84 research outputs found

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    Adaptive Representations for Image Restoration

    Get PDF
    In the �eld of image processing, building good representation models for natural images is crucial for various applications, such as image restora- tion, sampling, segmentation, etc. Adaptive image representation models are designed for describing the intrinsic structures of natural images. In the classical Bayesian inference, this representation is often known as the prior of the intensity distribution of the input image. Early image priors have forms such as total variation norm, Markov Random Fields (MRF), and wavelets. Recently, image priors obtained from machine learning tech- niques tend to be more adaptive, which aims at capturing the natural image models via learning from larger databases. In this thesis, we study adaptive representations of natural images for image restoration. The purpose of image restoration is to remove the artifacts which degrade an image. The degradation comes in many forms such as image blurs, noises, and artifacts from the codec. Take image denoising for an example. There are several classic representation methods which can generate state- of-the-art results. The �rst one is the assumption of image self-similarity. However, this representation has the issue that sometimes the self-similarity assumption would fail because of high noise levels or unique image contents. The second one is the wavelet based nonlocal representation, which also has a problem in that the �xed basis function is not adaptive enough for any arbitrary type of input images. The third is the sparse coding using over- complete dictionaries, which does not have the hierarchical structure that is similar to the one in human visual system and is therefore prone to denoising artifacts. My research started from image denoising. Through the thorough review and evaluation of state-of-the-art denoising methods, it was found that the representation of images is substantially important for the denoising tech- nique. At the same time, an improvement on one of the nonlocal denoising method was proposed, which improves the representation of images by the integration of Gaussian blur, clustering and Rotationally Invariant Block Matching. Enlightened by the successful application of sparse coding in compressive sensing, we exploited the image self-similarity by using a sparse representation based on wavelet coe�cients in a nonlocal and hierarchical way, which generates competitive results compared to the state-of-the-art denoising algorithms. Meanwhile, another adaptive local �lter learned by Genetic Programming (GP) was proposed for e�cient image denoising. In this work, we employed GP to �nd the optimal representations for local im- age patches through training on massive datasets, which yields competitive results compared to state-of-the-art local denoising �lters. After success- fully dealt with the denoising part, we moved to the parameter estimation for image degradation models. For instance, image blur identi�cation uses deep learning, which has recently been proposed as a popular image repre- sentation approach. This work has also been extended to blur estimation based on the fact that the second step of the framework has been replaced with general regression neural network. In a word, in this thesis, spatial cor- relations, sparse coding, genetic programming, deep learning are explored as adaptive image representation models for both image restoration and parameter estimation. We conclude this thesis by considering methods based on machine learning to be the best adaptive representations for natural images. We have shown that they can generate better results than conventional representation mod- els for the tasks of image denoising and deblurring

    On Kernel Selection of Multivariate Local Polynomial Modelling and its Application to Image Smoothing and Reconstruction

    Get PDF
    This paper studies the problem of adaptive kernel selection for multivariate local polynomial regression (LPR) and its application to smoothing and reconstruction of noisy images. In multivariate LPR, the multidimensional signals are modeled locally by a polynomial using least-squares (LS) criterion with a kernel controlled by a certain bandwidth matrix. Based on the traditional intersection confidence intervals (ICI) method, a new refined ICI (RICI) adaptive scale selector for symmetric kernel is developed to achieve a better bias-variance tradeoff. The method is further extended to steering kernel with local orientation to adapt better to local characteristics of multidimensional signals. The resulting multivariate LPR method called the steering-kernel-based LPR with refined ICI method (SK-LPR-RICI) is applied to the smoothing and reconstruction problems in noisy images. Simulation results show that the proposed SK-LPR-RICI method has a better PSNR and visual performance than conventional LPR-based methods in image processing. © 2010 The Author(s).published_or_final_versio

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    A New Regularized Adaptive Windowed Lomb Periodogram for Time-Frequency Analysis of Nonstationary Signals With Impulsive Components

    Get PDF
    This paper proposes a new class of windowed Lomb periodogram (WLP) for time-frequency analysis of nonstationary signals, which may contain impulsive components and may be nonuniformly sampled. The proposed methods significantly extend the conventional Lomb periodogram in two aspects: 1) The nonstationarity problem is addressed by employing the weighted least squares (WLS) to estimate locally the time-varying periodogram and an intersection of confidence interval technique to adaptively select the window sizes of WLS in the time-frequency domain. This yields an adaptive WLP (AWLP) having a better tradeoff between time resolution and frequency resolution. 2) A more general regularized maximum-likelihood-type (M-) estimator is used instead of the LS estimator in estimating the AWLP. This yields a novel M-estimation-based regularized AWLP method which is capable of reducing estimation variance, accentuating predominant time-frequency components, restraining adverse influence of impulsive components, and separating impulsive components. Simulation results were conducted to illustrate the advantages of the proposed method over the conventional Lomb periodogram in adaptive time-frequency resolution, sparse representation for sinusoids, robustness to impulsive components, and applicability to nonuniformly sampled data. Moreover, as the computation of the proposed method at each time sample and frequency is independent of others, parallel computing can be conveniently employed without much difficulty to significantly reduce the computational time of our proposed method for real-time applications. The proposed method is expected to find a wide range of applications in instrumentation and measurement and related areas. Its potential applications to power quality analysis and speech signal analysis are also discussed and demonstrated.published_or_final_versio

    Fully Unsupervised Image Denoising, Diversity Denoising and Image Segmentation with Limited Annotations

    Get PDF
    Understanding the processes of cellular development and the interplay of cell shape changes, division and migration requires investigation of developmental processes at the spatial resolution of single cell. Biomedical imaging experiments enable the study of dynamic processes as they occur in living organisms. While biomedical imaging is essential, a key component of exposing unknown biological phenomena is quantitative image analysis. Biomedical images, especially microscopy images, are usually noisy owing to practical limitations such as available photon budget, sample sensitivity, etc. Additionally, microscopy images often contain artefacts due to the optical aberrations in microscopes or due to imperfections in camera sensor and internal electronics. The noisy nature of images as well as the artefacts prohibit accurate downstream analysis such as cell segmentation. Although countless approaches have been proposed for image denoising, artefact removal and segmentation, supervised Deep Learning (DL) based content-aware algorithms are currently the best performing for all these tasks. Supervised DL based methods are plagued by many practical limitations. Supervised denoising and artefact removal algorithms require paired corrupted and high quality images for training. Obtaining such image pairs can be very hard and virtually impossible in most biomedical imaging applications owing to photosensitivity and the dynamic nature of the samples being imaged. Similarly, supervised DL based segmentation methods need copious amounts of annotated data for training, which is often very expensive to obtain. Owing to these restrictions, it is imperative to look beyond supervised methods. The objective of this thesis is to develop novel unsupervised alternatives for image denoising, and artefact removal as well as semisupervised approaches for image segmentation. The first part of this thesis deals with unsupervised image denoising and artefact removal. For unsupervised image denoising task, this thesis first introduces a probabilistic approach for training DL based methods using parametric models of imaging noise. Next, a novel unsupervised diversity denoising framework is presented which addresses the fundamentally non-unique inverse nature of image denoising by generating multiple plausible denoised solutions for any given noisy image. Finally, interesting properties of the diversity denoising methods are presented which make them suitable for unsupervised spatial artefact removal in microscopy and medical imaging applications. In the second part of this thesis, the problem of cell/nucleus segmentation is addressed. The focus is especially on practical scenarios where ground truth annotations for training DL based segmentation methods are scarcely available. Unsupervised denoising is used as an aid to improve segmentation performance in the presence of limited annotations. Several training strategies are presented in this work to leverage the representations learned by unsupervised denoising networks to enable better cell/nucleus segmentation in microscopy data. Apart from DL based segmentation methods, a proof-of-concept is introduced which views cell/nucleus segmentation from the perspective of solving a label fusion problem. This method, through limited human interaction, learns to choose the best possible segmentation for each cell/nucleus using only a pool of diverse (and possibly faulty) segmentation hypotheses as input. In summary, this thesis seeks to introduce new unsupervised denoising and artefact removal methods as well as semi-supervised segmentation methods which can be easily deployed to directly and immediately benefit biomedical practitioners with their research

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore