattform zum Lösen quadratischer ZulĂ€ssigkeitsprobleme. Der Lösungsalgorithmus beruht auf dem Grundprinzip von Branch-and-Prune und auf Filterung. Filterungsmethoden dienen zur Verkleinerung/Reduktion einer Box, definiert als das kartesische Produkt der Intervalle, die die Schranken an die Variablen festlegen. Um den Verlust zulĂ€ssiger Punkte zu vermeiden, werden alle FehlerabschĂ€tzungen rigoros mittels Intervallarithmetik und gerichteter Rundung durchgefĂŒhrt. Das stellt sicher, dass alle Rechnungen auch in Gleitkommaarithmetik gĂŒltig sind. In der Doktorarbeit werden die folgenden Themen diskutiert: der mathematische Hintergrund, Algorithmen und Tests fĂŒr Constraint-Propagation, strikt konvexe Einschließungen, lineare Relaxationen, das Berechnen, korrekte Benutzen und Verifizieren approximativ zulĂ€ssiger Punkte, optimale Skalierung und diverse Hilfsmethoden. Insbesondere: - Constraint-Propagation basiert auf einer Folge von Schritten, die jeweils eine einzelne Nebenbedingung verwenden. Traditionelle Techniken werden durch eine spezielle quadratische Methode erweitert, die neue Verfahren fĂŒr die Eliminierung bilinearer EintrĂ€ge und fĂŒr das Berechnen optimaler Einschließungen fĂŒr separable quadratische AusdrĂŒcke verwendet. - Eine quadratische Ungleichungsnebenbedingung, die eine positiv definite Hesse-Matrix besitzt, definiert ein Ellipsoid. Eine spezielle rundungsfehlerkontrollierte Version der Cholesky-Zerlegung wird verwendet, um die strikt konvexe quadratische Nebenbedingungen in Norm-Ungleichungen zu transformieren. FĂŒr diese ist es dann einfach, die Intervall-HĂŒlle analytisch zu bestimmen. - Diverse Methoden fĂŒr die Erzeugung linearer Relaxationen werden diskutiert, kombiniert und erweitert. Teilweise verbesserte, existierende und neue Verfahren fĂŒr das rigorose Einschließen der Lösungsmenge linearer Systeme werden prĂ€sentiert. - Eine Vielzahl von Beispielen demonstrieren, dass die prĂ€sentierten Verfahren einander ergĂ€nzen. Außerdem zeigen sie, wie man Lösungsstrategien entwickelt, die ZulĂ€ssigkeitsprobleme global und effizient lösen.This thesis contributes rigorous techniques for solving continuous constraint satisfaction problems, i.e., finding one or all points (called feasible points) satisfying a given family of equations and/or inequalities (called constraints). Many real word problems are continuous constraint satisfaction problems. New and old state of the art methods are presented, integrated in GloptLab, a new easy-to-use testing and development platform for solving quadratic constraint satisfaction problems. The basic solution principle is branch and prune and filtering. Filtering techniques tighten a box -- the Cartesian product of intervals defined by the bounds on the variables. In order to avoid a loss of feasible points, rigorous error estimation using interval arithmetic and directed rounding are used, to take care that all calculations are valid even though the calculations are performed in floating-point arithmetic only. Discussed are the mathematical background, algorithms and tests of constraint propagation, strictly convex enclosures, linear relaxations, finding, using and verifying approximately feasible points, optimal scaling and other auxiliary techniques. In particular: - Constraint propagation is based on a sequence of steps, each using a single constraint only. Traditional techniques are extended by special quadratic constraint propagation methods using new techniques for eliminating bilinear entries and finding optimal enclosures for separable quadratic expressions. - A quadratic inequality constraint with a positive definite Hessian defines an ellipsoid. A rounding error controlled version of the Cholesky factorization is used to transform a strictly convex quadratic constraint into a norm inequality, for which the interval hull is easy to compute analytically. - Different methods for computing linear relaxations are discussed, combined and extended. Partially improved and existing methods, as well as new approaches for rigorously enclosing the solution set of linear systems of inequalities are presented. - Numerous examples show that the above methods complement each other and how to create solution strategies that solve constraint satisfaction problems globally and efficiently

    Some applications of continuous variable neighbourhood search metaheuristic (mathematical modelling)

    Get PDF
    In the real world, many problems are continuous in nature. In some cases, finding the global solutions for these problems is di±cult. The reason is that the problem's objective function is non convex, nor concave and even not differentiable. Tackling these problems is often computationally too expensive. Although the development in computer technologies are increasing the speed of computations, this often is not adequate, particularly if the size of the problem's instance are large. Applying exact methods on some problems may necessitate their linearisation. Several new ideas using heuristic approaches have been considered particularly since they tackle the problems within reasonable computational time and give an approximate solution. In this thesis, the variable neighbourhood search (VNS) metaheuristic (the framework for building heuristic) has been considered. Two variants of variable neighbourhood search metaheuristic have been developed, continuous variable neighbourhood search and reformulation descent variable neighbourhood search. The GLOB-VNS software (Drazic et al., 2006) hybridises the Microsoft Visual Studio C++ solver with variable neighbourhood search metaheuristics. It has been used as a starting point for this research and then adapted and modified for problems studied in this thesis. In fact, two problems have been considered, censored quantile regression and the circle packing problem. The results of this approach for censored quantile regression outperforms other methods described in the literature, and the near-optimal solutions are obtained in short running computational time. In addition, the reformulation descent variable neighbourhood search variant in solving circle packing problems is developed and the computational results are provided.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore