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A New Regularized Adaptive Windowed Lomb
Periodogram for Time–Frequency Analysis of

Nonstationary Signals With Impulsive Components
Zhiguo Zhang, Member, IEEE, Shing-Chow Chan, Member, IEEE, and Chong Wang

Abstract—This paper proposes a new class of windowed Lomb
periodogram (WLP) for time–frequency analysis of nonstationary
signals, which may contain impulsive components and may be
nonuniformly sampled. The proposed methods significantly ex-
tend the conventional Lomb periodogram in two aspects: 1) The
nonstationarity problem is addressed by employing the weighted
least squares (WLS) to estimate locally the time-varying peri-
odogram and an intersection of confidence interval technique to
adaptively select the window sizes of WLS in the time–frequency
domain. This yields an adaptive WLP (AWLP) having a bet-
ter tradeoff between time resolution and frequency resolution.
2) A more general regularized maximum-likelihood-type (M-)
estimator is used instead of the LS estimator in estimating the
AWLP. This yields a novel M-estimation-based regularized AWLP
method which is capable of reducing estimation variance, ac-
centuating predominant time–frequency components, restraining
adverse influence of impulsive components, and separating impul-
sive components. Simulation results were conducted to illustrate
the advantages of the proposed method over the conventional
Lomb periodogram in adaptive time–frequency resolution, sparse
representation for sinusoids, robustness to impulsive components,
and applicability to nonuniformly sampled data. Moreover, as
the computation of the proposed method at each time sample
and frequency is independent of others, parallel computing can
be conveniently employed without much difficulty to significantly
reduce the computational time of our proposed method for real-
time applications. The proposed method is expected to find a wide
range of applications in instrumentation and measurement and
related areas. Its potential applications to power quality analysis
and speech signal analysis are also discussed and demonstrated.

Index Terms—Adaptive window selection, Lomb periodogram,
M-estimation, nonuniformly sampled data, power quality analy-
sis, regularization, time–frequency analysis (TFA), weighted least
squares (WLS).

I. INTRODUCTION

T IME–FREQUENCY ANALYSIS (TFA) techniques are
widely used in a variety of fields of instrumentation and

measurement, such as power quality analysis [1]–[4], fault de-
tection [5], biometric authentication [6], etc. It aims to discover
time-varying spectral features of nonstationary data for further
processing. Numerous TFA methods have been proposed with
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different strengths/limitations and targeted applications, and
most of them stem from two types of spectral estimation meth-
ods: nonparametric and parametric. For nonparametric spec-
tral estimation, the signal is assumed to consist of sinusoidal
components, and their magnitudes and phases are estimated
by means of filtering as in periodogram and minimum vari-
ance spectral estimation. In parametric methods, the signal is
assumed to be generated by a certain model, and the spectrum
is estimated from the model parameters. For a thorough dis-
cussion of classical spectral estimation methods, see [7]; for an
introduction to modern spectral estimation, see [8]. See [9] for
a recent review on nonparametric and parametric TFA methods.
Basically, a high-performance TFA method should possess two
desirable properties: 1) able to achieve as high as possible
the time and frequency resolution for nonstationary data and
2) able to deal with various data corruptions and degradations,
such as noise, outliers, impulsive components, missing data,
and nonuniform samples.

In the context of nonparametric TFA, which is the focus of
this paper, the first property is usually realized by the selection
of window or kernel function in TFA methods, which serves
as a time–frequency filter to extract the desired time–frequency
sinusoidal component. In short-time Fourier transform (STFT),
a window with an appropriate size should be chosen to balance
between time resolution and frequency resolution [10]. Cohen’s
class TFA methods use a kernel function to mitigate cross-
term interference while keeping frequency features [11]. The
wavelet transform (WT) addresses the window selection prob-
lem by using a short window at high frequencies for good time
resolution and a long window at low frequencies for good fre-
quency resolution [12]. However, WT has a degraded frequency
resolution for high-frequency components and a degraded time
resolution for low-frequency components. Intuitively, the win-
dow should vary in the time–frequency domain in order to adapt
to local time–frequency characteristics of the data. Typically, a
long time window is desirable for identifying slowly varying
sinusoidal components, while a small window is preferred for
estimating fast-varying frequency components.

The second property determines the applicability and ro-
bustness of TFA methods in practice. Real-world data are
usually contaminated with different types of noise and inter-
ferences. A good TFA method should be able to effectively
restrain unwanted noise components and accentuate useful
signal components. Since most TFA methods implicitly employ
least squares (LS) estimation, they are sensitive to impulsive
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components with large amplitudes in time domain. Conse-
quently, the estimated time–frequency representation may be
degraded severely. Another problem of most TFA methods is
that they were devised for uniformly sampled data and cannot
be directly adopted for analyzing nonuniformly sampled data.
Nonuniform data are commonly encountered, which may be
acquired naturally by random/irregular sampling system or
obtained unexpectedly due to missing data [13]. Currently,
TFA of nonuniformly sampled data is generally achieved by
two steps: 1) to resample or interpolate nonuniform data into
uniform grids and 2) to perform conventional TFA methods
on the resampled or interpolated uniform data. Unfortunately,
the resampling operation induces unwanted low-pass filtering
and artifacts in the spectrum of nonuniform data [14], [15].
Spectral analysis and TFA of nonuniformly sampled data are
of increasing interest in many related areas [16]–[19]. Thus, it
is necessary to develop a TFA method suitable for dealing with
nonuniformly sampled data.

In this paper, we propose a new class of windowed Lomb-
periodogram (WLP) TFA methods for achieving the two de-
sirable properties discussed earlier, i.e., adaptive and high
time–frequency resolution, robustness to impulsive compo-
nents, applicability to nonuniform data, etc. It is based on the
Lomb periodogram, which is an LS-based spectral analysis
method for possibly nonuniformly sampled data [20]. The basic
idea of Lomb periodogram is to estimate the amplitude of
a given sinusoid with a certain frequency based on an LS
fitting of the data samples to the sinusoid. We use the Lomb
periodogram in our work because of the following advantages.
First, it is based on a linear model fitting, which is a con-
venient framework for further generalizations and theoretical
analyses. Second, it reduces to the STFT if the signal is
uniformly sampled and the window size is fixed. Moreover,
if the frequency points to be evaluated are also uniformly
spaced, discrete Fourier transform and, hence, fast Fourier
transform (FFT) can be used. Third, it has unique advantages
such as applicability to nonuniformly sampled data and parallel
implementation, since estimation at selected frequency points
can be done in parallel. Fourth, it has found a wide range
of practical applications [16]–[19]. However, the studies in
[16]–[18] only used Lomb periodogram (no analysis window
is adopted to localize periodogram) for spectral analysis of
stationary nonuniform data, so that they are not suitable for
TFA of nonstationary data with time-varying frequency com-
ponents. In [19], recursive estimation of time-varying Lomb
periodogram based on recursive LS was proposed, but it can
only calculate Lomb periodogram at sampling time points and it
does not study the selection of window (i.e., forgetting factor in
recursive LS) for optimized time–frequency resolution. In our
preliminary work [21], we extended the Lomb periodogram to
analyze time-varying spectral characteristics of nonstationary
nonuniformly sampled data, and the results were encouraging.
This motivates us to perform an in-depth study in this paper
on the asymptotic performance of this locally adaptive Lomb-
periodogram-based TFA and to further extend it with a more
general regularized maximum-likelihood-type estimation [22],
[23] to address the two desirable properties mentioned earlier.
Moreover, a novel practical application of the proposed TFA

on power quality monitoring is studied to illustrate its potential
usefulness.

More precisely, the proposed class of WLP methods signif-
icantly extends the Lomb periodogram in the following two
aspects.

1) To better estimate the time-varying periodogram of non-
stationary data (the nonstationarity problem), we employ
a sliding window to select short-time data segments for
estimating the Lomb periodogram locally by a weighted
LS (WLS) fitting of the data segment to a given sinusoid.
The proper selection of a locally adaptive window size
of this WLP is of great importance, since it affects the
tradeoff between time resolution and frequency resolu-
tion. In this paper, this tradeoff problem is studied in-
depth. In particular, we derive asymptotic expressions
for the bias and variance of the WLS estimator. The
asymptotic expressions reveal that both the bias and
variance are functions of the window bandwidth and there
exists an optimal local bandwidth which minimizes the
mean squared error (MSE). Since the optimal bandwidth
involves quantities that may not be available in practice,
we propose to approximate the optimal bandwidth by
means of an intersection of confidence interval (ICI) tech-
nique [24]–[31]. With the ICI technique, varying window
size can be adaptively determined in the time–frequency
domain for WLP, resulting in an adaptive WLP (AWLP)
with a good tradeoff between time resolution and fre-
quency resolution.

2) We adopt a more general regularized maximum-
likelihood-type (M-) estimator [22], [23], instead of the
LS estimator, in estimating the AWLP, and this yields an
M-estimation-based regularized AWLP (ME-RAWLP)
method with improved applicability and robustness. The
regularized M-estimator is a generalization of the LS
estimator by incorporating a regularization term and
using an M-estimation cost function. The regulariza-
tion technique can considerably reduce the estimation
variance and accentuate sinusoidallike components for
signals with predominant frequency contents at the ex-
pense of a small bias. Some regularization techniques,
such as L1 regularization [32] and smoothly clipped
absolute deviation (SCAD) [22], can produce sparse
representations by shrinking small coefficients toward
zero. Thus, regularization is particularly suitable for esti-
mating time–frequency representations of sinusoidallike
data, where only a few predominant frequency com-
ponents exist. Computer simulations to be presented
in Section VI show that the SCAD regularization is
more suitable than L2 and L1 regularizations because
it is unbiased for large coefficients. On the other hand,
the M-estimation cost function can suppress possible
impulsive components in the data, which considerably
degrade the time–frequency representations of sinu-
soidallike components when quadratic LS cost function is
used. Furthermore, unlike relevant studies which simply
restrain or remove impulsive components [33], this study
assumes that impulsive components may also contain
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meaningful information and that they should be separated
from the sinusoidal data and be represented in time do-
main. Therefore, we propose to reconstruct the sinusoidal
components from the ME-RAWLP and then estimate
the impulsive components from the difference between
the reconstructed sinusoidallike data and the observed
data. Finally, the analysis of nonstationary data using the
ME-RAWLP method leads to a time–frequency repre-
sentation for sinusoidal components and a time-domain
representation for impulsive components. Such signals
are frequently encountered in power quality monitoring
and recognition [34]. To demonstrate inherent parallelism
of the proposed method, we have implemented the pro-
posed method in parallel using graphics processing units
(GPUs) and found that the computational time can be dra-
matically reduced, owing to the parallel implementation.

Simulation results show that the proposed RAWLP method
offers superior performance in the following aspects:

1) achieving better time and frequency resolution than WLP
with a fixed window support;

2) enhancing the predominant sinusoidallike components by
suppressing trivial components and noise;

3) avoiding unwanted low-pass effects which are brought
about by conventional resampling-based TFA methods
for nonuniformly sampled data;

4) restraining the adverse effect of impulsive components
on the TFA and allowing them to be reconstructed sep-
arately;

5) allowing parallel implementation and facilitating real-
time applications.

In addition, compared with STFT, the proposed RAWLP
method has two advantages: 1) It can achieve better
time–frequency resolution by selecting adaptive windows, and
2) it can avoid artifacts induced by interpolation when dealing
with nonuniformly sampled data. It should be noted that the
proposed RAWLP method forms a useful framework, which
can be reduced or simplified to a class of AWLP methods
(such as LS-RAWLP, ME-AWLP, etc.) with different perfor-
mance/complexity tradeoffs by adopting different cost function
in fitting the linear model. The good performance of this class of
AWLP methods is also illustrated through its potential applica-
tion in power quality analysis. Simulation results show that ME-
RAWLP can effectively identify and disentangle oscillatory
transients and impulsive transients from fundamental 50-Hz
power signals.

This paper is organized as follows. In Section II, the Lomb
periodogram is briefly reviewed to motivate the development of
the WLP. Section III is devoted to the bias-variance tradeoff of
the WLP and the selection of locally adaptive window for WLP
using the ICI technique. The incorporation of regularization and
M-estimation techniques to obtain the proposed ME-RAWLP
method is detailed in Section IV. Other practical issues in ap-
plying the proposed WLP methods are discussed in Section V.
Simulation results and comparisons are described in Section VI.
Finally, conclusions are drawn in Section VII.

II. WLS-BASED WLP

Suppose that a set of discrete-time noisy samples xn, n =
1, 2, . . . , N , is acquired by sampling a continuous-time signal
at sampling time instants tn, which are possibly nonuniformly
distributed. The Lomb periodogram P (ω) is computed by an
LS fitting of the data xn by a sinusoid with a given frequency
ω. More precisely, the data xn are described by the following
linear regression model:

xn = a(ω) cos(ωtn) + b(ω) sin(ωtn) + e(tn)

=φT(tn, ω)β(ω) + e(tn) (1)

where xn is the response variable, φ(tn, ω) = [cos(ωtn),
sin(ωtn)]T is the explanatory variable, and β(ω) = [a(ω),
b(ω)]T is the regression coefficient vector. Assuming that the
additional components e(tn) are a zero-mean Gaussian process,
the coefficient vector β(ω) can be obtained by minimizing the
MSE as

β̂(ω) = arg min
β

N∑
n=1

e2(tn)

= arg min
β

N∑
n=1

[
xn − φT(tn, ω)β(ω)

]2
= arg min

β
‖X − Φ(ω)β(ω)‖2

2 (2)

where X = [x1, x2, . . . , xn]T and Φ(ω) =[
cos(ωt1), cos(ωt2), . . . , cos(ωtN )
sin(ωt1), sin(ωt2), . . . , sin(ωtN )

]T

. The LS solution

to the aforementioned function is given by

β̂(ω) =
[
ΦT(ω)Φ(ω)

]−1
ΦT(ω)X. (3)

The Lomb periodogram at frequency ω can then be computed
from the LS-based estimate of β̂(ω) as

P (ω) =
1
N

β̂
T
(ω)ΦT(ω)Φ(ω)β̂(ω). (4)

Usually, P (ω) is computed over a dense set of frequency
points to provide a spectral distribution of the signal in
the frequency domain. For a sinusoidallike signal which
may contain multiple components, the number of sinusoidal
components and their frequencies can be determined by
detecting significantly dominant peaks of the Lomb peri-
odogram using, for example, Bayesian information crite-
rion [15]. At each dominant frequency ω, the estimated
β̂(ω) can be used to reconstruct a sinusoidal waveform
of frequency ω as xn,ω = a(ω) cos(ωtn) + b(ω) sin(ωtn) =
A(ω) sin(ωtn + ϕ(ω)), where A(ω) =

√
a2(ω) + b2(ω) and

ϕ(ω) = arctan[a(ω)/b(ω)] are the corresponding amplitude
and phase, respectively. These sinusoidal components can be
reconstructed separately at each dominant frequency, and their
sum approximates the multicomponent sinusoidal signal. An
important advantage of the Lomb periodogram is that it is able
to detect frequency components larger than half of the average
sampling frequency of nonuniformly sampled data (i.e., the
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Nyquist frequency of uniformly sampled data) [14]. In fact, for
nonuniform data, the highest frequency that can be identified by
the Lomb periodogram is � = π/ΔTmin, where ΔTmin is the
minimum sampling interval in the whole data.

The Lomb periodogram can be extended to perform TFA
for nonstationary data with time-varying spectrum. At a given
time instant τ , a time window around τ is applied to the data
to localize the spectral information. The time window can be
obtained by scaling a basis window function w(·) by a band-
width parameter of h, i.e., wh(t− τ) = (1/h)wh((1/h)(t−
τ)). The bandwidth h controls the effective size of the window
and, hence, the number of neighboring data around τ used to
estimate the periodogram. For a window wh(t− τ), the cost
function of (2) becomes

β̂(τ, ω) = arg min
β

N∑
n=1

wh(tn − τ)
[
xn − φT(tn, ω)β(τ, ω)

]2
= arg min

β

∥∥∥W̃ (X − Φ(ω)β(τ, ω))
∥∥∥2

2
(5)

where β(τ, ω) = [a(τ, ω), b(τ, ω)]T is the local coefficient vec-
tor and W̃ = diag{[√wh(t1 − τ), . . . ,

√
wh(tn − τ)]T}. The

estimation of β(τ, ω) is a WLS fitting problem, and its solution
is given by

β̂(τ, ω) =
[
ΦT(ω)WΦ(ω)

]−1
ΦT(ω)WX (6)

where W = W̃W̃ . If we evaluate the Lomb periodogram
at a set of uniformly distributed evaluated time instants
τm, m = 1, 2, . . . ,M , a WLP will be obtained, providing a
time–frequency representation for the data. The WLP can be
directly used for dealing with nonuniformly sampled data,
which is an important advantage compared with conventional
TFA methods. Another useful property of the WLP is that it
is well suited for analyzing sinusoidal data, since it is based
on a fitting to sinusoids. The reconstruction of a sinusoidal
signal with time-varying spectrum from WLP can be achieved
by a pointwise reconstruction. More precisely, at each evaluated
time instant, we estimate the Lomb periodogram at a set of
frequency points using windowed data, where the spectrum
is assumed to be fixed, and then reconstruct the windowed
data using the most dominant sinusoidal component(s). The
reconstructed windowed data at the evaluated time instant are
then divided by the window weight and retained as the recon-
structed value for the whole data at this time. By conducting the
reconstruction at each time instant, we can reconstruct a signal
which may contain time-varying sinusoidal components.

A main problem of the WLP method is the selection of an ap-
propriate window size. As mentioned before, the performance
of WLP is greatly influenced by the bandwidth h, and a locally
adaptive bandwidth is highly desirable. In the next section, we
shall derive expressions for the asymptotic bias and variance
of the WLS estimator in (6), mainly to illustrate theoretically
how the window size determines the WLP and to validate the
existence of a local optimal window size.

Finally, it should be noted that the Lomb periodogram fo-
cuses on the estimation of one frequency at a time using the

linear model in (1). In general, the estimation may not be
completely white, and a more complete linear model consisting
of a dense set of sinusoidal components may be required. To
reduce the estimation variance, regularization techniques have
to be used. Consequently, the arithmetic complexity required is
rather high, and it cannot be parallelized easily. In the AWLP
to be introduced later, we adopt the simplified linear model in
(1) and estimate the bandwidth and regularization parameter
for each sinusoidal component independently. Therefore, the
arithmetic complexity is considerably reduced, and the esti-
mation at each frequency can be easily parallelized for imple-
mentation in hardware, digital signal processors (DSPs), and
GPUs. Moreover, we found that the performance of the AWLP
is satisfactory, particularly for time–frequency representations
of sinusoidallike data, where only a few predominant frequency
components exist.

III. ADAPTIVE WINDOW SELECTION IN WLP

A. Asymptotic Bias and Variance of WLS

The underlying relationship between the coefficient estimate
and the window size can be revealed by asymptotic analysis
of the WLS estimator in (6). This falls into the more general
local polynomial modeling estimator recently proposed
in [28] and [29]. Based on these works, we have derived
the asymptotic expressions for the bias and variance of
(6) and have validated them in a supplementary material
(http://www.eee.hku.hk/~zgzhang/publication/tim2011_supp.
pdf). It is shown that the asymptotic bias and variance of the
lth coefficient β̂l(τ, ω), l = 1 or 2 (β̂1 = â and β̂2 = b̂), are,
respectively

Bias
(
β̂l(τ, ω)

)
=
hνw

νw
β′

l(τ, ω) + oP (h) (7)

V ar
(
β̂l(τ, ω)

)
=

ν̃wσ
2(τ)

hNf(τ)ν2
wφ

2
l (τ, ω)

+ oP

(
1
Nh

)
(8)

where νw =
∫

υ w(υ)dυ, νw =
∫

υ υ
2w2(υ)dυ, ν̃w =∫

υ w
2(υ)dυ, β′

l is the first derivative of βl, f(τ) is the
sampling density at τ , and σ2(τ) is the variance of the
estimation residual of the LS fitting.

It can be seen from (7) and (8) that both the estimation bias
and variance are functions of the bandwidth h. As h increases,
the squared bias will increase while the variance will decrease.
Since the MSE of the WLS estimator is the sum of squared bias
and variance as

MSE
(
β̂l(τ, ω)

)
= Bias2

(
β̂l(τ, ω)

)
+ V ar

(
β̂l(τ, ω)

)
(9)

there exists a locally optimal bandwidth h+(τ, ω) to minimize
the MSE criterion. By setting the derivative of (9) with respect
to h to zero, the following optimal bandwidth at (τ, ω) is
obtained:

h+
l (τ, ω) =

{
ν̃wσ

2(τ)
2Nf(τ)φ2

l (τ, ω) [β′
l(τ, ω)]2 ν2

w

}1/3

. (10)
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It can be seen that all the variables in the right side of (10)
are inherent either in data or in the basis kernel so that the
existence of an optimal asymptotic bandwidth is validated.
However, this result, although useful in analytical work, cannot
be used directly in practice because some quantities in (10),
such as β′

l(τ, ω), are difficult to be determined accurately.
Moreover, in the context of spectral estimation, the input, which
is the sinusoid with known frequency, is deterministic, and
as h→ 0 in the asymptotic analysis, it can only capture the
local characteristics of a sinusoid rather than its long-range
behavior. This can be seen from (10) that h+

l (τ, ω) involves the
local power of the sinusoidal function at location τ , φ2

l (τ, ω).
Therefore, in order to get a better result by capturing the long-
range behavior, or in other words overcome the limitation of
the requirement of the asymptotic analysis, a “data-driven”
technique is essential to approximate the optimal bandwidth
from a finite set of possible bandwidths with wider ranges of
values.

B. Adaptive Varying Bandwidth Selection by ICI

In this paper, we employ an ICI technique to estimate the
optimal bandwidth. The ICI technique is an empirical band-
width selection technique first proposed in [25], and it has been
successfully applied in many areas, such as data smoothing
[26], image processing [27], and TFA [29]. Numerous adaptive
window selection methods exist, and the ICI technique is
chosen for its advantages of low arithmetic complexity and
good performance in various conditions [26]. The ICI technique
was initially proposed based on the assumption of Gaussianity
of residuals, which may not hold when calculating the Lomb
periodogram of multiple sinusoidal or nonsinusoidal signals.
However, it has been shown in [30] and [31] that the ICI
technique can still achieve decent results for non-Gaussian
residuals, and thus, it is adopted in this study.

The ICI technique starts from a set of prescribed bandwidth
parameters in an ascending order

H = {h1 < h2 < · · · < hJ} (11)

where J is the number of candidate bandwidths. Then, the ICI
technique determines a suboptimal bandwidth (the “optimal”
one in the bandwidth set) by comparing the confidence intervals
of the estimates with different bandwidths in the set. The confi-
dence intervals Dj = [Lj , Uj ] are obtained from the estimated
β̂l(τ, ω;hj) with different bandwidth hj

Uj = β̂l(τ, ω;hj) + Γ
√
V ar

(
β̂l(τ, ω;hj)

)
(12)

Lj = β̂l(τ, ω;hj) − Γ
√
V ar

(
β̂l(τ, ω;hj)

)
(13)

where Γ is a threshold parameter used to adjust the width
of the confidence interval. For example, Γ = 2.58 implies a
99% confidence interval. In practice, we select Γ from a set

of threshold values {Γ1,Γ2, . . . ,ΓL} as the one that minimizes
the sum of the weighted squared residuals [24]

Γ = arg min
Γ

⎧⎨⎩
N∑

n=1

(
xn − φT(tn, ω)β̂(Γ)(τ, ω)

1 − wh(tn − τ)

)2
⎫⎬⎭ (14)

where β̂(Γl) is the coefficient estimated using the ICI technique
with the threshold parameter Γl.

Because the squared bias increases and variance decreases
with the increase of h, the length of confidence interval will
gradually decrease with h while the center of the interval
remains more or less fixed. When h is increased to a point where
the observations cannot be satisfactorily modeled, a large bias
is produced, and the confidence interval will no longer intersect
those with smaller values of h. Motivated by this observation,
the ICI technique examines the following quantities from the
confidence intervals in order to detect this sudden change:

Lj =
{

0, for j = 1
max[Lj−1, Lj ], for j = 2, 3, . . . , J

U j =
{

0, for j = 1
min[U j−1, Uj ], for j = 2, 3, . . . , J (15)

where Lj is the largest lower bound of the confidence interval
for bandwidth up to hj while Um is the corresponding upper
bound. The largest value of these j’s for which U j ≥ Lj gives
the desirable bandwidth h+

l (τ, ω) because the confidence inter-
vals no longer intersect with each other above the bandwidth
h+

l (τ, ω).
In the ICI technique, V ar(β̂l(τ, ω)) has to be approximated

to construct the confidence intervals in (12) and (13). Assuming
local homoscedasticity (i.e., the noise variance is identical in
the window), a finite-sample approximation of the covariance
matrix of β̂ (τ and ω are omitted for notational simplicity) can
be derived from (6) as

Cov(β̂) =E

{[
β̂ − E(β̂)

] [
β̂ − E(β̂)

]T}
= (ΦTWΦ)−1ΦTWE

[
(X − m)(X − m)T

]
× WΦ(ΦTWΦ)−1

= (ΦTWΦ)−1ΦTWΣσWΦ(ΦTWΦ)−1

= (ΦTWΦ)−1ΦTWWΦ(ΦTWΦ)−1σ2(τ) (16)

where Σσ = diag{σ2(t1), σ2(t2), . . . , σ2(tN )}. The residual
variance σ2(τ) is estimated as the normalized weighted residual
sum of squares [35]

σ̂2(τ) =

∥∥∥W (X − Φβ̂)
∥∥∥2

2

tr
{
W − WΦ(ΦTWΦ)−1ΦTW

} . (17)

With (16) and (17), the variance of β̂l(τ, ω;hj) can be obtained,
and the ICI technique can be implemented to select a subopti-
mal bandwidth from the set H .

The ICI technique selects bandwidths h+
1 (τ, ω) and h+

2 (τ, ω)
for a(τ, ω) and b(τ, ω) separately. However, because a(τ, ω)
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and b(τ, ω) are estimated jointly (using one common band-
width), not separately (using different bandwidths) in one WLS
estimation, h+

1 (τ, ω) and h+
2 (τ, ω) will be combined (gen-

erally, averaged [29]) to produce the suboptimal bandwidth
for the coefficient vector [a(τ, ω), b(τ, ω)]T, i.e., h+(τ, ω) =
[h+

1 (τ, ω) + h+
2 (τ, ω)]/2.

As observed in [28] and [29], the varying suboptimal
bandwidth estimated by the ICI technique usually exhibits
considerable variability since it is based on a finite-sample
approximation of the local noise variance. Hence, h+(τ, ω)
can be further smoothed in the time–frequency domain to
reduce the variance. Although there are a number of meth-
ods for smoothing a 2-D signal, it is still desirable to avoid
over- or undersmoothing. This can be achieved by performing
a steering-kernel-based local polynomial regression with ICI
method (SK-LPR-ICI) [27], which was originally proposed
for image smoothing. The SK-LPR-ICI method employs steer-
ing kernels with local orientation and adaptive scale to adapt
better to local characteristics of 2-D signals. Therefore, the
SK-LPR-ICI method can effectively suppress the noise while
preserving well the local information, making it a suitable
technique for smoothing the 2-D bandwidth function h+(τ, ω).
If it is required to calculate the WLP at each frequency in
parallel to reduce the computational time, then bandwidth can
be smoothed only along the time axis.

We now summarize the proposed AWLP as follows.

Step 1) At each evaluated time–frequency point (τ, ω), the
coefficient β̂(τ, ω;hj) is calculated by (6) with each
bandwidth hj taken from H in (11).

Step 2) An suboptimal bandwidth h+(τ, ω) is estimated us-
ing the ICI technique (12)–(15) based on the esti-
mated β̂(τ, ω;hj), j = 1, . . . , J .

Step 3) The 2-D bandwidth function h+(τ, ω) is further
smoothed by the SK-LPR-ICI method to obtain a
smoothed bandwidth function h̃+(τ, ω).

Step 4) The final coefficient estimate β̂(τ, ω; h̃+(τ, ω)) is
obtained using WLS with h̃+(τ, ω).

IV. ME-RAWLP

The selection of bandwidth in WLS to approach the mini-
mum MSE has been addressed in the previous section. How-
ever, it is still desirable to further lower the variance and the
MSE of the WLS estimator so as to accentuate predominant
time–frequency components in WLP. This is also useful in
situation when the number of data samples is limited. In ad-
dition, due to the use of LS criterion in the fitting process,
impulsive components, which appear as outliers to the model,
will significantly affect the bandwidth selection, and hence, the
periodogram will be computed. These motivate us to adopt a
more general regularized maximum-likelihood-type (M-) es-
timator instead of the LS estimator to compute the Lomb
periodogram. The regularized M-estimator was first proposed
in [22] as a generalization of the LS estimator by using an
M-estimation cost function and incorporating a regularization
term. In statistics, the M-estimation is well known as a more
robust approach than the LS estimation to impulses or outliers.

It is also well known that adding a regularization term can
considerably reduce the variance at the expense of a small bias,
resulting in an estimator with a smaller MSE. Note that the
regularization techniques are more suitable and useful for deal-
ing with high-dimensional variable selection problems, where
estimation variance is large and variable selection is required.
However, regularization techniques can also be used in the two-
variable cases as well for the purpose of lowering variance and
suppressing noise.

The regularized M-estimator is obtained by minimizing
the cost function (τ and ω are omitted here for notational
simplicity)

Jρ(τ, ω) =
N∑

n=1

wh(tn − τ)ρ
(
xn − φT(tn, ω)β

)
+

2∑
l=1

pμ(βl)

(18)

where ρ(·) is an M-estimate function and pμ(·) is the regu-
larization function with μ being the regularization parameter.
The first and second terms on the right-hand side of (18)
represent the robust error measure of β and the regularization
term, respectively. If ρ(e) = e2, we obtain the regularized LS
estimator. From a Bayesian perspective, the regularization is
closely related to incorporating prior information on the random
variable β, while the WLS term represents the likelihood term.
The regularization parameter μ is used to adjust the relative
contributions from prior information and the likelihood func-
tion.

In this paper, we use the Huber function as the M-estimate
function to deemphasize the “outliers” (impulsive components)

ρ(e) =
{
e2/2, 0 < |e| < ξ
ξ|e| − ξ2/2, |e| ≥ ξ

(19)

where ξ is a threshold used to restrain the outliers. Other M-
estimate functions such as the Hampel three-part redescending
function can also be used here. In [36], a systematic approach
for estimating the threshold was proposed. The threshold ξ
is generally determined from the standard deviation of the
“impulse-free” estimation residual, σe, which can be approx-
imated as [36]

σ̂e ={median (|xn − xn−1|)} /(
√

2 · 0.6745), n = 2, . . . , N.
(20)

For Huber function, the threshold can be set as ξ = 2.58 · σ̂e,
implying a 99% confidence to detect and reject the outliers. As a
result, the effect of errors with large amplitudes will be reduced
substantially beyond the threshold. For online applications,
σ̂e can be estimated recursively using the technique proposed
in [36].

Commonly used regularization functions include the L2

regularization function pμ(βl) = μβ2
l , which leads to a ridge

regression, and the L1 regularization function pμ(βl) = μ|βl|,
which leads to a least absolute shrinkage and selection operator
(lasso) [30]. We also test a SCAD regularization function
because it yields an estimator with three desirable properties:
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Fig. 1. L2, L1, and SCAD regularization functions.

unbiasedness, sparsity, and continuity [22]. The SCAD regular-
ization function is given as follows:

pμ(βl) =

⎧⎪⎪⎨⎪⎪⎩
μ|βl|, for |βl| ≤ μ

− (|βl|−ãμ)2

2(̃a−1)
+ (̃a+1)μ2

2 , for μ < |βl| ≤ ãμ

(̃a+1)μ2

2 , for |βl| > ãμ
(21)

where the parameter ã > 2 is, in general, selected as 3.7 [22].
The three regularization functions are shown in Fig. 1.

Ridge, lasso, and SCAD estimators all satisfy the condi-
tion of continuity, which means that pμ(βl) are continuous
in the coefficient βl. The lasso and SCAD estimators have
the property of sparsity, which means that small coefficients
can be set to zero, while the ridge estimator does not have.
Therefore, if the data under study are sampled from sinusoidal
signals, sparse estimators are preferable because only a few
large coefficients are nonzero in this case. Unbiasedness implies
that the modeling bias introduced by the regularization term
should be zero when the true coefficients are large enough.
Among the three regularization techniques, only SCAD has the
property of unbiasedness. As a result, the SCAD estimator is
desirable for estimating the amplitudes of sinusoids because the
large coefficients will not be corrupted by extra bias.

The solution of (18) can be obtained by setting its derivative
with respect to β to zero, which yields

−
N∑

n=1

wh(tn − τ)ρ′ (e(tn))φ(tn, ω) + P (β) = 0 (22)

where P (β) = [p′μ(β1), p′μ(β2)]T. To solve the equation us-
ing iteratively reweight LS (IRLS) method, we first write
ρ′(e(tn)) as ρ′(e(tn)) = q(e(tn))e(tn) and then p′μ(βl) as
p′μ(βl) = ψu(βl)βl. Then, q(e(tn)) and ψu(βl) are approxi-
mated iteratively from the previous coefficient estimate of β.

More precisely, given the estimate β̂
(i)

at the ith iteration,
we have q(e(i)(tn)) = ρ′(e(i)(tn))/e(i)(tn), where e(i)(tn) =

xn − φT(tn, ω)β̂
(i)

and p′μ(β̂(i)
l ) = ψu(β̂(i)

l )β̂(i)
l . For nondif-

ferentiable L1 and SCAD regularization functions pμ(βl), it

is usual to approximate them locally at β̂
(i)

as a quadratic
function as follows [22]:

pμ(βl) ≈ pμ

(
β̂

(i)
l

)
+

1
2

[
p′μ

(
β̂

(i)
l

)
/β̂

(i)
l

] [
β2

l −
(
β̂

(i)
l

)2
]

(23)

for β̂(i)
l 	= 0 and pμ(βl) = 0 for β̂(i)

l = 0.

The aforementioned iteration and approximation lead to the
following IRLS estimator of β [22], [23]:

β̂
(i+1)

=
(
ΦTV (i)Φ + Ψ(i)

)−1 (
ΦTV (i)X

)
(24)

where i = 0, 1, . . . is the number of iteration, Ψ(i) =
diag{ψμ(β(i)

1 ), ψμ(β(i)
2 )}, and V (i) = WQ(i) with Q(i) =

diag{[q(e(i)(t1)), . . . , q(e(i)(tN ))]T}. The IRLS estimator can
start with Ψ(0) = I2 and Q(0) = IN and will stop until the
maximum number of iterations is reached or the difference be-
tween two successive iterations is small enough. The covariance
matrix of the regularized WLS estimator of (24) is

Cov
(
β̂

(i+1)
)

=
(
ΦTV (i)Φ + Ψ(i)

)−1

ΦTV (i)V (i)Φ

×
(
ΦTV (i)Φ + ΨV (i)

)−1

σ2(τ). (25)

In practical implementations, the selection of regularization
parameters μ and ã is also an important issue. A universal
value μ =

√
2 ln(L), where L is the number of variables, was

suggested in [22], and thus, one gets μ = 1.2 in this study. A
recommend value of 3.7 is widely used in SCAD regularization
[22]. We can also search the best values of μ and ã over a grid
as the one minimizing the generalized cross-validation (GCV)
criterion as

[μ, α̃]=arg min
μ,α̃

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
N

∥∥∥X−Φβ̂
(μ,α̃)

∥∥∥2

2(
1− 1

N tr

[
Φ
(
ΦTΦ+Ψ(I)

(μ,α̃)

)−1

ΦT

]}2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(26)

where β̂(μ,α̃) is the coefficient estimate with μ and ã while

Ψ(I)
(μ,α̃) is the diagonal weighting matrix at the final iterative

step.
Since it involves multiobjective optimization, it is difficult to

derive analytical expressions to jointly optimize the bandwidth
and regularization parameters. In addition, it is also computa-
tionally expensive to search for their optimal combination in a
2-D or even 3-D grid. Therefore, we propose to select the two
types of parameters in two steps: 1) h is selected using the ICI
technique, and it can approach the optimal solution of the WLS
estimator without regularization; 2) μ and ã are selected based
on the “optimal” h. Although such parameter selection is not
optimal, it works well and achieves satisfactory results in our
simulations. As mentioned before, the bandwidth and regular-
ization parameters may show some variability because they are
determined by the local variance estimation from finite number
of samples. Such estimation variability can be suppressed by a
2-D smoothing technique in the time–frequency domain, either
on 2-D parameters or on the amplitude estimates. To pre-
serve the time–frequency resolution, the SK-LPR-ICI method
[27] can be used to smooth bandwidth and regularization
parameters.

The regularized M-estimator can be implemented in Step 4 of
the proposed AWLP method, instead of the conventional WLS,
yielding the ME-RAWLP. The proposed ME-RAWLP method
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forms a useful framework, which can be reduced or simplified
to a class of AWLP methods (such as LS-RAWLP, ME-AWLP,
etc.) with different performance/complexity tradeoffs by adopt-
ing a different cost function in fitting the linear model.

The ME-RAWLP method is capable of providing a robust
time–frequency representation free from the adverse influence
of impulsive components. Furthermore, using the ME-RAWLP
estimates of the sinusoidal components, we can reconstruct all
the sinusoidallike components, and the impulsive components
can be estimated as the difference between the reconstructed
signal and the original observation. Such separation of im-
pulsive components offers representations of these impulsive
components in time domain, which is very helpful to disclose
important information conveyed by the impulses. This is impor-
tant, for instance, in power quality analysis where the impulsive
components may be due to various faults to be analyzed and
recognized in the future.

V. PRACTICAL ISSUES

A. Selection of Method

Up to now, we have proposed a class of WLP methods. The
ME-RAWLP method, which integrates ICI window selection
and regularized M-estimation, is well suited for general spectral
analysis. In real applications, some of the features in ME-
RAWLP may not be necessary and may be omitted to meet
tight requirement in computational complexity. The problem
of methodology selection is detailed in the last paragraph of
Section VI after the presentation of extensive simulation results
and comparisons.

B. Selection of Evaluated Time and Frequency Points

The proposed method is readily applicable to uniformly and
nonuniformly sampled data. To achieve a good time–frequency
representation of uniformly and nonuniformly sampled data,
the WLP and its extensions can be evaluated at a set of
uniformly distributed time points. Considering the compromise
between precision and complexity, the sampling interval of
evaluated time points can be equal to the mean sampling
interval of the nonuniform data samples.

In Lomb periodogram, the evaluated frequency points are
usually selected as a uniform grid with a step Δω much smaller
than the frequency resolution ωR = 2π/(tN − t1), such as
Δω = ωR/10, so that no frequency information could be
omitted [15]. In WLP, since a window with bandwidth h is
introduced, the frequency resolution of a windowed data seg-
ment at time τ is ω(w)

R (τ, h) = 2π/(t(w)
N (τ, h) − t

(w)
1 (τ, h)),

where t
(w)
N and t

(w)
1 are, respectively, the last and the first

sampling time in the windowed data. We can see that the
frequency resolution varies at different time and with different
bandwidth. Thus, the frequency step can be set as Δω =
max(ω(w)

R (τ, h))/10 in WLP.
The maximum evaluated frequency in the Lomb peri-

odogram could be the Nyquist frequency, � = π/ΔTmin,
where ΔTmin is the minimum sampling interval of the whole
data. However, in WLP, because the minimum sampling in-
terval of the windowed data varies with the evaluated time

and bandwidth, the Nyquist frequency of each windowed data
is also a varying function, i.e., �(w)(τ, h). If we select the
overall Nyquist frequency as � = max(�(w)(τ, h)), aliasing
will occur at some evaluated time points, where the Nyquist
frequency is smaller than the overall Nyquist frequency. On
the other hand, if the overall Nyquist frequency is set as � =
min(�(w)(τ, h)), spectral information higher than � cannot
be identified at some evaluated time points. Therefore, in this
study, we select the maximum evaluated frequency as the
largest Nyquist frequency of windowed data, although there
may be aliasing effects in the WLP. In practice, the maximum
and minimum evaluated frequencies can also be determined
according to known or interested frequency range.

C. Computational Complexity

We first consider the arithmetic complexity of the WLS
estimator in (3). Since Φ is an N × 2 matrix, X is an N × 1
vector, and W is an N ×N diagonal matrix, the complexities
of computing ΦTWΦ and ΦTWX are O{4N} and O{2N},
respectively. Thus, the complexity of the WLS estimator at each
evaluated time–frequency point is O{N}. The computational
complexity of the WLS algorithm can be further simplified.
If the kernel has a limited support, such as the Epanechnikov
window used in this paper, then the number of actual samples
(denoted as Nw) included in the window is finite. Hence, the
corresponding complexity of WLS will decrease considerably
to O{Nw}. Since Nw increases with the bandwidth parameter
h, a large bandwidth will increase the computational complex-
ity. As for the regularized WLS estimators and M-estimators,
since they are to be estimated in an iterative manner and the
regularization parameter is tuned through GCV criterion, their
complexity is much higher. In addition, since the WLP is
computed at each evaluated time–frequency point, its overall
complexity will be determined by the number of evaluated
time–frequency points. Similarly, the number of bandwidths in
the set H will also influence the complexity of AWLP.

Table I lists the arithmetic complexity required by various
TFA methods proposed in this paper and other conventional
methods. We can see that, compared with fast algorithms like
STFT, the proposed methods do require higher complexity.
However, STFT with fixed window size, in general, has a lower
time–frequency resolution compared with AWLP, as demon-
strated in the next section and the literature [21]. The window
size for estimation has to be adaptively chosen, and hence,
the arithmetic complexity will have to be increased. Therefore,
there exists a performance-complexity tradeoff in selecting
proper TFA methods. With the advent of microelectronics, low-
cost DSPs, FPGA, and GPUs are now commonly available.
Therefore, a high-performance spectral analysis method is,
in general, preferred. Moreover, to facilitate implementation
in DSP, FPGA, and GPUs, a highly modular algorithm with
functionally identical elements is highly desirable.

In real-time applications, the complexity problem of the
proposed methods can be addressed without much difficulty by
three approaches.

1) Selecting an appropriate WLP method: In this paper, a
class of WLP methods under a general framework is
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TABLE I
COMPARISON OF ARITHMETIC COMPLEXITY OF VARIOUS TFA METHODS AT ONE EVALUATED TIME INSTANT

developed to cater for the diverse requirements (different
tradeoffs between performance and complexity) in prac-
tical situations. Therefore, one can select an appropriate
WLP method to meet the desired tradeoff between perfor-
mance and complexity. For example, in the application
of voltage dip detection (see Section VI-C for details),
where only the amplitude at one single frequency is to
be estimated and thus regularization is not necessary,
AWLP can be chosen so that the computational com-
plexity can be lowered significantly because iterations
involved in RAWLP are unnecessary. In the analysis
of speech signals (see Section VI-D for details), where
impulsive components may not be encountered, LS-based
AWLP/RAWLP with a lower arithmetic complexity is
sufficient to obtain good performance.

2) Using prior information to compute spectrum at the re-
quired frequency points: An advantage of the WLP-based
methods is that a set of selected frequency points can
be computed independently. Therefore, the WLP may be
computed at a small set of frequency points of interest
based on prior information of the signals to reduce the
arithmetic complexity. For example, in the problem of
voltage dip tracking, it is only necessary to estimate the
spectrum at the fundamental frequency of 50 Hz (see
Section VI-C for details).

3) Parallel implementation: The simplified linear model of
the adaptive Lomb periodogram allows the spectral es-
timates at each time–frequency point to be computed
separately, which greatly facilitates parallel implemen-
tation. Therefore, by exploring the inherent parallelism
of the method in hardware and GPU implementation,
the computational time can be significantly reduced. In
particular, GPUs have emerged as a powerful and yet rel-
atively inexpensive desktop parallel computing platform
in recent years. They are high-performance many-core
processors that are suitable for parallel computing in
single instruction and multiple data. There are also many
languages supporting programming in GPUs such as
Nvidia’s Compute Unified Device Architecture, Khronos
Group’s Open Computing Language (OpenCL), and
Microsoft’s DirectCompute. In Section VI-E, a paral-

lel implementation of the proposed RAWLP method
in GPU using OpenCL will be described to illustrate
the inherent parallelism and other complexity-reducing
methods mentioned earlier.

D. Selection of Window Type

A kernel with compact support is preferable because it can
reduce the complexity significantly. In this paper, following
the recommendation in [35], the following basis Epanechnikov
window is employed:

w(u) =
{

3
4

(
1 − |u|2) , |u| < 1

0, |u| ≥ 1.
(27)

Consequently, for an Epanechnikov window with bandwidth
h, wh(u) = (1/h)w(u/h), only the data samples included in
interval (τ − h, τ + h) are used for local estimation, and thus,
the effective size of the window is 2h. Other types of windows,
such as Gaussian window and Hanning window, can also be
used in the WLP. Different types of windows have different
frequency response characteristics and will influence the WLP
results to some extent, but the selection of window type is
beyond the scope of this paper.

For the purpose of online tracking, where only past data are
available, one-sided window should be used. For example, a
one-sided Epanechnikov window is given by

w(u) =
{

3
4

(
1 − |u|2) , −1 < u ≤ 0

0, u ≤ −1 or u > 0.
(28)

In online implementation of the proposed WLP methods, other
relevant operations making use of future data, like the smooth-
ing of bandwidth in the time–frequency domain, should also
be modified slightly. See [28] for details about the online
implementation of local polynomial modeling, which can be
used in the WLP problems as well.

E. Selection of Bandwidth Set

The next problem is how to select the bandwidth set H
used in the empirical ICI bandwidth selection technique. The
minimum bandwidth h1 should be selected to make the WLS
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TABLE II
PARAMETERS INVOLVED IN PROPOSED METHODS AND THEIR SELECTION APPROACHES

Fig. 2. One realization of the uniformly sampled data with one sinusoidal component. (a) Data samples. (b) Instantaneous frequency.

estimators solvable. More precisely, the number of data samples
included in the interval (τ − h1, τ + h1), Nw, should be equal
to or larger than two. On the other hand, the largest element in
the bandwidth set, hJ , that is generally selected can be large
enough so that the corresponding local window includes all
data points. However, as mentioned before, too long a window
will result in high computational complexity. As for other
bandwidths in the set H , more bandwidth parameters will lead
to more refined estimation results but will also increase the
complexity. To achieve a good tradeoff between performance
and complexity, we generally select 3–5 bandwidth parameters
uniformly distributed in between the minimum bandwidth h1

and the maximum bandwidth hJ . From simulation results, it
was found that the proposed bandwidth setting gave satisfactory
results.

In practical implementation, the bandwidth set can be deter-
mined based on known or interested time–frequency properties
of the data under study or conventional setting in specific prob-
lems. For example, in power quality analysis, the bandwidth
set can be selected as 1/4, 1/2, and 1 cycles, which follow the
routine analysis windows in these problems.

Finally, to provide a clear and complete guidance for se-
lecting parameters contained in this paper, a summary of the
parameter selection procedures is given in Table II.

It can be seen from Table II that most parameters used in
the proposed methods are automatically determined so that
it is not difficult to be applied in practice. In fact, most of
the parameters listed in Table II are selected automatically
from a grid of candidate parameters. The grid of parameters
should cover possible ranges of parameters to make sure the
“optimal” parameter in the range defined by the grid. As a
result, the parameter selection problem is reduced to how to
determine a grid of parameters. For the threshold parameter
Γ used in ICI, the values of the grid can be {0.67 0.84 1.04
1.28 1.44 1.65 1.96 2.58 2.81 3.29}, which are associated
with confidence levels of {50.0 60.0 70.0 80.0 85.0 90.0 95.0
99.0 99.5 99.9}%. For regularization parameters μ, the grid
can be 1.2 × {0.01, 0.1, 1, 10100}, where 1.2 is the typical
value recommended in [22] for regularization parameters ã,
and the grid could be 3.7 × {0.01, 0.1, 1, 10100], where 3.7 is
the typical value recommended in [22]. It is possible to use a
denser or wider grid, but it will also increase the complexity.
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Fig. 3. Time–frequency representations of one example of uniformly sampled data in Fig. 2(a) using different TFA methods. (a) LS-WLP (h = 0.1 s). (b) LS-
WLP (h = 0.25 s). (c) LS-AWLP (varying h). (d) ICI-selected h. (e) LS-Ridge-RAWLP (varying h). (f) LS-Lasso-RAWLP (varying h). (g) LS-SCAD-RAWLP
(varying h). (h) WT. (i) ME-AWLP (varying h). (j) ME-SCAD-RAWLP (varying h).

Our simulations in this study and other studies show that these
parameters can usually obtain satisfactory results in different
applications. As to the bandwidth selection, the selection of
a grid of bandwidth is more dependent on the application
problems. If no prior knowledge is available, following the
recommended setting for bandwidth selection can generally get

good results. In Table II, the only one nonautomatically selected
parameter is the M-estimation threshold parameter ξ because
this parameter can offer flexibility for users to control the extent
of impulsive noise suppression. If one wants to suppress noise
to a larger extent, a smaller ξ should be selected, and vice versa
[36]. Fortunately, the effect of ξ is easy to comprehend, and it is
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Fig. 4. Comparison of amplitude estimates at selected representative time–frequency points using different WLP-based TFA methods. The box has lines at the
lower quartile, median, and upper quartile values. (a) Instantaneous frequency. (b) p1. (c) p2. (d) p3. (e) p4. (f) p5.

usually not difficult to determine this parameter to control the
extent of impulsive noise suppression.

Finally, we remark that, except for the proposed bandwidth
parameter section, the other parameters are selected according
to the established and well-recognized techniques in literature.
Following the guidelines as suggested in the literatures and
the present paper, the window selection procedure is usually
not sensitive to these parameters. For instances, good results
in related applications, including data smoothing [26], image
denoising [27], power quality analysis [28], biomedical data
analysis [29], and speech data analysis (Section VI-D), have
been obtained.

VI. SIMULATION RESULTS

A. Uniformly Sampled Data (Single-Component
Sinusoidal Signal)

We now compare various TFA methods using simulated
uniform data sampled from a chirp signal

m(t) = A(t) sin (Ω(t) + ϕ) (29)

where A(t) = 1 is the amplitude, ϕ = π/3 is the phase, and
Ω(t) = 2π

∫ t

0 f(υ)dυ is the instantaneous phase calculated
from an instantaneous frequency f(t). Here, f(t) is given as

f(t) = 25 + 7asinh (8(t− 1)) (30)

where asinh(·) is the inverse hyperbolic sine function. The data
duration is 2 s, and the sampling frequency is 100 Hz, resulting
in 200 data samples. An additive Gaussian white noise with a
signal-to-noise ratio (SNR) of 10 dB is added. One realization
of the uniformly sampled data is shown in Fig. 2(a), and the
instantaneous frequency is shown in Fig. 2(b). We can see that
this signal contains both slowly varying sinusoidal components
(in the beginning and end periods) and fast-varying frequency
components (in the middle period), so it can effectively illus-
trate the bandwidth selection results.

In the WLP, Epanechnikov windows are employed, and the
bandwidth set used in the ICI technique is chosen as H =
{0.1, 0.15, 0.2, 0.25} s. The evaluated time instants are set as
the sampling time instants, and the evaluated frequency instants
are from 0.5 to 50 Hz with a step of 0.5 Hz. Since STFT and
WLP are equivalent for uniformly sampled real-valued data, we
do not show the STFT results here.

The LS-based AWLP and RAWLP (accompanied with ridge,
lasso, and SCAD regularization) are compared to LS-based
WLP with a constant bandwidth. We also test the ME-
based WLP methods and compare them with LS-based WLP
methods. The WT with Morlet wavelet is also tested for
comparison.

One representative simulation is shown in Fig. 3, where the
Lomb-periodogram-based time–frequency representations are
shown in the same scale (the maximum possible amplitude
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TABLE III
SELECTED TYPICAL TIME–FREQUENCY POINTS: TIME–FREQUENCY FEATURES AND ADAPTIVE WINDOW SIZES SELECTED BY ICI (SNR = 10 dB)

of these time–frequency representations is max(P (τ, ω)) = 1).
The following can be observed from Fig. 3.

1) As shown in Fig. 3(a), if a small bandwidth is used, the
WLP can identify the fast-varying frequency components
clearly, which implies a good time resolution. However,
the spectral density of slowly varying components is
dispersed along the frequency domain, leading to a bad
frequency resolution. On the other hand, as shown in
Fig. 3(b), if a large bandwidth is used, the frequency res-
olution for slowly varying bandwidth is increased. How-
ever, the fast-varying frequency component is blurred
seriously due to a decreased time resolution.

2) The ICI technique can adaptively select the bandwidth
based on the specific time–frequency features of the data.
We can see from Fig. 3(d) that the bandwidths for fast-
varying components are quite small while relatively large
bandwidths are assigned to slowly varying components.
For those time–frequency areas where there are no mean-
ingful frequency components, the bandwidths are given
the largest value to restrain the noise effects. With the
adaptive varying bandwidth, the AWLP achieves a better
time–frequency representation than WLP with a constant
bandwidth. The AWLP also outperforms the result of
WT, which has a bad time resolution for low-frequency
components and a bad frequency resolution for high-
frequency components.

3) Regularization techniques can further lower the estima-
tion variance so that the three RWLS-based RAWLPs
have better time–frequency resolution than the WLS-
based AWLP. However, it can also be seen that the ridge
and lasso estimators produce considerable bias to the
large coefficients, so that the resultant ridge- and lasso-
based RAWLPs have lower peak values than the WLS-
based AWLP. The SCAD-based RAWLP has comparable
peak amplitude values with the WLS-based AWLP be-
cause SCAD is an unbiased estimator.

4) When analyzing data without impulsive components,
ME-based WLPs achieve almost the same results as
corresponding LS-based WLPs. For brevity, only ME-

AWLP and ME-SCAD-AWLP are shown in Fig. 3. Be-
cause M-estimation involves iterative operations and esti-
mation of noise variance, it has a higher complexity than
LS estimator. Therefore, when no impulsive components
could occur in the data, the LS-based WLP methods are
sufficient.

The simulation results are further compared in a quantitative
manner. Since the AWLP and RWALP can select bandwidth
adaptively according to the local time–frequency features of
the data, we choose a set of time–frequency points with repre-
sentative time–frequency features for evaluation. The locations
of these time–frequency points are shown in Fig. 4(a), and
their time–frequency features and true amplitude are listed in
Table III. Their ICI-selected window sizes (mean and standard
deviation), which are obtained from 100 Monte Carlo simula-
tions, are also given in Table III.

To give a quantitative measure for comparison, we estimate
the amplitude Â(τ, ω) of sinusoids at these points. Box plots
are used to depict the distribution patterns of the amplitude
estimates, as shown in Fig. 4. To save space, the quantitative
results of ME-based WLPs were not shown, and they are
almost identical to the results of the corresponding LS-based
WLPs. The statistical properties, including the bias, variance
and MSE, of the estimated amplitudes can be approximated by
means of Monte Carlo simulations. Suppose that we perform Q
independent Monte Carlo realizations of the simulated sampled
data, and denote the average of the estimates as A(τ, ω) =
(1/Q)

∑Q
q=1 Â(τ, ω; q), where Â(τ, ω; q) was the estimated

coefficient of the qth realization. The bias, variance, and MSE
are computed analogously as

Bias
[
Â(τ, ω)

]
=A(τ, ω) −A(τ, ω) (31)

V ar
[
Â(τ, ω)

]
=

1
Q

Q∑
q=1

[
Â(τ, ω; q) −A(τ, ω)

]2
(32)

MSE
[
Â(τ, ω)

]
=

1
Q

Q∑
q=1

[
Â(τ, ω; q) −A(τ, ω)

]2
. (33)
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TABLE IV
COMPARISONS OF BIAS, VARIANCE, AND MSE (UNIT: dB) BETWEEN

DIFFERENT LS-WLP-BASED TFA METHODS (SNR = 10 dB)

The bias, variance, and MSE values approximated from 100
Monte Carlo simulations are listed in Table IV. The bias of
amplitude estimates is induced by the time-varying properties
of frequency components, and the variance is caused by finite-
sample estimation of variance of local residual. The following
can be concluded from Fig. 4 and Table IV.

1) A small bandwidth results in a large variance and a small
bias, while a large bandwidth leads to a large bias and a
small variance. The ICI-selected bandwidth can achieve a
compromise between bias and variance.

2) Compared with the WLS-based AWLP, ridge-, lasso-, and
SCAD-based RAWLPs all exhibit extra bias for large
amplitudes (p1, p2, and p3). Among the three regularized
estimators, lasso has the largest bias while SCAD has the
smallest bias because SCAD is asymptotically unbiased
for large coefficients.

TABLE V
ADAPTIVE BANDWIDTH (MEAN ± SD; UNIT: SECONDS) SELECTED BY

ICI IN LS-AWLP AT SELECTED TIME–FREQUENCY POINTS

UNDER DIFFERENT SNRS

Fig. 5. MSE comparison of amplitude estimates using different LS-WLP-
based TFA methods under different extents of noise. (a) p1. (b) p2. (c) p3.
(d) p4. (e) p5.

3) As for the variance at p1, p2, and p3, RAWLPs usually
have smaller variance than the WLS-based AWLP.

4) For small coefficients caused by noise (p4 and p5), lasso
and SCAD can shrink them to zero, and thus, they have
very small bias and variance. Ridge can also reduce the
variance to some extent.

We now test the performances of the ICI technique used
in AWLP under different extents of additive Gaussian noise.
Zero-mean white Gaussian noises with different SNRs of 0,
5, 10, and 20 dB are added in the simulated signal model of
(29). The suboptimal bandwidths adaptively selected by the ICI
technique in different SNR conditions are listed in Table V.
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Fig. 6. Time–frequency representations of one example of uniformly sampled data containing an impulsive component at 0.6 s, and reconstructed sinusoidal
and impulsive components from ME-SCAD-RAWLP. (a) LS-AWLP (varying h). (b) LS-SCAD-RAWLP (varying h). (c) ME-AWLP (varying h). (d) ME-SCAD-
RAWLP (varying h). (e) Reconstructed sinusoid. (f) Reconstructed impulse.

We can conclude that, in general, the suboptimal bandwidth is
decreased with the increase of SNR.

Next, we compare the MSE performances of the Lomb-
periodogram-based TFA methods at different noise levels,
which are shown graphically in Fig. 5. As expected, all the
TFA methods under test have degraded performance with the
decrease of SNR. By comparing the noise suppression results
at points p4 and p5, the superiority of RWALP (particularly the
lasso- and SCAD-based RWALPs) is more obvious when the
SNR is higher.

Furthermore, we add an impulsive component with an am-
plitude of 10 to the data of Fig. 2(a) at 0.60 s, so as to
compare the performances of LS-based and ME-based WLPs
for data containing impulsive components. Fig. 6 clearly shows
that the LS-based AWLP and SCAD-RAWLP time–frequency
representations of the chirp signal are severely degraded
around the time when the impulsive component occurs. On
the contrary, the impulsive component has little influence
on the ME-based AWLP and RAWLP. Moreover, the sinu-
soidallike chirp signal can be reconstructed from ME-
SCAD-RAWLP, as shown in Fig. 6(e), and the impulsive
component can be estimated from the difference between the
reconstructed chirp signal and the original data, as shown
in Fig. 6(f).

B. Nonuniformly Sampled Data

One major advantage of the proposed Lomb-periodogram-
based TFA methods is that they can be employed for nonuni-
formly sampled data without any preprocessing (resampling) to
the data. The nonuniform data are sampled from the chirp signal
of (29) as well. One hundred samples are randomly selected
from 200 uniformly distributed samples in 2 s, resulting in a
mean sampling frequency of 50 Hz. In order to test conventional
resampling-based TFA methods for the nonuniformly sampled
data, a cubic spline interpolation is used to generate uniformly
distributed data at a sampling frequency of 100 Hz. One re-
alization of the nonuniformly sampled data and the resampled
data are shown in Fig. 7. Their Lomb periodograms are also
shown in Fig. 7, and we can see that the resampled data lose
important spectral information over 25 Hz, which is half of the
mean sampling frequency of the original nonuniformly sampled
data.

Testing parameters used in the TFA methods are the same
as those in the uniform cases. We also test the STFT on the
interpolated data, and the STFTs employ the same window
settings (Epanechnikov windows with bandwidths of {0. 1,
0. 15, 0. 2, 0. 25} s) as the WLP. For uniformly sampled real-
valued data, the Lomb periodogram and the FFT-based peri-
odogram have exactly the identical results, so do the WLP and



2298 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 61, NO. 8, AUGUST 2012

Fig. 7. One realization of the nonuniformly sampled data (denoted as cross) and their Lomb periodogram (solid line). The interpolated data with cubic spline are
plotted as dashed line in the left panel, and their Lomb periodogram is plotted as dashed line in the right panel. (a) Data samples. (b) Lomb periodogram.

STFT-based spectrograms if they use the same windows. Here,
we are interested to compare the performances of STFT and
WLP on nonuniformly sampled data. Since the signal under test
does not contain impulsive components, M-estimation-based
methods have similar results to the LS-based methods, and they
are not shown here. The time–frequency representations of one
realization (SNR = 10 dB) are shown in Fig. 8. Quantitative
analysis is also conducted, and numerical results are obtained
for nonuniformly sampled data. Because the implication and in-
terpretation of the results obtained from nonuniformly sampled
data are similar to those from uniformly sampled data, detailed
results are not presented here for brevity. We only summarize
key observations.

First, it is obvious that the conventional resampling-based
WT and STFT methods fail to reveal the time–frequency
features over 25 Hz but induce considerable low-frequency
artifacts, which shows the unique merit of the WLP-
based TFA methods for nonuniformly sampled data. Second,
time–frequency representations of nonuniformly sampled data
exhibit larger variability than those of uniformly sampled data.
This is due to the fact that, when data are nonuniformly
sampled, it is quite possible that several windowed data seg-
ments have fewer samples than others and thus have large
estimation variance. As a result, the WLP (particularly when
the bandwidth is small) and AWLP in Fig. 8 are contaminated
by considerable artifacts. Third, because of the relatively large
variability existed in WLP of nonuniformly sampled data,
regularization is particularly useful under this condition. The
performance improvement by regularization, particularly by
lasso and SCAD, is noticeable in Fig. 8.

C. Applications to Power Quality Analysis

We now evaluate the potential application of the proposed
WLP-based TFA methods to power quality analysis. The first
application is the detection of a voltage dip (i.e., a short duration
of voltage decrease). Fig. 9(a) shows a simulated 50-Hz voltage
waveform of a voltage dip event from 100 to 180 ms. A zero-
mean Gaussian white noise with an SNR of 30 dB is added
to the voltage waveform. Conventionally, time-dependent root-
mean-square (RMS) values calculated from data in short-time
windows are used to detect the dip event. Fig. 9(b) shows the
RMS values computed using 1/8 cycle and one cycle (1 cycle =
20 ms), and we can see that the window size has a considerable

influence on the RMS results. We use WLP and AWLP methods
to estimate the amplitudeA(ω) of the voltage at 50 Hz. Fig. 9(c)
shows the WLP results with sliding windows of 1/8 cycle and
1 cycle and the AWLP results using window sizes of [1/8, 1/4,
1/2, 1] cycles. One-sided windows are used in WLP and AWLP
for the purpose of online tracking. We can see that a short
window can detect the rise and drop of the voltages promptly
but also has a large variability (as shown from the WLP result
with 1/8 cycle). On the other hand, a long window has a much
smoother result but leads to a longer detection lag (as shown
from the WLP result with 1 cycle). The proposed AWLP, which
uses adaptive window sizes, detects the sharp changes in the
voltage dig quickly while achieving smooth estimates when the
voltage amplitude is stable.

A real voltage dip is shown in Fig. 10. The voltage dip signal
was recorded from phase A of a 220-kV power line of a 500-kV
station of Guangdong Power Grid, China, on September 2,
2009, by a ZH-2X series oscilloscope provided by Wuhan
Zhongyuan Huadian Science & Technology Co. Ltd., China.
The power line frequency is 50 Hz, and the sampling rate of the
oscilloscope is 2000 Hz. We compare the results from AWLP
and the RMS (1/4 cycle and1/2 cycle). The duration of the dip is
determined as the period when the voltage amplitude is smaller
than 90% of the normal values. We can see that the AWLP can
detect the starting of end points of the voltage dip faster (around
4.5 ms) than the 1/2 cycle RMS, which is very useful for further
handling the dip.

In the second example, we applied the ME-RAWLP method
in the analysis of power transients. There are generally two
types of power transients: impulsive and oscillatory transients
[34]. An impulsive transient has a very short duration (typ-
ically < 1 ms) and a large amplitude, and thus, it is more
suitable to be presented in the time domain. An oscillatory
transient usually has a primary frequency (up to 5 M Hz) and a
damping amplitude lasting several cycles, so a time–frequency
representation is suitable to describe such oscillatory transients.
Fig. 11(a) shows a 50-Hz power waveform contaminated with
an impulsive transient at 40 ms and a 300-Hz oscillatory
transient from 95 to 125 ms. A zero-mean Gaussian noise
with an SNR of 20 dB is also added to the power wave-
form. A high-pass filtering at 100 Hz is first used to sepa-
rate the 50-Hz component and the high-frequency oscillatory
transients for subsequent independent time–frequency analy-
ses. We use the proposed ME-RAWLP method with SCAD
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Fig. 8. Time–frequency representations of one example of nonuniformly sampled data in Fig. 7(a) using different TFA methods. (a) LS-WLP (h = 0.1 s).
(b) LS-WLP (h = 0.25 s). (c) LS-AWLP (varying h). (d) ICI-selected h. (e) LS-Ridge-RAWLP (varying h). (f) LS-Lasso-RAWLP (varying h). (g) LS-SCAD-
RAWLP (varying h). (h) WT. (i) STFT (h = 0.1 s). (j) STFT (h = 0.25 s).

regularization to provide a time-domain representation for the
impulsive transient and a time–frequency representation for the
oscillatory transient and the fundamental 50-Hz component.
Meanwhile, the waveforms of the fundamental 50-Hz compo-
nent and the oscillatory transient are reconstructed from the
ME-RAWLP.

Fig. 11(e) shows that the LS-based AWLP has two defects:
1) It is considerably contaminated by the impulsive transient in
a wide range of frequency, and 2) it cannot achieve a focused
and sparse representation for the oscillatory transient in the
time–frequency domain. These two problems can be well ad-
dressed by the ME-RAWLP method with SCAD regularization.
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Fig. 9. Detection of a simulated voltage dip. (a) Simulated 50-Hz voltage waveforms with a dip between 100 and 180 ms. (b) RMS obtained using sliding
windows of 1/8 cycle and 1 cycle (bold gray line: true voltage amplitude; thin dashed black line: RMS obtained using 1/8-cycle window; and thin solid black line:
RMS obtained using 1-cycle window). (c) Voltage amplitudes estimated using WLP and AWLP (bold gray line: true voltage amplitude; thin dashed black line:
amplitude estimated from WLP with 1/8-cycle window; thin solid black line: amplitude estimated from WLP with 1-cycle window; and bold solid black line:
amplitude estimated from AWLP with adaptive windows).

Fig. 10. Detection of a real voltage dip. (a) Voltage waveform with a dip between around 80 and 127 ms. (b) RMS obtained using sliding windows of 1/4 cycle
(dashed thin line) and 1/2 cycle (dashed bold line) and amplitude estimated using AWLP (solid bold line); the cross signs denote the starting and end points of the
dip (amplitude < 90% of the normal values; only for AWLP and RMS with 1/2 cycle). (b) Duration of the dip detected by AWLP is from 82.5 to 128.5 ms, the
duration of the dip detected by RMS with 1/2 cycle is from 87 to 134 ms, and it is impossible to detect the duration of the dip from RMS with 1/4 cycle due to its
huge variability.

As shown in Fig. 11(f), the impulsive transient is satisfac-
torily restrained, and the oscillatory transient has a distinct
representation with very high time–frequency resolution. The
reconstructed 50-Hz fundamental component and the 300-Hz
oscillatory transient are shown in Fig. 11(b) and (c), respec-
tively. The impulsive transient shown in Fig. 11(d) is estimated
by subtracting the reconstructed 50-Hz fundamental component
and the 300-Hz oscillatory transient from the original power
waveform. We can see from Fig. 11(b)–(d) that the three
components can be well separated via the ME-RAWLP method,

providing accurate and complete data characteristics for power
monitoring.

D. Applications to Speech Signal Analysis

In this experiment, a segment of speech signal is used
for comparing the performances of different TFA methods
when dealing with multicomponent sinusoidal signals. Speech
signals are known to contain multiple sinusoidal components
(fundamental and harmonics), so they are good candidates for
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Fig. 11. Time–frequency representations and separation of impulsive and transient power transients. (a) Simulated 50-Hz power waveforms with an impulsive
transient at 40 ms and an oscillatory transient from 95 to 125 ms. (b) True 50-Hz voltage component (bold gray dashed line) and its estimate reconstructed from
ME-RAWLP (black solid line). (c) True oscillatory transient (bold gray dashed line) and its estimate reconstructed from ME-RAWLP (black solid line). (d) True
impulsive transient (bold gray dashed line) and its estimate (black solid line). (e) LS-AWLP. (f) ME-RAWLP with SCAD regularization.

Fig. 12. Speech signal consisting of two phonemes “tea” and “o” (“o” starts from 0.2 s) and its Lomb periodogram. (a) Data samples. (b) Lomb periodogram.

evaluating the performances of TFA methods. Conventionally,
STFT and WT are used for disclosing time-varying frequency
components of speech signals, but they still suffer from the
problem of selection of a fixed window [37]. Here, we will
show that the proposed AWLP/RAWLP method is a good
alternative to address the window selection problem and can
achieve better time–frequency representations for multiple si-
nusoidal components in the real data to be analyzed here-
inafter. The speech signal under test contains two phonemes,
namely, “tea” and “o” (Fig. 12), and it is downloaded from
http://authors.phptr.com/quatieri/audio.html. The duration of
the speech is around 0.23 s, and the second phoneme “o”
starts from 0.2 s. The sampling rate of the speech is 1250 Hz.
In the AWLP method, Epanechnikov windows are employed,

and the bandwidth set is chosen as H = {0.01, 0.015, 0.02,
0.025} s. The evaluated time instants are set as the sampling
time instants, and the evaluated frequency instants are from 5
to 625 Hz with a step of 5 Hz.

We can see from Fig. 13 that the proposed AWLP and
RAWLP methods can obtain good results when analyzing the
multicomponent speech signal. First, the adaptive windows
selected by the ICI technique are small around 0.2 s so that
the two phonemes can be well separated. In addition, the
adaptive windows selected make clear the onset and offset
time of these frequency components. Second, when SCAD
regularization is used in RAWLP, the frequency components are
more pronounced and distinct because small coefficients are set
to be zero by the SCAD regularization.
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Fig. 13. Time–frequency representations of the speech signal in Fig. 12(a) using different TFA methods. The amplitudes of time–frequency representations
are shown in logarithmical scale. (a) LS-WLP (h = 0.01 s). (b) LS-WLP (h = 0.025 s). (c) LS-AWLP (varying h). (d) ICI-selected h. (e) LS-Ridge-RAWLP
(varying h). (f) LS-Lasso-RAWLP (varying h). (g) LS-SCAD-RAWLP (varying h). (h) WT.

E. Parallel Implementation Using GPU

As mentioned before, the proposed method is performed
at each time and frequency point in parallel. Therefore, the
RAWLP method is divided into a lot of subtasks according to
the time and frequency, which will be executed on GPUs in
parallel. These subtasks are called work items in OpenCL, the
number of which is equal to the total number of time–frequency
points. To achieve a better performance, the exchange of inter-
mediate data is limited on the GPU. In the experiments, two PCs
with different configurations are used. The first PC has an Intel
i7-920 CPU and an AMD Radeon HD 6950 GPU. The other
one has an Intel i7-990X CPU and a Nvidia GTX 580 GPU.
The parameter selection follows the suggestions in Table II. The
time cost of the GPU implementation is summarized in Fig. 14.
It can be seen that if the number of time–frequency points
computed per second is 1.0 × 105, it only requires about 95 ms.

In other words, if the number of frequency points is 1024, we
can compute about 98 spectra in about 95 ms. This means that
we can compute a spectrum of 1024 points with around 1028
spectra per second. This is very satisfactory for many real-time
signal processing applications such as vibration analysis and
speech analysis. If the number of frequency points is reduced
to 512, the number of spectra that can be computed per second
will be increased to around 2056. This shows the flexibility of
the proposed method in achieving different tradeoffs between
time resolution of the spectrum and the number of frequency
points computed. Moreover, the evaluated frequency points can
be nonuniformly spaced and arbitrarily selected. It can also be
seen from Fig. 14 that the computational time increases quite
linearly with the number of work items, which suggests that
the achieved speed-up is quite constant for different numbers of
work items.



ZHANG et al.: NEW REGULARIZED AWLP FOR TFA OF NONSTATIONARY SIGNALS WITH IMPULSIVE COMPONENTS 2303

Fig. 14. Time cost of GPU implementation of the RAWLP method.

Overall, we can summarize the properties and advantages of
the proposed WLP methods as follows.

1) The WLS-based AWLP can achieve a good tradeoff be-
tween time resolution and frequency resolution according
to local time–frequency characteristics. Thus, it can be
used for TFA of general data sequences.

2) The ridge-based RAWLP can effectively reduce the vari-
ability of AWLP at the expense of extra bias. If it is
not required to correctly estimate the amplitude of sinu-
soids but only required to indicate the location of energy
concentration in the time–frequency domain, ridge-based
RAWLP can be a good choice.

3) The lasso-based RAWLP will lead to a sparse time–
frequency representation, and so, it is more suitable for si-
nusoid data. In addition, it will induce a large bias term to
the amplitude estimate. Thus, compared with the SCAD-
based RAWLP, it does not have evident advantages.

4) The SCAD-based RAWLP can lead to a sparse
time–frequency representation as well, but it has a much
smaller estimation bias than lasso-based RAWLP. It is
therefore more preferred to analyze sinusoid data, partic-
ularly when SNR is high.

5) M-estimation-based RAWLP can effectively restrain
the adverse effects of impulsive components in the
time–frequency representation. Although ME-based
WLP methods are, in particular, useful in dealing with
data contaminated with outliers, they can also achieve
similar performances to the LS-based WLP methods
when analyzing data containing no impulsive noise.

6) The Lomb periodogram and the ICI technique are
most suitable for data with Gaussian-distributed resid-
uals, and thus, the AWLP-based methods are very
suitable for single-component sinusoidal data. For
multiple-component sinusoidal data and nonsinusoidal
data, the performance of AWLP-based method may be
affected to some extent, but in general, they can still
provide valuable information of the signal spectrum.

7) Parallel implementation of proposed methods using GPU
can be easily achieved to considerably reduce the execu-

tional time of the WLP-based methods which facilitates
real-time applications.

VII. CONCLUSION AND DISCUSSION

A new class of WLP methods for TFA of nonstationary
signals possibly with impulsive components has been pre-
sented. The conventional Lomb periodogram is extended to
a TFA method through WLS fitting and adaptive bandwidth
selection using the ICI technique, which adapts to the local
time–frequency characteristics of nonstationary signals to be
analyzed. Regularized M-estimation method is further adopted
instead of LS estimation to improve the performance of AWLP
by reducing the variance, enhancing sparsity, and restraining
the adverse effect of impulsive components. Simulation results
show the advantages of the proposed method over the conven-
tional Lomb periodogram or other conventional TFA methods
in adaptive time–frequency resolution, sparse representation for
sinusoids, robustness to impulsive components, applicability to
nonuniformly sampled data, and fast computation time by using
parallel computing. Its potential applications to power quality
monitoring and analysis are also demonstrated.

In the future, it is desirable and possible to set up a more
general linear model involving a dense set of sinusoids (instead
of one sine and one cosine in the proposed method) and
rely on regularization to estimate the model coefficients and
the spectrum. In principle, each frequency will have its own
adaptive window, which significantly complicates the selection
of all multiple window parameters in the general linear model.
The proposed method adopted a simplified linear model of one
single sinusoid, and thus, it is relatively easy to estimate the
adaptive window at each frequency independently. The adaptive
bandwidth selection in the general linear model requires further
investigation and will be left for future work. In addition, we
may also consider employing other LS techniques such as total
LS to address the error-in-variable problem and recursive LS
for reducing the arithmetic complexity.
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