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“There are no shortcuts to any place worth going”

Helen Keller



Abstract

This thesis contributes rigorous techniques for solving continuous constraint satisfaction

problems, i.e., finding one or all points (called feasible points) satisfying a given fam-

ily of equations and/or inequalities (called constraints). Many real word problems are

continuous constraint satisfaction problems. New and old state of the art methods are

presented, integrated in GloptLab, a new easy-to-use testing and development plat-

form for solving quadratic constraint satisfaction problems. The basic solution principle

is branch and prune and filtering. Filtering techniques tighten a box – the Cartesian

product of intervals defined by the bounds on the variables. In order to avoid a loss of

feasible points, rigorous error estimation using interval arithmetic and directed rounding

are used, to take care that all calculations are valid even though the calculations are

performed in floating-point arithmetic only.

Discussed are the mathematical background, algorithms and tests of constraint propaga-

tion, strictly convex enclosures, linear relaxations, finding, using and verifying approxi-

mately feasible points, optimal scaling and other auxiliary techniques. In particular:

• Constraint propagation is based on a sequence of steps, each using a single constraint

only. Traditional techniques are extended by special quadratic constraint propagation

methods using new techniques for eliminating bilinear entries and finding optimal en-

closures for separable quadratic expressions.

• A quadratic inequality constraint with a positive definite Hessian defines an ellipsoid.

A rounding error controlled version of the Cholesky factorization is used to transform a

strictly convex quadratic constraint into a norm inequality, for which the interval hull

is easy to compute analytically.

• Different methods for computing linear relaxations are discussed, combined and ex-

tended. Partially improved and existing methods, as well as new approaches for rigor-

ously enclosing the solution set of linear systems of inequalities are presented.

• Numerous examples show that the above methods complement each other and how

to create solution strategies that solve constraint satisfaction problems globally and

efficiently.



Abstract

Diese Arbeit beschäftigt sich mit rigorosen Techniken für das Lösen kontinuierlicher

Zulässigkeitsprobleme. Das heißt, wir suchen nach einem oder allen Punkte, genannt

zulässige Punkte, die eine Familie von Gleichungen und/oder Ungleichungen erfüllen, die

wir im Weiteren Nebenbedingungen nennen werden. Zahlreiche Anwendungen führen

auf kontinuierliche Zulässigkeitsprobleme. Neue und bereits existierende moderne Meth-

oden werden präsentiert und integriert in GloptLab, eine neue, leicht bedienbare

Test- und Entwicklungsplattform zum Lösen quadratischer Zulässigkeitsprobleme. Der

Lösungsalgorithmus beruht auf dem Grundprinzip von Branch-and-Prune und auf Fil-

terung. Filterungsmethoden dienen zur Verkleinerung/Reduktion einer Box, definiert

als das kartesische Produkt der Intervalle, die die Schranken an die Variablen festlegen.

Um den Verlust zulässiger Punkte zu vermeiden, werden alle Fehlerabschätzungen rig-

oros mittels Intervallarithmetik und gerichteter Rundung durchgeführt. Das stellt sicher,

dass alle Rechnungen auch in Gleitkommaarithmetik gültig sind. In der Doktorarbeit

werden die folgenden Themen diskutiert: der mathematische Hintergrund, Algorithmen

und Tests für Constraint-Propagation, strikt konvexe Einschließungen, lineare Relaxatio-

nen, das Berechnen, korrekte Benutzen und Verifizieren approximativ zulässiger Punkte,

optimale Skalierung und diverse Hilfsmethoden. Insbesondere:

• Constraint-Propagation basiert auf einer Folge von Schritten, die jeweils eine einzelne

Nebenbedingung verwenden. Traditionelle Techniken werden durch eine spezielle quadra-

tische Methode erweitert, die neue Verfahren für die Eliminierung bilinearer Einträge

und für das Berechnen optimaler Einschließungen für separable quadratische Ausdrücke

verwendet.

• Eine quadratische Ungleichungsnebenbedingung, die eine positiv definite Hesse-Matrix

besitzt, definiert ein Ellipsoid. Eine spezielle rundungsfehlerkontrollierte Version der

Cholesky-Zerlegung wird verwendet, um die strikt konvexe quadratische Nebenbedin-

gungen in Norm-Ungleichungen zu transformieren. Für diese ist es dann einfach, die

Intervall-Hülle analytisch zu bestimmen.

• Diverse Methoden für die Erzeugung linearer Relaxationen werden diskutiert, kom-

biniert und erweitert. Teilweise verbesserte, existierende und neue Verfahren für das

rigorose Einschließen der Lösungsmenge linearer Systeme werden präsentiert.

• Eine Vielzahl von Beispielen demonstrieren, dass die präsentierten Verfahren einander

ergänzen. Außerdem zeigen sie, wie man Lösungsstrategien entwickelt, die Zulässigkeits-

probleme global und effizient lösen.
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Notation viii

Notation

N0 denotes the set of natural numbers including zero and R+ the set of nonnegative

reals. The n-dimensional identity matrix is denoted by In and the n-dimensional zero

matrix is denoted by 0n. The jth row vector of a matrix A is denoted by Aj:, the kth

column vector by A:k and the number of nonzero entries by nnz(A). The set ¬N denotes

the complement of a set N . The number of elements of a set N is denoted by |N |. Let

I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,m} be index sets and let nI := |I|, nJ := |J |. Let x

be an n-dimensional vector, then xI denotes the nI -dimensional vector built from the

components of x selected by the index set I. Let A be an m×n matrix, then A:I denotes

the m× nI matrix built from the rows of A selected by the index sets I. Similarly, AJ :

denotes the nJ × n matrix built from the columns of A selected by the index sets J .

(AT )−1 is denoted by A−T . For vectors and matrices the comparison operators =, 6=,

<, >, ≤, ≥ and the absolute value |A| of a matrix A are interpreted component-wise.

For an n× n matrix A, diag(A) denotes the n-dimensional vector with diag(A)i = Aii.

For an n× n matrix A, Diag(A) denotes the n× n diagonal matrix with

Diag(A)ij :=

{
Aii if i = j,

0 otherwise.

For an n-dimensional vector x, Diag(x) denotes the n× n diagonal matrix with

Diag(A)ij :=

{
xi if i = j,

0 otherwise.

A matrix A is called as very small with respect to a matrix B if |A| < |B| and for a

fixed, given tolerance 0 < κ� 1 (chosen by the implementation of the method)

max
i,j

(Dij) ≤ κ where Dij :=

{
|Aij |/|Bij | if |Aij | ≥ 1

|Aij | otherwise.
(1)

For example if

A =

(
0.001 10

0.002 0.004

)
, B =

(
0.1 10000

0.003 0.02

)
, then D =

(
0.001 0.001

0.002 0.004

)

and |A| < |B|, the matrix A is very small with respect to B if the tolerance κ satisfies

κ ≥ maxi,j(Dij) = 10−3. The expression ‖A‖2 := sup{‖Ax‖2 | ‖x‖2 = 1} denotes the

Euclidean norm of a matrix A. The expression λ(A) denotes the set of all eigenvalues of

a square matrix A. Furthermore, λmax(A) denotes the largest and λmin(A) the smallest

eigenvalue of A.
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a = [a, a] with a ≤ a denotes a real interval with a possibly infinite lower bound a and a

possibly infinite upper bound a. A bound is large, if its absolute value is greater than a

configurable constant µ (whose default value is 106 in GloptLab). Decisions are often

based on “if a bound is large” rather than on “if a bound is infinite”. An interval is

large if both of its bounds are large. The expressions

wid(a) := a− a

denotes the width,

mid(a) := (a+ a)/2

denotes the midpoint,

〈a〉 :=

{
min(|a|, |a|) if 0 /∈ [a, a],

0 otherwise,

denotes the mignitude and

|a| := max(|a|, |a|)

denotes the magnitude of an interval a. An interval is called thin or degenerate if

its width is zero. An interval is called narrow if its width is less than a configurable

constant η (whose default value is 10−6 in GloptLab). Decisions are often based on “if

an interval is narrow” rather than on “if an interval is thin”. The sign of the interval

a is defined by

sign a =


0 if a = a = 0,

1 if a ≥ 0,

−1 if a ≤ 0,

[− 1, 1] if a < 0 < a.

Note that this definition is not standard; for example, the standard Matlab sign func-

tion is different. We also consider a quadratic expression p(x) in x = (x1, . . . , xn)T such

that the evaluation at any x ∈ x is a real number. The box p(x) is called an interval

enclosure of p(x) in the box x if p(x) ∈ p(x) holds for all x ∈ x. There are a number of

methods for defining p(x), for example interval evaluation or centered forms (for details,

see, e.g., Neumaier [70]). If for all y ∈ p(x) an x ∈ x exists such that p(x) = y, then

p(x) is called the range. If this only holds for y = inf p(x) and y = sup p(x), then p(x)

is the interval hull ut{p(x) | x ∈ x}. To get rigorous results when using floating point

arithmetic, one needs an implementation of interval arithmetic with outward round-

ing. Another – and somewhat trickier – alternative is is to compute the upper and the

lower bound of the range separately, without the use of interval arithmetic, by using

monotonicity properties of the operations. To get rigorous results when using floating

point arithmetic, one needs here directed rounding. However, not all expressions can be
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bounded from below or above using directed rounding only; and detailed considerations

are needed in each particular case. For an expression p, ∇{p} denotes the result obtained

when first the rounding mode is set to downward rounding, then p is evaluated, and by

∆{p} the result obtained when first the rounding mode is set to upward rounding, then

p is evaluated. Assumed is that negating an expression is done without error; thus,

e.g., ∆{−(x − y)} = −∆{x − y} holds. Careful arrangement allows in many cases to

replace downward rounded expressions by equivalent upward rounded expressions. For

example, ∇{x − y} = ∆{−(y − x)}. If this is possible, one can achieve correct results

using only upward rounding (thus saving rounding mode switches), while in Intlab’s

interval arithmetic (see Rump [82]), the rounding mode is switched often, slowing down

the computations.

An interval vector x = [x, x] ∈ IRn or a box is the Cartesian product of the closed real

intervals xi := [xi, xi], representing a (bounded or unbounded) axiparallel box in Rn.

The values −∞ and∞ are allowed as lower and upper bounds, respectively, to take care

of one-sided bounds on variables. IRn denotes the set of all n-dimensional boxes. A box

is large or narrow when all its components are large or narrow. Operations defined for

intervals (like width, midpoint, mignitude and magnitude) are interpreted component-

wise when applied to boxes. The condition x ∈ x is equivalent to the collection of

simple bounds

xi ≤ xi ≤ xi (i = 1, . . . , n),

or, with inequalities on vectors and matrices interpreted component-wise, to the two-

sided vector inequality x ≤ x ≤ x. Apart from two-sided constraints, this includes with

xi = [a, a] variables xi fixed at a particular value xi = a, with xi = [a,∞] lower bounds

xi ≥ a, with xi = [−∞, a] upper bounds xi ≤ a, and with xi = [−∞,∞] free variables.

To account for inaccuracies in computed entries of a matrix, we use interval matrices,

standing for uncertain real matrices whose coefficients are between given lower and upper

bounds. The expression A := [A,A] ∈ IRm×n denotes an m × n interval matrix with

lower bound A and upper bound A. A ∈ IRn×n is symmetric if Aik = Aki for all

i, k ∈ {1, . . . , n}. The comparison matrix 〈A〉 of a square interval matrix A is defined

by

〈A〉ij :=

{
−|Aij | for i 6= j,

〈Aij〉 for i = j.

A real matrix A is identified with the narrow interval matrix with A = A = A; in

particular, its comparison matrix is

〈A〉ij :=

{
−|Aij | for i 6= j,

|Aij | for i = j.
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The width and the radius of an interval matrix A are the real matrices defined by

wid(A) := A−A, and rad(A) := wid(A)/2,

respectively. A symmetric interval matrix A ∈ IRn×n is called positive definite if all

symmetric A ∈ A are positive definite, xTAx > 0 for all nonzero x ∈ Rn. An interval

matrix A ∈ IRn×n is called an H-Matrix iff a vector u > 0 with 〈A〉u > 0 exists (see,

e.g., Neumaier [70]).



Chapter 1

Introduction

1.1 Outline

This thesis contributes rigorous techniques for solving continuous constraint satisfac-

tion problems. A continuous constraint satisfaction problem is the special case of a

continuous optimization problem where the objective function is constant. Many real

world problems are continuous constraint satisfaction problems. Applications include

robotics (Grandon et al. [37], Merlet [66]), localization and map building (Jaulin

[49], Jaulin et al. [50], biomedicine Cruz & Barahona [23]), circle packing (Markót

& Csendes [64], Szabó et al. [96]), or the protein folding problem (Krippahl & Bara-

hona [58], Neumaier [71]).

Solving a constraint satisfaction problem consist in finding one or all feasible points,

i.e., points satisfying a given family of equations and/or inequalities (called constraints).

The basic solution principle is branch and prune based on filtering. Filtering techniques

tighten a box – the Cartesian product of intervals defined by the bounds on the variables.

The box enclosing the set of all feasible points of a constraint satisfaction problem is

called bound constraint. Branch and prune is used to partition the bound constraints

smaller subboxes followed by pruning methods applied to each of them in order to find

a better covering of the set of all feasible points.

In practice, constraint satisfaction problems are solved by a combination of a variety of

techniques, often involving constraint propagation, with either some form of stochastic

search or a branch and prune scheme for a complete search. These techniques are

mainly complemented by filtering or pruning techniques based on techniques borrowed

from optimization, such as linear or convex relaxations (see, e.g., Neumaier [73]).

1



Chapter 1. Introduction 2

Rigorous methods guarantee that no feasible point is lost if they are used to tighten the

bound constraints. In order to avoid a loss of feasible points, rigorous error estimation

using interval arithmetic and directed rounding are used, to take care that all calculations

are valid even though the calculations are performed in floating-point arithmetic only.

Old, new, and modified state of the art methods are presented and integrated in Glopt-

Lab, a configurable framework for the rigorous global solution of quadratic constraint

satisfaction problems. Discussed are the mathematical background, algorithms and tests

of constraint propagation, strictly convex enclosures, linear relaxations, finding, using

and verifying approximately feasible points, optimal scaling and global solution tech-

niques.

The thesis is organized as follows: In Chapter 2 GloptLab is presented, a framework

which combines several new or state of the art methods with special features ranging

from the building of user-defined solution strategies to interactive solution based on a

graphical user interface. The detailed description of the system is already published in

[27]. The remaining part of the thesis discusses some of the methods already integrated

into the GloptLab environment. The methods are logically divided into the following

chapters which are slightly modified versions of joint papers with my thesis advisor,

which are under review or already published in a scientific journal. At the end of each

chapter the contribution to the research by the authors are discussed in detail.

• Chapter 3 is about constraint propagation on quadratic constraints, a basic and

cheap tool for extracting bound information from the constraints. Constraint

propagation is based on a sequence of steps, each using a single constraint only.

Traditional techniques are extended by special quadratic constraint propagation

methods using new techniques for eliminating bilinear entries and finding optimal

enclosures for separable quadratic expressions. This chapter is a slightly modified

version of the already published paper [30].

• Chapter 4 discusses rigorous enclosures of ellipsoids, a method for computing the

interval hull of strict convex constraints. A quadratic inequality constraint with

a strictly convex Hessian defines an ellipsoid. A rounding error controlled ver-

sion of the Cholesky factorization is used to transform a strictly convex quadratic

constraint into a norm inequality, for which the interval hull is easy to compute

analytically, but the rigorous version with rounding error control is highly non-

trivial. This chapter is a slightly modified version of the paper [31] which is under

review.

• Chapter 5 is about rigorous filtering using linear relaxations. Different methods

for computing linear relaxations are discussed, combined and extended. Partially
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improved and existing methods, as well as new approaches for rigorously enclosing

the solution set of linear systems of inequalities are presented. The loss of sharpness

caused by relaxing the problem is compensated by the ease and efficiency with

which the relaxed problems can be solved. This chapter is a slightly modified

version of the paper [33] which is under review.

• Various examples illustrate the advantage of the methods discussed. Testing is

mainly done using the Test Environment (Domes et al. [28]), an interface for

comparing and testing of different optimization solvers. This tool for both devel-

opers of solver software and practitioners allows us to exploit how the methods

complement each other to solve constraint satisfaction problems globally, rigor-

ously and efficiently.

I have written two other, related papers (one already published, the other submitted)

discussing additional methods for constraint satisfaction problems:

• Good scaling is an essential requirement for the good behavior of many numerical

algorithms. The paper Domes & Neumaier [29] surveys scaling algorithms for

systems of polynomials from the literature, and discuss some new ones, applicable

to arbitrary polynomial constraint satisfaction problems. This includes systems of

polynomial equations; but there may be fewer or more constraints than variables.

The technique extends without problems to the scaling of polynomial optimization

problems.

• Local search techniques for finding an approximate feasible point are used to find a

small box around the approximation and verified to contain a feasible point. Even

if no approximate feasible point could be located, the information extracted from

the search can often be used to reduce the bounds around the solution set. The

paper Domes & Neumaier [32] discusses the feasible point search, present new

techniques for pruning using feasible or nearly feasible points and a method for

verifying feasible points close to given approximations.

1.2 Problem specification

A continuous, global optimization problem can be posed as

min f(x)

s.t. C(x) ∈ F

x ∈ x.

(1.1)



Chapter 1. Introduction 4

The function f(x) : Rn → R is called the objective function, the m general con-

straints Ci(x) ∈ Fi, (i = 1, . . . ,m) are interpreted as component-wise enclosures. This

includes equality constraints if Fi = [Fi, Fi] is a degenerate interval, and inequality con-

straints if one of the bounds is infinite and two-sided constraints F i ≤ Ci ≤ F i if both

bounds are finite, and different. The n bound constraints xj ∈ xj with j = 1, . . . , n are

interpreted as enclosures xj ∈ xj with j = 1 . . . n. Again, fixed variables and one-sided

bounds on the variables are included as special cases.

An x ∈ x is called a feasible point if C(x) ∈ F is satisfied. The problem is called

infeasible if there are no feasible points. A constraint satisfaction problem is an

optimization problem with a constant objective function f(x) = c. In this case, the task

is either to find a single feasible point or to find a finite covering or bounding box of the

set of all feasible points by n-dimensional boxes of small volume.

This thesis considers rigorous methods for bounding the feasible domain. Rigorous

methods reduce the search space (x,F) while guaranteeing that no feasible points

are lost. Formally, using the problem specification (1.1), rigorous means that each

method Γ : (x,F)→ (x̃, F̃) has the property

{x ∈ x | C(x) ∈ F} = {x ∈ x̃ | C(x) ∈ F̃}.

The reduction property is ensured by requiring that x̃ ⊆ x and F̃ ⊆ F.

Polynomial expressions in standard form are represented as a linear combination of

monomials. All monomials occurring in some general constraints are collected together

in a vector-valued function p(x) : Rn → Rnp with components

p(x)k =
n∏
j=1

x
Ekj

j for k = 1 . . . p.

Here E ∈ Ns×n
0 is a sparse matrix encoding the powers with which the variables appear

in the monomials used. The corresponding polynomial coefficients are collected in a

sparse matrix A ∈ Rm×np . Thus the general polynomial constraint satisfaction

problem with n variables and m constraints takes the form

x ∈ x, Ap(x) ∈ F (1.2)

with p(x) as above, A ∈ Rm×np , x ∈ IRn, and F ∈ IRm.

To be able to rigorously account for uncertainties due to measurements of limited accu-

racy, conversion errors from an original representation to our normal form, and rounding
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errors when creating new constraints by relaxation techniques, the coefficients in the con-

straints are allowed to vary in (narrow) intervals. Thus the coefficient matrix A can vary

arbitrarily within some interval matrix A. The m×np interval matrix A with closed and

bounded interval components Aik = [Aik, Aik], is interpreted as the set of all A ∈ Rm×np

such that A ≤ A ≤ A, where A and A are the matrices containing the lower and upper

bounds of the components of A.

As observed by [60] polynomial constraints can be decomposed in many different ways

into quadratic constraints by introducing additional variables, many of the presented

methods assume that all constraints are quadratic. Therefore the quadratic constraint

satisfaction problem with uncertain constraint coefficients is written in the form

Aq(x) ∈ F, x ∈ x, A ∈ A, (1.3)

with the n(n+ 1)-dimensional, redundant, quadratic monomial vector

q(x) = (x1, . . . , xn, x
2
1, . . . , x1xn, . . . , xnx1, . . . , x

2
n)T .

If additional ns slack variables xs are introduce in addition to the no original variables

xo, then the quadratic constraint satisfaction problem in the equality form is given by

Aq(x) = 0, x ∈ x, A ∈ A, (1.4)

where ne = no + ns is the number of the variables x = (xo xs)T and

q(x) = (1, x1, . . . , xne , x
2
1, . . . , x1xne , . . . , xnex1, . . . , x

2
ne

)T .

A special representation of general optimization problems is also used, in which (1.3)

and (1.4) are special cases, where the objective function is constant and no user-defined

univariate functions (see below) occur: Let I, J ⊆ {1, . . . , n} be index sets then

xj := φk(xi) with j ∈ J, k ∈ {1, . . . , nu}, i ∈ I (1.5)

assigns the univariate function φk depending on the variable xi to the variable xj . For

example, if (i, j, k) = (3, 4, 2) and φ2(z) = sin(z + π/3) then x4 := φ2(x3) = sin(x3 +

π/3) is an additional univariate non-quadratic constraint definition. The term xJ :=

φ(xI) in (1.6) represents all nu univariate function definitions. An objective function is

also defined, allowing to handle continuous optimization problems in future versions of

GloptLab.
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The optimization problem

min Ao:q(x) ∈ Fo

s.t. Aq(x) ∈ F for someA ∈ A,

x ∈ x, xJ = φ(xI).

(1.6)

with

x ∈ Rn, q(x) ∈ Rnq , A ∈ Rm×nq , i ≤ n, |I| = |J | = nu

and φ : Rnu → Rnu is called the internal inequality representation of GloptLab.

Since the above representation is often obtained from converting non-quadratic problems

by introducing additional intermediate variables, the variables are categorized as the

no original variables xo, ni intermediate variables xi (e.g., variables used substituting

univariate functions) and the ns slack variables xs by writing x = (xo xi xs)T with n =

no + ni + ns. There are no slack variables in the internal inequality representation (1.6)

but slack variables may occur in the internal equality representation of GloptLab:

min Ao:q(x) ∈ Fo

s.t. Aq(x) = 0 for someA ∈ A,

x ∈ x, xJ := φ(xI).

(1.7)

where

i ∈ {1, . . . , n}, x ∈ Rn, q(x) ∈ Rnq+1, A ∈ Rm×(nq+1), |I| = |J | = nu,

and φ : Rnu → Rnu .

The conversion from the AMPL format to the internal problem representation of Glopt-

Lab is done by AMPL in connection with the Coconut Environment [88], while the

parsing and conversion from a simplified AMPL format is done by the SMPL parser

[63]. Converting the GloptLab problem representation (.def, .glb files) to AMPL or

SMPL formats is also possible. More information about the conversion possibilities can

be found in Figure 2.1 (Subsection 2.4.1).

By computing a linear relaxation of nonlinear problem (see Chapter 5 for details) a

linear system of inequalities is obtained and can be written as

Ex ∈ b, x ∈ x, (1.8)

where E is anm×n real matrix, b := [b, b] is anm–dimensional and x is an n–dimensional

box. The linear expressions comprise component-wise linear enclosures Ei:x ∈ bi. This

includes linear equalities if bi is a degenerate interval with bi = bi, linear inequality
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constraints if one bound of bi is infinite, and two-sided linear inequalities if both bounds

are finite.



Chapter 2

GloptLab - a configurable

framework for the rigorous global

solution of quadratic constraint

satisfaction problems

Abstract.

GloptLab is an easy-to-use testing and development platform for solving quadratic

constraint satisfaction problems, written in Matlab.

The algorithms implemented in GloptLab are used to reduce the search space: scaling,

constraint propagation, linear relaxations, strictly convex enclosures, conic methods, and

branch and bound. All these methods are rigorous, hence it is guaranteed that no feasible

point is lost. Finding and verifying feasible points complement the reduction methods.

From the method repertoire custom made strategies can be built, with a user-friendly

graphical interface.

GloptLab was tested on a large test set of constraint satisfaction problems, and the

results show the importance of compose a clever strategy.

2.1 Introduction

GloptLab is a testing and development platform, implemented in Matlab, for rig-

orously solving quadratic constraint satisfaction problems, i.e., for finding multivariate

8
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points satisfying a given list of quadratic equations and inequalities, in a way that en-

sures that no possible solution is lost during the solution process. GloptLab supports

rigorous input, converting decimal numbers that are not exactly representable into nar-

row interval coefficients accounting for the conversion errors. Coefficients may also be

specified directly as narrow intervals.

GloptLab can also solve other algebraic constraint satisfaction problems, using the

dag2gloptlab converter of the Coconut Environment, which introduces intermediate

variables to transform algebraic problems to quadratic ones.

All methods implemented in GloptLab are rigorous since they meet the above property.

The methods in GloptLab return a certificate which can be used to verify the solution

process and to automatically generate human-readable computer assisted proofs.

The reduction methods implemented in GloptLab were jointly developed with Arnold

Neumaier, and are described in separate publications quoted in Section 2.2, where a short

introduction to each of them is given. The input format is analyzed and preprocessed by

the problem simplification.Constraint propagation is a fast and effective method which is

also used as a part of other more complicated methods (see Chapter 3). We use different

linear relaxation techniques to get finite bounds or decrease the size of the search space

(see Chapter 5). Strict convex enclosures compute a nearly optimal interval hull of

strictly convex constraints (see Chapter 4). Conic methods may lead to spectacular

reductions of the search domain, but require a great deal of computation time (see

Domes & Neumaier [34]). Branch and bound divides the search space into smaller

subdomains and applies some of the above methods to reduce their size or even eliminate

them when they do not contain feasible points. The boxes which remain after the

branching can be merged to a single or fewer ones by computing their interval hull or

finding and bounding the clusters of them. Finding and verifying feasible points are

important if we search only for a single solution of the constraint satisfaction problem.

Different scaling algorithms guarantee that the methods, which are not scaling invariant,

do not run into difficulties due to bad scaling (see Domes & Neumaier [29]).

Some of the methods mentioned above make use of external toolboxes. Since the verifi-

cation is often based on interval techniques, INTLAB (Rump [82]) is probably the most

important toolbox, although some methods avoid using it to speed up the computation,

it is always needed to run GloptLab. Unverified solutions of linear programs are ob-

tained by using LPSolve (Berkelaar et al. [16]), SeDuMi (Sturm et al. [95]) or

SDPT3 (Toh et al. [98]). The latter two can be also used to optimize over symmetric

cones which make them an essential part of the rigorous conic methods. In general,

the nonrigorous parts are only used for generating approximations which are needed in

subsequent rigorous computation steps. The algorithms for finding and verifying feasible
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points make use of local solvers like projected BFGS and conjugate gradient methods

from Kelley [56]. AMPL (Fourer et al. [35]), the Coconut Environment (Schichl

[87]) and the SMPL parser (Markót [63]) are also used to convert to the internal

representation of the problem.

There is a number of software packages for solving constraint satisfaction problems. The

Numerica software by Hentenryck et al. [43] uses branch and prune methods and

interval constraint programming to solve constraint satisfaction problems. The ICOS

solver by Lebbah [59] is a software package for the rigorous solution of nonlinear and con-

tinuous constraints, based on constraint programming and interval analysis techniques.

The PaLM system by Jussien & Barichard [52] uses explanation-based constraint

programming, and propagates the constraints of the problem, learning from the failures

of the solver. The prize-winning solver Baron by Sahinidis & Tawarmalani [86]

can also solve constraint satisfaction problems. Initiated by the development of inter-

val analysis on directed acyclic graphs by Schichl & Neumaier [89], the Coconut

Environment [87, 88] has been developed as a global optimization software platform.

Typically, the solvers quoted require finite and not too large two-sided bound constraints

to ensure the efficiency of the interval techniques. Formally, unbounded problems are

often tightened (e.g., by Baron) by adding artificial bound constraints, with the re-

sulting danger of excluding feasible points. Some of the best solvers (e.g., Baron) use

unverified methods and return unverified results. The reason is that verifying the results

or error control is often considered to be an unnecessary extra effort. However there is

a number of cases where serious safety problems can arise from unverified results. This

has motivated research in robotics (e.g., Merlet [67]) and more generally in safe com-

putation techniques (Jansson [46], Keil [55], Lebbah et al. [61]). Uncertainties in the

input data are even more often ignored. In general the modeling languages (e.g., AMPL

[35] or GAMS by Brooke et al. [18]) do not support an exact treatment of rational or

interval constraint coefficients.

Section 2.4 contains the novel contribution as we discuss the integration of the above

methods in the GloptLab environment, features ranging from the building of user de-

fined solution strategies with the graphical user interface to the possibilities of extending

the method repertoire. An example can be found in Section 2.5, while in Section 2.6

we present some test results of GloptLab analyzed by the Test Environment (see

Neumaier et al. [75] and Domes et al. [28] for the current version). In the final section

we summarize the most important features of GloptLab, give some perspectives and

talk about future work.

More information is available at the GloptLab homepage:
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http://www.mat.univie.ac.at/~dferi/gloptlab.html

The public version of GloptLab is available at:

http://www.mat.univie.ac.at/~dferi/gloptlab/download.html

2.2 The implemented methods

There is a number of different rigorous methods developed for and integrated in Glopt-

Lab. In this chapter we give a brief description of the most important methods of this

constantly expanding repertoire.

2.2.1 Problem simplification and scaling

This is usually the first step after reading a problem. In the problem simplification phase

several preprocessing steps are done: We first identify and remove bound constraints from

the general constraints, and store their bounds in the box x. Unbounded constraints –

where the corresponding interval Fi in (1.6) is unbounded – are removed. Possibly

redundant constraints are identified and can be optionally removed. The problem can

be transformed into the equality representation (1.4) by introducing additional slack

variables. Additional structural characteristics like sparsity pattern are also derived.

The polynomial scaling problem consists of finding a constraint scaling vector r ∈ Rm
+

and a variable scaling vector c ∈ Rn
+ such that the scaled problem

x ∈ x, Asq(x) ∈ Fs with Asik := ri|Aik|q(c)k, Fs
i := riFi (2.1)

is well-scaled in an appropriate sense. Which properties constitute a well-scaled problem

is a somewhat ill-defined matter, because it highly depends on the applications and is

not easily quantifiable. Intuitively, a scaling algorithm should somehow decrease large

variations between appropriately weighted sums of logarithms of the coefficients of the

matrix A; the weights should reflect the expected size of the values of the monomials. In

GloptLab we can choose between the Hompack (Watson & Terry [103]) algorithm,

Morgan’s algorithm (Morgan [68], Chapter 5), and the methods LP and ScaleIT

described in Domes & Neumaier [29]. The computed scaling vectors are then stored

and later used by different methods.

The task Simplify simplifies the problem, and computes the scaling vectors. The task

parameters are:
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Parameters of the task Simplify

Parameter Type Description

Objective selection what to do with the objective? (remove, etc.)

Scaling selection select the used scaling method.

Linear solver selection select a possible linear solver for the scaling.

2.2.2 Constraint propagation

Filtering techniques which tighten a box are called constraint propagation if they are

based on single constraints only. Forward propagation uses the bound constraints to

improve the bounds on the general constraints; backward propagation uses the bounds

on the general constraints to improve the bounds on the variables.

Since (1.3) only consists of quadratic expressions, we can write each constraint without

loss of generality in the form

∑
k

(akx2
k + bkxk) +

∑
>j,kj>k

bjkxjxk ≥ c, x ∈ x,

where the akx2
k are the quadratic, the bkxk the linear and the bjkxjxk the bilinear terms.

We first separate the constraint by approximating or bounding the bilinear terms, then

we apply the forward propagation step: we compute the enclosure pk of each univariate

quadratic term pk(xk) := akx
2
k+bkxk, where the uncertainties ak and bk of the constraint

coefficients are also taken into account. Then we use the pk to verify that the constraint

is feasible, to get a new bound on each pk(xk) and to find a new lower bound for

the constraint. If the constraint has been found feasible, we can apply the backward

propagation step and find the set of all xk with akx2
k + bkxk ∈ pk. Finally, if we cut the

bounds found with the original bound on the variables, we may obtain tighter bound

constraints.

The method is cheap, rigorous, and does not require interval arithmetic since only di-

rected rounding is used. It is often used in other methods for verifying approximate so-

lutions. In general, if used as a stand alone technique, more than one step of constraint

propagation is done successively, until no further significant reduction takes place.

A more detailed description of our constraint propagation can be found in Chapter 3.

The task Propagate completes one step of constraint propagation. The task parame-

ters are:
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Parameters of the task Propagate

Parameter Type Description

Method selection select separable or linear method.

Full Mode decision select only the forward mode or the method.

2.2.3 Linear relaxations

Linear constraints of the form

Ex ≥ b, x ∈ x. (2.2)

may be obtained by relaxing the constraints of (1.3). Every feasible point of the con-

straint satisfaction problem (1.3) satisfies (2.2) iff for all x ∈ x and A ∈ A the inequalities

Aq(x) + b− F ≤ Ex ≤ Aq(x) + b− F

hold. In this case the linear system (2.2) is called a linear relaxation of (1.3) (proof can

be found in Chapter 5). The relaxation (2.2) is found by computing interval enclosures,

by using constraint propagation from Subsection 2.2.2 and by finding linear under and

overestimators: the function u(x) is called a linear underestimator of p(x) in the box

x, if for all x ∈ x, u(x) ≤ p(x) holds. Similarly, the function v(x) is called a linear

overestimator of p(x) in the box x, if for all x ∈ x, p(x) ≤ v(x) holds.

After linearizing the constraints we apply different methods to improve the bound con-

straints x ∈ x. These methods are explained in detail in Chapter 5.

If some bounds in x are infinite and the feasible domain is bounded, the linear bounding

method is used to get finite bound constraints. This requires the approximate solution

of a single linear program and a single constraint propagation step to generate new finite

and rigorous bounds. The only purpose of this method is to bound the feasible domain,

and leads to no further improvements if applied more than one time.

In linear contraction we first compute new bounds on the constraints, then cut them with

the original ones. Then a modified Gauss-Jordan elimination is used to precondition the

system, then either a direct interval evaluation or a single constraint propagation step

is used to get new bounds on some or all of the variables.

Among the methods based on linear relaxations, the LP contraction is the method which

requires the most computational time since in each step we solve more than one linear

program. We find the d most promising directions (usually d = 3) and minimize the

upper and lower bound from these directions. This requires the approximate solution
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of 2d linear programs, of which the dual solutions are used to generate new constraints.

Propagating the new constraints may improve the bound on the selected variables.

The task Linear applies a linear method to the problem. The task parameters are:

Parameters of the task Linear

Parameter Type Description

Method selection select the method bound, contract or solve.

Linear solver selection select an external linear solver.

Equ solver selection select a method for solving equalities.

2.2.4 Strictly convex enclosures

A quadratic inequality constraint with a positive definite Hessian matrix defines an

ellipsoid whose interval hull is easy to compute analytically. However, to cope efficiently

with rounding errors is nontrivial.

For a real, symmetric matrix A we compute the directed Cholesky factorization; an ap-

proximate factorization A ≈ RTR with nonsingular upper triangular R such that the

error matrix A−RTR of the factorization is tiny and guaranteed positive semidefinite.

Clearly, this implies that A is positive definite; conversely (in the absence of overflow),

any sufficiently positive definite symmetric matrix has such a factorization with R rep-

resentable in floating point arithmetic. In Chapter 4 we find such a representation which

makes the error as small as possible and works even for nearly singular matrices.

We use the directed Cholesky factorization to transform a strictly convex quadratic

constraint of the constraint satisfaction problem (1.3) into an ellipsoid defined by a

Euclidean norm constraint

||Rx‖22 + 2aTx ≤ α. (2.3)

There is also need for scaling when factoring ill-conditioned matrices before applying

the factorization. Therefore the scaling computed in the simplification is used before

the directed Cholesky factorization is applied.

We derive the optimal box enclosure of this ellipsoid; we find constants β, γ, ∆ and a

vector d > 0 such that if ∆ ≥ 0 then (2.3) implies

‖R(x− x̃)‖2 ≤ δ := γ +
√

∆, |x− x̃|2 ≤
δ

β
d. (2.4)

If ∆ < 0 then (2.3) has no solution x ∈ R. For suitably chosen x̃ the bounds in (2.4)

are optimal (for details and proof see Section 6,7, of Chapter 4).
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By the second inequality of (2.4) we get rigorous bounds

u :=
[
(δ/β)d− x̃, (δ/β)d+ x̃

]
on the variables x. If we do this for each strictly convex quadratic constraint of the

constraint satisfaction problem (1.3) and cut the resulting bounds with the original ones

we may get tighter bound constraints.

By this method we get rigorous bounds on all n variables, obtainable with O(n3) opera-

tions. This should be used only once per problem, since successive application gives no

further improvement of the bounds.

The task Ehull finds the ellipsoid hull of strict convex constraints. The task parameters

are:

Parameters of the task Ehull

Parameter Type Description

Scaling decision apply the scaling factors found by the task Simplify

2.2.5 Conic methods

Conic methods approximate the general constraints by hyperplanes, balls or hyperel-

lipsoids, using semidefinite or conic programming in order to find sharp bounds on the

feasible set of a quadratic constraint satisfaction problem. The conic methods use the

internal equality form (1.4) and are based on the following proposition, improved by the

techniques of Schichl & Neumaier [90]:

Proposition 2.1. If G is positive semidefinite and Z ≤ 0, than for any x ∈ x with

Eq(x) = 0, we have

0 ≤

(
1

x

)T
G

(
1

x

)
−


1

x− x
x− x


T

Z


1

x− x
x− x

− zTAq(x). (2.5)

Proof. Since by (1.4) the equality Aq(x) = 0 holds for all x ∈ x and by the definition

of positive definiteness, all terms on the right hand side of (2.5) are greater or equal to

zero.
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Now if G is positive semidefinite and Z ≤ 0 the equation

(
1

x

)T
G

(
1

x

)
≤


1

x− x
x− x


T

Z


1

x− x
x− x

+ zTEq(x) + p(x)

implies that 0 ≤ p(x). To find the positive semidefinite matrix G, the matrix Z, the

vector z and free parameters in p(x) we solve the conic program

min cT y

s.t. yi ≥ 0,

‖r(y)‖ ≤ yk,
1
2‖s(y)‖2 ≤ yjyk,
G symmetric and positive semidefinite,

(2.6)

with suitably chosen objective, non-negativity constraints yi ≥ 0, norm constraints

‖r(y)‖ ≤ yk, rotated conic constraints 1
2‖s(y)‖2 ≤ yjyk and the semidefiniteness con-

straint for the matrix G. Choosing one of the quadratic expressions

• p(x) = ±xi + ζ and minimizing ζ,

• p(x) = −
∑n

i=1 x
2
i + ζ and minimizing ζ,

• p(x) = −1 and minimizing 0,

• p(x) = −‖ω ◦ x‖2 + 2ξT (ω ◦ x) + δ with ‖ξ‖ ≤ ζ and minimizing ζ + δ,

results in interesting enclosures of the feasible domain. Since the conic program (2.6) is

solved by an approximate solver we get the approximate solutions Ĝ, Ẑ and ẑ, and we

need to verify the results by computing

p̂(x) :=

(
1

x

)T
Ĝ

(
1

x

)
−


1

x− x
x− x


T

Ẑ


1

x− x
x− x

− ẑTEq(x),

using interval arithmetic. Since p̂(x) is a rigorous enclosure of the feasible domain and a

quadratic expression with narrow interval coefficients, we can use constraint propagation

on it and may obtain tighter bound constraints.

Since the solution of the conic programs is rather costly, the maximal dimension of

problems solved by this method is limited, and the number of iterative steps should be

rather low. For details on the conic methods used in GloptLab (see Chapter 4).

The task Conic applies a conic method to the problem. The task parameters are:
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Parameters of the task Conic

Parameter Type Description

Method selection bound, ellipsoid, feasibility or fixellipsoid.

Conic solver selection select an external conic solver.

Reduce in x ... numeric the reduction directions for the bound method.

Z setting selection select strategy for setting the matrix Z.

Weight decision decide weighting the slack variables or not.

Verify decision verify the results or compute approximately.

Intround decision transform all coefficients into rational numbers.

2.2.6 Branch and bound

Using branch and bound on the constraint satisfaction problem (1.3) means that we

partition the bound constraints x into s smaller subboxes, xk (k = 1, . . . , s) such that

x = x1∪· · ·∪xs and use rigorous methods Γi(xk,F) on each xk separately. The methods

applied to a subbox may reduce its width and even eliminate it if it contains no feasible

points. There are different branching strategies, but in general they can be classified

by the amount of memory they need. Recursive splitting selects a variable and splits

the original box in this variable into two new boxes. The rigorous methods are applied

to the first one, while the second one is stored on a stack. If the first box is reduced

but not eliminated by the methods, it is split again, whereby the second part is again

stored on the stack. This is done until the actual box is empty, a minimal width of

the current box is reached, or the maximal number of elements on allowed the stack

is exceeded. Then the last box is popped from the stack, reduced and split by using

the same procedure. This is the depth-first split method. Since the maximal memory

needed by the depth-first split is low this is the branching method which is currently

implemented in GloptLab. Choosing the ith direction in which a box is split is a

critical issues; in GloptLab either the one where xi has maximal width or the one

where the constraints have maximal range
∑

k wid(Ak:q(xi)) can be chosen. Different

variable selection methods and splitting strategies may be included in the future.

Recursive splitting results in a finite cover of the feasible domain by nonempty subboxes

of a given maximum size. We can either return all boxes found or create the interval

hull of them. Connected components of the union of the subboxes define clusters, which

can be separately bounded by their interval hull. Since returning all boxes found often

results in an unnecessary large amount of output and computing a single interval hull

for distinct connected components is a crude approximation, therefore in most cases

computing interval hull of clusters is the method of selection.
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The task Split divides the current box into sub-boxes and applies a solution strategy

to each of them. The task parameters are:

Parameters of the task Split

Parameter Type Description

Method selection currently only the depthfirst is available.

Dir chooser selection this criteria sets the split variable index.

Split in x numeric select the components of x which can be split.

Absolute small numeric a small box has a small param. less than this.

Margin numeric margin between absolute and relative small.

Relative small numeric a small box has rel. small par. less than this.

Small box crit selection the criteria classifying the small parameters.

Max depth numeric the maximum allowed depth of the split.

The task Merge Boxes merges the boxes found by the task Split. The task parameters

are:

Parameters of the task Merge Boxes

Parameter Type Description

Method selection select the interval hull or the cluster method.

Tolerance numeric tolerance between neighboring clusters.

Drop boxes decision drop or leave the boxes found by the split.

2.3 Finding and verifying feasible points

An important step toward the rigorous solving of optimization problems is to find and

verify feasible points of a constraint satisfaction problem.

To find a feasible point of the constraint satisfaction problem (1.3) we construct a smooth

feasibility distance function d(x) : Rn → R, which we minimize in the box x by using

a local solver. The current selection of local solvers integrated in GloptLab consists

of bfgs, gradient projection (both of them are Matlab versions by Kelley [56]),

lbfgs-b (Zhu et al. [104]) and fmincon (contained in the optimization toolbox for

Matlab). Note that most of these solvers require the gradient of the function d(x), but

since the feasibility distance function d is smooth this can be computed explicitly.

If an approximately feasible point xf has been found, we try to find a box b ⊆ x around

xf such that the existence of a feasible point inside of b is guaranteed by a mathematical

existence theorem. This is called the verification of feasible points. For details on finding

and verifying feasible points used in GloptLab (see Domes & Neumaier [32]).
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In Section 2.6 we make use of finding feasible points to test our solver on a large test

set of constraint satisfaction problems. The task Find Feas Point can find and can

verify a feasible point inside the current box. The task parameters are:

Parameter Type Description

Local solver selection select: bfgs, gradproj, lbfgs-b or fmincon.

Max iterations numeric maximum number of solver iterations.

Verification decision try to verify the found point or not.

Delta numeric δ constant used in the verification process.

Solver selection linear solver used for verification.

2.4 Integration of methods

The development of GloptLab started in 2005 by Prof. Arnold Neumaier and myself.

In the beginning, we experimented with constraint propagation techniques in order to

reduce the search space of quadratic problems. Since GloptLab was primary designed

as a testing and development platform, we used the interpreted language Matlab be-

cause of its ease of use and its graphical capabilities. In order to aid the development

we developed a graphical interface providing a visual representation of the constraints

and the current bound constraints during the reduction process. This was very useful

for the debugging and testing of our programs. Since we intended later to extend the

program to solve non-quadratic constraint satisfaction and optimization problems, we

developed a general internal format in an early stage, and made only minor changes to

it later.

As we added new methods like the ellipsoid hull and branch and bound to the method

repertoire, we needed to decide which of the methods should be used in order to find a

fast and reliable solution procedure, and how often and in which order they should be

applied. Instead of making a fixed choice, we decided to create a task processor, and a

strategy builder. To have an easy way to create, save, load and modify strategies, we

added this features to the graphical user interface. We designed the GUI as a layer which

is clearly separated from the solver engine, so that a batch solution of the problems is

also possible.

Whenever we found a problem where our existing methods seemed to perform poorly we

added new functionality, tasks, and parameters in order to improve the performance. For

example, we added linear relaxations and conic programs. These lead to the development

of a user extensible method repertoire. In order to obtain useful answers in case the

complete search could not finish in the given time limit, we developed a method of finding
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feasible points. To be competitive with other rigorous solvers we created a method for

verifying feasible points close to a near-feasible approximation.

Now GloptLab has a rich selection of rigorous methods that we can use to build

strategies and then apply it to solve quadratic constraints satisfaction problems.

We summarize the most interesting features of GloptLab:

• There is a well structured input format representing global optimization problems

(already presented at the beginning of Section 2.2).

• At present only quadratic constraints are solved. The solution of non-quadratic,

algebraic problems is possible by using the AMPL to GloptLab converter from

the Coconut Environment, which automatically transforms algebraic terms to

quadratic ones by introducing intermediate variables.

• The whole environment is implemented in a completely modular way, allowing easy

portability of individual methods to other solvers and languages (see Subsection

2.4.1).

• Easy to use for prototyping and for development of new techniques in the context

of other methods (Subsection 2.4.2).

• The strategy builder allows to test different strategies for different problem classes

(Subsection 2.4.2).

• Interactive solution of a particular problem: it is possible to stop the execution of

the strategy, remove and add new tasks to it and then resume the solution process.

This approach can greatly reduce the solution time (Subsection 2.4.2).

• Contributors can add their own method with only minimal knowledge of the other

parts of the software (see Subsection 2.4.3).

• The graphical user interface (Subsection 2.4.4) supports both the easy building of

solution strategies and the visualization of the solution process.

• Using the batch mode of GloptLab, it is possible to run solution strategies in the

Test Environment [28], or on processors without graphical support (Subsection

2.4.5).

In the following subsections we discuss the above items, however because of the extent of

the topics we omit some details. More information can be found in the documentation

files which are part of the GloptLab environment.
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2.4.1 GloptLab structure diagram

An overview of the structure of GloptLab is given in Figure 2.1. This diagram empha-

sizes how the software is structured, and gives some overview over currently implemented

features. These consist of the dependency of the methods of the external solvers, building

strategies from different tasks, conversion possibilities from other input formats, mea-

suring performance, or saving statistical information about all solved problems. The

small table in the corner of Figure 2.1 shows which parts of GloptLab are internal,

external, or GUI components. All external packages integrated into GloptLab are

free. The software packages used are listed in the following table, and are packaged with

the current GloptLab version. They can be downloaded and installed separately but

in this case the corresponding path variables have to be set manually by editing the

Gloptlab.cfg file or by using the editor of the graphical user interface.

Solver required? Function

Intlab necessary interval arithmetic

Coconut Environment optional converter of non-quadratic problems

Sedumi optional solver for conic and linear programs

SDPT3 optional solver for conic and linear programs

lpsolve optional solver for linear programs

When Intlab and at least one package from the above selection which is capable to

solve both conic and linear programs is installed, all current features of GloptLab

can be used. Since the external solvers are connected to the GloptLab solver engine

through an interface, adding new linear or conic solvers is not difficult. The new solvers

are automatically recognized by the strategy builder opening new options in the task

selection process.

2.4.2 Solution strategies

As shown in Figure 2.1, to solve a problem or a list of problems we need a strategy. A

solution strategy or simply a strategy is a list of tasks used to solve a problem. A task

could be the implementation of one of the methods described in Chapter 2.2, but there

are other tasks like loops, conditions and breaks to extend the functionality and ensure

the versatility of a strategy. Strategies are built comfortably by using the graphical

strategy builder of the user interface (also see 1 in Figure 2.2), automatically ensuring

a correct strategy syntax. New methods are automatically recognized by the strategy

builder (for details see Subsection 2.4.3). The strategies can be applied to the problems
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Figure 2.1: GloptLab structure

either directly using the GUI, or they can be saved for later use and for the execution

of batch solution jobs.

A simple solution strategy, where all tasks have automatically generated default param-

eters, looks like:

Strategy 2.1 (simple sample).
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1: Read Problem

2: Simplify

3: Feasibility

4: Begin Condition

5: Break

6: End Condition

7: Begin While

8: Propagate

9: Feasibility

10: Begin Condition

11: Break

12: End Condition

13: End While

14: Begin Split

15: Propagate

16: Feasibility

17: Begin Condition

18: Break

19: End Condition

20: End Split

21: Merge

22: Begin Postprocess

23: Merge

24: Feasibility

25: End Postprocess

26: Pause

27: Finish

while a more sophisticated one is:

Strategy 2.2 (complex sample).

1: Read Problem

2: Simplify

3: Ehull

4: Linear

5: Feasibility

6: Begin Condition

7: Break

8: End Condition

9: Conic

10: Begin While

11: Propagate

12: Linear

13: Feasibility

14: Begin Condition

15: Break

16: End Condition

17: End While

18: Begin Split

19: Propagate

20: Linear

21: Feasibility

22: Begin Condition

23: Break

24: End Condition

25: End Split

26: Merge

27: Begin Split

28: Propagate

29: Linear

30: Feasibility

31: Begin Condition

32: Break

33: End Condition

34: End Split

35: Begin Postprocess

36: Merge

37: Feasibility

38: End Postprocess

39: Pause

40: Finish
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Each method may have several input parameters (which are omitted in the above strate-

gies), all of which have default values. For example, the while loop starts with Begin

While and ends with End While and has, as parameters, the minimal gain percent-

age mingain, the maximum number of iteration maxiter and the width of a small box

small. The special parameters prt and deb can be set for every method and deter-

mine the level of the text and the debugging output. For more details on the various

parameters see the tables at the end of the sections describing the different methods.

The input parameters depend on the implementation of the corresponding task, the

definition of which must include their documentations. Therefore older strategies may

become invalid if a task description has been changed. If strategies are built and updated

using the GloptLab graphical user interface, this is automatically recognized and the

invalid lines are flagged for correction.

2.4.3 User defined methods

The different methods are integrated into GloptLab in a uniform way such that the

repertoire of methods can be extended easily. New functions can be written for each task,

including those presented in Section 2.2 (constraint propagation, linear methods, conic

methods, branch and bound), without knowledge of the GloptLab code. For example

if someone creates a new linear method it is automatically recognized by GloptLab

as such if it is placed into the Gloptlab/Source/UserDefined/ directory as an m-file

called gllinear *.m and can be selected in the strategy generator as one of the options

for linear methods. Samples for user defined methods in each class can be found in the

Gloptlab/Source/UserDefined/ directory.

Each method accesses the problem in either the inequality representation (1.6) or the

equality representation (1.7) (which are easily converted into each other) together with

a number of additional control parameters (maximal depth, linear solver name, etc.)

specific for each category. The results returned by the methods may consist of new

bound constraints, found feasible points, linear relaxations, new general constraints,

etc. The writer of the methods must ensure for all rigorous tasks that the results are

indeed rigorous.

2.4.4 Graphical user interface

The graphical user interface of GloptLab consists of areas for entering problems, for

defining strategies, for displaying the solver progress and for configuring GloptLab (see

Figure 2.2).
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Figure 2.2: Gloptlab GUI; for explanations screenshot the text.

Building a strategy in the graphical user interface is done by inserting, editing or re-

moving tasks using the strategy builder (marked 1 in Figure 2.2). In the graphical user
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interface not only the strategies can be edited but a single problem or a problem list

(marked 2 in Figure 2.2) can be solved by executing a strategy using the execute but-

ton. The text output of the solution procedure can be found in the text output window

(marked 3 in Figure 2.2), while the graphical output for problems of every dimension is

found in the graphical output window (marked 4 in Figure 2.2). Important information

for the currently selected problem (name, number of variables and constraints etc.) can

be viewed in the right lower part (marked 5 in Figure 2.2). Creating new problems or

converting existing ones into the GloptLab format is also possible with the conversion

tools and by using the internal GloptLab editor. They can be accessed from the panel

marked with 6 in Figure 2.2. In the central long panel (marked 7 in Figure 2.2) the

parameters for the graphical output, the statistical database, the automatically gener-

ated proofs, the profiler and the general configuration can be accessed and modified.

The GloptLab configuration consists of several global parameters, like the path of the

external solvers or the width of a box which is assumed as tiny, and all the default values

of the parameters used in the different task. There can be different configuration files,

and the parameters contained in them can be edited by the user.

2.4.5 Batch solution

Although GloptLab can be completely controlled by using the graphical user interface,

the latter is only an additional layer built on the GloptLab core and not essential for

using the software. Alternatively, it is possible to solve one or more problems with a

selected strategy by using the Unix GloptSolve or the Matlab GloptSolve.m scripts.

GloptLab can generate autosave files (.sav), solution files in the GloptLab format

(.gls) and .res files as well. The latter is needed for the Test Environment [28],

which allows one to compare the results and the performance of GloptLab with other

solvers.

2.4.6 Notes

The current version of GloptLab can be obtained at the official GloptLab homepage:

http://www.mat.univie.ac.at/~dferi/gloptlab.html.

2.5 Examples

The comparison of the performance to non-rigorous solvers which are implemented in

a compiled language like C++ is difficult. We also emphasize that the strength of
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GloptLab lies in the easy use, extendability, the interactive solution and finding all

solutions of a problem and not in outperforming non rigorous solvers by solving a whole

test set of problems using a single default strategy. However we use the following two

dimensional example to demonstrate one of the advantages of GloptLab: the quadratic

constraint satisfaction problem

−3x2
1 + x2x1 + x2

2 = −2

x2
1 + 3x1x2 − 3x2

2 = 10
(2.7)

has no solution. The graph of (2.7) generated by the graphical user interface of Glopt-

Lab can be found in Figure 2.3.

Figure 2.3: Two dimensional example consisting of two equality constraints.

We tested some state of the art solvers by using the NEOS Server (see Czyzyk et al.

[24]) and obtained following results:

• The global solver Baron found the problem infeasible after completing 41 iteration

steps in approximately 0.3 seconds. However the message

User did not provide appropriate variable bounds.

We may not be able to guarantee globality.

is hidden in the log file returned by the solver. Thus, we tried to set artificial

bounds, and when we used −104 ≤ x1, x2 ≤ 104 this message disappeared, showing

that Baron cannot cope with unbounded bound constraints.

• The local solver Knitro returned after 35 major iterations and 178 function eval-

uations the message:



Chapter 2. GloptLab - a configurable framework for the rigorous global solution of
quadratic constraint satisfaction problems 28

EXIT: Convergence to an infeasible point.

Problem appears to be locally infeasible.

If problem is believed to be feasible, try multistart to search

for feasible points.

• The rigorous global solver ICOS modified the problem by adding the artificially

set bounds of −108 ≤ x1, x2 ≤ 108. This happened without additional warning.

It found the modified problem infeasible after 145 splits. The execution time was

4.38 seconds.

• We used GloptLab with the solution strategy in Subsection 2.4.2, and verified

infeasiblity in 0.860 seconds. GloptLab did not set any artificial bounds on the

variables, and needed no branching since the conic ellipsoid enclosure verified that

the problem is infeasible.

2.6 Some test results

In this section we present some promising test results of GloptLab. The LaTeX

tables containing the results are automatically generated by the Test Environment

[28], which we used for checking the solutions for correctness. We tested GloptLab on

the library Lib3 of the Coconut Environment Testset (see Shcherbina et al. [91]),

containing 308 constraint satisfaction problems. We solved the problems by using the

sample strategies 2.1 and 2.2. These strategies are configured not to accept problems

containing non-algebraic functions or more than 100 variables. The maximal time al-

lowed for the solution of a single problem was 120 seconds.

Gloptlab on Lib3 using the strategy (2.1)

stat all wr easy location hard location

+G -G I +G -G I

all 308 0 121 124 0 14 29 20

G 125 0 111 0 0 14 0 0

X 76 0 0 57 0 0 8 11

TU 95 0 8 59 0 0 21 7

U 12 0 2 8 0 0 0 2

Gloptlab summary statistics

lib all accept +G G! G? I?

Lib3 308 232 135 125 0 0
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Gloptlab on Lib3 using the strategy (2.2)

stat all wr easy location hard location

+G -G I +G -G I

all 308 0 130 115 0 19 24 20

G 139 0 120 0 0 19 0 0

X 76 0 0 57 0 0 8 11

TU 85 0 10 52 0 0 16 7

U 8 0 0 6 0 0 0 2

Gloptlab summary statistics

lib all accept +G G! G? I?

Lib3 308 232 149 139 0 0

Table legend: stat - solution status; all - the number of problems given to

the solver; accept - problems accepted by the solver; wr - number of wrong

claims (the sum of G? and I?); easy location - problems which have been

classified as easy; hard location - problems which have been classified as

hard. Status codes: G - the result claimed to be a global optimizer; +G - a

global solution was found; -G - no global solution was found; G! - correctly

claimed global solution; G? - wrongly claimed global solution, I - infeasible

problem; I? - wrongly claimed infeasibility, L - local solution found; TL -

timeout reached and a local solution was found; U - unresolved (no solution

found or error message); X - model not accepted by the solver.

The tables show that from the 232 accepted problems we have found 135 correct solution

(125 of them was claimed as correct) by using the first strategy and 149 correct solution

(139 of them was claimed as correct) by using the second one. Within the same allowed

solution time we solved 14 more problems with the second strategy as with the first one.

This is approximately 10 percent of the accepted problems, and one third of them was a

problem which is classified as a hard one. Indeed; 35 percent more of the hard problems

was solved with using the second strategy. This significant difference was caused by

the more sophisticated methods and the clever structure of the second strategy. The

results show the importance of building a good strategy, as well as the process of testing

different methods as the part of a strategy.

2.7 Conclusion and perspectives

Apart from the actual methods implemented in GloptLab, the major innovation is the

ease with which it is possible to write strategies, to extend the method repertoire, and
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to test selected methods on selected test sets as part of a strategy. In GloptLab users

can build, test and optimize their own strategies, they can store and easily share them

with other people. Moreover, users can implement and test their own methods without

the need of extensive knowledge of the GloptLab implementation itself. The graphical

representation of the solution process greatly simplifies the identification of the weak

points of a method or a strategy.

Future work on GloptLab in our research group in Vienna includes porting the most

useful methods and strategies to the Coconut Environment to increase the execution

speed. Since the graphical layer is separated from the main solution engine, exporting

parts of the implementation to other programs and the conversion to other programming

languages should be easy. We also plan to add further methods to the method repertoire,

and to search for optimal solution strategies. One of our goals is to develop an automatic

strategy selection, which adapts the strategy to the problem solved. Numerous other

features like generating human readable proofs and automatically building statistical

databases, already available in a rudimentary form, will be fully developed in the future.

We also intend to extend GloptLab to rigorously solve non-quadratic optimization

problems. As discussed in the problem specification, the internal problem representation

of GloptLab allows non-quadratic, univariate functions. A converter from a general

optimization problem in AMPL format to the internal format is already implemented.

External contributors are welcome to join the project by implementing and testing their

own user-defined methods. User-defined methods submitted to us will be permanently

added to the method repertoire of future versions of GloptLab if they are promising

enough.

Remark: The idea of creating GloptLab came from Arnold Neumaier, the structure,

features and implementation is my own work.



Chapter 3

Constraint propagation on

quadratic constraints

Abstract. This chapter considers constraint propagation methods for continuous con-

straint satisfaction problems consisting of linear and quadratic constraints. All methods

can be applied after suitable preprocessing to arbitrary algebraic constraints.

The basic new techniques consist in eliminating bilinear entries from a quadratic con-

straint, and solving the resulting separable quadratic constraints by means of a sequence

of univariate quadratic problems. Care is taken to ensure that all methods correctly ac-

count for rounding errors in the computations.

Various tests and examples illustrate the advantage of the presented method.

Keywords. Constraint propagation, constraint programming, continuous constraints,

quadratic constraint satisfaction problems, rounding error control, verified computation,

quadratic programming, constrained optimization.

3.1 Introduction

Context. This chapter contributes some new solution techniques for continuous con-

straint satisfaction problems. A constraint satisfaction problem is the task of finding one

or all points satisfying a given family of equations and/or inequalities, called constraints.

Many real word problems are continuous constraint satisfaction problems, often high di-

mensional ones. Typical applications include robotics Grandon et al. [37], Merlet

[66], localization and map building Jaulin [49], Jaulin et al. [50], biomedicine Cruz

& Barahona [23], or the protein folding problem Krippahl & Barahona [58].

31
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Solving constrained global optimization problems is typically reduced to solving a se-

quence of constraint satisfaction problems, each obtained by adding a constraint f(x) ≤
fbest to the original constraints, where f is the objective function and fbest the func-

tion value of the best feasible point found. Thus all techniques for solving constraint

satisfaction problems have immediate impact on global optimization (see Neumaier

[73]).

Constraint satisfaction problems are solved in practice by a combination of a variety of

techniques, almost always involving as key components constraint propagation combined

with either some form of stochastic search or a branch and prune scheme for a complete

search. These techniques are often complemented by filtering or reduction techniques

based on techniques borrowed from optimization, such as convex relaxations Lebbah

et al. [60]. For filtering, relaxation, branching and other techniques also see Jaulin

[48], Sahinidis & Tawarmalani [85], [60].

Filtering techniques that tighten a box – the Cartesian product of intervals defined by

the bounds on the variables – are called constraint propagation if they are based on a

sequence of steps, each using a single constraint only. Forward propagation uses the

bound constraints to improve the bounds on the general constraints; backward propaga-

tion uses the bounds on the general constraints to improve the bounds on the variables.

In order to avoid a loss of feasible points, constraint propagation methods are usually

implemented with rigorous error control, taking care that all reductions are valid even

though the calculations are done with floating-point arithmetic only.

In practice, constraint propagation repeats the reduction of a box by means of a suit-

ably chosen constraint, navigating through the network of constraints connected by the

variables, until no further significant reduction takes place. In particular, if the initial

search box is unbounded but the feasible domain is bounded, constraint propagation

methods may be able to find finite bounds on all variables. Since many methods require

finite box constraints, this makes constraint propagation a valuable preprocessing tool.

In a stochastic search procedure, constraint propagation on the initial box may result in a

much smaller search domain. In a branch and prune procedure, where a tree of subboxes

is generated, constraint propagation may result in a quick elimination of subboxes, or

a significant reduction before more complex reduction techniques are applied. This

shows that constraint propagation has a wide range of applicability, and is a very useful

optimization technique.

Prior work. A number of software packages for solving constraint satisfaction problems

make extensive use of constraint propagation. The Numerica software Hentenryck
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[41], Hentenryck et al. [43] uses branch and prune methods and interval constraint

programming to solve constraint satisfaction problems. The ICOS solver by Lebbah

[59] is a software package for solving nonlinear and continuous constraints, based on

constraint programming and interval analysis techniques. Realpaver by Granvilliers

& Benhamou [38] combines interval methods, with constraint satisfaction techniques

to solve systems given by sets of equations or inequality constraints over integer and real

variables. Ceberio & Granvilliers [19] solves nonlinear systems by using interval

extension and constraint inversion.

The price winning solver Baron by Sahinidis & Tawarmalani [86] also uses constraint

propagation techniques. Initiated by the development of interval analysis on DAGs (Di-

rected Acyclic Graphs) by Schichl & Neumaier [89], advanced constraint propagation

techniques for solving numerical constraint satisfaction problems have been given in Vu

et al. [101, 102], which is an efficient implementation of basic constraint propagation

algorithms for individual operations. It is included in the global optimization software

platform COCONUT Environment [87, 88].

Historically, constraint propagation was pioneered in constraint logic, first for discrete

constraints by Cleary [22], later for continuous constraints (Older & Vellino [76],

see also [10, 14, 15, 21, 25, 39, 41–43, 45, 53]), but has also forerunners in presolve tech-

niques in mathematical programming (Anderson & Anderson [7], Lodwick [62]).

They can be modeled by narrowing Benhamou [11] or chaotic iterations Apt [9], i.e.,

sequences of application of contracting and monotonic functions on domains. The level

of work involved and quality obtained in constraint propagation methods may be char-

acterized by local consistency notions; see Benhamou et al. [12, 13], Jermann et al.

[51]. An in-depth treatment of continuous constraint propagation from the point of view

of constraint programming can be found in the COCONUT report (Bliek et al. [17]).

The global optimization survey of Neumaier [73] also discusses continuous constraint

propagation without the need to decompose the constraints into single operations.

Contents. In this chapter, we consider constraint propagation methods for continuous

constraint satisfaction problems consisting of linear and quadratic constraints. Care is

taken to ensure that all methods correctly account for rounding errors in the computa-

tions. We only present techniques for improving the inferences from single constraints.

These techniques can be easily combined with our new constraint propagation method.

In general constraint propagation on single constraints only is not efficient enough for

solving constraint satisfaction problems. As is well known (see, e.g., [60]), future signif-

icant improvements can be obtained by using the information from several constraints

simultaneously. This can be done in various ways, e.g., by using linear relaxations ([59]),
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probing ([99]) or other, new methods in our GloptLab environment (Chapter 2) where

all constraint propagation methods introduced in this chapter are implemented, too.

All our methods can be applied after suitable preprocessing to arbitrary algebraic con-

straints. We can always transform a polynomial constraint to a collection of quadratic

constraints by introducing explicit intermediate variables. The same holds for con-

straints involving roots, provided that we also add nonnegativity constraints to the

intermediate variables representing the roots. Rewriting an algebraic constraint satis-

faction problem as an equivalent problem with linear and quadratic constraints increases

the number of variables and can result in loss of structural information which is used by

some constraint propagation techniques but makes possible to apply the methods dis-

cussed in this chapter. Of course, all techniques can be applied to the subset of quadratic

(or algebraic) constraints in an arbitrary constraint satisfaction problem. However, in

practice care should be taken that the dimension of the transformed problem does not

exceed the reasonable maximum.

In Section 3.2 we derive rigorous bounds for univariate quadratic expressions, relevant

for forward propagation, while in Section 3.3 we find bounds on the arguments in a

constraint, relevant for backward propagation. The propagation of separable quadratic

constraints (containing no bilinear entries) is discussed in Section 3.4, and in Section 3.5,

we give an effective method to bound and eliminate bilinear entries from a constraint.

This allows the reduction of the nonseparable constraints to separable ones, leading

in Section 3.6 to a constraint propagation method for quadratic constraint satisfaction

problems.

3.2 Bounds for univariate quadratic expressions

For use in forward propagation, we derive rigorous bounds for univariate quadratic

expressions. We analyze the possible extrema of the expression inside a given interval,

and derive the general solution of the problem.

Example 3.1. Let f(x) denote an univariate quadratic expression, with

f(x) = x2 − 2x, x ∈ [−7, 5] := x. (3.1)

We look for the best interval f such that for all x ∈ x, f(x) ∈ f holds: we find that the

minimum of f is attained at x = 1 which is inside of the interval x. The maximum of

f must be attained at the boundary of x. We have f(1) = −1 and the function values

on the boundary of x are 63 and 15. Therefore, we find that f = [−1, 63].
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In general, we want to find a rigorous upper bound on

u = sup {ax2 + bx | x ∈ x}.

We note that u = max {x(ax + b), x(ax + b)}, except in case that ax2 + bx attains its

global maximum in the interior of x. This is the case iff a < 0 and t = −b/(2a) is in the

interior of x, in which case u = b2/(−4a) is attained at t.

If x ≥ 0, we get a rigorous upper bound in finite precision arithmetic by computing with

upward rounding as follows (xl = x, xu = x):

Algorithm 3.1 (Rigorous upper bound for a univariate quadratic expression).

roundup;

if a == 0,

u=max(xl*b,xu*b);

else

u=max(xl*(a*xl+b),xu*(a*xu+b));

s=b/2; t=s/(-a);

if t>xl,

r=(-2*a)*xu;

if r>b, u=max(u,s*t); end;

end;

end;

With some extra analysis, it could be determined in most cases which of the three cases is

the worst case; however, if the unconstrained maximum of the quadratic is very close to

a bound (or to both bounds), two (or three) of the cases might apply due to uncertainty

caused by rounding errors.

Finding a rigorous enclosure for the interval

c = {sup{ax2 + bx | x ∈ x} | a ∈ a, b ∈ b}

can be reduced to the above for x ≥ 0, using

c = sup {ax2 + bx | x ∈ x}, c = − sup {−ax2 − bx | x ∈ x}.

The case x ≤ 0 can be reduced to this by changing the sign of x, and the general case

by splitting x at zero if necessary.

Essentially the same analysis holds for rigorous upper bounds on

u = sup
{ n∑

i=1

aix
i
∣∣∣ x ∈ x

}
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and for rigorous enclosures of

c = sup
{ n∑

i=1

aix
i
∣∣∣ x ∈ x, a ∈ a

}
,

except that finding the interior extrema is more involved. It can be done with closed

formulas for n ≤ 5 (though already n = 4 is quite cumbersome and not recommended).

In general, for n > 3 we recommend to use a root enclosure algorithm for the derivative,

such as that in Neumaier [72].

3.3 Solving univariate quadratic expressions

If we have bounds on an univariate quadratic expression, we can find the range for the

variable, for which the expression satisfies the given bounds. An in depth analysis of

quadratic equations leads to the general solution, relevant for backward propagation.

The present approach, based on directed rounding only, provides an efficient alternative

to the interval arithmetic based procedures discussed by Dimitrova & Markov [26,

Section 4] and later by Hansen & Walster [40] (who only treat the solution of a

quadratic equation with interval coefficients).

Example 3.2. Let f(x) denote an univariate quadratic expression, with

f(x) = x2 − 2x ∈ [−1, 8]. (3.2)

We look for the best interval x such that for all x ∈ x, (3.2) holds. The inequality

x2 − 2x+ 1 = (x− 1)2 ≥ 0,

arising from the lower bound, always holds, while the inequality

x2 − 2x− 8 ≤ 0,

arises from the upper bound. Therefore we find that x = [−2, 4]. We note that, while x

is by definition always an interval, sometimes the set of all x satisfying the constraint

may be strictly smaller, containing an interior gap.

In general, we want to find the set

X = {x ≥ 0 | ax2 + 2bx ≥ c},
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and we proceed as follows. If a = 0, the constraint is in fact linear, and we have

X =


∅ if b ≤ 0, c > 0,

[0, 0.5c/b] if b < 0, c ≤ 0,

[0.5c/b,∞] if b > 0, c ≥ 0,

[0,∞] if b ≥ 0, c ≤ 0,

which can be nested such that only two comparisons are needed in any particular case.

For a rigorous enclosure in finite precision arithmetic, rounding must be downwards in

the second case, and upwards in the third case.

If a 6= 0, the behavior is governed by the zeros of the quadratic equation ax2+2bx−c = 0,

given by

t1 =
−b−

√
∆

a
=

c

b−
√

∆
, t2 =

−b+
√

∆
a

=
c

b+
√

∆
,

where ∆ := b2 + ac. If ∆ ≥ 0, the zeros are real, and the nonnegative zeros determine

X =

{
[0,∞] \ ]t1, t2[ if a > 0,

[0,∞] ∩ [t2, t1] if a < 0.

Depending on the signs of a, b and c we find

X =



∅ if a < 0, b ≤ 0, c > 0, (case 1)

[z/a,∞] if a > 0, b ≤ 0, c > 0, (case 2)

[0,−(c/z)] if a < 0, b ≤ 0, c ≤ 0, (case 3)

[0,−(c/z)][ ∪ [z/a,∞] if a > 0, b ≤ 0, c ≤ 0, (case 4)

[− ((−c)/z), z/(−a)] if a < 0, b ≥ 0, c > 0, (case 5)

[− ((−c)/z),∞] if a > 0, b ≥ 0, c > 0, (case 6)

[0, z/(−a)] if a < 0, b ≥ 0, c ≤ 0, (case 7)

[0,∞] if a > 0, b ≥ 0, c ≤ 0, (case 8)

where

z = |b|+
√

∆.

These formulas are numerically stable, and can be nested such that only three com-

parisons are needed in any particular case. (There are avoidable overflow problems

for huge |b|, which can be cured by using for huge |b| instead of
√
b2 + ac the formula

|b|
√

1 + ac/b2.)

Rigorous results in the presence of rounding errors are obtained if lower bounds are

rounded downwards, and upper bounds are rounded upwards. With the bracketing

as given, this happens if all computations (including those of ∆ =
√
b2 + ac and z =
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|b| +
√

∆) are done with rounding upwards if b ≥ 0, and with rounding downwards if

b ≤ 0. (However, this does not hold for the version guarded against overflow, where

further care is needed for the directed rounding of
√

∆ = |b|
√

1 + ac/b2.)

If (the exact) ∆ is negative, there is no real solution, and X is empty if c > 0 and [0,∞]

otherwise. The case when the sign of ∆ cannot be determined due to rounding errors

needs special consideration. In the first and last case, the conclusion holds independent

of the sign of ∆, so that the latter need only be computed for cases 2–7 in the definition

of X. In the cases 2, 3, 6, and 7 we have ac ≥ 0, so that ∆ ≥ 0 automatically. This

leaves cases 4 and 5. Now it is easily checked that with the recommended rounding and,

in place of cases 4 and 5,

X =


[0,−(c/z)] ∪ [z/a,∞] if a > 0, b ≤ 0, c ≤ 0, ∆ ≥ 0,

[0,∞] if a > 0, b ≤ 0, c ≤ 0, ∆ < 0,

∅ if a < 0, b ≥ 0, c > 0, ∆ < 0,

[− ((−c)/z), z/(−a)] if a < 0, b ≥ 0, c > 0, ∆ ≥ 0,

(3.3)

a rigorous enclosure is computed in all cases. Finding the set

X ′ = {x ≥ 0 | ax2 + 2bx ∈ c for any a ∈ a, b ∈ b}

can be reduced to the previous task since

X ′ = {x ≥ 0 | ax2 + 2bx ≤ c} ∩ {x ≥ 0 | ax2 + 2bx ≥ c}.

The sets

X ′′ = {x ∈ x0 | ax2 + 2bx ≥ c}

and

X ′′′ = {x ∈ x0 | ax2 + 2bx ∈ c for some a ∈ a, b ∈ b}

can be obtained by intersecting the result of the above tasks with x0 if x0 ≥ 0, by

negating x, x0, and b if x0 ≤ 0, and by splitting x0 at zero if 0 is in the interior of x0.

By modifying the code appropriately, one can also avoid computing roots which can be

seen to lie outside x0.

With minor changes, these formulas also apply for strict inequalities and interior enclo-

sures. Also, it is clear that polynomial inequalities and inclusions of interval polynomials

can be solved by a straightforward adaptation of the above arguments.

We end the section with Matlab code for computing the enclosure

X = [xl, xu] ∪ [x2l, x2u] \ {∞}
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according to (3.3).

Algorithm 3.2 (Solving an univariate quadratic expression).

xl=0;xu=inf;

x2l=inf;x2u=inf;

if b>=0,

roundup;

if c>0,

% case b>=0, c>0

Delta=b^2+a*c;

if Delta<0,

xl=inf;

elseif a==0 & b==0,

xl=inf;

else

z=b+sqrt(Delta);

xl=-((-c)/z);

if a<0, xu=z/(-a); end;

end

else

% case b>=0, c<=0

if a<0,

Delta=b^2+a*c;

z=b+sqrt(Delta);

xu=z/(-a);

end;

end;

else

rounddn;

if c>0,

% case b<0, c>0

if a>0,

Delta=b^2+a*c;

z=-b+sqrt(Delta);

xl=z/a;

else

xl=inf;

end

else

% case b<0, c<=0

Delta=b^2+a*c;

if Delta>=0,

z=-b+sqrt(Delta);

xu=-(c/z);

if a>0, x2l=z/a; end;

end;

end;

end;

3.4 Propagating separable quadratic constraints

We now combine the results of the previous two sections.

Example 3.3. Let f(x) denote an univariate quadratic expression, with

f(x) := x2 − 2x ∈ [−10, 8], x ∈ [−7, 5]. (3.4)

Example 3.1 produced from the bound on x the new bound f(x) ∈ [−1, 63], hence f(x) ∈
[−1, 8]. Example 3.2 produced from these bounds on f the new bounds x ∈ [−2, 4]. Thus

we end up with the new problem

f(x) := x2 − 2x ∈ [−1, 8], x ∈ [−2, 4]
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where the bounds on f and x are tighter than in the original problem (3.4).

This combination of forward and backward propagation for a univariate quadratic ex-

pression can be extended without difficulties to a method of constraint propagation for

separable quadratic constraints in several variables,

n∑
k=1

pk(xk) ≥ c, x ∈ x, (3.5)

where each term

pk(xk) := akx
2
k + bkxk (3.6)

depends on a single variable xk and may have uncertain coefficients,

ak ∈ ak, bk ∈ bk.

Example 3.4. We demonstrate separable quadratic constraint propagation on the con-

straint

−x2
1 + 2x1 − x2 ≥ −8 with x1 ∈ [−7, 5], x2 ∈ [0,∞]

step by step (see Figure 3.1):

• We find that for x1 ∈ [−7, 5], x2 ∈ [0,∞], −x2
1 + 2x1 ∈ [−63, 1] and −x2 ∈ [−∞, 0]

holds.

• Therefore, we have −x2
1 + 2x1 − x2 ≤ 1.

• From 0 ≥ −x2, the inequality −x2
1 + 2x1 ≥ −8− 0 = −8 follows.

• Since 1 ≥ −x2
1 + 2x1, the inequality −x2 ≥ −8− 1 = −9 holds.

• Then from −x2
1 + 2x1 ≥ −8, x1 ∈ [−2, 4], and from −x2 ≥ −9, x2 ∈ [−∞, 9] follows.

• Finally, we cut the bounds on the variables with the original bounds, and obtain

−x2
1 + 2x1 − x2 ∈ [−8, 1] with x1 ∈ [−2, 4], x2 ∈ [0, 9].

For xk ∈ xk we denote the enclosure of the quadratic univariate term pk(xk) by

pk(xk) ∈ pk = [pk, pk]. (3.7)

To find the pk, if 0 ∈ xk, we split xk at zero into a positive part xpk and a negative part

xnk , with xpk ≥ 0, xnk ≥ 0, xpk ∩ −xnk = {0} and xpk ∪ −xnk = xk. If xk ≥ 0 then we set

xpk := xk and xnk := ∅, while if xk ≥ 0 then we set xpk := ∅ and xnk := −xk. Then we
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Figure 3.1: Improving the bound constraints in Example 3.4.

define the bounds

cpk := sup {ax2
k + bxk | xk ∈ xpk}, cpk := − sup {−ax2

k − bxk | xk ∈ xpk},
cnk := sup {ax2

k − bxk | xk ∈ xnk}, cnk := − sup {−ax2
k + bxk | xk ∈ xnk}.

(3.8)

Each bound cpk, c
p
k, c

n
k , cnk in (3.8) can be found by applying the results of Section 3.2 to

them separately. Then the enclosure of pk(xk) is

pk = [ min(cpk, c
n
k),max(cpk, c

n
k)] if 0 ∈ xk,

pk = cpk if xk ≥ 0,

pk = cnk if xk < 0.

Then we sum the found intervals and obtain

n∑
k=1

pk(xk) ∈ e with e :=
n∑
k=1

pk =
[ n∑
k=1

p
k
,

n∑
k=1

pk

]
. (3.9)

We can then use the bounds pk and e to check the consistency of the constraint and

obtain a new bound for it (forward propagation), and to get better box constraints

(backward propagation).
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Forward propagation. By (3.5) and (3.9), we have

e ≥
n∑
k=1

pk(xk) ≥ c. (3.10)

Therefore, if (3.10) does not hold, the constraint is inconsistent. Following this, we pose

the inconsistency condition:

If e− c < 0 then the constraint (3.5) is inconsistent. (3.11)

If the constraint is consistent, by (3.5) and (3.9) both

n∑
k=1

pk(xk) ≥ c and
n∑
k=1

pk(xk) ≥ e

are satisfied, giving us the combined lower bound

n∑
k=1

pk(xk) ≥ c′ := max(c, e). (3.12)

Backward propagation. For all i ∈ {1, . . . , n} and all k 6= i, by (3.7) and (3.12) we

obtain
n∑

k=1, k 6=i
pk + pi(xi) ≥

n∑
k=1, k 6=i

pk(xk) + pi(xi) ≥ c′.

Bringing the upper bounds on the pk(xi) to the left hand side and by (3.6) we get

aix
2
i + bixi ≥ −γi, where γi :=

∑
k 6=i

pk − c′. (3.13)

The arrangement of the operations is such that upward rounding still gives correct re-

sults. Since the above approximation must be done for each univariate term in the

constraint, time can be saved when n > 2 by avoiding unnecessary work in the summa-

tions. The paper by Dallwig et al. [25] proposes to remove the summations completely,

using instead the identity

γi = e− c′ − pi. (3.14)

Again, the arrangement of the operations is such that upward rounding still gives correct

results. While fast, this identity must be used with caution: If pi is infinite, γi =

c′−∞+∞ is undefined. And if |pi| is very large, cancellation (together with the always

necessary directed rounding) may lead to unnecessarily pessimistic bounds. Below we

give some examples which demonstrate this behavior. To eliminate these problems, we
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recommend the use of the formulas

γi =


γ′ + pmin if pi = pmin =∞,
γ′ + pmin − e if d+ e > 0,

γ′ + pmax − d if d+ e ≤ 0,

(3.15)

where i, i are distinct indices with pi = pmin, pi = pmax,

γ′ :=
∑
k 6=i,i

pk − c′,

with nonnegative numbers d := pi − pmin and e := pi − pmax. Again, the arrangement

of the operations is such that upward rounding still gives correct results.

Remark 3.1. Alternatively we could rewrite (3.6) as

pk(xk) = ak(xk + bk/2ak)2 − b2k/4ak

and use interval arithmetic to enclose ranges (forward propagation) and bounds on x

(backward propagation) by using this form. However this would only work if 0 /∈ ak and

even in this case it yields non-optimal bounds if ak is a proper interval and bk is not

zero.

Example 3.5. We denote the sum γi from (3.13) as γ′i, the sum from (3.14) as γ′′i
and the sum from (3.15) as γ′′′i . We give three examples, one for each of the above three

possibilities and put c′ = 0. For simplicity, we perform all calculations with 16 digit

decimal arithmetic, doing the sums from left to right.

Case 1: For p = (1, 1,∞), we get

γ′3 = 1 + 1 = 2,

γ′′3 = (1 + 1 +∞)−∞ = NaN,

γ′′′3 = 1 + 1 = 2.

Case 2: For p = (8 · 10−8, 9 · 10−8, 109), we get

γ′3 = 8 · 10−8 + 9 · 10−8 = 1.7 · 10−7,

γ′′3 = (8 · 10−8 + 9 · 10−8 + 109)− 109 = 0,

γ′′′3 = 9 · 10−8 + 8 · 10−8 − (109 − 109) = 1.7 · 10−7.
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Case 3: For p = (−109, 8 · 10−8, 9 · 10−8, 109), we get

γ′3 = −109 + 8 · 10−8 + 109 = 10−6,

γ′′3 = (−109 + 8 · 10−8 + 9 · 10−8 + 109)− 9 · 10−8 = −9 · 10−8,

γ′′′3 = (8 · 10−8 + 9 · 10−8) + 109 − (9 · 10−8 + 109) = 0.

In the two first cases our formula (3.15) reproduces (3.13), while the formula (3.14) fails

in the first case, and suffers from severe cancellation in the second case. In the third

case all formulas suffer from cancellation.

Since (3.13) is a univariate, quadratic expression, the results of Section 3.3 can be

applied. This may result in an improved bound x′i on the variable xi. If we cut it with

the original bound on xi we obtain xi ∈ x′i ∩ xi. Since we approximate all univariate

expression pi(xi), i ∈ {1, . . . , n}, we obtain the new bound constraints

x ∈ x′ ∩ x.

In general, separable quadratic constraints can be written as

n∑
k=1

pk(xk) ∈ c, (3.16)

since they have both a lower bound c and an upper bound c. The inequalities

n∑
k=1

pk(xk) ≥ c and
n∑
k=1

−pk(xk) ≥ −c,

represent (3.16), and for them all the results of this section can be applied.

3.5 Nonseparable quadratic constraints

In this section we discuss a method for removing a bilinear term from nonseparable

quadratic constraints. This is important since by removing all bilinear terms in turn,

the problem is transformed to a separable one, to which the results of the previous

sections can be applied.

Example 3.6. (i) For some positive constant k, we consider the quadratic constraint

f(x) := kx2
1 + kx2

2 + kx2
3 + 2x1x2 + 2x1x3 + 2x2x3 ≤ 1. (3.17)
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This constraint defines a bounded ellipsoid when k > 1, while for k ≤ 1, an unbounded

domain results. Indeed, the Hessian

G = 2


k 1 1

1 k 1

1 1 k


has the principal sub–determinants G11 = 2k > 0, detG1:2,1:2 = 22(k2 − 1) and detG =

8(k3 − 3k + 2) = 23(k − 1)2(k + 2); hence G is positive definite iff k > 1.

If we rewrite f(x) as

f(x) = (k − 2)(x2
1 + x2

2 + x2
3) + (x1 + x2)2 + (x1 + x3)2 + (x2 + x3)2

and drop the (nonnegative) quadratic terms, we find the separable quadratic inequality

(k − 2)(x2
1 + x2

2 + x2
3) ≤ 1. (3.18)

For k = 3, we find x2
1 + x2

2 + x2
3 ≤ 1, and our separable constraint propagation gives the

bounds xi ∈ [−1, 1] for i = 1, . . . , 3. Similarly, any k > 2 leads to a finite box, which gets

arbitrarily large as k tends to 2. However, for any value of k ≤ 2, (3.18) is a trivial,

non–informative inequality. On the other hand, we have seen that the original constraint

(3.18) defines a bounded domain when k > 1. Thus, for k ∈ ]1, 2], the above method of

eliminating bilinear terms is not able to exploit the full power of (3.18).

In Chapter 4, we describe the ellipsoid hull technique, which always yields optimal bounds

based on more expensive (and much more difficult to rigorously analyze) linear algebra.

For example, when k = 2, we get the finite bounds xi ∈ [−0.86606, 0.86606] for i =

1, . . . , 3.

(ii) If we add the bound constraints xi = [−1, 5], i = 1, . . . , 3 to the constraint (3.17)

and set k = 2, we can approximate the bilinear terms xjxk by the interval evaluation of

xjxk and obtain 2xjxk ∈ [−10, 50]. In this case (3.17) reduces to

2x2
1 + 2x2

2 + 2x2
3 ≤ 31. (3.19)

Since xk ∈ [−1, 5], we find that x2
k ∈ pk := [0, 25] for all k = 1, . . . , 3. Therefore for all

i = 1, . . . , 3

2x2
i ≤ (31−

∑
k 6=i

p
k
) = 31

holds, yielding the bound xi ≤
√

31/2 ≤ 3.94.
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(iii) Suppose we have the same bound constraints as in (ii). We approximate the bilinear

terms by linear and constant ones. Since xi ∈ [−1, 5] for each bilinear term 2xjxk the

inequality

2xj + 2xk − 26 ≤ 2xjxk,

holds. Therefore by (3.17) we obtain

kx2
1 + kx2

2 + kx2
3 + 4x1 + 4x2 + 4x3 ≤ 79. (3.20)

Since xk ∈ [−1, 5], we find that 2x2
k + 4xk ∈ pk := [−2, 70] for all k = 1, . . . , 3. Then for

all i = 1, . . . , 3

2x2
i + 4xi ≤ (79−

∑
k 6=i

p
k
) = 83

holds, yielding the bound xi ≤ −1 +
√

85/2 ≤ 5.52.

The example shows that approximating the bilinear entries in different ways can lead to

different results.

We now formalize and extend the methods used in the preceding example. We consider

an arbitrary multivariate quadratic inequality constraint, which we write without loss

of generality in the form

∑
k

(akx2
k + bkxk) +

∑
j, k

j > k

bjkxjxk ≥ c, x ∈ x, (3.21)

where the akx2
k are the quadratic, the bkxk the linear and bjkxjxk the bilinear terms.

3.5.1 Approximation by constants

As in Example 3.6 (ii), we find rigorous bounds for a bilinear term bjkxjxk when xj and

xk are bounded. We evaluate xixj by using the rule for multiplying the intervals xi and

xj (see, e.g., Neumaier [70]) and obtain

bjkxixj ≤

{
bjk min (xixj ,xixj ,xixj ,xixj) if bjk < 0

bjk max (xixj ,xixj ,xixj ,xixj) if bjk ≥ 0.
(3.22)

Directed rounding when evaluating the right hand side ensures that no feasible points

can be lost during this process.
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3.5.2 Approximation by linear terms

As in Example 3.6 (iii), we approximate each bilinear term bjkxjxk with xj ∈ xj and

xk ∈ xk, by the linear expression

qjk(xjk) := gjkxj + ejkxk + hjk. (3.23)

If for all x ∈ x the inequality

gjkxj + ejkxk + hjk ≥ bjkxjxk, (3.24)

holds, by (3.21) we get

∑
k

(akx2
k + bkxk) +

∑
j, k

j > k

(gjkxj + ejkxk +hjk) ≥
∑
k

(akx2
k + bkxk) +

∑
j, k

j > k

bjkxjxk ≥ c,

for all x ∈ x. In order to get an optimal qjk(xjk) we set

gjk := bjkzk, ejk := bjkzj

for some zk ∈ xk. By (3.24) term hjk can be obtained by finding the upper bound of

f(xj , xk) := bjkxjxk − (ejkxk + gjkxj) = (bjkxj − ejk)xk − gjkxj (3.25)

for xk ∈ xk and xj ∈ xj . There, again the direct interval evaluation of (3.25) can be

used, but to save computational time we propose:

Proposition 3.2. Let f(x, y) be monotone in x and y, and suppose that x ∈ x and

y ∈ y. Then

ut{f(x, y) | x ∈ x, y ∈ y} = ut{f(x, y) ∪ f(x, y) ∪ f(x, y) ∪ f(x, y)}

holds.

Proof.

ut{f(x, y) | x ∈ x, y ∈ y} = ut{(ut{f(x, y) | x ∈ x}) | y ∈ y}
= ut{(ut{f(x, y) ∪ f(x, y)}) | y ∈ y} = ut{ut{f(x, y) | y ∈ y} ∪ ut{f(x, y) | y ∈ y}}
= ut{f(x,y) ∪ f(x,y)} = ut{f(x, y) ∪ f(x, y) ∪ f(x, y) ∪ f(x, y)}

(3.26)

holds.
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In floating point arithmetics, we have to ensure correct upward rounding and therefore

we compute

u1 = ∆f(x, y), u2 = ∆f(x, y), u3 = ∆f(x, y), u4 = ∆f(x, y),

l1 = ∇f(x, y), l2 = ∇f(x, y), l3 = ∇f(x, y), l4 = ∇f(x, y).

and obtain
ut{f(x, y) | x ∈ x, y ∈ y} = [min

i
li, max

i
ui].

Applied to (3.25), noting that f(x, y) is monotone in both x and y, we find the upper

bound

hjk = max
i
ui

with
u1 = ∆bjk((xj − zj)xk − zkxj), u2 = ∆bjk((xj − zj)xk − zkxj),
u3 = ∆bjk((xj − zj)xk − zkxj), u4 = ∆bjk((xj − zj)xk − zkxj).

3.5.3 Approximation by separable quadratic terms

Alternatively, when a bound for xj or xk is large, but the coefficients aj and ak of the

corresponding quadratic terms have negative sign, it is usually better to proceed as

in Example 3.6 (i) and relax the bilinear entries by quadratic ones. Note that when

the constraint in that example is rewritten in the form (3.21), the coefficients of the

quadratic terms become negative. This is a necessary condition for the constraint to

lead to a bounded feasible set.

To ensure good scaling behavior, we want to bound bjkxjxk by a multiple of ajx2
j +akx2

k:

Proposition 3.3. Suppose that ak < 0 and aj < 0, and put

vjk := sign(bjk)
√
ak
aj
, djk :=

bjk
2vjk

.

Then

bjkxjxk ≤ djkx2
j +

bjkvjk
2

x2
k. (3.27)

Proof. Since bjk and vjk have the same sign, djk = bjk

2vjk
≥ 0 holds, and thus djk(xj −

vjkxk)2 ≥ 0 follows. In addition to this,

djk(xj − vjkxk)2 = djkx
2
j + djkv

2
jkx

2
k − 2djkvjkxjxk = djkx

2
j +

bjkvjk
2

x2
k − bjkvjkxjxk
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and the inequality (3.27) follows from

0 ≤ djk(xj − vjkxk)2 =
bjk
2vjk

aj
aj
x2
j +

bjk
2vjk

ak
aj
x2
k − bjkxjxk =

djk
aj

(ajx2
j + akx

2
k)− bjkxjxk = djkx

2
j +

bjkvjk
2

x2
k − bjkxjxk.

3.5.4 Combining the approximation methods

Since (3.22) tends to give better bounds on xjxk than (3.23) or (3.27) if the boxes xj
and xk are not too wide, but infinite ones if the width of one of the boxes is infinite

we combine the different methods and proceed as follows for each bilinear term with

nonzero coefficients bjk: First, we factor the quadratic, bilinear and linear terms which

depend on the variables xj and xk from (3.21) and obtain

c(x) + akx
2
k + ajx

2
j + bjkxjxk + bkxk + bjxj ≥ c, (3.28)

The entries which do not depend on xj or xk are collected in

c(x) :=
∑
i

i 6= k, i 6= j

(aix2
i + bixi) +

∑
m, i

m > i

(mi) 6= (jk)

bmixmxi.

Then we handle the following cases:

1. If one of the bounds xj , xj , xk, xk is large and both ak and aj are negative, we

quadratically approximate the bilinear term bjkxjxk as described in Subsection

3.5.3. By the inequality (3.27) we obtain the relaxation

c(x) + (ak + djk)x2
k +

(
aj +

bjkvjk
2

)
x2
j + bkxk + bjxj ≥ c, (3.29)

showing that the bilinear term bjkxjxk has been eliminated from (3.28). We have

separated the variables xj and xk in (3.28), ending up in

c(x) + a′kx
2
k + a′jx

2
j + bkxk + bjxj ≥ c, (3.30)

with the new quadratic coefficients

a′k := ak + djk, a
′
j := aj +

bjkvjk
2

. (3.31)
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The linear and constant coefficients remain unchanged. If we have uncertainties

in the coefficients; ak ∈ ak and bjk ∈ bjk then (3.31) is changes to

a′k ∈ a′k, a′j ∈ a′j ,

with

a′k = ak + djk, a′j = aj + sup
bjkvjk

2
, vjk = sign(bjk)

√
ak
aj
, djk =

bjk
2vjk

.

2. If we have no large bounds on the variables xj and xk, the expression

p(x) := akx
2
k + ajx

2
j + bjkxjxk + bkxk + bjxj

can be bounded from above by a convex function only if it has a finite global

maximum. This requires that the Hessian

H =

(
2ak bjk

bjk 2aj

)

is negative semidefinite. If bjk 6= 0 this implies that ak and aj are negative.

Therefore, the constraint propagation on this constraint is useful only in this case.

3. If all bounds xj , xj , xk, xk are not large we approximate the bilinear term bjkxjxk

by applying the results of Subsection 3.5.1. In addition to this, if we assume that

we have uncertainties in the coefficient bjk ∈ bjk, we can add the supremum of

bjkxjxk to the right hand side of the inequality (3.28) obtaining

c(x) + akx
2
k + ajx

2
j + bkxk + bjxj ≥ c′, (3.32)

where

c′ := c+

{
bjk max{xjxk, xjxk, xjxk, xjxk} if bjk ≥ −bjk
−bjk max{(−xj)xk, (−xj)xk, (−xj)xk, (−xj)xk} if bjk < −bjk.

Thus we have separated the variables xj and xk in (3.28). The quadratic and

linear coefficients remain unchanged. Note that the signs in the above expression

are intended to save rounding mode switches.

4. If the bounds xj , xj , xk, xk are not large, for special applications (e.g. for com-

puting linear relaxations as in Chapter 5), it can be suitable to approximate the

bilinear terms by linear expressions. We apply the results of Subsection 3.5.2; we

choose a z ∈ x (e.g., z = (x+x)/2 is a good choice) and approximate each bjkxjxk
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with xj ∈ xj and xk ∈ xk by

bjkzj + bjkzk + d ≥ bjkxjxk, d := max
i
ui

where

u1 = ∆bjk((xj − zj)xk − zkxj), u2 = ∆bjk((xj − zj)xk − zkxj),
u3 = ∆bjk((xj − zj)xk − zkxj), u4 = ∆bjk((xj − zj)xk − zkxj).

(3.33)

Then by (3.28) we have

c(x) + akx
2
k + ajx

2
j + (bjkzj + bk)xk + (bjkzk + bj)xj + d

≥ c(x) + akx
2
k + ajx

2
j + bjkxjxk + bkxk + bjxj ≥ c.

Therefore we successfully separated the the variables xj and xk in (3.28) and obtain

c(x) + akx
2
k + ajx

2
j + b′kxk + b′jxj ≥ c′ (3.34)

with the new linear and constant coefficients

b′k := bjkzj + bk, b
′
j := bjkzk + bj , c

′ := c−max
i
ui. (3.35)

The quadratic coefficients remain unchanged. If we have the uncertainties bjk ∈ bjk
and bk ∈ bk in the coefficients, (3.35) changes to

b′k ∈ b′k, b′j ∈ b′j , c′ = c−max
i
ui,

with

b′k = bjkzj + bk, b′j = bjkzk + bj ,

u1 = sup(bjk((xj − zj)xk − zkxj)), u2 = sup(bjk((xj − zj)xk − zkxj)),
u3 = sup(bjk((xj − zj)xk − zkxj)), u4 = sup(bjk((xj − zj)xk − zkxj)).

Applying the above on (3.28) for all indexes j ∈ {1, . . . , n} and k ∈ {1, . . . , n} with

j < k, we obtain the new separable system

∑
k

a′kx
2
k + b′kxk ≥ c′, x ∈ x. (3.36)

All above bounds should be computed with upward rounding.
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3.6 Constraint propagation in GloptLab

This section discusses how the new techniques presented above are implemented in

the GloptLab environment to solve algebraic constraint satisfaction problems. The

problems treated in GloptLab consist (after preliminary transformations) of simple

bounds, linear constraint, and quadratic constraints. We represent simple bounds as

box constraint x ∈ x. The linear and quadratic constraints are represented in a sparse

matrix notation. The linear, quadratic, and bilinear monomials occurring in at least

one of the constraint (but not the constant term) are collected into an nq-dimensional

column vector q(x). There we choose

q(x) = (x1, . . . , xn, x
2
1, . . . , x1xn, . . . xnx1, . . . , x

2
n)T

The coefficients of the ith constraint in the resulting monomial basis are collected in the

ith row of a (generally sparse) matrix A, and any constant term (if present) is moved to

the right hand side. Thus the linear and quadratic constraints take the form Ai:q(x) ∈ Fi

(i = 1 . . .m), where Fi is a closed interval, and Aj: denotes the jth row of A.

As in the case of simple bounds, this includes equality constraints and one-sided con-

straints by choosing for the corresponding Fi degenerate or unbounded intervals. In

compact vector notation, the constraints take the form Aq(x) ∈ F.

While traditionally the coefficients in a constraint are taken to be exactly known, we

allow them to vary in (narrow) intervals, to be able to rigorously account for uncer-

tainties due to measurements of limited accuracy, conversion errors from an original

representation to our normal form, and rounding errors when creating new constraints

by relaxation techniques. Thus the coefficient matrix A is allowed to vary arbitrarily

within some interval matrix A. The m×nq interval matrix A with closed and bounded

interval components Aik = [Aik, Aik], is interpreted as the set of all A ∈ Rm×n such that

A ≤ A ≤ A, where A and A are the matrices containing the lower and upper bounds of

the components of A.

We therefore pose the general quadratic constraint satisfaction problem in the form

Aq(x) ∈ F, x ∈ x, A ∈ A. (3.37)

We now summarize the constraint propagation method for the quadratic constraint

satisfaction problem (3.37).

Problem simplification. First we simplify the problem; we remove the constraints of

the form bxj ∈ Fi and modify the corresponding bounds on the variable xj . We also
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remove the variables which are fixed from the constraints, and the entries corresponding

to the removed variables from the vector q(x). The dimensions of the coefficient matrix

A and the box x may change in this step.

Resolving the two-sided constraints. We resolve the two-sided constraints of (3.37)

into inequalities. We define

An :=

(
−AI,:
AJ,:

)
, Ap :=

(
AI,:

−AJ,:

)
, c :=

(
F I

−F J

)
,

where

I := {i ∈ 1, . . . ,m | F i > −∞} and J := {i ∈ 1, . . . ,m | F i <∞}.

The system of quadratic inequalities

Aq(x) ≥ c, x ∈ x, A ∈ A := [−An, Ap], (3.38)

is another representation of the quadratic constraint satisfaction problem (3.37). The

matrix A is m × nq dimensional, where m := nI + nJ depends on the length nI of the

index set I and on the length nJ of the index set J .

Separating the constraints. We transform the quadratic constraint satisfaction prob-

lem into a separable one. The ith row of (3.38) matches the form of

∑
k

(akx2
k + bkxk) +

∑
j, k

j > k

bjkxjxk ≥ c, x ∈ x,

of (3.21), with

ak := Ai,kn+k, bk ∈ Ai,k, bjk ∈ Ai,jn+k and c := ci. (3.39)

Here we used the upper bounds for the quadratic terms since the sign of x2
k is known.

Then we use the results of Section 3.5 to remove all bilinear entries from each constraint,

obtaining the new coefficients

a′k ∈ a′k, b′k ∈ bk, bjk = 0 and c = c′i. (3.40)

Depending on the removal method we have applied either the quadratic coefficients or

the bound c′ or both of them have been changed, ending up in a new system

A′q(x) ≥ c′, x ∈ x, A′ ∈ A′ := [−A′n, A′p] (3.41)



Chapter 3. Constraint propagation on quadratic constraints 54

In (3.41) all bilinear coefficients are zero, therefore from this point on, the system is

separable.

Forward and backward propagation. Since the ith row of (3.41) matches the form

n∑
k=1

(akx2
k + bkxk) ≥ c, x ∈ x, ak ∈ ak, bk ∈ bk

of (3.5), we can apply the forward and the backward propagation steps from Section 3.4.

We compute the enclosure pk of each univariate quadratic term pk(xk) := akx
2
k + bkxk

by using the theory developed in Section 3.2, where the uncertainties ak and bk of the

constraint coefficients are also taken into account.

Then we use the pk to verify that the constraint is feasible, to get a new bound on each

pk(xk) and to find a new lower bound for the constraint.

If the constraint has not yet been detected as infeasible, we can apply the backward

propagation step (by using the theory from Section 3.3), which may yield tighter bounds

on the variables.

3.7 Tests and Comparison

In this section we compare our quadratic constraint propagation method (QCP) with

elementary constraint propagation (ECP).

The forward propagation step of the elementary constraint propagation finds the range

of each expression in the constraints individually, then for all expressions in a constraint

uses the ranges of all other expressions to get new bounds on them. The backward

propagation step uses the inverse of the expressions to get new bounds on the variables.

Example 3.7. To demonstrate the elementary constraint propagation and simultane-

ously compare it to the method presented in this chapter we again solve the problem

−x2
1 + 2x1 − x2 ≥ −8 with x1 ∈ [−7, 5], x2 ∈ [0,∞].

from Example 3.4 and give the step by step comparison of the two different approaches:
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ECP:

• For x1 ∈ [−7, 5], x2 ∈ [0,∞], we

have −x2
1 ∈ [−49, 0], 2x1 ∈ [−14, 10] and

−x2 ∈ [−∞, 0].

• Therefore, −x2
1 + 2x1 − x2 ≤ 10.

• From 0 ≥ −x2, 0 ≥ −x2
1 and 10 ≥ 2x1,

the inequalities −x2
1 ≥ −8−0−10 = −18

and 2x1 ≥ −8− 0− 0 = −8 follows.

• Since 10 ≥ −x2
1 + 2x1, the inequality

−x2 ≥ −8− 10 = −18 holds.

• From −x2
1 ≥ −18, x1 ∈ [−

√
18,
√

18],

from 2x1 ≥ −8, x1 ∈ [−4,∞], and from

−x2 ≥ −18, x2 ∈ [−∞, 18] follows.

• Intersecting the bounds on the vari-

ables with the original bounds, we ob-

tain −x2
1 + 2x1 − x2 ∈ [−8, 10] with

x1 ∈ [−4,
√

18], x2 ∈ [0, 18].

QCP:

• For x1 ∈ [−7, 5], x2 ∈ [0,∞], we have

−x2
1 +2x1 ∈ [−63, 1] and −x2 ∈ [−∞, 0].

• Therefore, −x2
1 + 2x1 − x2 ≤ 1.

• From 0 ≥ −x2, the inequality

−x2
1 + 2x1 ≥ −8− 0 = −8 follows.

• Since 1 ≥ −x2
1 + 2x1, the inequality

−x2 ≥ −8− 1 = −9 holds.

• From −x2
1 + 2x1 ≥ −8, x1 ∈ [−2, 4],

and from −x2 ≥ −9, x2 ∈ [−∞, 9]

follows.

• Intersecting the bounds on the

variables with the original bounds, we

obtain −x2
1 + 2x1 − x2 ∈ [−8, 1] with

x1 ∈ [−2, 4], x2 ∈ [0, 9].

As the example shows for this problem the quadratic constraint propagation presented in

this chapter gives significantly tighter bounds than the elementary constraint propaga-

tion used as the pruning step of several state-of-the-art constraint propagation methods

(e.g. [19, 38, 102]) with hardly any extra work. Probing ([99], also called slicing or

shaving) would yield the same results as QCP, but at a much higher cost.

Strategy 3.1 (Test strategies).

In order to compare our method with the traditional approaches we reimplemented the

elementary constraint propagation in Matlab, integrated in GloptLab Chapter 2 and

used branch and prune to solve random problems. GloptLab executes configurable

strategies, for the comparison we used the following one, with default tuning parameter

settings (which are configurable in GloptLab).
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01: Read Problem

02: Begin While

03: Propagate*

04: End While

05: Begin Split

06: Begin While

07: Propagate*

08: End While

09: End Split

11: Finish

Test strategies

name Propagate* method selection

ELEM elementary constraint propagation

SCON quadratic CP with constant bilinear approximation

SLIN quadratic CP with linear bilinear approximation

SQUA quadratic CP with quadratic bilinear approximation

SAUT quadratic CP with automatic bilinear approximation

Each strategy from 3.1 first reads the problem then accomplishes a single propagation

step (each of them using different method) until the gain is less than 20% of the original

box or until the number of iterations exceeds 20. Then the branching process follows; the

box is split at the midpoint of a selected component then the same sequence of constraint

propagation is applied to subboxes as before. Infeasible boxes are discarded, feasible boxes

are split again if their maximum width is more than 0.001. Boxes of maximum width

smaller than 0.001 are not split but saved for the final output.

In the first test we use the strategies from 3.1 to test three test sets of 50 random,

infeasible problems. The problems are 2 dimensional in the first, 5 dimensional in the

second, and 10 dimensional in the third test set. Each problem in the test consists of a

single conic inequality constraint with random coefficients and random bound constraints

x ∈ x, choosen such that xi ⊆ [−1, 1] and the problem is infeasible (infeasibility was

verified by using a more complicated strategy; Strategy 5.2 from Chapter 2, Section 5.2).

The table below shows the median of the solution times (in seconds) and the median of

the splits required to solve the problems contained in each test set.
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Branch and prune test results.

dimension n = 2 n = 5 n = 10

method time splits time splits time splits

ELEM 0.003 0 0.255 3.00 22.58 47.5

SCON 0.001 0 0.033 1.75 0.722 47.3

SLIN 0.003 0 0.039 1.50 0.984 55.0

SQUA 0.001 0 0.045 2.00 1.500 95.5

SAUT 0.002 0 0.035 1.75 0.813 47.3

As the results show, verifying in higher dimensions that the search space does not contain

points of single conic inequality constraint consisting of bilinear terms using constraint

propagation is a non-trivial task. The reason is that the approximation error of the

bilinear terms (and in case of the elementary constraint propagation also the approxi-

mation of the separable quadratic expressions) makes the CP incapable to discard the

regions of the search space which are close to region defined by the constraint. Only a

division of the search space into several subboxes leads to a solution.

The elementary constraint propagation is slower than the quadratic constraint prop-

agation, due to the need of more rounding mode switches in the interval arithmetic

and the greater approximation error (see Example 3.7). Since the width of the bound

constraint box is small, the constant approximation performs better than the linear or

the quadratic ones. The automatic method is only slightly slower than the constant

approximation, but has the advantage that it is also performs good when the bound

constraints are large.

The following tests show how the constraint propagation method presented in this chap-

ter scales favorably with the complexity of the constraints. The test problems are 9

dimensional, having linear equality constraints (depending on the variables xi, xi+1 and

xi+2, i = 1, . . . , 7) but the fifth constraint also has some quadratic and bilinear terms in

3 (Test 1), in 4 (Test 2), in 5 (Test 3), or in 6 variables (Test 4). In Test 1-4 the

fifth constraint is convex, while in Test 1’-4’ non-convex. We have chosen 20 random

bound constraints x ∈ x such that xi ∈ [−b, 0] and xi = xi+2b for i = 1, . . . n, and listed

the different bs in the bound column of the tables. We added the random bounds to the

test problems, and solved them using the ELEM and the SAUT strategy. The median of

the solution times (in seconds) are shown in the following tables:
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Median of the solution times for convex (Test 1-4) and non-convex

(Test 1’−4’) problems. Problems in each test run: 20, strategy: ELEM.

bound Test 1 Test 1’ Test 2 Test 2’ Test 3 Test 3’ Test 4 Test 4’

1 0.082 0.055 0.094 0.081 0.257 0.171 0.170 0.348

10 1.391 1.031 1.823 1.605 2.772 2.589 4.229 4.597

100 1.416 1.008 1.969 1.894 2.624 2.862 4.688 4.414

1000 1.883 1.481 2.098 2.085 3.217 3.245 5.496 4.749

Median of the solution times for convex (Test 1-4) and non-convex

(Test 1’−4’) problems. Problems in each test run: 20, strategy: SAUT.

bound Test 1 Test 1’ Test 2 Test 2’ Test 3 Test 3’ Test 4 Test 4’

1 0.017 0.028 0.027 0.021 0.025 0.021 0.023 0.040

10 0.244 0.282 0.293 0.256 0.325 0.319 0.339 0.404

100 0.256 0.289 0.286 0.298 0.294 0.335 0.338 0.360

1000 0.406 0.348 0.696 0.390 0.694 0.339 0.919 0.677

Note that the convex problems without additional bound constraints can be solved in

less then 0.12 seconds by adding the ellipsoid hull enclosure method presented in Chapter

4 to the above strategy.

Remark 3.4. Testing and comparing the above methods with other constraint propaga-

tion methods on standard benchmarks only makes sense when the method is integrated

in the same strategy (combined with branch and bound, shaving, relaxations etc.). Con-

straint propagation alone is not powerful enough to solve the most real life problems

and the type and quality of the auxiliary methods does count a lot if we would like

to compare our method with the constraint propagation methods implemented in other

solvers like ICOS or Realpaver.

An implementation of the above methods in other programming languages (e.g., in

C++, which is significantly faster than Matlab) or using other representations of the

problem (e.g. using DAGs) should yield a significant reduction of the solution times.

However, we expect that the relative quality of the different methods will approximately

remain the same. A C++ implementation for the COCONUT Environment is in

preparation.

Remark: The Sections 3.2 and 3.3 were originally written by Arnold Neumaier, the

remaining Sections are my work.



Chapter 4

Rigorous enclosures of ellipsoids

and directed Cholesky

factorizations

Abstract.

This chapter discusses the rigorous enclosure of an ellipsoid by a rectangular box, its

interval hull, providing a convenient preprocessing step for constrained optimization

problems.

A quadratic inequality constraint with a strictly convex Hessian matrix defines an ellip-

soid. The Cholesky factorization can be used to transform a strictly convex quadratic

constraint into a norm inequality, for which the interval hull is easy to compute analyti-

cally. In exact arithmetic, the Cholesky factorization of a nonsingular symmetric matrix

exists iff the matrix is positive definite. However, to cope efficiently with rounding er-

rors in inexact arithmetic is nontrivial. Numerical tests show that even nearly singular

problems can be handled successfully by our techniques.

To rigorously account for the rounding errors involved in the computation of the interval

hull and to handle quadratic inequality constraints having uncertain coefficients, we

define the concept of a directed Cholesky factorization, and give two algorithms for

computing one. We also discuss how a directed Cholesky factorization can be used

for testing positive definiteness. Some numerical test are given in order to exploit the

features and boundaries of the directed Cholesky factorization methods.

Keywords. quadratic constraints, interval analysis, constraint satisfaction problems,

bounding ellipsoids, interval hull, directed Cholesky factorization, verification of positive

definiteness, rounding error control, preprocessing, verified computing

59



Chapter 4. Rigorous enclosures of ellipsoids and directed Cholesky factorizations 60

Several state of the art global optimization solvers, such as Baron (by Sahinidis &

Tawarmalani [86]) or COCOS (by Schichl et al. [88]), combine a number of methods

and strategies to find one or more global solutions of a constrained optimization problem.

Most of the techniques (e.g branch and bound, heuristics) require explicit bounds for

each variable from below and from above. If a problem lacks these explicit prior bounds,

the usual remedy is to set default upper and lower bounds on the variables, thereby

changing the problem. If the global minimum lies outside the default bounds, the solver

cannot find the solution.

A rigorous enclosure technique for strictly convex quadratic constraints presented in this

paper give the possibility to obtain rigorous bounds on variables that are consequences

of the constraints, without the need of giving explicit bounds on them. This makes

the method a convenient preprocessing step for constrained optimization problems. On

the other hand since the enclosures obtained by the method are rigorous, the method

is also applicable in verified global optimization (e.g., Kearfott [54], Lebbah [59],

Chapter 2) and in computer assisted proofs (see, e.g., Neumaier [74]). Since it reduces

the search space, it may also be important for stochastic, sampling-based optimization

methods.

The chapter is logically divided into two parts. The first part (Sections 4.2 - 4.4) is about

computing rigorous enclosures for strictly convex quadratic constraints. In the second

part (Sections 4.5 - 4.7) the theory of the directed Cholesky factorization is developed

as an essential tool for making the results of the first part rigorous.

In the first section we find an optimal box enclosure of an ellipsoid defined by a simple

Euclidean norm inequality constraint. In Section 4.2 we extend these results and gen-

erate optimal enclosures for strictly convex quadratic constraints. We also consider the

case of inexact arithmetic, where the error of the factorization of the coefficient matrix

has to be controlled. The need of scaling when confronted with ill-conditioned coefficient

matrices is discussed in Section 4.3. In Section 4.4 we develop the method into a useful

tool for preprocessing constrained optimization problems to get finite bounds on the

variables or to improve the existing ones. Since the method is rigorous, our preprocess-

ing step finds finite bounds for all variables if each unbounded variable occurs in some

strictly convex quadratic constraint, without losing any feasible point. These bounds

on all n variables are obtainable with O(n3) operations. The method is implemented in

the GloptLab optimization environment (see Chapter 2).

To rigorously account for the rounding errors involved in the computation of the interval

hull and to handle quadratic inequality constraint having uncertain coefficients, we define

the concept of a directed Cholesky factorization.
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In the second part of the chapter, we give algorithms which compute, if possible, for

a real, symmetric matrix A a nonsingular triangular matrix R (a directed Cholesky

factor) such that the error matrix A − RTR of the factorization is small compared to

the entries of |A|, and guaranteed to be positive semidefinite. Clearly, this implies that

A is positive definite; conversely (in the absence of overflow), any ‘sufficiently’ positive

definite symmetric matrix has such a factorization with R representable in floating point

arithmetic. The challenge is to find such a representation which makes the error as small

as possible and works even for nearly singular matrices.

Two different versions of the directed Cholesky factorization for real symmetric matri-

ces are discussed in Section 4.5. Both of them check positive definiteness and, when

successful, compute a directed Cholesky factor with positive semidefinite error matrix

containing small entries. The first approach uses an a priori error estimate, an approxi-

mate Cholesky factorization, and the so-called Gerschgorin test (explained later). The

second one uses directed rounding and diagonal pivoting to obtain a directed Cholesky

factor. Section 4.6 contains some tests and comparison of the two directed Cholesky

factorization methods.

In some applications, it is necessary to safeguard the computations in order to ensure

the mathematical correctness of the assertions in spite of rounding errors. This applies

to computer-assisted proofs in which positive definiteness must be verified rigorously (a

potential application to Lie group representations is described in Adams [1]). This also

applies to box reduction methods for global optimization (see, e.g., [73, 85]) to guarantee

that no feasible point is lost.

The last section is concerned with applications of the directed Cholesky factorization for

verifying positive definiteness rigorously. Previous work includes Adjiman et al. [2, 4, 5],

Neumaier [73], Rump [79–81, 83]. We show that a directed Cholesky factorization can

be employed for the same task, and that the positive definiteness of a complex Hermitian

matrix can be checked in real arithmetic by factorizing a related real matrix of twice the

size.

The well-known theorem of Gerschgorin, (see, e.g. Stoer & Bulirsch [94]) implies that

every symmetric H-matrix with non-negative diagonal entries is positive definite; we call

this the Gerschgorin test for positive definiteness. Other sufficient conditions for positive

definiteness based on scaled Gerschgorin theorems and semidefinite programming, form

the basis of the αBB method Adjiman et al. [3] and Androulakis [8] and are given

in Adjiman et al. [2, 4]. For further tests see the discussion in Section 4.7.
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4.1 Bounding strictly convex norm constraints

In this section we construct an optimal box enclosure of an ellipsoid defined by the

Euclidean norm constraint

‖Rx‖22 + 2aTx ≤ α, (4.1)

for a given R ∈ Rn×n, a ∈ Rn and α ∈ R. The following result — for ellipsoids centered

on the origin (a = 0 in (4.1)) — is the basic tool for finding an optimal enclosure of

(4.1).

Proposition 4.1. Suppose that R,C ∈ Rn×n, 0 < β ∈ R and 0 < d ∈ Rn satisfy

di ≥
√

(CCT )ii for all i = 1, . . . , n, (4.2)

as well as

βd ≤ 〈CR〉d. (4.3)

Then R is invertible, and for x ∈ Rn

‖Rx‖22 ≤ δ2 ⇒ |x| ≤ δ

β
d. (4.4)

Proof. We first note that (4.2) implies (CCT )ii ≤ d2
i . Since CCT is positive semidefinite,

|(CCT )ik|2 ≤ (CCT )ii(CCT )kk ≤ d2
i d

2
k, so that

|CCT | ≤ ddT .

Since (4.3) implies that CR is an H-matrix (Neumaier [70, Section 3.7]), the matrix

CR is invertible (hence also R), and |(CR)−1| ≤ 〈CR〉−1. Moreover, multiplying (4.3)

by 〈CR〉−1β−1 ≥ 0, we find 〈CR〉−1d ≤ β−1d. Now let z := R−T ei with the ith unit

vector ei = I:i. Then ei = RT z, hence

x2
i = (eiTx)2 = (zTRx)2 ≤ ‖z‖22‖Rx‖22 ≤ δ2‖z‖22 = δ2zT z

= δ2eiTR−1R−T ei = δ2eiT (CR)−1CCT (CR)−T ei

≤ δ2eiT 〈CR〉−1ddT 〈CR〉−T ei = (δeiT 〈CR〉−1d)2

≤ (δβ−1eiTd)2 = (δβ−1di)2,

(4.5)

proving (4.4).

Example 4.1. For the ellipsoid

‖Rx‖22 ≤ δ2 with R =

(
2 −1

0 1

)
and δ2 = 10,
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choosing C = R−1, di =
√

(CCT )ii, β = 1 and applying the results of Proposition 4.1

we find the enclosure

|x| ≤ δ

β
d =

( √
5

√
10

)
≈

(
2.24

3.17

)
(see Figure 4.2).

Matlab code for testing Example 4.1.

R=[2 -1;0 1], delta=sqrt(10), C=inv(R),

d=sqrt(diag(C*C’)), beta=1, bound=delta/beta*d

Figure 4.1: Box enclosure found for the ellipsoid from Example 4.1

We now show that the choice for the parameters C, d and β we made in the above

example was the optimal one.

Proposition 4.2. Under the assumptions of Proposition 4.1, the bound on x is optimal

if C = R−1, di =
√

(CCT )ii and β = 1.

Proof. From βd ≤ 〈CR〉d with C = R−1 follows that β ≤ 1. Therefore β is maximal

if β = 1 and di is minimal if di =
√

(CCT )ii. The assertion that the bound is optimal

follows if we show that for all i = 1, . . . , n the points

x̂i := ± δ
di
R−1R−T ei
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satisfy ‖Rx̂i‖2 = δ and the ith component of x̂i matches the boundary of the box

[−δdi, δdi] enclosing the ellipsoid. Since

di =
√

(CCT )ii =
√
eiTR−1R−T ei = ‖R−T ei‖2 > 0

holds, the first claim follows from

‖Rx̂i‖2 = ‖ ± δ

di
RR−1R−T ei‖2 =

δ

di
‖ ±R−T ei‖2 = δ,

and the second claim follows from

dix̂
i
i = di(eiT x̂i) = ±δeiTR−1R−T ei = ±δ‖R−T ei‖22 = ±δd2

i , (4.6)

after division by di.

If we shift the center of the ellipsoid by replacing x in Propositions 4.1 and 4.2 by x− x̃,

we find:

Corollary 4.3. Suppose that R ∈ Rn×n is invertible, x̃ ∈ Rn, di ≥
√

(R−1R−T )ii, and

βd ≤ 〈R−1R〉d then

x ∈ Rn, ‖R(x− x̃)‖2 ≤ δ ⇒ |x− x̃| ≤ δ

β
d. (4.7)

The bound on x− x̃ is optimal if di =
√

(R−1R−T )ii and β = 1. ut

We use Propositions 4.1 and 4.2 to achieve the main result of this section given by the

following theorem; we derive cheap and in inexact arithmetic only slightly non optimal

bounds on x for the general norm inequality (4.1). The theorem, which is valid for

arbitrary z̃, x̃ ∈ Rn, will be used with

z̃ = R−Ta, x̃ = −R−1z̃ = −R−1R−Ta, (4.8)

to make γ small. We know that if the choice is exact then γ = 0 and the bounds would

be optimal.

Theorem 4.4 (Ellipsoid Hull). For given R ∈ Rn×n, a ∈ Rn and α ∈ R, under the

assumptions of Proposition 4.1, for arbitrary z̃, x̃ ∈ Rn and γ,∆ ∈ R satisfying

γ ≥ ‖z̃ +Rx̃‖2 + β−1dT |a−RT z̃|, (4.9)

and

∆ ≥ γ2 + α− 2aT x̃− ‖Rx̃‖22, (4.10)
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the following statements hold:

(i) If ∆ < 0 then

‖Rx‖22 + 2aTx ≤ α (4.11)

has no solution x ∈ R.

(ii) If ∆ ≥ 0 then (4.11) implies that

‖R(x− x̃)‖2 ≤ δ := γ +
√

∆, |x− x̃| ≤ δ

β
d. (4.12)

Proof. For any x ∈ Rn, Proposition 4.1 implies

|x− x̃| ≤ ε

β
d, where ε = ‖R(x− x̃)‖2. (4.13)

If (4.11) holds then

‖Rx‖22 ≤ α− 2aTx ≤ ∆− γ2 + 2aT x̃+ ‖Rx̃‖22 − 2aTx

= ∆− γ2 + ‖Rx̃‖22 − 2aT (x− x̃).

Therefore
ε2 = ‖R(x− x̃)‖22 = (x− x̃)TRTR(x− x̃)

= xTRTRx− 2x̃TRTRx+ x̃TRTRx̃

= ‖Rx‖22 − 2x̃TRTRx+ ‖Rx̃‖22
≤ ∆− γ2 − 2aT (x− x̃)− 2x̃TRTRx+ 2‖Rx̃‖22
= ∆− γ2 − 2(a+RTRx̃)T (x− x̃).

By (4.9), the inequality∣∣∣(a+RTRx̃)T (x− x̃)
∣∣∣ =

∣∣∣(z̃ +Rx̃)TR(x− x̃) + (a−RT z̃)T (x− x̃)
∣∣∣

≤ ‖z̃ +Rx̃‖2 ‖R(x− x̃)‖2 + |a−RT z̃|T |x− x̃|
≤ ‖z̃ +Rx̃‖2ε+ |a−RT z̃|T ε

βd ≤ εγ,

holds. We therefore conclude

(ε− γ)2 ≤ ∆− 2εγ + 2
∣∣∣(a+RTRx̃)T (x− x̃)

∣∣∣ ≤ ∆.

If ∆ < 0, we get a contradiction, proving (i). And if ∆ ≥ 0, we find ε ≤ γ +
√

∆ = δ,

and (ii) follows from (4.13).
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For the choice (4.8) and assuming that the computations are exact, we get the optimal

bounds

x̃− δ

β
d ≤ x ≤ x̃+

δ

β
d,

by using Theorem 4.4. This is shown by the following corollary.

Corollary 4.5. If we chose

C = R−1,

β = 1,

di =
√

(RTR−T )ii,

γ = ‖z̃ +Rx̃‖2 + β−1dT |a−RT z̃|,
∆ = γ2 + α− 2aT x̃− ‖Rx̃‖22,
z̃ = R−Ta,

x̃ = −R−1R−Ta,

then the bound on x− x̃ in Theorem 4.4 are optimal.

Proof. By the choice of C, β, d, γ and ∆ we have

γ = ‖z̃ +Rx̃‖2 + β−1dT |a−RT z̃| = 0, (4.14)

and

∆ = α− 2aT x̃− ‖Rx̃‖22
= α+ 2aTR−1R−Ta− ‖ −RR−1R−Ta‖22 = α+ ‖R−Ta‖22.

(4.15)

By the choice of z̃ and x̃ we have

‖R(x− x̃)‖22 = ‖Rx‖22 + ‖Rx̃‖22 + xTRTRx̃+ x̃TRTRx

= ‖Rx‖22 + ‖R−Ta‖22 + 2aTx,

Therefore, ‖R(x− x̃)‖22 ≤ δ2 = ∆ implies ‖Rx‖22 + ‖R−Ta‖22 + 2aTx ≤ α+ ‖R−Ta‖22 by

(4.15), hence ‖Rx‖22 + 2aTx ≤ α. This gives the forward direction of

‖R(x− x̃)‖2 ≤ δ ⇔ ‖Rx‖22 + 2aTx ≤ α

and the reverse direction follows from (4.12). By the choice of di and β, we can apply

the second part of Corollary 4.3, proving that the bound on x− x̃ is optimal.

The reason for the strange formulation of Proposition 4.14 (using minimal and maximal

instead of giving the best choices) is that in practice, one cannot make the required



Chapter 4. Rigorous enclosures of ellipsoids and directed Cholesky factorizations 67

choices exact, since rounding errors affect the results of the defining formulas. However,

using approximations for x̃ and z̃ computed by ordinary floating point arithmetic, tight

bounds which take account of the rounding errors are easy to get with directed, upward

rounding. In this way we get nearly optimal enclosure. In 2 dimensions, the results are

visually indistinguishable from the optimal enclosures. In exact arithmetics however, by

Theorem 4.4 and Corollary 4.5 we can summarize:

Theorem 4.6. Let ‖Rx‖22 + 2aTx ≤ α be an ellipsoid. Suppose that R is invertible,

then

x = [x̃− δd, x̃+ δd]

with di =
√

(R−1R−T )ii, x̃ = −R−1R−Ta and δ =
√
α+ ‖R−Ta‖22 defines an interval

hull for the given ellipsoid. ut

Example 4.2. For the ellipsoid

‖Rx‖22 + 2aTx ≤ α with R =

(
2 −1

0 1

)
, 2aT = (2 3), α = 10,

which is shown Figure 4.2, we apply Theorem 4.6 and obtain the outward rounded (to

three significant digits) interval hull

x =

(
[− 3.92, 1.42]

[− 5.78, 1.78]

)
.

Matlab code for testing Example 4.2.

R=[2 -1;0 1], a=[2;3]./2, alpha=10, C=inv(R),

d=sqrt(diag(C*C’)), delta=sqrt(alpha+norm(C’*a)^2,

xhat=-C*C’*a, xl=xhat-delta*d, xu=xhat+delta*d

4.2 Enclosing strictly convex quadratic constraints

In this section we apply results of the previous section to enclose strictly convex quadratic

constraints in inexact arithmetic. To efficiently cope with the rounding errors we use

a method called the directed Cholesky factorization to transform a strictly convex

quadratic constraint into an Euclidean norm constraint (4.1). The directed Cholesky

factorization takes the rounding errors involved in the transformation into account and

is discussed in detail in Sections 4.5.
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Figure 4.2: Optimal box enclosure of the ellipsoid defined in Example 4.2

Let A be a symmetric, positive definite matrix. The strictly convex quadratic constraint

xTAx+ 2aTx ≤ α (4.16)

describes an ellipsoid. We derive a nearly optimal enclosure x for this ellipsoid such that

each x satisfying (4.16) is contained in the box x (hence the method is rigorous).

We compute a permutation matrix P and an upper triangular matrix R such that the

residual matrix Ê := PAP T−R̂T R̂ is positive semidefinite and is very small with respect

to PAP T (details in Section 4.5). If the factorization fails, the positive definiteness of

A cannot be verified and the enclosure cannot be computed. (This case only happens

when A is an indefinite or a nearly indefinite matrix.) If the factorization is successful

the constraint is strictly convex and we have

A = P T R̂T R̂P + P T ÊP, (4.17)

where the residual matrix Ê (and also P T ÊP ) is positive semidefinite and very small

with respect to A. Substituting in (4.16) we have

xT (P T R̂T R̂P + P T ÊP )x+ 2aTx = ‖R̂Px‖22 + xTP T ÊPx+ 2aTx ≤ α,
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and if we define R := R̂P , we end up in

‖Rx‖22 + 2aTx ≤ α− xTP T ÊPx ≤ α. (4.18)

This proves that the ellipsoid defined by (4.16) is fully contained in the ellipsoid given

by the norm constraint

‖Rx‖22 + 2aTx ≤ α. (4.19)

Note that (4.18) is only then a valid inequality if the residual matrix E is positive

semidefinite. Since Ê is very small with respect to PAP T , the relative approximation

error

δ(x) :=
xT Êx

‖Rx‖22
,

is also small, for all x ∈ x.

We apply the main result of Section 4.1, Theorem 4.4 and Corollary 4.5, to (4.19),

choosing z̃ ≈ R−Ta and x̃ ≈ −R−1z̃ by ordinary floating point calculations, and the

remaining variables optimally, by computing the corresponding expressions with directed

rounding or interval arithmetic. The details are given in the following algorithm.

Algorithm 4.1 (Ellipsoid Hull).

Compute a box enclosure of strictly convex quadratic constraint xTAx+ 2aTx ≤ α:

1. Find a directed Cholesky factorization of the matrix A:

(a) if the factorization fails, the positive definiteness of A cannot be verified and

the enclosure cannot be computed,

(b) otherwise a directed Cholesky factor R is obtained.

2. Compute the approximative inverse C of the matrix R.

3. Compute d with di = inf(
√

(CCT )ii) by using directed rounding.

4. Use upward rounding to compute h = 〈CR〉d and obtain β = max{hi/di|i = 1 . . . n}
which must be approximately one.

5. Set z̃ = CTa and x̃ = −Cz̃ and compute an enclosure [γ, γ] of the expression

‖z̃ +Rx̃‖2 + β−1dT |a−RT z̃|

and an enclosure [∆,∆] of the expression

γ2 + α− 2aT x̃− ‖Rx̃‖22,

by using interval arithmetic.
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6. Finally, use outward rounding to compute the interval

[δ, δ] := [γ +
√

∆, γ +
√

∆].

7. The result is an approximate but rigorous enclosing ellipsoid for (4.16), given by

the norm constraint ‖R(x− x̃)‖2 ≤ δ, as well as the rigorous box enclosure

x ∈
[
(δ/β)d− x̃, (δ/β)d+ x̃

]
.

The algorithm applies with trivial modifications for the case if A and a is uncertain (their

components vary in intervals). This form is implemented in GloptLab (see Chapter

2).

4.3 Scaling

The ellipsoid hull approximation which was presented in the previous section may have

difficulties when used on badly scaled systems. Scaling the constraints before applying

the Cholesky factorization increases the range of matrices which can be successfully

factorized1.

To demonstrate this behavior we discuss a four dimensional problem, first presented in

Domes & Neumaier [29], consisting of the single constraint

4x2
1 + 4Nx1x2 + 12x1x3 − 28x1x4 + (1 +N2)x2

2 + (6N − 2)x2x3

−(10N + 14)x2x4 + 11x2
3 − 32x3x4 + 75x2

4 + 2x2 + 2Nx3 + 26 ≤ 0.
(4.20)

Writing (4.20) in the form xTAx+2ax ≤ −26 with x = (x1, x2, x3, x4)T , 2a = (0, 2, 2N, 0)

and

A = BTB, where B :=

(
R S

0 I

)
, R =

(
2 N

0 1

)
and S =

(
3 −7

−1 −5

)
,

we see that the symmetric matrix A is manifestly positive definite. Thus (4.20) describes

an ellipsoid. If N is chosen large enough, A is very ill-conditioned.

For example if we choose N = 5 · 106 then the 2-norm condition number of A is approx-

imately 5 · 1021, therefore A is nearly singular; the lowest eigenvalue is approximately

5 · 10−15. It is no surprise that for this matrix both the directed Cholesky factorization
1It is interesting that Rump [83] also mentions the importance of scaling of the matrix A in his

algorithm for checking definiteness. He uses a minimum degree ordering and a scaling technique based
on the results on van der Sluis method given in Higham [44, Chapter 7])
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using the Gerschgorin test and the directed Cholesky factorization with pivoting fails

(the reasons for this and both methods are explained in Section 4.5).

If we use the scaling algorithm ScaleLP from Domes & Neumaier [29] on the problem,

we obtain

D = Diag(106 1 106 105)

as scaling matrix for the variables. Here, scaling makes an essential difference since the

scaled problem

xTDADx+ bDx ≤ −26

has a 106 times lower condition number (approximately 6 · 1015) which — however it is

still high — it is small enough for the directed Cholesky factorization with pivoting to

be successful. Therefore we obtain the factorization

PAP T = RTR+ E

with

P =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 , R =


5.0 · 106 3.0 · 106 −7.0 · 105 2.0 · 106

0 1.4 · 106 3.5 · 105 2.8 · 10−1

0 0 3.7 · 105 2.7 · 10−1

0 0 0 1.1 · 10−2

 ,

and with the positive semidefinite residual matrix

E :=


3.5210−2 0 0 0

0 2.58 · 104 2.44 · 10−4 9.77 · 10−4

0 2.44 · 10−4 2.42 · 103 2.44 · 10−4

0 9.77 · 10−4 2.44 · 10−4 146 · 10−3

 .

Finally, computing the interval hull by the method from Section 4.2 we find the bounds

x ∈ ([− 146, 1442], [− 5 · 108, 5 · 107], [− 3 · 10−5, 10−12], [− 10−2, 10−3])T

for the constraint (4.20).

As one can notice the second and the third diagonal entry of E is very large. This seem

to be a contradiction since E is supposed to be very small. However the component wise

relative error

δ := max
i,j

∣∣∣Eij
Aij

∣∣∣ = 1.0317 · 10−9,
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indicates that E is a very small perturbation of A. Thus E is indeed very small with

respect to A in the sense as defined in (1) in notation part of the first section.

4.4 Preprocessing constrained optimization problems

Optimization is a constantly developing, complex and important field of the numerical

mathematics. The goal of solving an optimization problem is to find a local or a global

minimum of the objective function f(x), subject to the general constraints G(x) ∈ w

(including equality and inequality constraints) and to the bound constraints x ∈ x:

minimize f(x)

s.t. G(x) ∈ w

x ∈ x.

(4.21)

If we search for a global minimum of the problem, it is called a global optimization

problem.

If an x̂ ∈ x satisfies G(x̂) ∈ w, x̂ is called a feasible point. If there is no objective

function given or it is constant, the goal is to find a good enclosure of the set of all

feasible points. In this case the problem is called a constraint satisfaction problem. Also

in the case of a global search the first step is often to solve the constraint satisfaction

problem in order to bound and reduce the search space as much as possible. In this

chapter we show how the ellipsoid hull enclosure technique presented in the previous

sections can be used for this purpose.

Several state of the art global optimization solvers (e.g., [88] or [86]) combine a number

of methods and strategies to find one or more global solution of (4.21). Most of the

techniques (e.g branch and bound, heuristics) require that the bound constraints x ∈ x

are finite. If a problem lacks the desired bounds, the usual remedy is to set default upper

and lower bounds on the variables, thus changing the problem. If the global minimum

lies outside the default bounds, the solver cannot find the solution.

The main advantage of the enclosure techniques from Section 4.1 and Section 4.2 that

it gives us the possibility to obtain rigorous bounds on some variables which are conse-

quences of the constraints without the need of having explicit bounds on the variables.

Since the enclosures are rigorous, the method is also applicable in verified global opti-

mization (e.g, Chapter 2, [54], [59]) and in computer assisted proofs (see e.g., [74]).
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If we already have found a good and feasible point x̂ ∈ x we can apply Algorithm 4.1 to

the constraint satisfaction problem

minimize 1

s.t. f(x) ≤ f(x̂)

G(x) ∈ w

x ∈ x,

(4.22)

and may obtain new bounds on the variables as well as on the objective function f(x).

This makes our method a valuable tool not only for preprocessing and solving constraint

satisfaction problems but also for global optimization.

To enhance the results of Section 4.1 and Section 4.2 we discuss the application to

optimization problems given in the form of (4.21). The m general constraints are inter-

preted as component-wise enclosures Gi(x) ∈ wi (i = 1 . . .m). This includes equality

constraints if wi = [wi, wi] is a degenerate interval with wi = wi, inequality constraints

if one bound of wi is infinite, and two sided inequalities wi ≤ Gi(x) ≤ wi if both bounds

are finite. If we have bounds on the objective function, it should be threated like an

ordinary general constraint. Similarly, the n bound constraints are interpreted as en-

closures xj ∈ xj with j = 1 . . . n. Again, fixed variables and one-sided bounds on the

variables are included as special cases.

We may apply Algorithm 4.1 for each quadratic constraint Gi(x) ∈ wi separately.

Thereby only the finite bounds of wj are taken into account resulting in one or two

inequality constraints in the form of

xTAx+ 2aTx ≤ α (4.23)

with coefficients obtained by the Taylor expansion of Gj(x) around x = 0,

Ajk =
1
2
∂2Gi
∂xj∂xk

(0), 2aj =
∂Gi
∂xj

(0), α = wj −Gj(0) if wj is finite

Ajk = −1
2
∂2Gi
∂xj∂xk

(0), 2aj = −∂Gi
∂xj

(0), α = −wj −Gj(0) if wj is finite

The size of the problem can of course be restricted to those variables on which Gj(x)

actually depends.

If the constraint (4.23) is strictly convex we obtain new bounding box u on the variables.

If we cut the original bound constraints x ∈ x with u we obtain the new bound constrains

x ∈ x̂ with x̂i := ui ∩ xi = [max(xi, ui),min(xi, ui)]. (4.24)
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Because u is bounded, the box x̂ is also bounded. If we process all quadratic Gj(x) ∈
wj , we obtain an interval enclosure of the intersection of all strictly convex quadratic

constraint.

The method can be greatly enhanced by removing the linear variables. This is crucial

in the presence of slack variables which are only linear in the constraints. If the linear

variables are not removed the matrix A has a zero row and column, hence it is singu-

lar, therefore the directed Cholesky factorization will fail and we cannot compute new

bounds. To remove the linear terms from the constraint

xTAx+ 2aTx ≤ β

we write

xTI ÂxI + 2aTxI + cTxJ ≤ β (4.25)

with J being the index set of the variables which are only linear and I being the index

set of the variables which have nonlinear terms in the constraint. The dimension of Â

and a is reduced to n′ := |I|, and the dimension of c is n′′ := |J |. We modify (4.25) by

bounding and removing the linear variables and obtain

xTI ÂxI + 2aTxI ≤ β +
∑
j∈J

(−cjxj). (4.26)

Here bracketing the right hand side of the above expression yields a correct bound when

evaluating it using floating-point arithmetic with upward rounding. We can now write

the new inequality (4.26) in the form of (4.23), with

x := xI , A := Â, α := β +
∑
j∈J

(−cjxj)

and factorizing A using a directed Cholesky factorization method. From this point on,

all steps are the same as above, except from the fact that we compute new bounds only

on the remaining n′ variables. This should be accounted for when cutting the resulting

|x| ≤ u with the original box. Thus we compute x̂i as in (4.24) only for i ∈ I and set the

remaining x̂j := xj for all j ∈ J . Proceeding in this way allows us to handle a bigger

class of problems, by avoiding unnecessary singularity of the matrix A.

In practice, many problems have nonquadratic constraints. These relaxations can be

handled as above if convex quadratic relaxations of such constraints can be computed

(see Skutella [93] and Rendl [77] for possible techniques). This further extends the

scope of our methods.
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4.5 Directed Cholesky factorization

Let A be a symmetric matrix. A directed Cholesky factorization of the matrix A is an

approximate factorization A ≈ RTR with nonsingular upper triangular R such that the

error matrix A − RTR of the factorization is positive semidefinite. The matrix R is

called a directed Cholesky factor of A.

Proposition 4.7. A directed Cholesky factorization exists iff A is positive definite.

Proof. If R is a directed Cholesky factor of A then E := A−RTR is positive semidefinite,

therefore A = E+RTR is positive definite. Conversely, if A is positive definite, we may

take for R the Cholesky factor of A then A−RTR = 0 is positive semidefinite; hence R

is a directed Cholesky factor of A.

In finite precision arithmetic, however, R is usually not representable exactly, and simply

rounding it is often not sufficient to make A−RTR positive semidefinite. Thus finding a

directed Cholesky factorization needs additional considerations. To represent the general

setting we factor a symmetric interval matrix A := [A,A] ∈ IRn×n. This form also

represents the case if a matrix is not exactly known, as it is the result of inaccurate

measurements or computations. We present the following methods to compute a directed

Cholesky factorization such that the residual matrix A−RTR is very small with respect

to the matrix A.

4.5.1 Directed Cholesky factorization using the Gerschgorin test

Our first method for computing a directed Cholesky factorization for an interval matrix

A is based on the Gerschgorin test2. If Aii ≤ 0 for any i ∈ {1, . . . , n} then not all

symmetric A ∈ A are positive definite and a factorization with a nonsingular R is not

possible. If the lower bounds of the diagonal entries of A are positive, we choose a matrix

Ã ∈ A and slightly perturb its diagonal entries by using a suitable chosen a priori error

estimation constant σ. Then we apply the approximate Cholesky factorization RTR ≈ Ã
to the perturbed matrix. If the error estimation constant σ was chosen correctly, even

positive but nearly indefinite matrices (where the approximate Cholesky factorization

would fail for the unperturbed matrix) can be factorized. If the Cholesky factorization

succeeds the error matrix E := A − RTR is computed by using interval arithmetic.

Finally we test E for positive definiteness with the Gerschgorin test. Again the right

choice of σ is crucial, since if it was chosen unnecessary large the increased width of the
2the Gerschgorin test is described in the notation of the first section of this chapter.
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interval error matrix has a negative effect on the outcome of the Gerschgorin test. If the

Gerschgorin test is positive then R is a directed Cholesky factor of the matrix A.

The following algorithm summarizes the above consideration:

Algorithm 4.2 (DirCholG).

Compute a directed Cholesky factorization of a symmetric interval matrix, using the

Gerschgorin test:

1. Let A = [A,A] be a symmetric n–dimensional interval matrix.

2. If Aii ≤ 0 for some i ∈ {1, . . . , n} the factorization is not possible. Stop.

3. We define the matrix

Ãij =

{
Aij if Aij ≥ −Aij and i 6= j

Aij otherwise .
(4.27)

4. Perturb the diagonal entries of the matrix Ã:

(a) Generate a diagonal perturbation matrix D (Dij = 0 for i 6= j) which depends

on the diagonal entries of Ã and the width of the interval matrix A:

Dii := Ãii −
∑n

j=1(A−A)uj
ui

, where ui = 1/Ãii for all 1 ≤ i ≤ n.

(b) Choose an approximate a priori error estimation constant σ such that the

Cholesky factorization of A′ := Ã− σD is positive definite enough even in a

nearly indefinite case (suitable selections for σ are discussed later).

5. Compute A′ ≈ RTR approximately, and E := A − RTR by using interval arith-

metic.

6. If Eii ≥ 0 for all i and E is an H-matrix then E is positive definite (Gerschgorin

test), the factorization is successful and the directed Cholesky factor R is returned.

Proposition 4.8. If Algorithm 4.2 is successful we obtain a directed Cholesky factor R

such that for all symmetric A ∈ A, A−RTR is positive definite.

Proof. Let be R the matrix returned by the algorithm. Since we use interval arithmetic

in Step 5 of Algorithm 4.2 the bound E on A − RTR is rigorous. Since by Step 6 of

Algorithm 4.2, E is a H-matrix, the Gerschgorin test implies the assertion.
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Comments on Algorithm 4.2:

(ad 3.) The algorithm would be also correct if Ã in (4.27) is replaced by an arbitrary

Ã ∈ A with Ãii = Aii.

(ad 4.) The perturbation applied to the diagonal entries of Ã is needed for nearly

indefinite matrices. By using this approach we may obtain the approximate Cholesky

factor of the perturbed matrix, even if we would fail for the unperturbed one.

(ad 6.) The test whether or not the matrix E is an H-matrix can be done by choosing

a suitable u > 0 and test whether or not 〈E〉u > 0 holds. Different choices of u are

• u = (1, . . . , 1)T the simplest, proving diagonal dominance, but not scaling invari-

ant,

• u ≈ 1/diag(E), is a generally good and cheap choice,

• u ≈ 〈E〉−1 (1, . . . , 1)T , is the best choice (see Neumaier [70]), but requires O(n3)

operation for solving the linear system.

The selection of an approximate a priori error estimation constant σ is critical for nearly

indefinite matrices. If we choose σ too small, the approximate Cholesky factorization

will possibly fail; if we choose it to large, the error matrix E will be too large and it will

not pass the H-matrix test.

The following theorem which can be found in Higham [44, pp. 203–224] gives infor-

mation about the feasibility of a numerical Cholesky factorization when all arithmetic

operations are executed with a relative error of at most ε (when no overflow or underflow

occurs).

Theorem 4.9 (Demmel). Let A ∈ Rn×n be a symmetric matrix with positive diagonal

elements, and a diagonal matrix D with Dii = A
−1/2
ii . If

λmin(DAD) > σ :=
n(n+ 1)ε

1− 2(n+ 1)ε
(4.28)

then the Cholesky factorization applied to A succeeds and produces a nonsingular R. If

λmin(A) ≤ −σ then the computation is certain to fail.

Theorem 4.9 seems to give a good choice for σ, but in reality it is significantly larger than

it would be needed to successfully factor nearly indefinite matrices by the approximate

Cholesky factorization. This makes it harder to pass Gerschgorin test. By our heuristic

experiments we found a more suitable choice for σ; we try σ = ε(0.015nnz(A) + 0.5n)
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in the first run, then in the case of failure σ = ε(0.015nnz(A) + n) in the second one.

The results of this strategy are satisfactory.

4.5.2 Directed Cholesky factorization with pivoting

For a symmetric, positive definite interval matrix A, the directed Cholesky factorization

with diagonal pivoting computes a permutation matrix P and an upper triangular matrix

R such that for every A ∈ A, the residual matrix E := PAP T − RTR is positive

semidefinite and is very small with respect to A. We first state the algorithm, then

discuss the conditions under which the residual matrix is positive semidefinite and is

very small.

The following algorithm either computes a directed Cholesky factor R and a permutation

matrix P such that the residual matrix E is positive semidefinite and is very small

with respect to A, or it terminates with an error message and returns an incomplete

factorization:

Algorithm 4.3 (DirCholP).

Directed Cholesky factorization of symmetric interval matrix, using directed rounding

and diagonal pivoting.

1. Let A = [A,A] be an n–dimensional symmetric interval matrix. Set A1 = A,

R = 0n, P = In, and the rounding mode to upward rounding.

2. For k = 1, . . . , n do the following steps:

(a) Find the pivot element α = max(diag(Ak)) on the diagonal of the matrix

Ak ∈ Rn−k+1. Let j denote the index of the pivot element; interchange row j

with the first row and column j with the first column, in the interval matrix

Ak. Ak remains symmetric. Exchange the same rows and columns in the

matrix P .

(b) Partition the permuted interval matrix Ak as:

Ak =

(
αk aT

ak Bk

)
.

(c) If αk ≤ 0 terminate Step 2. and return an error message.

(d) Choose γk < 1 and ρk = γk
√
αk and rk = (ak + ak)/(2ρk).

(e) Set Rkk = ρk and Rk,k:n = rTk .

(f) Compute δk := αk + ρk(−ρk) and dk := max(ak + ρk(−rk), ρkrk − ak).
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(g) If the residual pivot δk ≤ 0 terminate Step 2. and return an error message.

(h) Set Ak+1 := [Bk − rkrTk − dkdTk /δk, Bk + (−rk)rTk + dkd
T
k /δk].

3. If Step 2. is finished without an error message we obtain the upper triangular

matrix R and the permutation matrix P , if an error message was produced the

incomplete factorization is returned.

Theorem 4.10. Suppose that Algorithm 4.3 used for the symmetric interval matrix A

terminates without an error message and returns the matrix R. Then PAP T −RTR is

positive semidefinite for all symmetric A ∈ A.

To prove the proposition we need some preparations:

Proposition 4.11. Let

A :=

(
α aT

a B

)
∈ A :=

(
α aT

a B

)
∈ IRn×n, (4.29)

then:

(i) For arbitrary ρ ∈ R, |ρ| < √α, r ∈ Rn−1 and

ε := α− ρ2 > 0, e := a− ρr, A0 := B − rrT − eeT

ε
, (4.30)

we have

A =

(
ρ

r

)(
ρ

r

)T
+

(
ε eT

e eeT /ε

)
+

(
0 0

0 A0

)
. (4.31)

(ii) The bounds ε ≥ δ and |e| ≤ d and A0 ∈ A0 are satisfied if

0 < δ ≤ α+ ρ(−ρ),

d ≥ max(a+ ρ(−r), ρr − a),

A0 ⊇ [B − rrT − ddT /δ, B + (−r)rT + ddT /δ].

(4.32)

Proof. (i) Since |ρ| < √α we have ε = α− ρ2 > α− α ≥ 0 for all α ∈ α, so that ε > 0.

Thus (4.31) is well defined. Substituting (4.30) into (4.31) gives

A =

(
ρ2 + ε ρrT + eT

ρr + e rrT + eeT /ε+A0

)
=

(
α aT

a B

)
.

(ii) By (4.30) we have

ε = α− ρ2 ≥ α+ ρ(−ρ) ≥ δ > 0, (4.33)
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e = a− ρr ≤ a+ ρ(−r), − e = −a+ ρr ≤ ρr − a,
|e| ≤ max(a+ ρ(−r), ρr − a) ≤ d,

(4.34)

and

A0 = B − rrT + eeT /ε.

Since |eeT /ε| ≤ ddT /δ by (4.33) and (4.34) we find that

A0 ≥ B − rrT − ddT /δ ≥ A0, A0 ≤ B + (−r)rT + ddT /δ ≤ A0,

resulting in A0 ∈ A0.

Evaluating the right hand side of (4.32) in finite precision arithmetic, with directed

rounding and priorities given by the parentheses, results in the correct bounds A, A, δ

and d which satisfy (4.32).

We now use the Proposition 4.11 to prove the following proposition, which is then used

in the induction proof of Theorem 4.10.

Proposition 4.12. Suppose that for some real constants δ, ε and ρ, for some (n− 1)-

dimensional vectors d, r and e, for

A :=

(
α aT

a B

)
∈ IRn×n, (4.35)

and for some symmetric interval matrix A0 ∈ IR(n−1)×(n−1) the inequalities

|ρ| < √α,
0 < δ ≤ α+ ρ(−ρ),

d ≥ max(a+ ρ(−r), ρr − a),

A0 ⊇ [B − rrT − ddT /δ, B + (−r)rT + ddT /δ],

(4.36)

are satisfied. If for all symmetric matrices A0 ∈ A0 an R0 ∈ R(n−1)×(n−1) exists such

that A0 − RT0R0 is positive semidefinite, then for every symmetric matrix A ∈ A an

R ∈ Rn×n exists such that A−RTR is positive semidefinite.

Proof. By assumption, the Cholesky factorization

LLT = A0 −RT0R0 (4.37)

exists, with a lower triangular matrix L ∈ Rn×n.
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Since by (4.35) every symmetric A ∈ A can be written as (4.29), (4.30) holds by Propo-

sition 4.11 for arbitrary ρ ∈ R, |ρ| < √α, r ∈ Rn−1 and

ε := α− ρ2, e := a− ρr, A0 := B − rrT − eeT

ε
.

By (4.36) the bounds ε ≥ δ > 0 and A0 ∈ A0 are satisfied.

If we substitute (4.37) into (4.30), we get

A =

(
ρ2 + ε ρrT + eT

ρr + e rrT + eeT /ε+RT0R0 + LLT

)
=

=

(
ρ2 ρrT

ρr rrT +RT0R0

)
+

(
ε eT

e eeT /ε+ LLT

)
=

=

(
ρ 0

r R0

)(
ρ rT

0 R0

)
+

(
ε 0

e L

)(
1/ε 0

0 I

)(
ε eT

0 L

)
=

= RTR+ STDS,

with

R =

(
ρ rT

0 R0

)
, S =

(
ε eT

0 LT

)
, D =

(
1/ε 0

0 I

)
.

Since ε ≥ δ > 0 the matrix D is positive semidefinite and

xT (A−RTR)x = xT (STDS)x = (Sx)TDSx = (Sx)TDSx ≥ 0.

holds, proving the assertion.

We are now prepared to prove that for all symmetric A ∈ A the residual matrix of the

directed Cholesky factorization computed by Algorithm 4.3 is positive semidefinite:

Proof of Theorem 4.10: First we show by induction that the interval matrices Ak,

k = 1, . . . , n constructed by Algorithm 4.3 are symmetric. Without loss of generality

we may assume that Ak is already permuted, such that no further pivoting is required

(P = In).

A1 = A is symmetric by definition. Assuming that the interval matrix Ak is symmetric,

Bk is also symmetric as an (n − k) × (n − k) submatrix of Ak . For arbitrary vectors

r and d, the matrices rrT and ddT are symmetric by construction. Therefore by (h)

of Algorithm 4.3, the interval matrix Ak+1 ∈ IR(n−k)×(n−k) is symmetric. From this

follows that each Ak can be factorized as in (4.35).
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First we assume that every computation is exact and prove by induction on m := n−k+1

that Ak −RTkRk is positive semidefinite for each symmetric Ak ∈ Ak.

For m = 1, k = n, RTnRn = ρ2
n = γ2

nαn and An = αn ∈ αn and since αn ≥ αn > 0 and

0 < γn < 1,

An −RTnRn = αn − γ2
nαn = αn(1− γ2

n) > 0

is positive semidefinite for all An ∈ An.

We now assume for all symmetric matrices Ak+1 ∈ Ak+1 an Rk+1 ∈ Rn−k×n−k exists

such that Ak+1−RTk+1Rk+1 is positive semidefinite. Since (d), (f) and (h) of Algorithm

4.3 imply (4.36) with δ = δk, ε = εk, ρ = ρk, r = rk, e = ek, A = Ak and A0 = Ak+1,

we can find for every symmetric matrix Ak ∈ Ak an Rk ∈ Rn−k+1×n−k+1 such that

Ak −RTkRk is positive semidefinite.

By induction, this holds for m = n, k = 1 when A = A1 and R = R1 proving that

PAP T −RTR is positive semidefinite for A ∈ A.

In finite precision arithmetic, the results satisfy the required inequalities in Proposition

4.12 for dk δk and Ak+1 if the right hand sides of the inequalities in (4.36) are computed

with directed rounding.

By successfully factoring a symmetric positive semidefinite interval matrix A by Algo-

rithm 4.3 we obtain a matrix R such that for all symmetric A ∈ A the residual matrix

S := PAP T −RTR is positive semidefinite. In addition to this we also expect (and our

numerical experiments show that it is typically true) that S is very small with respect

to A (for a suitable tolerance, e.g. κ = 10−6). The choices of ρk, rk and γk in Algorithm

4.3 were made to satisfy this criteria:

• To make S positive semidefinite, we had to ensure that ε > 0. Therefore we needed

δk > 0 which is the case when, |ρk| <
√
αk. If we additionally want δk to be very

small and assume that αk > 0 (which is true if A is positive definite), we can set

ρk = γk
√
αk with γk < 1. If in addition to this we choose γk ≈ 1, the condition

that δk ≈ 0 is also satisfied.

• The entries of dk = ak − ρkrk can be made to vanish by setting rk := ak/ρk. Even

when rk and ρk are computed inaccurately we can set rk = (ak + ak)/(2ρk) using

the midpoint of the interval ak to get a very small dk.

• To make dTk dk/εk very small, we also have to guarantee that dTk dk � δk. In

case of rounding errors dTk dk = (ak − (ρkak)/ρk)T (ak − (ρkak)/ρk) = O(ε) with ε

representing the machine precision, so 1� δk = αk−γ2
kαk � ε should be satisfied.
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Since ak ∈ ak the width of ak should be accounted for, too, heuristic choice for

the regularization term γk is

γk = 1−min((
√
n+ 1)ζk, 0.01),

ζk = ε+ max(mid(ak)/w),

wi =
√
αk(Ak)ii,

where n is the dimension of A. This choice will usually produce good results.

Using these choices in Algorithm 4.3 makes the residual matrix not only positive semidef-

inite but also very small with respect to A for all A ∈ A.

While the Cholesky factorization is numerically stable without pivoting, it is of advan-

tage to use a permuted version. To enhance the robustness of the factorization we use

diagonal pivoting. Thus in each step we permute two rows and the corresponding two

columns of the matrix Ak in order to have the maximum of all diagonal entries as the

pivot element α, while retaining the symmetric structure of the matrix. In our imple-

mentation, the diagonal pivoting can be turned off in order to reduce the time needed for

the factorization in case of very big matrices. Testing has shown that when we turn off

the pivoting, the factorization will fail more often, and the reduction of the computation

time is not really significant unless the dimension is huge.

4.6 Testing the directed Cholesky factorization

We tested the new methods on random real interval matrices of different dimension

(column dim in the tables below), width (column width in the tables below) and density

(column density in the tables below). These matrices are constructed to be positive

definite but nearly singular, with a very small inverse condition number (column icond

in the tables below). For the inverse condition number we take the median of the

quotients of the absolute value of the smallest eigenvalues and the absolute value of the

largest ones of all k test matrices, where the eigenvalues are approximately computed

by Matlab, formally:

icond := med
i

( |λmin(Ai)|
|λmax(Ai)|

)
, i ∈ {1, . . . , k}.

The following algorithm shows how the test matrices are created:

Algorithm 4.4 (Nearly singular positive definite interval matrix generator).

Given is the dimension n, a tiny singularity factor η (e.g. η = 10−12) and the required

relative width δ ≥ 0 of the interval matrix A to be created.



Chapter 4. Rigorous enclosures of ellipsoids and directed Cholesky factorizations 84

1. Generate a random matrix B ∈ Rn−1×n with Bij ∈ [−1, 1] for all i = 1, . . . , n− 1

and j = 1, . . . , n.

2. Generate an random vector u ∈ Rn with uj ∈ [−1, 1] for all j = 1, . . . , n.

3. Divide u by max(u) such that ‖u‖2 = 1 holds.

4. Compute C = BTB ∈ Rn×n and d = max(Cii).

5. If d = 0 start again with step 1.

6. Else set A = C/d + ηuuT and A = A + δ|A| and return the interval matrix

A := [A,A] ∈ IRn×n.

The tests show that both methods can be used to verify the positive definiteness and

to decompose ill-conditioned matrices into their directed Cholesky factors. We first

show that the approximative method factors all the matrices and the directed methods

factor nearly all of them. Comparison of the approximate Cholesky factorization of

Matlab (row Chol in the tables below), the directed Cholesky factorization based

on the Gerschgorin test (computed by Algorithm 4.2, row DirCholG in the tables

below) and the directed Cholesky factorization based with diagonal pivoting (computed

by Algorithm 4.3, row DirCholP in the tables below) on 500, 20–dimensional real

matrices with a small inverse condition number:

method dim density width sfact iters icond solved

Chol 20 100% 0 1e-012 500 1.3e-016 100%

DirCholH 20 100% 0 1e-012 500 1.4e-016 94%

DirCholP 20 100% 0 1e-012 500 1.5e-016 88%

The next few tests of the directed Cholesky factorization based on the Gerschgorin test

show increasing the dimension or the width makes the factorization more difficult, while

more sparsity makes it easier. Test of the directed Cholesky factorization based using

the Gerschgorin test on 500 real matrices of different dimensions (50,100,200) with a

small inverse condition number:

method dim density width sfact iters icond solved

DirCholH 10 100% 0 1e-012 500 1.7e-016 95%

DirCholH 40 100% 0 1e-012 500 1.3e-016 90%

DirCholH 100 100% 0 1e-012 500 1e-016 74%
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Test of the directed Cholesky factorization using the Gerschgorin test on 500 real interval

matrices of different dimensions (50,100,200), different average density and with a small

inverse condition number:

method dim density width sfact iters icond solved

DirCholH 10 46% 0 1e-012 500 1.3e-016 100%

DirCholH 40 39% 0 1e-012 500 5.6e-017 100%

DirCholH 100 38% 0 1e-012 500 3.7e-017 70%

Test of the directed Cholesky factorization using the Gerschgorin test on 500 real interval

matrices of width 1e − 014 of different dimensions (50,100,200) with a small inverse

condition number:

method dim density width sfact iters icond solved

DirCholH 10 100% 1e-014 1e-012 500 1.7e-016 82%

DirCholH 40 100% 1e-014 1e-012 500 1.3e-016 67%

DirCholH 100 100% 1e-014 1e-012 500 9.1e-017 55%

The last five tests Cholesky factorization with diagonal pivoting show similar results with

respect to the increasing dimension and more sparsity. We can also see that the results

of this factorization method are not as good as the results of the directed Cholesky

factorization using the Gerschgorin test. Since the most applications are not as ill-

conditioned as the problems in our test set and this method also returns an incomplete

factorization it is still interesting. The fourth test is done in order to show the correlation

between the dimension and the singularity factor, while the last one shows the effect

if the pivoting is turned off. Test of the directed Cholesky factorization with diagonal

pivoting on 500 real matrices of different dimensions (50,100,200) with a small inverse

condition number:

method dim density width sfact iters icond solved

DirCholP 10 100% 0 1e-012 500 1.8e-016 93%

DirCholP 40 100% 0 1e-012 500 1.3e-016 78%

DirCholP 100 100% 0 1e-012 500 1.1e-016 65%

Test of the directed Cholesky factorization with diagonal pivoting on 500 real interval

matrices of different dimensions (50,100,200), different average density and with a small

inverse condition number:
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method dim density width sfact iters icond solved

DirCholP 10 46% 0 1e-012 500 1.3e-016 100%

DirCholP 40 40% 0 1e-012 500 5.5e-017 93%

DirCholP 100 36% 0 1e-012 500 3.9e-017 11%

Test of the directed Cholesky factorization with diagonal pivoting on 500 real inter-

val matrices of with 1e − 014 of different dimensions (50,100,200) with a small inverse

condition number:

method dim density width sfact iters icond solved

DirCholP 10 100% 1e-014 1e-012 500 1.7e-016 78%

DirCholP 40 100% 1e-014 1e-012 500 1e-016 65%

DirCholP 100 100% 1e-014 1e-012 500 1.1e-016 54%

Test of the correlation between the inverse condition number and the dimension for the

directed Cholesky factorization with diagonal pivoting on 500 real matrices:

method dim density width sfact iters icond solved

DirCholP 10 100% 0 1e-013 500 1.9e-017 79%

DirCholP 40 100% 0 1e-012 500 1.1e-016 76%

DirCholP 100 100% 0 3e-011 500 2.9e-015 92%

Test of the directed Cholesky factorization with diagonal pivoting on 500 real inter-

val matrices of with 1e − 014 of different dimensions (50,100,200) with a small inverse

condition number (pivoting turned off):

method dim density width sfact iters icond solved

DirCholP(0) 10 100% 0 1e-012 500 1.7e-016 92%

DirCholP(0) 40 100% 0 1e-012 500 1.1e-016 77%

DirCholP(0) 100 100% 0 1e-012 500 1.1e-016 65%

4.7 Verification of positive definiteness

Proposition 4.7 shows that the existence of a directed Cholesky factorization of a sym-

metric matrix A implies that A is positive definite, and that of a symmetric interval

matrix A implies that all symmetric matrices A ∈ A are positive definite. On the other
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hand, if the directed factorization fails, A either contains a singular or indefinite, or a

very ill-conditioned matrix. Many of the latter cases can still be verified when we apply

an appropriate scaling before verifying positive definiteness, see Section 4.3.

Such definiteness test are useful independent of the goal of this chapter, for several appli-

cations ranging from the solution of linear interval equations (see below) over semidefinite

programing problems Vandenbergh & Boyd [100] to the representation theory of Lie

groups (Adams [1]).

Any test for the positive definiteness of real symmetric matrices can easily be extended to

a test for complex Hermitian matrices, using the following result; no complex arithmetic

is required.

Theorem 4.13. A matrix H = A + iB with A,B ∈ Rn×n is Hermitian and positive

definite iff the real matrix

C :=

(
A −B
B A

)
(4.38)

is symmetric and positive definite.

Proof. The matrix C is symmetric iff AT = A and BT = −B, and this holds iff H is

Hermitian. H is positive definite iff

(x+ iy)∗(A+ iB)(x+ iy) > 0 whenever

(
x

y

)
6= 0. (4.39)

Now

(x + iy)∗(A+ iB)(x+ iy) = (x− iy)T (A+ iB)(x+ iy)

= xTAx+ yTAy + yTBx− xTBy + i(xTAy − yTAx+ xTBx+ yTBy)

= xTAx+ yTAy − 2xTBy =

(
x

y

)T
C

(
x

y

)

since
xTAy = (xTAy)T = yTATx = yTAx,

yTBx = (yTBx)T = xTBT y = −xTBy,
xTBx = (xTBx)T = xTBTx = −xTBx ⇒ xTBx = 0,

yTBy = (yTBy)T = yTBT y = −yTBy ⇒ yTBy = 0.

Thus (4.39) holds iff C is positive definite.

We also note that all the results from Section 4.5 could be developed for the complex

case.
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Rump [79–81, 83] gave criteria for the definiteness of interval matrices in the con-

text of solving linear interval equations. Here we discuss only his most recent work

[83]. His method is based on a single floating-point Cholesky factorization; all possible

computational and rounding errors, including underflow, are taken into account via a

floating-point error analysis. To find an error estimation of the Cholesky factorization,

Rump presents three different selection methods. These error estimations are worst case

bounds; so when they are used to perturb the diagonal entries of the matrix A and

the approximative Cholesky factorization is successful, the positive definiteness of A is

guaranteed. Uncertainties in the matrix are accounted for only coarsely by bounding

them in the Frobenius norm. Rump & Ogita [84] reduce the computational overhead

in Rump’s method, but only for exactly given floating-point matrices A.

In contrast, in our directed Cholesky factorization using the Gerschgorin test, the per-

turbation terms are based on heuristics that account for the typical case rather than a

worst case floating-point analysis. To justify the heuristic choice, the actual verification

is done by the additional Gerschgorin test. The directed Cholesky factorization with

diagonal pivoting is based on different principles and is not directly comparable with

Rump’s approach. It is likely that the ideas of Rump can be combined with directed

Cholesky factorizations to get improved enclosures for linear systems with positive def-

inite interval coefficient matrices.

The following alternative test for positive definiteness of symmetric interval matrices is

given in Neumaier [73, p. 32].

Theorem 4.14. Let A be a symmetric interval matrix.

(i) If some symmetric matrix A ∈ A is positive definite and all symmetric matrices in

A are nonsingular then they are all positive definite.

(ii) In particular, this holds if the midpoint matrix

Â = (A+A)/2

is positive definite with inverse C, and the preconditioned radius matrix

∆ = |C| rad(A);

satisfies (in an arbitrary norm) the condition

‖∆‖ < 1.
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Since verifying definiteness is not the focus of this chapter we refrain from giving nu-

merical comparison of the various definiteness tests.

Remark: The Sections 4.1 and 4.2 were originally written by Arnold Neumaier then

modified my myself, the idea of the directed Cholesky factorizations also comes from

Arnold Neumaier, the proofs are made by myself. The remaining Sections are my work.



Chapter 5

Rigorous filtering using linear

relaxations

Abstract. This chapter presents rigorous filtering methods for continuous constraint

satisfaction problems based on linear relaxations. Filtering or pruning stands for reduc-

ing the search space of constraint satisfaction problems. We discuss partially improved

and existing methods as well as new approaches for rigorously enclosing the solution

set of linear systems of inequalities. We also discuss different methods for computing

linear relaxations. This allows one to customize combinations of relaxation and filtering.

Care is taken to ensure that all methods correctly account for rounding errors in the

computations.

Although most of the results apply more generally, strong emphasis is given to relax-

ing and filtering quadratic constraints, as implemented in the GloptLab environment,

which internally exploits a quadratic structure. Demonstrative examples and tests com-

paring the different linear relaxation methods are also presented.

Keywords. linear relaxations, filtering, pruning, continuous constraints, quadratic con-

straint satisfaction problems, rounding error control, verified computation, quadratic

programming, branch and bound, global optimization.

5.1 Introduction

Context. This chapter consider rigorous filtering methods based on computing linear re-

laxations for continuous constraint satisfaction problems. A constraint satisfaction prob-

lem is the task of finding one or all points satisfying a given family of equations and/or

90
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inequalities, called constraints. Many real word problems are continuous constraint satis-

faction problems, often high dimensional ones. Applications include robotics (Grandon

et al. [37], Merlet [66]), localization and map building (Jaulin [49], Jaulin et al. [50],

biomedicine Cruz & Barahona [23]), or the protein folding problem (Krippahl &

Barahona [58]). In practice, constraint satisfaction problems are solved by a com-

bination of a variety of techniques, often involving constraint propagation with either

some form of stochastic search or a branch and bound scheme for a complete search.

These techniques are mainly complemented by filtering or pruning techniques based on

techniques borrowed from optimization, such as linear or convex relaxations (see, e.g.

Neumaier [73]).

Filtering or pruning stands for reducing the search space of constraint satisfaction prob-

lems. There are many filtering techniques which are usually combined with branch and

bound methods and provide more or less reduction of the search space. If applied to

quadratic constraints the classical filtering algorithms which are based upon local con-

sistencies like 2B-consistency or Box-consistency (see, e.g., Benhamou et al. [14]) do

not take advantage of the special properties of quadratic forms therefore often yield

poor results. 3B-consistency is more effective, but the practice shows that for quadratic

problems they usually tend to be slow due to the exhaustive branching needed to achieve

the required precision. Hull consistency techniques like the classical HC4 (Benhamou

et al. [12]) or the newly developed OCTUM (Chabert & Jaulin [20]) show promising

results, but still do not use the special structure of quadratic problems.

Another approach — originally developed for global optimization — is to compute linear

relaxations for a problem, and then use these to reduce the search space of the original

problem. As the name suggests, we may also lose some structural information of the

original problem, by computing a relaxation. However this loss is often complementary

to that of the consistency techniques described before. Here only linear relaxations are

considered, higher degree relaxations and convex relaxations are discussed in the litera-

ture; for example, affine and convex functions for non-convex multivariate polynomials

in Garloff et al. [36]. Constructing relaxations by using the right method can effec-

tively approximate the structure of the original constraint; in fact, the criteria for a

good relaxation is having a minimal distance (in some sense) to the original constraints.

The resulting linear system usually contains more variables/constraints then the origi-

nal problem but is much easier to solver than the original problem. A classical method,

called RLT (reformulation-linearization technique) by Sherali & Adams [92] is used

by Lebbah et al. [60] in the QUAD algorithm; another interesting approach was given

by Kolev [57]. Since the last two fit the main scope of this chapter they will be dis-

cussed in detail. The above methods often require rigorous solutions of linear programs,

as for example given for programs with uncertain data Jansson & Rump [47].
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Software. A number of software packages for solving constraint satisfaction problems

make extensive use of linear relaxations. The ICOS solver by Lebbah [59] is a free

software package for solving nonlinear and continuous constraints, based on constraint

programming, relaxation and interval analysis techniques. The prize winning, com-

mercial solver Baron by Sahinidis & Tawarmalani [86] — a highly developed, ap-

proximate global optimization solver — uses a special linear relaxation technique called

the sandwich method, while the COCONUT Environment [88, 89] applies both lin-

ear relaxations using slopes and reformulation-linearization on DAGs (Directed Acyclic

Graphs).

Note that solving constrained global optimization problems by branch and bound is in

practice reduced to solving a sequence of constraint satisfaction problems, each obtained

by adding a constraint f(x) ≤ fbest to the original constraints, where f is the objective

function and fbest the function value of the best feasible point found so far. Thus

all techniques for solving constraint satisfaction problems have immediate impact on

global optimization. This widens the scope of the possible applications of the methods

presented.

Outline. The chapter is organized as follows. In Sections 5.2–5.5 rigorous techniques

for enclosing the solution set of linear systems of inequalities are discussed while Sec-

tions 5.6–5.7 are about creating linear relaxations for quadratic constraint satisfaction

problems. In detail, Section 5.2 considers finding the interval hull of a bounded poly-

hedron by means of solving a single linear optimization problem. In Section 5.3 the

concept of a Gauss-Jordan preconditioner is introduced. In Section 5.4 it is shown how

the preconditioner can be used to find cheap bounds for a linear system of inequalities.

In Section 5.5 another much costlier approach is given. Here for the most promising

directions two linear programs are solved approximately and the approximate solutions

are verified. Section 5.6 gives step-by-step instructions how linear relaxations for multi-

variate quadratic expressions can be generated, and how the method of Lebbah et al.

[60] and Kolev [57] can be unified, even considering new relaxation techniques for bi-

linear terms. In Section 5.7 linear relaxations and filtering for constraint satisfaction

problems are considered, by discussing how the linear methods can be combined in or-

der to effectively reduce the search space of a quadratic constraint satisfaction problem.

The integration of the methods in GloptLab (see Chapter 2) environment is explained

in detail. In Section 5.8 some demonstrative example is given while Section 5.9 presents

some test results and comparison of different relaxation techniques.
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5.2 Bounding a polyhedron

Geometrically the linear system (1.8) defines a polyhedron. If the polyhedron is bounded

and nonempty, the method presented in this section finds a finite enclosure of the poly-

hedron, by solving a single linear program. By using this method only large bounds are

reduced; for a fixed, large constant µ (we set µ = 106 in our implementation) and a

given interval a the lower bound a is large iff a ≤ −µ and the upper bound a is large

iff a ≥ µ. Choosing µ too small may result in improvement of small bounds but it is

not recommended since the gain is not significant enough compared to other methods

presented in this chapter. In oder to avoid numerical problems, in this section we also

assume that we have found a suitable scaling vector ω ∈ Rm for the constraints and a

suitable scaling vector ρ ∈ Rn for the variables (for finding scaling vectors we refer to

Domes & Neumaier [29]).

5.2.1 Completing one-sided bound constraints

Let

Ex ∈ b, x ∈ x,

be a linear system as given in (1.8). We partition the components of the box b in

only lower bounded (B−), only upper bounded (B+) and bounded (Bf ) ones. We also

partition the components of the box x in unbounded (X∞), only lower bounded (X−),

only upper bounded (X+) and bounded (Xf ) ones. According to this for i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n}, we define the index sets

B− := {i | bi > −ωiµ, bi ≥ ωiµ},
B+ := {i | bi ≤ −ωiµ, bi < ωiµ},
Bf := {i | bi > −ωiµ, bi < ωiµ},
X∞ := {j | xj ≤ −ρjµ, xj ≥ ρjµ},
X− := {j | xj > −ρjµ, xj ≥ ρjµ},

X+ := {j | xj ≤ −ρjµ, xj < ρjµ},
Xf := {j | xj > −ρjµ, xj < ρjµ},
X± := X+ ∪X−,
Xb := X± ∪Xf ,

Xu := X± ∪X∞.

(5.1)

Multiplying (1.8) by a vector y ∈ Rm (choosen later) leads to the enclosure

yTEx ∈ yTb.

Bringing the terms containing the variables with index in Xf and X∞ to the right hand

side, substituting their bounds and evaluating the results by using interval arithmetic,

leads to

(yTE:X±)xX± ∈ d := yTb− (yTE:Xf
)xXf

− (yTE:X∞)xX∞ . (5.2)
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Therefore if

(ET y)X∞ = 0. (5.3)

then by (5.2) follows that

(yTE:X±)xX± ≥ d = inf(yTB−bB−) + inf(yTB+
bB+) + inf(yTBf

bBf
)− sup(yTE:Xf

xXf
).

(5.4)

The following proposition shows which conditions must hold such that (5.4) yields finite

bounds on the half–bounded variables:

Proposition 5.1. If we can find an y such that the conditions

yi > 0 if i ∈ B−,
yi < 0 if i ∈ B+,

(ET y)j = 0 if j ∈ X∞,
(ET y)j < 0 if j ∈ X−,
(ET y)j > 0 if j ∈ X+,

(5.5)

hold, then for each k ∈ X−

xk ≤ ck := (d− yTE:Xk
−
xXk
−
− yTE:X+xX+)/(yTE:,k) (5.6)

is satisfied, and for each k ∈ X+

xk ≥ ck := (d− yTE:X−xX− − y
TE:Xk

+
xXk

+
)/(yTE:,k) (5.7)

holds. The bounds ck are finite.

Proof. Since yi > 0 for all i ∈ B− and yi < 0 for all i ∈ B+ by definition of B− and B+

the terms yTi bi have finite lower bounds for all i ∈ B±. Since (ET y)X∞ = 0 and xXf
is

bounded by definition the inequality (5.4) holds and d is finite. By definition the bounds

xX− are finite and by (5.5) the terms (ET y)j = yTE:j < 0 for all j ∈ X−, therefore we

have finite approximation

yTE:X−xX− ≤ yTE:X−xX− . (5.8)

Similarly, the bounds xX+ are finite and (ET y)j = yTE:,j > 0 for all j ∈ X+, therefore

we have finite approximation

yTE:X+xX+ ≤ yTE:X+xX+ . (5.9)
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For any k ∈ X− and Xk
− := X− \ {k} since by (5.5) the inequality yTE:,kxk < 0 holds,

considering (5.4) and (5.9) we have

yTE:,kxk + yTE:Xk
−
xXk
−

+ yTE:X+xX+ ≥ d

⇒ yTE:,kxk + yTE:Xk
−
xXk
−

+ yTE:X+xX+ ≥ d

⇒ yTE:,kxk ≥ d− yTE:Xk
−
xXk
−
− yTE:X+xX+ ,

which by (5.5) implies (5.6) with a finite bound ck. Therefore x′k = [xk, ck] is finite. By

similar considerations for any k ∈ X+ and Xk
+ := X+ \ {k} since yTE:,kxk > 0 we have

(5.7) and x′k = [ck, xk] is finite.

Now we have the necessary conditions on y which allow to find bounds on xX± . We note

that (5.6) and (5.7) are automatically obtained by standard constraint propagation on

(5.2) resulting in finite bounds for the half–bounded variables and improving the bounds

which are already finite. If the polyhedron has a finite hull, the constraint propagation

succeeds. The constraint propagation method introduced by Chapter 3 can be used

for this task whereby this method is even capable of handling the more general case of

quadratic constraints.

To find tight bounds on xX± the entries of y should not be larger than necessary. This

is achieved by solving the linear program with the objective

minimize
∑
i∈B−

ωiyi −
∑
i∈B+

ωiyi, (5.10)

where ω is the constraint scaling vector, subject to the constraints given by (5.5). Solving

the linear program we either obtain a solution y ∈ Rm, or the linear program is infeasible.

In the latter case and the polyhedron is empty or unbounded:

Proposition 5.2. Suppose that µ =∞ in (5.1). If the constraints (5.5) are inconsistent

then the polyhedron defined by (1.8) is empty or unbounded.

Proof. Let x0 be a point satisfying (1.8). If no such x0 can be found the polyhedron is

empty. If this is not the case then that x0 satisfies (1.8) is equivalent to

(Ex0)B− ≥ bB− ,
(Ex0)B+ ≤ bB+ ,

(Ex0)Bf
∈ bBf

,

x0
X−
≥ xX− ,

x0
X+
≤ xX+ ,

x0
Xf
∈ xXf

.
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Therefore if a z ∈ Rn with z 6= 0 satisfies

(Ez)B− ≥ 0,

(Ez)B+ ≤ 0,

(Ez)Bf
= 0,

zX− ≥ 0,

zX+ ≤ 0,

zXf
= 0,

(5.11)

then

E(x0 + λz)B− = (Ex0)B− + λ(Ez)B− ≥ bB− ,
E(x0 + λz)B+ = (Ex0)B+ + λ(Ez)B+ ≤ bB+ ,

E(x0 + λz)Bf
= (Ex0)Bf

∈ bBf
,

(x0 + λz)X− = x0
X−

+ λzX− ≥ xX− ,
(x0 + λz)X+ = x0

X+
+ λzX+ ≤ xX+ ,

(x0 + λz)Xf
= x0

Xf
∈ xX+ ,

and thus all x ∈ L := {x0 + λz | λ ≥ 0} satisfy (1.8). Since the set L describes a line

segment of infinite length and L is contained in the polyhedron defined by (1.8) the

polyhedron must be unbounded.

For any y ∈ Rm satisfying (5.5) and z ∈ Rn, z 6= 0 satisfying (5.11)

0 ≤
∑
i∈B+

yi(Ez)i +
∑
i∈B−

yi(Ez)i +
∑
i∈Bf

yi(Ez)i

=
∑
j∈X∞

(ET y)jzj +
∑
j∈X+

(ET y)jzj +
∑
j∈X−

(ET y)jzj +
∑
j∈Xf

(ET y)jzj < 0.
(5.12)

Therefore (5.5) and (5.11) cannot be solved simultaneously. The Motzkin’s transposition

theorem (see Motzkin [69]) implies that exactly one of (5.5) and (5.11) is satisfied.

Therefore if the constraints (5.5) are inconsistent then (5.11) holds and the polyhedron

defined by (1.8) is unbounded.

In reality we only have an approximate solution ỹ of (5.10) which usually does not need

to satisfy (5.3). Therefore using a matrix C (chosen in the next subsection) and a vector

z (chosen below) we construct the corrected solution

y = ỹ − CT z, (5.13)

such that (5.3) it satisfied. If we substitute (5.13) into (5.3) we see that y satisfies (5.3)

if ỹE:X∞ − zTCE:X∞ = 0. Thus we choose z such that

(CE:X∞)T z = ET:X∞ ỹ,

holds and therefore

y = ỹ − CT ((CE:X∞)−T (E:X∞ ỹ)) (5.14)
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satisfies (5.3). In floating point arithmetic we have to take the rounding errors into

account therefore we evaluate (5.14) using interval arithmetic and obtain a box y such

that for an y ∈ y equality (5.3) is satisfied.

5.2.2 Bounding free variables

From this point on we assume that all one sided unbounded constraints are bounded by

the method presented in the previous subsection and thus the set X± is empty. Therefore

we use (5.2) with y instead of y and choose C such that we find finite bounds on the

free variables xX∞ :

Proposition 5.3. Let C be a preconditioner for E:X∞ such that CE:X∞ ≈ I. Suppose

y satisfies
yi > 0 if i ∈ B−,
yi < 0 if i ∈ B+,

(ET y)j = 0 if j ∈ X∞.
(5.15)

Let u+, u− ∈ Rm be vectors with

u+
j ≤ min{−Cij/yj | i ∈ X∞}, u−j ≥ max{−Cij/yj | i ∈ X∞}, (5.16)

and

C+ := C + u+yT , C− := C + u−yT , (5.17)

then

CEX∞:xX∞ ∈ z (5.18)

for a bounded box

z := [ inf(C−b− (C−E:Xb
)xXb

), sup(C+b− (C+E:Xb
)xXb

)]. (5.19)

Proof. By (5.17) and (5.2), the equation

CE:X∞xX∞ = (C±−u±yT )E:X∞xX∞ = C±E:X∞xX∞−u±yTE:X∞xX∞ = C±E:X∞xX∞

holds. On the other hand, (1.8) implies

E:X∞xX∞ + E:Xb
xXb
∈ b,

so that
CE:X∞xX∞ = C−E:X∞xX∞ ≥ inf(C−(b− E:Xb

xXb
)),

CE:X∞xX∞ = C+E:X∞xX∞ ≤ sup(C+(b− E:Xb
xXb

)),
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proving (5.18).

Since xXb
is bounded, E:Xb

xXb
is also bounded, we have to show that sup(C+b)j <∞

and inf(C−b)j > −∞ for all j ∈ {1, . . . , n}. By (5.16) we have

u+
j ≤ (−Cij/yj) for all i ∈ X∞. (5.20)

If yi < 0 then bi is finite after the construction of y. Using this together with (5.17)

implies that u+
j yi ≥ −Cij and with (5.20) results in

C+
ij = Cij + u+

j yi ≥ 0.

Therefore

sup(C+
ijbi) = C+

ij bi < µ. (5.21)

On the other hand, if yi > 0 then bi > −µ implies that C+
ij = Cij + u+

j yi ≤ 0, again

ending up in

sup(C+
ijbi) = C+

ij bi < µ. (5.22)

Since

sup(C+b)j =
m∑
i=1

sup(C+
ijbi),

for all j ∈ {1, . . . , n}, by inequalities (5.21) and (5.22) we obtain

sup(C+b)j < µ.

The proof for the lower bounds is similar, with (5.16) and (5.17) implying that

inf(C−ijbk) = C+
ij bi > −µ (5.23)

if yi > 0 or

inf(C−ijbk) = C+
ij bi > −µ (5.24)

if yi < 0, proving that inf(C−b)j is finite for all j.

By the above proposition

xX∞ ∈ (CE:X∞)−1z (5.25)

gives finite bounds on the free variables xX∞ .



Chapter 5. Rigorous filtering using linear relaxations 99

5.2.3 Bounding a polyhedron

Summarizing the results of both subsections we are ready to give the following algorithm

for bounding a polyhedron:

Algorithm 5.1 (Bounding a polyhedron).

Purpose: Obtain rigorous finite bounds x on the variables and improve the bounds b of

the linear program (1.8).

1. In (5.10) we replace the sharp inequalities by non-sharp ones: yi > 0 and yi < 0

is replaced by yi ≥ ω−1 and yi ≤ −ω−1 respectively, where ω ∈ Rm is the scaling

vector for the constraints. Similarly (ET y)j > 0 and (ET y)j < 0 is replaced by

(ET y)j ≥ ρ−1 and (ET y)j ≤ −ρ−1 respectively, where ρ ∈ Rn the scaling vector

for the variables.

2. We solve the linear program (5.10) by using an approximate linear solver:

(a) If the linear program is feasible, we obtain the approximate solution ỹ and

compute y according to (5.14) using interval arithmetic.

(b) If the linear program is infeasible, the polyhedron is empty or unbounded. The

algorithm ends.

3. Using constraint propagation on (5.2) we obtain finite bounds x′X± on the half-

bounded variables xX±.

4. We compute u+, u−, C+, C− and z as defined in Proposition 5.3. Since xXb

is already bounded the proposition holds and evaluating (5.25) yields finite bounds

x′X∞ on xX∞.

5. Substituting the new components x′X± and x′X∞ for the corresponding components

of the bound constraints in (1.8) and applying constraint propagation to (1.8) results

in the new bounds x on the variables.

6. We compute the new bounds b′ := b ∩ Ex for the constraints.

5.3 Gauss-Jordan preconditioning

In this section we discuss an extension of Gauss-Jordan elimination, used for precondi-

tioning interval linear systems of equations. We first discuss the original method then

modify it to suit our applications.
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Discussion of the original method. The Gauss-Jordan inversion is similar to Gaus-

sian elimination but computes the inverse of a matrix. The iterative algorithm starts

with an m×n matrix B (with n ≥ m) and transforms the leading m×m sub-matrix of

B to an identity matrix. The transformation is done by permuting rows and columns,

multiplying whole rows with constants, and subtracting multiplies of a row from other

rows. Formally, the Gauss-Jordan elimination algorithm finds an m × (n −m) matrix

L, an m×m transformation matrix G and an n× n permutation matrix P such that

GBP = [Im, L]. (5.26)

In practice only the matrices P and L are computed explicitly.

Algorithm 5.2 (Gauss-Jordan elimination for m× n matrices with pivot search).

1. Given is the m × n matrix B. The permutation matrix P is initially set to the

n× n identity matrix matrix In.

2. For k = 1 . . .m do:

(a) Find the (pivot) element pk; the entry in Bk:m,k:n having the maximum abso-

lute value.

(b) If |pk| � 1, B is numerically singular, terminate the algorithm and return an

error message.

(c) Shift the pivot to Bkk by exchanging the rows and columns of B; the k-th

row Bk: is exchanged with the row of the pivot and the k-th column B:k is

exchanged with the column of the pivot.

(d) Exchange the same columns in the permutation matrix P as in B.

(e) Divide all nonzero entries in the k-th column of B by the pivot element pk;

λi :=

{
Bik/pk if Bik 6= 0,

0 otherwise,
pk = Bkk. (5.27)

(f) Overwrite the rows Bi: of B with

B′i: :=

{
λkBk: if i = k,

Bi: − λiBk: otherwise,

making the kth column of B′ to the kth column of the identity matrix Im.

3. Since the matrix B now has the form B = [Im, L], return the matrix L and the

column permutation matrix P .
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Example 5.1. We apply the above algorithm for

B =

(
3 3 1 0

2 6 0 1

)
and P =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

• (k = 1) The maximal element of B is B22 = 6, which is chosen as the first pivot p1.

In B we exchange the first row with the second one, and in B and P we exchange

the first column with the second one, which results in

B =

(
6 2 0 1

3 3 1 0

)
and P =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 .

Then the multiplier λ2 = 3/6 = 1/2 is computed. We divide the first row with the

pivot, subtract λ2B1: = (3 1 0 1/2) from the second one, and get

B =

(
1 1

3 0 1
6

0 2 1 −1
2

)
.

• (k = 2) The pivot p2 is B22 = 2 which is the maximum element of the submatrix

B2,2:4. In this case the pivot is at the correct position, therefore no exchange of

the rows or columns of B or P is needed. Since λ1 = (1/3)/2 = 1/6 from the first

row we subtract λ1B2: = (0 1/3 1/6 − 1/12), then divide the second one with

the pivot, and get

B =
[
I2 L

]
, L :=

(
−1

6
1
4

1
2 −1

4

)
and P =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 . (5.28)

The algorithm is finished, the matrices L and P from (5.28) are returned.

The aim of the original Gauss-Jordan inversion is to find the inverse of the m×m matrix

A. The first version of the Gauss-Jordan inversion was numerically unstable since it did

not use pivoting. If we set B := [A, Im] in the Gauss-Jordan elimination Algorithm 5.2

we get the Gauss-Jordan inversion with pivoting, by (5.26) we have

G[A, Im]P = [Im, L], (5.29)
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and after m iterations the Algorithm 5.2 results in the matrix [Im, L] and the column

permutation P . Note that for this selection of B even if A is singular B is regular by

construction and thus Algorithm 5.2 never returns an error message.

Proposition 5.4. If the column permutation matrix P returned by Algorithm 5.2 con-

sists only of permutations of the first m columns, then the matrix C := P̂L with

P̂ := P1:m,1:m is the inverse of A.

Proof. Since P consist only of permutations of the first m columns it must have the

form

P =

(
P̂ 0

0 Im

)
. (5.30)

Then by (5.29)

G[A, Im]P = [Im, L]⇒ GAP̂ = Im, GIm = L⇒ LAP̂ = Im ⇒ (P̂L)A = Im. (5.31)

Proving that A is regular and P̂L is the inverse of A.

Example 5.2. In Example 5.1, we had

B = [A, I2] with A =

(
3 3

2 6

)
.

By (5.28), P has the form of (5.30) with P̂ =

(
0 1

1 0

)
, thus the matrix

C = P̂L = B =

(
1
2 −1

4

−1
6

1
4

)
,

is the inverse of A.

Scaling: Note that if the matrix A is regular, but not scaled correctly, entries from the

wrong part of B may be chosen as pivot elements. In this case even though A is regular,

(5.30) does not hold, and the inverse of A cannot be found by the algorithm. This

would happen if in the above example we would divide the entries of A by 10. Since

this would only scale the matrix A, it would be still invertible. In this case in the first

step of the algorithm B31 = 1 would be chosen as the pivot therefore the prerequisites

of Proposition 5.4 would not be met.

To solve this problem, Algorithm 5.2 can be improved by applying suitable scaling to A

and Im. We choose a diagonal row scaling matrix U ∈ Rm×m, a diagonal column scaling
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matrix V ∈ Rm×m and an additional scaling constant δ and set

B := [UAV, δIm].

in Algorithm 5.2 and obtain

G[UAV, δIm]P = [Im, L]. (5.32)

Theorem 5.5. If the column permutation matrix P returned by Algorithm 5.2 consists

only of permutations of the first m columns, then the matrix C := δ−1V P̂LU is the

inverse of A.

Proof. Since P consist only permutations of the first n columns we have

P =

(
P̂ 0

0 Im

)
, (5.33)

then by (5.32)

GUAV P̂ = Im, GδIm = L⇒ δ−1LUAV P̂ = Im ⇒ (δ−1V P̂LU)A = Im, (5.34)

holds, proving the assumption.

We suggest the following choice of the scaling matrices U and V and the scaling constant

δ: By the scaling method presented in Domes & Neumaier [29] we find matrices U

and V such that the entries of UAV are between zero and one but not too close to zero.

The second part of B = [UAV, δIm] consists of an m ×m identity matrix, scaled with

the constant δ. Setting δ as a very small positive number (e.g., δ :=
√
ε) prevents that

– even for well conditioned matrices – some elements of the second part of B are chosen

as pivots.

Extension of the Gauss-Jordan inversion. If the matrix A is not square or regular,

there is no (two-sided) inverse, but preconditioner for A can be found, such that for a

suitable chosen index set J the equality CA:J = I holds.

Theorem 5.6. Let A,L ∈ Rm×n, U,G ∈ Rm×m, V ∈ Rn×n, P ∈ R(n+m)×(n+m) and

δ > 0.

(1) Suppose that

G[UAV, δIm] = [Im, L]P, (5.35)

then

G = δ−1(PMM + LPNM ), (5.36)
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where M = {1, . . . ,m} and N = {m+ 1, . . . ,m+ n}.

(2) If V is an invertible diagonal matrix, P is a permutation matrix and R ⊆ {1, . . . , n}
is an index set of size r ≤ m such that

PRMPMR = Ir (5.37)

holds, then

C := VRRPRMGU (5.38)

satisfies

CA:R = Ir. (5.39)

Proof. We write P in block form as

P =

(
PMN PMM

PNN PNM

)
(5.40)

with PMN ∈ Rm×n, PNN ∈ Rn×n, PMM ∈ Rm×m and PNM ∈ Rn×m. Then we have

[Im, L]P = [ImPMN + LPNN , ImPMM + LPNM ]. (5.41)

From (5.41) and (5.35) the identities

GUAV = PMN + LPNN and G = δ−1(PMM + LPNM )

follow. The second equality proves assumption (1). To prove (2) we multiply the second

equality with the matrix W := VR:PNM from the left and with a vector x from the right

side and obtain

WGUAV x = WPMNx+WLPNNx.

Without loss of generality, we assume that R = {1, . . . , r}. Choosing

xi :=

{
zi/Vii for i ∈ R,
0 otherwise,

we find xR = V −1
RRzR and AV x = A:RzR. Since P is a permutation matrix, from (5.37)

follows that all columns of PMR contain a one; therefore the columns PNR have to be

zero columns. Since V −1 is diagonal, the matrix V −1
RR only contains nonzero elements in

the jth rows when j ∈ R. We summarize and obtain

(PNR)ij = 0 if j ∈ R
(V −1
RR)jk = 0 if j /∈ R.

(5.42)
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Then by (5.42) follows that

(PNRV −1
RR)ik =

n∑
j=1

(PNR)ij(V −1
RR)jk = 0, for all i, j.

Therefore PNRV −1
RRzR = 0 and

VRRPRMGUAzR = VRRPRMPMRV
−1
RRzR.

By (5.37) we get

VRRPRMGUAzR = zR.

implying (5.38) and (5.39).

Using the results of the above proposition we generalize Algorithm 5.2:

Algorithm 5.3 (Gauss-Jordan preconditioner).

1. Given is the matrix A ∈ Rm×n, the diagonal row scaling matrix U ∈ Rm×m and

the diagonal column scaling matrix V ∈ Rn×n.

2. We set u = n+m, K = (1, . . . , u) and B = [UAV, δIm] ∈ Rm×u.

3. For k = 1 . . .m do:

(a) Find the pivot pk := Bij having the maximum absolute value from the sub-

matrix Bk:m,k:u.

(b) Exchange the kth row Bk,: of B with the row Bi,: of the pivot and the kth

column B:,k of B with the column B:,j of the pivot.

(c) Exchange Kk with Kj in the index list K.

(d) Compute each λi as given in (5.27).

(e) For each i 6= k overwrite the row Bi: with Bi: − λiBk:.

(f) Overwrite Bk: with Bk:/pk.

4. The row permutation matrix can be set by using the found index set K:

P =

(
PMN PMM

PNN PNM

)
= (In+m):K .

5. The matrix G = δ−1(PMM + LPNM ) is computed.

6. Generate the index set R:

R = {j ∈ R1:m | Kj ≤ n}
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7. Since for P̂RM := P TMR condition (5.37) in Theorem 5.6 holds, the preconditioner,

C = VRRP
T
RNGU

with CA:R = Ir is obtained.

8. We have found an index set R and a matrix C ∈ Rr×m such that (5.35) holds.

Return the matrix C and the index set R.

The preconditioner found by Algorithm 5.3 can be used for solving under- or overdeter-

mined linear equation systems. If the matrix A is square and has full rank, Algorithm

5.3 returns the inverse of A.

Example 5.3. Let

A =

(
1
2

1
6

1
6

1
4

1
2

1
4

)
, U =

(
6 0

0 8

)
, V =


1 0 0

0 1 0

0 0 3

 , and δ = 1.

Then the matrix

B = [UAV, δIm] =

(
3 1 3 1 0

2 4 6 0 1

)
,

is similar to the matrix in Example 5.2; the same pivots will be chosen. After two

iterations, we get

B =

(
1 0 1

2 −1
6

1
4

0 1 −1
2

1
2 −1

4

)
, K = (3, 1). (5.43)

Then we have R = {1, 3},

G = δ−1(PMM + LPNM ) =

(
0 0

0 0

)
+

(
1
2 −1

6
1
4

−1
2

1
2 −1

4

)
0 0

1 0

0 1

 =

(
−1

6
1
4

1
2 −1

4

)
,

C = VRRPRMGU =

(
1 0

0 3

)(
0 1

1 0

)(
−1

6
1
4

1
2 −1

4

)(
6 0

0 8

)
=

(
3 −2

−3 6

)
,

and find that CA:R = Ir holds.

The above considerations about a suitable scaling (in the sense of making the algorithm

choose all linear independent columns as pivot columns by correctly choosing U , V

and δ) applies again. If P permutes some of the last m columns, then either A has

non-maximal numerical rank or the scaling was not chosen suitably.



Chapter 5. Rigorous filtering using linear relaxations 107

Lemma 5.7. If the matrix R returned by Algorithm 5.3 was computed by using exact

arithmetic and suitable scaling then r := |R| is the rank of A .

Proof. Without the loss of generality we assume that in the kth iteration step the first

part Bk,1:n of the pivot row and the first part Bi,1:n of another row (k < i) are linearly

dependent. Therefore Bi,1:n = cBk,1:n holds for some constant c. Since λi = Bik/Bkk = c

the entries Bi,1:n will be overwritten with Bi,1:n − cBk,1:n = 0. From this point on the

first n entries of this row only contain zeros, and sooner or later a pivot has to be selected

from the lower right m×m part of B. Since this happens for each linear dependent row

the number of pivots selected from the first part of B gives us the rank of the matrix

A.

Since in our implementation inexact arithmetic is used, due to the rounding errors, we

only get the numerical rank, which (if the scaling is suitable) is correct for the most

non-degenerate matrices.

5.4 Linear contraction

Based on the Gauss-Jordan method discussed in Section 5.3, we present a simple tech-

nique for reducing the bounds of x of the linear system (1.8).

First a Gauss-Jordan preconditioner for the matrix E is computed; we choose suitable

scaling matrices U and V and a scaling factor δ then apply Algorithm 5.3 for the matrices

E, U , V and the scaling factor δ.

A possible choice for the scaling was given in Section 5.3. For this application a better

alternative is to specify the scaling matrices U and V such that the rows of E matching

the constraints having tighter bounds are preferred as pivot rows. Similarly, by this

scaling the columns of E matching the variables with tighter bounds, are preferred as

pivot columns. According to this we set

d := max{xi, xj | i = 1 . . . n, j = 1 . . . n}, z = x ∩ [−d, d]n

and for the scaling matrices

U = diag(u), V = diag(v) (5.44)

with

u = ((b− b) + δ|b− Ex|) and v = (z − z)/(max{zi − zi | i = 1 . . . n}).
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For the scaling constant (as in Section 5.3) we choose δ =
√
ε.

The algorithm returns an index list R with |R| = r and a matrix C ∈ Rr×m such that

CE:R = Ir. We set K := ¬R, multiply (1.8) with the matrix C and obtain

CE:RxR + CE:KxK ∈ Cb, xR ∈ xR, xK ∈ xK . (5.45)

Since CE:R = Ir, if we substitute the bounds for xK we get

xR ∈ b̂, b̂ := (Cb− CE:KxK), xR ∈ xR.

and if we cut xR ∈ b′ with the original bounds xR on the variables xR we end up in

xR ∈ x̂, x̂ := b̂ ∩ xR. (5.46)

If the matrix E is square and has full rank (n = m = r) then we get

x ∈ x̂, x̂ := Cb ∩ x.

In inexact arithmetic, the computation of the preconditioner C is not rounding error

free, and thus only CE:R ≈ Ir holds. This modifies (5.46) to

MxR ∈ b̂, M := CE:R, xR ∈ xR.

Since the off diagonal entries of M are tiny we have

xR ∈ x̂ with x̂i := (M−1
ii (b̂i −

r∑
j=1, j 6=i

Mijxi))∩ xi, M := CE:R, b̂ := (Cb−CE:KxK).

(5.47)

Again, if the matrix E is square and of full rank, then CE ≈ Im and we get the bounds

x ∈ x̂ with x̂i :=
(Cb)i −

∑r
j=1, j 6=i(CE)ijxi

(CE)ii
∩ xi.

By using this method we obtain new bounds for the variables xR.

An alternative to the above method is to use constraint propagation on (5.45). Con-

straint propagation for quadratic (and linear) systems is discussed in Chapter 3. This

alternative costs more computational time but it also yields new bounds on the vari-

ables xK not only on xR. Both approaches are useful; the decision which alternative is

preferable is based on the dimension of the problem.
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5.5 Linear bounding

Another simple, efficient, but costly method for improving the bounds on the variables

in linear systems is presented in this section.

Let (1.8) be a linear system of n variables and m two-sided inequalities. We choose

k ≤ n variables, where we expect to achieve the most reduction. Alternatively we could

select all n variables. For each variable xi, i ∈ I we solve two linear programs (one for

each sign in ei) given by
min f(x) := eix

s.t. Ex ∈ b, x ∈ x,
(5.48)

with

eij =

{
±1 if i = j

0 otherwise,
.

Let x̂i+ and x̂i− be approximative solutions of (5.48) for eii = 1 and eii = −1 respectively.

Let yi+ and yi− the approximate multipliers of the solutions without the multipliers

corresponding to the bound constraints. If we solve all the 2k linear programs the

multipliers are collected in a 2k ×m matrix

Y ∈ R2k×m, Y:,2i−1 = yi+, Y:,2i = yi− for all i = 1, . . . , k

The matrix Y can be used to precondition the linear system (1.8) resulting in a new

system of 2k inequalities

Êx ∈ b̂, x ∈ x, Ê := Y [E,E], b̂ := Y b. (5.49)

To ensure mathematical rigor, the interval coefficient matrix Ê and the box b̂ must be

computed by using interval arithmetics. Since each rows Êk: of Ê should only contain one

dominant entry Êkj , all other ones should be approximately zero, (5.49) can be solved

easily. This can be done by substituting the bounding intervals xi for the variables with

nearly zero coefficients into (5.49) and bringing the corresponding terms to the right

hand side. This results in a new bound

xj ∈ x̂j , x̂j := xj ∩ (b̂−
n∑

i=1,i 6=j
Êkixi)

on the variable xj arising from all 2k inequalities. Alternately, constraint propagation

for quadratic (and linear) systems is discussed in Chapter 3 can be used to solve (5.49).
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5.6 Linear relaxations for multivariate quadratic expres-

sions

The following sections elaborate techniques for creating linear relaxations of quadratic

constraint satisfaction problems.

Let p(x) : Rn → R be a mapping. The function u(x) is called an underestimator of p(x)

in the box x if u(x) ≤ p(x) holds for all x ∈ x. Similarly, the function v(x) is called

an overestimator of p(x) in the box x, if p(x) ≤ v(x) holds for all x ∈ x. If both an

underestimator u(x) and an overestimator v(x) is given then

p(x) ∈ [u(x), v(x)] for all x ∈ x

is an enclosure of p(x) in the box x.

Theorem 5.8. Let p(x), h(x) : Rn → R be mappings, let c, d be intervals and let x ∈ x.

If

p(x) ∈ c ⇒ h(x) ∈ d. (5.50)

for all x ∈ x then

h(x)− p(x) ∈ [d− c, d− c] (5.51)

is satisfied for all x ∈ x. In this case, the two-sided inequality h(x) ∈ d is called a

relaxation of p(x) ∈ c in the box x.

Proof. (⇒) By (5.50), for a real number r (choosen later) the inequality h(x) ≥ p(x) + r

must hold for all x ∈ x. Since p(x) ∈ c, h(x) ≥ p(x) + r ≥ c + r. Since h(x) ∈ d,

h(x) ≥ d must also hold. Choose r as minimal and get c + r = d ending up in h(x) ≥
p(x) + r = p(x) + d − c. This given the lower inequality d − c ≤ h(x) − p(x) of (5.51).

The upper inequality h(x)− p(x) ≤ d− c can be obtained in the same way.

(⇐) By (5.51) the inequality d − c ≤ h(x) − p(x) holds for all x ∈ x. Bringing p(x)

to the left hand side results in p(x) + d − c ≤ h(x). By (5.61) c ≤ p(x) and thus

d = c + d − c ≤ h(x). The inequality h(x) ≤ d can be obtained similarly. Therefore

(5.50) holds, proving the assumption.

In the following subsections give a step-by-step explanation how linear relaxations for

multivariate quadratic expressions are generated; in Subsection 5.6.1 linear relaxations

for univariate, quadratic expressions are construct, then in Subsection 5.6.2 separable,

multivariate, quadratic expressions are handled, finally in Subsection 5.6.3 the most

general case of generating linear relaxations for multivariate, not necessary separable,

quadratic expressions is discussed.
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5.6.1 Linear relaxations for univariate quadratic expressions

Without loss of generality, an arbitrary univariate quadratic expressions, can be written

in the form

q(x) ∈ c, q(x) := ax2 + bx, x ∈ x, (5.52)

where a and b are constant and c and x are intervals. We assume without the loss of

generality that a > 0 since for a = 0 we already have a linear expression, with no need

of relaxing, and for a < 0 all the observations below hold with trivial modifications.

For univariate functions Kolev [57] proposes linear relaxations of the form

ex ∈ d for x ∈ x with q(x) ∈ c, (5.53)

where e is a constant and d is an interval (see, Figure 5.1). Kolev states that this

relaxation is optimal if w has minimal width and uses a generalized representation of

intervals to compute e and d.

y  = ex - d

y  = ex - d

_

_

__x
x

Figure 5.1: Linear relaxations by Kolev

Another approach is the Quad algorithm of Lebbah et al. [60], where linear under- and

overestimators are used to generate linear relaxations. Since a > 0, we obtain for any

z ∈ x linear underestimators

Lz(x) := l′(z)(x− z) + l(z) where l(x) := q(x)− c,

(in [60], the two tangents of l(x) for z = x and z = x are chosen) and the linear

overestimator

L(x) :=
q(x)− q(x)
x− x

x+
u(x)x− u(x)x

x− x
where u(x) := q(x)− c,
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(the secant of u(x) between the points (x, u(x)) and (x, u(x))) (see, Figure 5.2).

x_

x
_

x_

L (x)

L (x)

L(x)

_
x

Figure 5.2: Linear relaxations by Lebbah & Rueher

Note that while L is the best choice for linear overestimator, the choice and the number

of the underestimators Lz are arbitrary. The two underestimators suggested by [60]

could be replaced by a single one (e.g., Lz(mid(x))) or refined by adding more (e.g.,

Lz(mid(x)) would be a good choice). The latter can be made adaptive to satisfy a given

error bound, and is then called the sandwich method (see Tawarmalani & Sahinidis

[97]), it used in the solver Baron.

According to this if Z is a finite set with values in the box x and nz = |Z|, then the

system

Lz(x) ≥ 0, L(x) ≤ 0, z ∈ Z, x ∈ x, (5.54)

of nz + 1 linear inequalities is a linear relaxation of (5.52).

To give an uniform representation for the two methods we choose the form (5.53) where

e is now a k–dimensional vector d is a k–dimensional box. The relaxation by Kolev

is included in this form for k = 1 while the inequalities by Lebbah & Rueher can be

embedded by setting

ei =

{
q′(Xi) for i = 1, . . . , nz,
q(x)−q(x)
x−x if i = nz + 1,

di =

{
[q′(Xi)Xi − q(Xi) + c,∞] for i = 1, . . . , nz,

[−∞, q(x)x−q(x)xx−x − c] if i = nz + 1.
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5.6.2 Linear relaxations for separable multivariate quadratic expres-

sions

We consider an arbitrary separable multivariate quadratic expression, which we write

without loss of generality in the form

p(x) ∈ c, p(x) := aTx2 + bTx, x ∈ x, (5.55)

where x2 is the component-wise square of x, a and b are n–dimensional vectors, c is

an interval and x is an n–dimensional box. We assume that a 6= 0 since otherwise

we already would have a linear expression, with no need of relaxing. The results of the

univariate case can be directly applied to the multivariate case with slight modifications:

For a multivariate function of n variables, we consider linear relaxations of the form

eTx ∈ d, x ∈ x, (5.56)

where e is an n–dimensional vector and d is an interval. Since (5.56) is a linear relaxation

of (5.55) by (5.51)

eTx− q(x) ∈ [d− c, d− c],

holds. For this special case of a separable quadratic expression this simplifies to

uTx− aTx2 ∈ [d− c, d− c], u := e+ b.

If we choose a suitable slope vector e, the exact range t of the quadratic expression on the

left hand side is easy to compute rigorously (see Chapter 3). This results in the equality

t = [d − c, d − c] from which the interval c follows directly. Possible selections of the

slope vector could be the derivate 2a · x+ b of q(x) (where · denotes the componentwise

product) in a suitable chosen point z ∈ x (midpoint, upper or lower bound, or midpoint

of a promising region of x). Another useful selection for the slope vector is the the secant

slope q(x)−q(x)
x−x , of between the points (x, q(x)) and (x, q(x))).

To integrate the method of Lebbah & Rueher [60] for the multivariate case, we generate

the linear relaxations for each univariate quadratic expression separately. Let

Q := {k ∈ {1, . . . , n} | ak 6= 0}, L := {k ∈ {1, . . . , n} | bk 6= 0}, (5.57)

with nq = |Q| and nl = |L| be the index sets then (5.55) can be written as

∑
k∈Q yk +

∑
k∈L bkxk ∈ c, x ∈ x,

yk = akx
2
k for all k ∈ Q.
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To generate the linear relaxations of the nq univariate quadratic expressions akx2
k we

apply the results of the previous section; we choose the set Z, compute the nz + 1 linear

inequalities

ekxk ∈ dk, for xk ∈ xk,

for the nq quadratic expressions separately, whereby ek is now a (nz + 1)–dimensional

vector and dk is a (nz + 1)–dimensional box. Let Z be a finite set with values in x and

nz = |Z| then the linear relaxation can be given as a system of ny(nz+1)+1 inequalities:

∑
k∈Q yk +

∑
k∈L bkxk ∈ c, x ∈ x, yk − eki xk ∈ dki , for all k ∈ Q.

eki =

{
2akXi for i = 1, . . . , nz,

ak(x+ x) if i = nz + 1,
dki =

{
[− akX2

i ,∞] for i = 1, . . . , nz,

[−∞,−akxkxk] if i = nz + 1.

In order to give an uniform representation for the two methods, we propose the general

form

Ex ∈ d, x ∈ x, (5.58)

with E ∈ Rh×n and d is an h–dimensional box. The relaxation by Kolev is included

in this form for h = 1 while the inequalities by Lebbah & Rueher can be embedded by

setting the h = ny(nz + 1) + 1 components and increasing the number of variables to

n+ nq.

5.6.3 Linear relaxations for multivariate quadratic expressions

We consider an arbitrary multivariate quadratic expressions

p(x) ∈ c, p(x) :=
∑
k∈Q

akx
2
k +

∑
(j,k)∈B

bjkxjxk +
∑
k∈L

bkxk, x ∈ x, (5.59)

where the akx2
k are the quadratic, the bjkxjxk are the bilinear, the bkxk are the linear

terms and c is an interval. The sets Q and L are are from (5.57), while

B := {(j, k) ∈ {1, . . . , n} × {1, . . . , n} | bjk 6= 0}, nb = |B|,

and we assume that B is non-empty.

We discuss two different methods to deal with the bilinear entries, the first one is based

on the results of Chapter 3 and removes the bilinear terms by modifying the quadratic

or linear coefficients of (5.59) while the second one from McCormick [65] adds four

linear inequalities for each bilinear term.
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In Section 5 of Chapter 3 two different methods are presented for separating the con-

strains; approximation of the bilinear terms by quadratic, by linear and by constant

ones. The choice is made for each bilinear term bjkxjxk separately and the decision is

based on the bounds of the variables xk and xj .

Case 1: If both xk and xj are bounded we approximate the bilinear term by linear

terms, obtaining

bjkxjxk − bjkzjxk − bjkzkxj ∈ [ min
i
∇ui,max

i
∆ui]

where z = midx and

u1 = bjk((xj − zj)xk − zkxj), u2 = bjk((xj − zj)xk − zkxj),
u3 = bjk((xj − zj)xk − zkxj), u4 = bjk((xj − zj)xk − zkxj).

This modifies the linear and the constant constraint coefficients to

b′k := bjkzj + bk, b′j := bjkzk + bj , c′ := [c−max
i

∆ui, c−min
i
∇ui].

Case 2: If the interval xk or the interval xj is unbounded we eliminate the bilinear terms

bjkxjxk by adding the quadratic term

djk(xj − vjkxk)2 with vjk := sign(bjk)
√
ak
aj
, djk :=

bjk
2vjk

,

to the constraint. This results in the new quadratic coefficients

a′k := ak + djk, a′j := aj +
bjkvjk

2
. (5.60)

This results in a separable quadratic expression (5.55), which can be relaxed by using

the methods discussed in the Section 5.6.2.

The convex envelope of a function f(x) over the box x is the tightest convex underesti-

mating function for f(x) for x ∈ x. Al-Khayyal [6] and McCormick [65] developed

an efficient relaxation technique to obtain the convex envelope for the bilinear terms

xjxk. This requires that xj and xk are bounded. In this case the convex envelope of

xjxk is convex polyhedral (see Rikun [78]), and its convex and concave parts can be

given as

Conv(xjxk) := max{xkxj + xjxk − xkxj , xkxj + xjxk − xkxj},
Conc(xjxk) := min{xkxj + xjxk − xkxj , xkxj + xjxk − xkxj}.
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Therefore, a linear relaxation of the bilinear terms can be given by substituting a new

variables yjk for every xjxk, and adding the following linear constraints:

yjk ≥ xkxj + xjxk − xkxj , yjk ≥ xkxj + xjxk − xkxj ,
yjk ≤ xkxj + xjxk − xkxj , yjk ≤ xkxj + xjxk − xkxj .

Androulakis et al. [8] showed that the maximum difference between variable yjk

and the bilinear term xjxk depends on the widths of xj and xk and can be given

as 1
4(xj − xj)(xk − xk). Therefore, algorithms using convex envelopes to underestimate

bilinear terms seek maximal domain reduction, making preprocessing methods helpful

in uncovering implicit bounds.

In their Quad algorithm, Lebbah & Rueher [60] used McCormick’s convex and concave

envelopes to relax the bilinear terms. This results in 4nb additional inequalities which

can added to the representation (5.56), increasing the total number of inequalities to

h = ny(nz + 1) + 4nb + 1 and the number of variables to n + nq + nb. The method of

Domes & Neumaier does not generate additional inequalities but McCormick’s method

may yield relaxations of higher quality.

5.7 Polynomial constraint satisfaction problems

We consider continuous constraint satisfaction problems of the form

G(x) ∈ F, x ∈ x, G(x) ∈ G(x). (5.61)

The m general constraint are interpreted as componentwise enclosures Gi(x) ∈ Fi

(i = 1, . . . ,m). This form includes equality constraints if Fi = [F i, F i] is a degenerate

interval (F i = F i), inequality constraints if one of the bounds is infinite and two–sided

constraints F i ≤ Gi(x) ≤ F i if both bounds are finite. For allowing uncertainties in the

constraint coefficients, we allow G(x) to vary in the given interval function G(x). Sim-

ilarly, the n bound constraints are interpreted as enclosures xj ∈ xj with j = 1, . . . , n.

Again, fixed variables and one-sided bounds on the variables are included as special

cases. Each x ∈ x for which the constraints of (5.61) are satisfied, is called a feasible

point or a solution of the constraints satisfaction problem. The set of all feasible points

is called the feasible domain. If the function G(x) has only quadratic, bilinear and linear

terms (5.61) is called a quadratic constraint satisfaction problems. If G(x) is only linear

in the variables we end up in the linear system given by (1.8). A linear system of the

form of (1.8) can be obtained by relaxing (5.61):
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Theorem 5.9. Every feasible point of the constraint satisfaction problem (5.61) satisfies

(1.8) iff for all x ∈ x and G(x) ∈ G(x) the inequalities

Ex−G(x) ∈ [b− F , b− F ] (5.62)

hold. In this case, the linear system (1.8) is a linear relaxation of (5.61).

If (5.62) holds, then

Ex ∈ b′ with b′ = b ∩ Ex (5.63)

and

G(x) ∈ F′ with F′ = F ∩G(x) ∩ [ inf(Ex)− b′ + F , sup(Ex)− b′ + F ] (5.64)

holds for all x ∈ x and G(x) ∈ G(x).

Proof. That the linear system (1.8) is a linear relaxation of (5.61) follows directly from

Theorem 5.8, with p(x) := G(x), c := F, h(x) := Ex, and d := b and for all G(x) ∈
G(x). By (5.50), every feasible point of (5.61) satisfies (1.8).

In addition to this Ex ∈ Ex holds for all x ∈ x and by (1.8) Ex ∈ b also holds for all

x ∈ x proving (5.63).

Since (5.63) is a linear relaxation of (5.61) by Theorem 5.9 the two-sided inequality

(5.62) holds, implying that

G(x) ∈ [Ex− b′ + F , Ex− b′ + F ]. (5.65)

Since Ex ∈ Ex for all x ∈ x, with (5.65) implies that

G(x) ∈ [ inf(Ex)− c+ F , sup(Ex)− c+ F ]. (5.66)

for all x ∈ x and for all G(x) ∈ G(x). From this, (5.64) follows since both G(x) ∈ G(x),

and G(x) ∈ F holds for all x ∈ x and for all G(x) ∈ G(x).

If G(x) is quadratic in x, the linear relaxations of (5.61) can be computed according

to the results of the previous section. If for each constraint the quadratic terms are

relaxed by the method of Kolev and the bilinear terms are eliminated by our approach,

the resulting linear system (1.8) has m inequalities and n variables. If the approach of

Lebbah & Rueher for the quadratic terms is combined with our approach for eliminating

the bilinear terms, the resulting linear system has at most m(3n + 4) inequalities and

2n variables. The original method of Lebbah & Rueher results in a linear system of at

most m(7n+ 4) inequalities and 3n variables. The methods discussed above can now be

applied to the linear relaxation in order to obtain tighter bounds on the variables. The
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following corollary shows how the relaxation and the new bounds on the variables can

be used to tighten the bounds of the constraints of (5.61).

If we have tightened the bounds on the variables, the bounds of the relaxation can

be tightened with (5.63). With (5.64) we may also tighten the bounds on the general

constraints of the original constraint satisfaction problem.

The Gauss-Jordan preconditioner Algorithm 5.3 from Section 5.3 can be also applied to

precondition a quadratic system. In GloptLab (see Chapter 2), the quadratic constraints

are represented as

Aq(x) ∈ F, x ∈ x, A ∈ A, (5.67)

where A ∈ Rm×n2+n is a (generally sparse) matrix, A represents the bounds for the

constraint coefficients, x is n-dimensional and F is m-dimensional. The linear, quadratic,

and bilinear monomials occurring in at least one of the constraints (but not the constant

term) are collected into the n2 + n dimensional column vector

q(x) := (x1, . . . , xn, x
2
1, . . . , x1xn, . . . , xnx1, . . . , x

2
n)T .

For this system the Gauss-Jordan preconditioner algorithm 5.3 can be applied.

All our methods can be applied after suitable preprocessing to arbitrary algebraic con-

straints. We can always transform a polynomial constraint to a collection of quadratic

constraints by introducing explicit intermediate variables, and the same holds for con-

straints involving roots, provided that we also add nonnegativity constraints to the

intermediate variables representing the roots. Rewriting an algebraic constraint satis-

faction problem as an equivalent problem with linear and quadratic constraints only

increases the number of variables, but allows one to apply the methods discussed in

this chapter. Of course, all techniques can be applied to the subset of quadratic (or

algebraic) constraints in an arbitrary constraint satisfaction problem.

How the different techniques presented in this chapter can be applied and combined to

solve quadratic constraint satisfaction problems is visualized in Figure (5.3).
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Figure 5.3: Rigorous filtering using linear relaxations.

5.8 Examples

We first give a simple example of a quadratic constraint satisfaction problem, demon-

strate linearization by Lebbah and Kolev and solve the arising linear system by both

linear contraction (see, Section 5.4) and linear bounding (see, Section 5.5).

Example 5.4. Let

x2
1 + x2

2 ≤ 25, x1 ∈ x1 = [4, 5], x2 ∈ x2 = [0, 5]. (5.68)
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We linearize the quadratic expression (5.68). Since both quadratic terms x2
1 and x2

2 have

positive coefficients we compute the tangents

t(xi) := mxi + d, t(xi) ≤ x2
i , m = 2x̃i, d = x̃2

i −mx̃i

for i = 1, 2 at the midpoints x̃1 = 4.5 and x̃2 = 2.5 of the intervals x1 and x2 obtaining

t(x1) = 9x1 − 20.25 ≤ x2
1, t(x2) = 5x2 − 6.25 ≤ x2

2. (5.69)

Figure 5.4: Example of solving a quadratic constraint satisfaction problem by linear
relaxation. The arrow indicates the reduction of the bound x2.

By Lebbah’s method we substitute the new variables x3 ∈ x2
1 and x4 ∈ x2

2 for the

terms x2
1 and x2

2 and get the linear relaxation

x3 + x4 ≤ 25,

9x1 − x3 ≤ 20.25

5x2 − x4 ≤ 6.25

x1 ∈ [4, 5], x2 ∈ [0, 5], x3 ∈ [16, 25], x4 ∈ [0, 25],

(5.70)

of the constraint satisfaction problem (5.68).

Then we can use linear contraction to obtain tighter bounds on x2: In the first step we

have
x3 + x4 ≤ 25, 16 ≤ x3, 0 ≤ x4 ⇒ x3 ≤ 25, x4 ≤ 9

9x1 − x3 ≤ 20.25, 4 ≤ x1 ⇒ 15.75 ≤ x3

5x2 − x4 ≤ 6.25, 0 ≤ x2 ⇒ − 6.25 ≤ x4,
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getting improved bounds x4 ∈ [0, 9] and in the second step

5x2 − x4 ≤ 6.25, − 9 ≤ −x4, 0 ≤ x2 ⇒ x2 ∈ [0, 3.05].

If we use the linear bounding and minimize x1, −x1, x2, and −x2 subject to the con-

straints (5.70) we obtain the approximate multiplier matrix Y which has all zero rows

expect for the last row Y4: =
(

0.2 0 0.2
)

corresponding to the objective −x2. The

matrix representation of (5.70) can be given as

Ex ≥ c, E =


0 0 −1 −1

−9 0 1 0

0 −5 0 1

 , c =
(
−25 −20.25 −6.25

)T
.

Since the first three rows of Y are zero, the first three of the inequalities Y E ≥ Y c are

trivial and the last one is

5x2 + 0.2x3 + 2.7 · 10−17x4 ≤ 6.25

can be solved by substituting the lower bounds for x3 and x4, obtaining x2 ≤ 3.005.

We use Kolev’s method to linearize the quadratic expression (5.68) by substituting

(5.69) into it, obtaining

9x1 − 20.25 + 5x2 − 6.25 ≤ x2
1 + x2

2 ≤ 25,

ending up in

9x1 + 5x2 ≤ 51.5 x1 ∈ [4, 5], x2 ∈ [0, 5].

From there a single step of linear contraction

9x1 + 5x2 ≤ 51.5 4 ≤ x1 ⇒ x2 ≤ 3.1,

yields improved bounds on x2.

If we use the linear bounding method we obtain the approximate multiplier matrix Y

which has all zero rows expect for the last row Y4: =
(

0.2 1.8
)

resulting in

x2 ≤ 10.3− 1.8x1 ≤ 10.3− 1.8x1 = 3.1.

The second example extends the first one by solving a simple system of separable con-

straint satisfaction problem.
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Example 5.5. Let

x2
1 + x1x2 + x2

2 ≤ 25, x1 ∈ x1, x1 = [4, 5], x2 ∈ x2, x2 = [0, 5]. (5.71)

Figure 5.5: Example of solving a separable constraint satisfaction problem by linear
relaxation. The arrow indicates the reduction of the bound x2.

By Lebbah’s method we compute the McCormick relaxations for the bilinear terms

and approximate the quadratic terms as in the previous example, obtaining

x3 + x4 + x5 ≤ 25,

4x2 − x3 ≤ 0,

5x1 + 5x2 − x3 ≤ 25,

9x1 − x4 ≤ 20.25,

5x2 − x5 ≤ 6.25,

x1 ∈ [4, 5], x2 ∈ [0, 5], x3 ∈ [0, 25], x4 ∈ [16, 25], x5 ∈ [0, 25].

(5.72)

Solving (5.72) with linear contraction results in x2 ≤ 2.25 while by solving with linear

bounding we get x2 ≤ 1.6944.

By Kolev’s method we first separate (5.71) by approximating the bilinear term x1x2

by linear terms obtaining

x2
1 + x2

2 + 2.5x1 + 4.5x2 ≤ 37.5,
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then we approximate the quadratic terms as in the previous example, ending up in

11.5x1 + 9.5x2 ≤ 64. (5.73)

Solving (5.73) with either linear contraction or with the linear bounding we get x2 ≤
1.8947.

5.9 Test Results

In this section we compare different linearization techniques. We use the following linear

relaxation methods to reduce the bounds of the different test problems:

identifier bilinear quadratic

LinCL constant linear

LinLL linear linear

LinQL quadratic linear

LinLN linear new inequalities

LinEL envelope linear

LinEN envelope new inequalities

whereby the bilinear column describes the technique for approximating the bilin-

ear terms and the quadratic column describes the technique for approximating the

quadratic terms.

After the linearization the three most promising variables are chosen, and linear solving

are used tho reduce the bound constraints (for details see Section 5.5). Each method

is applied to all test problems of a test set, one by one. If a method fails to reduce

the bound constraints for some of the test problems, these will be solved again with

the same method but with tighter bound constraints. With each retry the width of

the bound constraints are reduced by 33% but the retries are counted and the solution

times are summed up. The table below shows the average solution times (in seconds),

the minimum, the average and the maximum number of retires as well as the average of

the gain:

g :=
1
n

n∑
i=1

wid(x′i)
wid(xi)

where x are the original bounds on the n variables, and x′ the reduced bounds.

The first test consist of 200, two dimensional, quadratic, random generated problems.

Each problems has two equality constraints which intersect at least at the origin. We

set bound constraints for each variable ranging from -10 to 10.
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Linearization Test Results.

dimension n = 2

method time retry gain

LinCL 0.136 [0 1.345 3] 0.127

LinLL 0.159 [0 1.345 3] 0.127

LinQL 0.110 [0 0.515 3] 0.187

LinLN 0.128 [0 0.305 3] 0.186

LinEL 0.132 [0 0.6 3] 0.201

LinEN 0.102 [0 0 0] 0.388

The second test consist quadratic, random generated problems consisting equality con-

straints which intersect at least at the origin. The test parameters are shown in the

table below, followed by the test results.

Test case parameters.

name probs variables constraints

# bounds # relations types

Test 1 20 2 [− 20, 20] 2 equalities ellipsoids

Test 2 20 5 [− 1, 1] 5 equalities ellipsoids

Test 3 20 10 [− 0.1, 0.1] 10 equalities ellipsoids

Linearization Test Results.

dimen n = 2 n = 5 n = 10

method time retry gain time retry gain time retry gain

LinCL 0.134 [0 2.3 3] 0.107 0.260 [0 1 2] 0.019 0.185 [0 0 0] 0.054

LinLL 0.166 [0 2.3 3] 0.107 0.734 [0 1 2] 0.019 2.276 [0 0 0] 0.054

LinQL 0.137 [0 1.25 3] 0.174 0.287 [0 0.3 2] 0.040 0.511 [0 0 0] 0.070

LinLN 0.248 [0 1.65 3] 0.159 0.511 [0 0.3 1] 0.020 2.360 [0 0 0] 0.068

LinEL 0.140 [0 0.75 3] 0.225 0.193 [0 0 0] 0.095 0.568 [0 0 0] 0.153

LinEN 0.107 [0 0 0] 0.422 0.232 [0 0 0] 0.192 0.630 [0 0 0] 0.183

The third test consist of 200, two dimensional, quadratic, random generated problems.

Each problems has a single inequality constraint describing the boundary and the interior

of an ellipsoid through the origin. The bound constraints are set to [0, 3], no retries are

allowed and the number of problems where the methods did not improve the bound

constraints is listed in the column no gain.
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Linearization Test Results.

dimension n = 2

method time gain no gain

LinCL 0.061 0.221 96

LinLL 0.063 0.205 90

LinQL 0.065 0.218 98

LinLN 0.087 0.266 72

LinEL 0.080 0.257 87

LinEN 0.084 0.341 72

As the test show introducing new variables instead of approximating the bilinear terms

by constant linear or quadratic ones and the quadratic terms by constant or linear ones

yields more gain but is slower even in low dimensions.

Remark: The the idea of the Gauss-Jordan precoditioning and Bounding a polytope

came from Arnold Neumaier. The remaining Sections are my work.
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[26] N. S. Dimitrova and S. M. Markov. Über die intervall-arithmetische Berechnung

des Wertebereichs einer Funktion mit Anwendungen, Freiburger Intervall-Berichte.

Univ. Freiburg, 81:1–22, 1981.

[27] F. Domes. GloptLab – a configurable framework for the rigorous global solu-

tion of quadratic constraint satisfaction problems. Optimization Methods and

Software, 24:727–747, 2009. URL http://www.mat.univie.ac.at/~dferi/publ/

Gloptlab.pdf.

[28] F. Domes, M. Fuchs, and H. Schichl. The Optimization Test Environment. Opti-

mization Methods and Software, 2010. submitted. URL http://www.mat.univie.

ac.at/~dferi/testenv.html.

[29] F. Domes and A. Neumaier. A scaling algorithm for polynomial constraint sat-

isfaction problems. Journal of Global Optimization, 43:327–345, 2008. URL

http://www.mat.univie.ac.at/~dferi/publ/Scaling.pdf.

[30] F. Domes and A. Neumaier. Constraint propagation on quadratic constraints. Con-

straints, 2009. ISSN 1383–7133. URL http://www.mat.univie.ac.at/~dferi/

publ/Propag.pdf.

[31] F. Domes and A. Neumaier. Rigorous enclosures of ellipsoids and directed Cholesky

factorizations. submitted, 2009. URL http://www.mat.univie.ac.at/~dferi/

publ/Cholesky.pdf.

http://ssdi.di.fct.unl.pt/~pb/papers/ludi_constraints.pdf
http://ssdi.di.fct.unl.pt/~pb/papers/ludi_constraints.pdf
http://www-neos.mcs.anl.gov/
http://www-neos.mcs.anl.gov/
http://www.mat.univie.ac.at/~dferi/publ/Gloptlab.pdf
http://www.mat.univie.ac.at/~dferi/publ/Gloptlab.pdf
http://www.mat.univie.ac.at/~dferi/testenv.html
http://www.mat.univie.ac.at/~dferi/testenv.html
http://www.mat.univie.ac.at/~dferi/publ/Scaling.pdf
http://www.mat.univie.ac.at/~dferi/publ/Propag.pdf
http://www.mat.univie.ac.at/~dferi/publ/Propag.pdf
http://www.mat.univie.ac.at/~dferi/publ/Cholesky.pdf
http://www.mat.univie.ac.at/~dferi/publ/Cholesky.pdf


Bibliography 130

[32] F. Domes and A. Neumaier. Finding and verifying feasible points of polynomial

constraint satisfaction problems. in preparation, 2010. URL http://www.mat.

univie.ac.at/~dferi/publ/.

[33] F. Domes and A. Neumaier. Rigorous filtering using linear relaxations. in prepa-

ration, 2010. URL http://www.mat.univie.ac.at/~dferi/publ/.

[34] F. Domes and A. Neumaier. Using conic programs to solve quadratic constraint

satisfaction problems. in preparation, 2010. URL http://www.mat.univie.ac.

at/~dferi/publ/.

[35] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL – a modeling language for

mathematical programming, 2002. Software. URL http://www.ampl.com/.

[36] J. Garloff, C. Jansson, and A. Smith. Lower bound functions for polynomials.

Journal of Computational and Applied Mathematics, 157:207–225, 2003. URL

citeseer.ist.psu.edu/534450.html.

[37] C. Grandon, D. Daney, and Y. Papegay. Combining CP and interval methods

for solving the direct kinematic of a parallel robot under uncertainties. IntCP

06 Workshop, 2006. URL ftp://ftp-sop.inria.fr/coprin/daney/articles/

intcp06.pdf.

[38] L. Granvilliers and F. Benhamou. Realpaver: An interval solver using constraint

satisfaction techniques. ACM Transactions on Mathematical Software, 32:38–156,

2006. URL http://www.sciences.univ-nantes.fr/info/perso/permanents/

granvil/realpaver/.

[39] G. D. Hager. Solving large systems of nonlinear constraints with application to

data modeling. Interval Computations, 3:169–200, 1993.

[40] E. R. Hansen and G. W. Walster. Sharp bounds on interval polynomial roots.

Reliable Computing, 8:115–122, 2002.

[41] P. Van Hentenryck. A Gentle Introduction to Numerica. Artifical Intelligence,

103:209–235, 1998.

[42] P. Van Hentenryck, L. Michel, and F. Benhamou. Newton: constraint program-

ming over non-linear constraints. Sci. Program, 30:83–118, 1997.

[43] P. Van Hentenryck, L. Michel, and Y. Deville. Numerica. A modeling language for

global optimization. MIT Press, 1997.

[44] N. J. Higham. Accuracy and stability of numerical algorithms, chapter 10. Siam,

Philadelphia, 1996.

http://www.mat.univie.ac.at/~dferi/publ/
http://www.mat.univie.ac.at/~dferi/publ/
http://www.mat.univie.ac.at/~dferi/publ/
http://www.mat.univie.ac.at/~dferi/publ/
http://www.mat.univie.ac.at/~dferi/publ/
http://www.ampl.com/
citeseer.ist.psu.edu/534450.html
ftp://ftp-sop.inria.fr/coprin/daney/articles/intcp06.pdf
ftp://ftp-sop.inria.fr/coprin/daney/articles/intcp06.pdf
http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver/
http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver/


Bibliography 131

[45] E. Hyvönen and S. De Pascale. Interval computations on the spreadsheet. In R. B.

Kearfott and V. Kreinovich, editors, Applications of Interval Computations, pp.

169–209. Kluwer, 1996.

[46] C. Jansson. VSDP: A MATLAB software package for verified semidefinite pro-

gramming. In Conference paper of NOLTA 2006, p. 327330, 2006. URL http:

//www.ti3.tu-harburg.de/paper/jansson/Nolta06.pdf.

[47] C. Jansson and S. M. Rump. Rigorous solution of linear programming problems

with uncertain data. ZOR Methods and Models of Operations Research, 35:87111,

1991. URL http://www.ti3.tu-harburg.de/paper/rump/JaRu91.pdf.

[48] L. Jaulin. Interval constraint propagation with application to bounded-error esti-

mation. Automatica, 36:1547–1552, 2000. URL https://www.ensieta.fr/e3i2/

Jaulin/hull.pdf.

[49] L. Jaulin. Interval constraints propagation techniques for the simultaneous local-

ization and map building of an underwater robot, 2006. URL http://www.mat.

univie.ac.at/~neum/glopt/gicolag/talks/jaulin.pdf.

[50] L. Jaulin, M. Kieffer, I. Braems, and E. Walter. Guaranteed nonlinear estimation

using constraint propagation on sets. International Journal of Control, 74:1772–

1782, 1999. URL https://www.ensieta.fr/e3i2/Jaulin/observer.pdf.

[51] C. Jermann, Y. Lebbah, and D. Sam-Haroud. Interval analysis, constraint propa-

gation and applications. In F. Benhamou, N. Jussien, and B. O’Sullivan, editors,

Trends in Constraint Programming, chapter 4, pp. 223–259. ISTE, 2007.

[52] N. Jussien and V. Barichard. The PaLM system: explanation-based constraint pro-

gramming. In Proceedings of TRICS: Techniques for Implementing Constraint pro-

gramming Systems, a post-conference workshop of CP 2000, pp. 118–133, Septem-

ber 2000. URL http://www.emn.fr/jussien/publications/jussien-WCP00.

pdf.

[53] R. B. Kearfott. Decomposition of arithmetic expressions to improve the behavior

of interval iteration for nonlinear systems. Computing, 47:169–191, 1991.

[54] R. B. Kearfott. GlobSol user guide. Optimization Methods and Software, 24:

687–708, 2009.

[55] C. Keil. Lurupa - rigorous error bounds in linear programming. In Algebraic and

Numerical Algorithms and Computer-assisted Proofs, 2005.

[56] C. T. Kelley. Iterative methods for optimization – Matlab codes, 1999. Software.

URL http://www4.ncsu.edu/~ctk/matlab_darts.html.

http://www.ti3.tu-harburg.de/paper/jansson/Nolta06.pdf
http://www.ti3.tu-harburg.de/paper/jansson/Nolta06.pdf
http://www.ti3.tu-harburg.de/paper/rump/JaRu91.pdf
https://www.ensieta.fr/e3i2/Jaulin/hull.pdf
https://www.ensieta.fr/e3i2/Jaulin/hull.pdf
http://www.mat.univie.ac.at/~neum/glopt/gicolag/talks/jaulin.pdf
http://www.mat.univie.ac.at/~neum/glopt/gicolag/talks/jaulin.pdf
https://www.ensieta.fr/e3i2/Jaulin/observer.pdf
http://www.emn.fr/jussien/publications/jussien-WCP00.pdf
http://www.emn.fr/jussien/publications/jussien-WCP00.pdf
http://www4.ncsu.edu/~ctk/matlab_darts.html


Bibliography 132

[57] L. V. Kolev. Automatic computation of a linear interval enclosure. Reliable Com-

puting, 7(1):17–28, 2001.

[58] L. Krippahl and P. Barahona. PSICO: Solving protein structures with constraint

programming and optimization. Constraints, 7:317–331, 2002. URL http://ssdi.

di.fct.unl.pt/~pb/papers/ludi_constraints.pdf.

[59] Y. Lebbah. iCOs – Interval COnstraints Solver, 2003. URL http://ylebbah.

googlepages.com/icos.

[60] Y. Lebbah, C. Michel, and M. Rueher. A rigorous global filtering algorithm

for quadratic constraints. Constraints, 10:47–65, 2005. URL http://ylebbah.

googlepages.com/research.

[61] Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J-P. Merlet. Efficient and safe

global constraints for handling numerical constraint systems. SIAM Journal on

Numerical Analysis, 42(5):2076–2097, 2005. URL http://ylebbah.googlepages.

com/research.

[62] W. A. Lodwick. Constraint propagation, relational arithmetic in ai systems and

mathematical programs. Ann. Oper. Res, 21:143–148, 1989.
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