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Abstract This paper studies the problem of adaptive kernel
selection for multivariate local polynomial regression
(LPR) and its application to smoothing and reconstruction
of noisy images. In multivariate LPR, the multidimensional
signals are modeled locally by a polynomial using least-
squares (LS) criterion with a kernel controlled by a certain
bandwidth matrix. Based on the traditional intersection
confidence intervals (ICI) method, a new refined ICI (RICI)
adaptive scale selector for symmetric kernel is developed to
achieve a better bias-variance tradeoff. The method is
further extended to steering kernel with local orientation to
adapt better to local characteristics of multidimensional
signals. The resulting multivariate LPR method called the
steering-kernel-based LPR with refined ICI method (SK-
LPR-RICI) is applied to the smoothing and reconstruction
problems in noisy images. Simulation results show that the
proposed SK-LPR-RICI method has a better PSNR and
visual performance than conventional LPR-based methods
in image processing.

Keywords Adaptive kernel selection . Bias-variance
tradeoff . Image processing .Multivariate local polynomial
regression .Multidimensional signal processing .

Kernel regression

1 Introduction

Local polynomial regression (LPR) is a flexible and
efficient nonparametric regression method in statistics.
LPR has been widely applied in many research areas such
as data smoothing, density estimation, and nonlinear
modelling [1, 2]. Given a set of noisy and possibly non-
uniformly-spaced samples of a multidimensional signal, the
data samples are fitted locally by a multivariate polynomial
using the least-squares (LS) criterion with a kernel function
KH uð Þ ¼ 1

jHjK H�1u
� �

, where K uð Þ : Rd ! R is a symmet-
ric spherical multi-dimensional basis-kernel and H is a
certain bandwidth matrix to determine the kernel size and
other properties.

LPR has been shown to possess an excellent spatial
adaptation and reasonably simple implementation. There-
fore, it has received considerable attention in the statistics
and signal processing communities. Since signals may vary
considerably, it is very crucial to choose a proper local
kernel to achieve the best bias-variance tradeoff in
estimating the local polynomial coefficients for modelling
non-stationary signals. Generally, the optimal local kernel
should be selected to minimize the mean squared error
(MSE) or its integrated and smoothed versions, which are
functions of the local kernel. For example, for slow varying
parts of a one-dimensional signal, we would like the kernel
to have a large scale so that more accurate estimates can be
obtained by averaging out the additive noise as much as
possible. At fast varying parts of the signal, however, we
would like to have a small kernel scale so that excessive
bias errors due to the limited order of the fitting polynomial
will not occur.

For multivariate LPR, the bias-variance tradeoff problem
is more complicated. It is because the bandwidth H is a
matrix in multidimensional signal processing. Not only is
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the kernel scale important, but also the kernel shape has
significant effects on the estimation results. It explains why
there were not many publications concerning the bandwidth
matrix selection of multivariate LPR, although the adaptive
bandwidth selection for univariate LPR has been studied
systematically and intensively [2–10].

Conventionally, the bandwidth matrix selection for
multivariate LPR is simplified by using kernels with a
specific shape, which is usually symmetric and spherical.
More precisely, using a symmetric and spherical basis-
kernel K(u) and a bandwidth matrix H=hI with h the scale
parameter and I the identity matrix, the kernel KH(u) is
simplified to Kh uð Þ ¼ 1

hd K u=hð Þ, where d is the dimension
of the multivariate LPR. As a result, the selection of the
scale h is much easier than the selection of a d-dimensional
bandwidth matrix H. With this assumption, Ruppert et al.
[10–12] studied the asymptotic bias, variance, and MSE of
multivariate LPR and developed the empirical-bias band-
widths selection (EBBS) algorithm for multivariate LPR
[13]. Based on Ruppert’s work, Fan and Gijbels [2], Yang
and Tschernig [14] also developed similar scale selection
methods for multivariate local linear regression. These
methods are innovative and useful, but they were developed
mainly for linear or quadratic regression and did not
consider the partial derivatives of the estimates. Also, they
were all based on the symmetric kernel assumption.

Unlike above methods, Masry [15–17] considered a more
general kernel, which may not be symmetric and spherical.
More precisely, the basis-kernel K(u) in the kernel function
Kh uð Þ ¼ 1

hd K u=hð Þ may be asymmetric and of various
shapes. A comprehensive study on the bias and variance of
multivariate LPR with higher-order polynomials and higher-
order derivatives was carried out, and an analytical expres-
sion of the optimal scale h was given. However, the optimal
scale selection method is generally not directly usable in
practice because its analytical form always involves quanti-
ties which are somewhat difficult to be estimated.

Instead of computing an optimal scale in an analytical
form, empirical methods choose the scale from a finite set
of scale parameters in a geometric grid. Recently, Katkov-
nik et al. [18–20] applied an intersection confidence
intervals (ICI) method to the multivariate LPR problem
for selecting the optimal local scale and studied its
applications in image processing. Given a set of scale
parameters in ascending order, the ICI rule determines the
optimal scale by comparing the confidence intervals of the
estimates with different scale parameters in the scale set.
However, the ICI method (and other empirical scale
selectors) can only select the local scale from the finite
scale set, and therefore the exact scale value cannot be
calculated if it is not included in the scale set.

In this paper, we first propose a new refined ICI adaptive
scale selection method (RICI) for multidimensional signal

processing using the bias and variance expressions derived
from multivariate LPR analysis of Masry [15–17]. The
RICI method can determine a more accurate scale param-
eter beyond the limit of the finite scale set. The main idea
of the RICI method is inspired by the work of Stanković
[21], which discussed in-depth the bias-variance tradeoff
problem and the ICI adaptive scale selection algorithm.

Next, we study the application of the proposed LPR with
RICI adaptive scale selection method (LPR-RICI) for
smoothing noisy images. Motivated by the iterative steering
kernel regression method of Takeda et al. [22], the local
kernel shape is iteratively determined from the local
orientation of the image data. The locally adaptive steering
kernel has a better adaptability to local characteristics of
images than the conventional symmetric circular kernel.
Coupled with the proposed RICI scale selection, a fully
automatic iterative steering-kernel-based LPR with refined
ICI method (SK-LPR-RICI) for smoothing multivariate
data is proposed. It has a better MSE and perceptual
equality than the conventional symmetric circular kernel.
Since LPR can be naturally adapted to non-uniformly
spaced data points, we also propose to employ the SK-
LPR-RICI method for interpolating non-uniformly sampled
images, which finds applications in image reconstruction
and super-resolution.

The rest of the paper is organized as follows. In
Section 2, the basic principle of multivariate LPR and its
bias-variance tradeoff problem are revisited. Section 3
introduces the ICI scale selection algorithm and proposed
the refined ICI adaptive scale selector. Section 4 is devoted
to the applications of LPR to image processing problems
such as smoothing and reconstruction, and a fully data-
driven iterative steering-kernel-based LPR with refined ICI
method will be proposed. This algorithm is also applicable
to other 2-dimentional data. Experimental results and
comparisons to other conventional methods using both test
and real images are presented in Section 5. Finally,
conclusions are drawn in Section 6.

2 Multivariate Local Polynomial Regression

In multivariate LPR, we have a set of multidimensional
observations: (Yi, Xi), i=1,2,⋯,n, where for each i, Yi is a
scalar response variable and Xi ¼ Xi;1;Xi;2; � � � ;Xi;d

� �T
is a

d-dimensional explanatory variable. We assume the homo-
scedastic model:

Yi ¼ m Xið Þ þ s Xið Þ"i ð1Þ

where m(Xi) is a smooth function specifying the conditional
mean of Yi given Xi, εi is an independent identically
distributed (i.i.d.) additive white Gaussian noise (AWGN)
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with zero mean and unit variance, and σ2 (Xi) is its
conditional variance. The problem is to estimate m(Xi) and
its partial derivatives from the noisy samples Yi.

The smooth function m(Xi) can be approximated locally,
say at a given point x ¼ x1; x2; � � � ; xdð ÞT , by a multivariate
polynomial of a certain degree:

mðX : xÞ ¼ m xð Þ þ rm xð Þf gT X� xð Þ
þ 1

2
X� xð Þ Hm xð Þf gT X� xð Þ þ � � �

¼ m xð Þ þ rm xð Þf gT X� xð Þ
þ 1

2
vecT Hm xð Þf g � vec X� xð Þ X� xð ÞT

n o
þ � � �

¼ b0 þ βT
r � X� xð Þ þ βT

H � vech X� xð Þ X� xð ÞT
n o

þ � � �
ð2Þ

w h e r e b0 ¼ m xð Þ; br ¼ rm xð Þ ¼ @m xð Þ
@x1

; � � � ; @m xð Þ
@xd

h iT
,

bH ¼ vech Hm xð Þf g ¼ 1
2

@2m xð Þ
@x21

; 2 @2m xð Þ
@x1@x2

; � � � ; @2m xð Þ
@x2d

h iT
,

X ¼ X1;X2; � � � ;Xdð ÞT is in a neighborhood of x, ∇m is the
d × 1 gradient operator, Hm is the d×d Hessian matrix of m
(x), vec(∙) is the vectorization operator which converts a
matrix into a column vector lexicographically, and vech(∙)
is the half-vectorization operator which converts, for

example, A ¼ a1 a2
a3 a4

� �
into vechðAÞ ¼ a1; a3; a4½ �T .

Alternatively, a degree p multivariate polynomial in (2)
can be written as:

m X : xð Þ ¼
Xp
K¼0

X
k1þ...þkd¼K

bk1;���;kd
Yd
j¼1

Xj � xj
� �kj ; ð3Þ

where b ¼ bk1;���;kd : k1 þ � � � þ kd ¼ K andK ¼ 0; � � � ; p� �
is the vector of coefficients with length q ¼ Qp

j¼1
d þ jð Þ=j½ �.

Since εi is i.i.d. and Gaussian distributed, the maximum
likelihood (ML) estimation of the coefficient vector β at
location x can be obtained by solving the following
weighted least-squares (WLS) regression problem:

bb x;Hð Þ ¼ argmin
b

J x;Hð Þf g; ð4Þ

where

J x;Hð Þ ¼
Xn
i¼1

KH Xi � xð Þ Yi �
Xp
K¼0

X
k1þ...þkd¼K

bk1;���;kd
Yd
j¼1

Xi;j � xj
� �kj" #2

;

ð5Þ

is a LS cost function and KH Xi � xð Þ ¼ 1
jHj K H�1 Xi � xð Þ� �

is a d-variate non-negative kernel function which emphasizes
neighboring observations around x in estimating β(x). The
bandwidth matrix H determines the weights of neighboring

samples around x to be used in estimating β(x). For separable
windows, we have

KH Xi � xð Þ ¼
Yd
j¼1

Khj Xi; j � xj
� � ¼ 1

h1:::hd

Yd
j¼1

Khj
1

hj
Xi; j � xj
� �� 	

;

ð6Þ
Further, for identical bandwidth, h1=⋯=hd=h. It is the

most popular and simplest way to simplify the bandwidth
parameter from a matrix H to a scalar h.

In [15–17], the kernel considered is of the form
Kh uð Þ ¼ 1

hd K u=hð Þ, where the non-negative basis-kernel
function K(u) may not be circular or symmetric, and h is
the scale parameter. To facilitate the development in the
following sections, we assume that the basis-kernel K(u) is
known a priori. Its extension to a locally orientation
adaptive basis-kernel will be discussed in Section 4.

The WLS solution to (4) is:

bb x; hð Þ ¼ X
T
WX

� ��1
X

T
WY; ð7Þ

where X ¼

1 X1 � xð ÞT vech X1 � xð Þ X1 � xð ÞT
n o

� � �
1 X2 � xð ÞT vech X2 � xð Þ X2 � xð ÞT

n o
� � �

..

. ..
. ..

. ..
.

1 Xn � xð ÞT vech Xn � xð Þ Xn � xð ÞT
n o

� � �

26666664

37777775;

Y ¼ Y1; Y2; � � � ; Yn½ �T

, a n d W ¼ diag Kh X1 � xð Þ; � � � ;f

Kh Xn � xð Þg is the weighting matrix.

From the estimated coefficient vector bb x; hð Þ, we can
obtain the estimated k-th order derivative of m(x) as
follows

bm kð Þ xð Þ ¼ @Km xð Þ
@xk11 � � � @xkdd

¼
Yd
j¼1

kj!
� � � bbk1;���;kd x; hð Þ; ð8Þ

where k=(k1,⋯, kd) is a vector of non-negative integers and

K ¼Pd
j¼1

kj. In particular, m(x) is estimated from bb0;���;0 xð Þ,
that is bm xð Þ ¼ bm 0;���;0ð Þ xð Þ ¼ bb0;���;0 xð Þ.

As mention earlier, a key problem in LPR is to select an
appropriate scale parameter h so as to achieve the best bias-
variance tradeoff in estimating m(k)(x). To this end, we need
first of all to examine the analytical expressions for the
conditional bias, variance and MSE of the polynomial
coefficient estimate bb. From (7), it can be shown that:

Bias bb x; hð ÞjeX
 �
¼ E bb x; hð Þ


 �
� b x; hð Þ

¼ X
T
WX

� ��1
X

T
W m� Xb x; hð Þð Þ; ð9Þ

Var bb x; hð ÞjeX
 �
¼ X

T
WX

� ��1
X

TΣX X
T
WX

� ��1
; ð10Þ

MSE bb x; hð ÞjeX
 �
¼ Bias2 bb x; hð ÞjeX
 �

þ Var bb x; hð ÞjeX
 �
; ð11Þ
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where eX ¼ X1;X2; � � � ;Xnf g, m ¼ m X1ð Þ;m X2ð Þ; � � � ;m Xnð Þ½ �T ,
and Σ ¼ diag Kh Xi � xð Þs2 Xið Þ� �

.
While the variance is not difficult to estimate from the

observations and the kernel coefficients, the estimation of
the bias poses a significant problem because it depends on

the estimate β(x;h) to be determined. Denote k! ¼ Qd
j¼1

kj!,

and let f(x) be the probability density function (p.d.f.) of x.
The asymptotic bias and variance of the k-th partial
derivative bm kð Þ x; hð Þ are [15–17]:

Bias bm kð Þ x; hð ÞjeXn o
¼

ffiffiffiffi
B

p
hpþ1�K; ð12Þ

Var bm kð Þ x; hð ÞjeXn o
¼ Vh� dþ2Kð Þ; ð13Þ

w h e r e B ¼ k! M�1Bmpþ1 xð Þ� �
K


 �2
, V ¼ k!ð Þ2s2 xð Þ

M�1ΓM�1
� �

K; K=nf xð Þ, B ¼ M0; pþ1;M1; pþ1; � � � ;Mp; pþ1

 �T ,
mpþ1 xð Þ ¼ vech bm kð Þ xð Þ


 �
is the regression result obtained

with a higher order p + 1, M�1ΓM�1
� �

K; K is the (K;K)
diagonal element of the constant matrix M�1ΓM�1,
M�1Bmpþ1 xð Þ� �

K is the K-th element of the vector
M�1Bmpþ1 xð Þ, and the (i, j)-th element of the matrices M
and Γ areMi; j ¼

R
u iþjð ÞK uð Þdu and Γ i;j ¼

R
u iþjð ÞK2 uð Þdu

respectively. The details can be found in [15–17]. Similar
asymptotic analytical results on bias and variance of
multivariate LPR were also reported by Ruppert and Ward
[10], and Fan and Gijebles [2].

It can be seen from (12) and (13) that the bias term will
increase with the increase of the scale parameter h since
that the underlying data at x cannot be modeled well by the
local polynomial with the given order. On the other hand, a
larger scale parameter will reduce the variance of the
estimator. Hence, there exists a locally optimal scale hopt(x)
for estimating the k-th partial derivative m(k)(x), and hopt(x)
should minimize an appropriate measure such as the MSE
as follows:

MSE bm kð Þ x; hð ÞjeXn o
¼ Bias2 bm kð Þ x; hð ÞjeXn o

þVar bm kð Þ x; hð ÞjeXn o
¼ Bh2ðpþ1�KÞ þ Vh� dþ2Kð Þ: ð14Þ

By minimizing (14), an analytical formula for hopt(x) can
be determined as follows:

hopt xð Þ ¼ 2Kþ dð ÞV
2 p�Kþ 1ð ÞB
� 	 1

dþ2pþ1

: ð15Þ

However, some of the quantities in (15) are difficult to
be calculated, which makes the optimal scale difficult to be
estimated accurately. Instead of computing an optimal scale
in an analytical form, empirical methods choose the local
scale from a finite set of scale parameters in a geometric
grid. In the next section, an empirical scale selection
method, called the intersection of confidence interval rule
is introduced.

3 Refined ICI Scale Selection Algorithm

The intersection of confidence interval (ICI) rule is an
empirical method to select the adaptive scale from a set of
scales in ascending order. The ICI rule was proposed by
Goldenshluger and Nemirovski in [23], and Katkovnik et
al. [18–20] applied the ICI rule to univariate and bivariate
LPR for selecting the locally adaptive bandwidth or scale.
The ICI method can be regarded as a special implementa-
tion of the Lepski’s approach [24], which compared a series
of estimates with different scales from the scale set and the
optimal scale was the largest one whose estimate did not
differ significantly from the estimate of a smaller scale.

Starting with a finite set of scale parameters in a
geometric grid,

eH ¼ hjIjhj ¼ h0a
j; j ¼ 1; � � � ; J� �

; ð16Þ
where a > 1 is a step factor, h0>0 is the base scale, and J is
the size of the scale set. The minimum scale in the scale set
should be small enough so that sharp changes can be
preserved, while the maximum scale should be large
enough to remove the additive noise adequately. The
maximum scale is usually chosen as n/log10(n) to avoid
high complexity and possible over-smoothing [2].

3.1 ICI Rule

In the ICI rule, the optimal scale is determined by
comparing the confidence intervals of the estimates with
different scales from eH. The ICI rule needs only to estimate
the variance, which can be easily estimated from (10), and
it does not involve the computation of the bias and MSE
values.

To see how the algorithm works, we first note that, for
each x, the estimate bm x; hð Þ is a random variable around the
true value m(x) with bias and variance as shown in (12) and
(13). For simplicity, in this section we shall drop the index
x and k to save notation. It has been shown in [2, 20, 21,
23] that

bmðhÞ � mþ Bias bmðhÞð Þ½ �f g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bmðhÞð Þ

p
� Nð0; 1Þ

ð17Þ
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is Gaussian distributed with zero mean and unit variance. In
other words, bmðhÞ is Gaussian distributed with mean
Mean bmðhÞð Þ ¼ mþ Bias bmðhÞð Þ and standard deviation
Std bmðhÞð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var bmðhÞð Þp
.

The confidence intervals of the estimate bmðhÞ can also
be constructed from the bias and variance as

Mean bmððhÞð Þ � k � Std bmðhÞð Þ;Mean bmðhÞð Þ þ k � Std bmðhÞð Þ½ �:
ð18Þ

As a result, the probability that bmðhÞ lies in the
confidence interval jbmðhÞ �Mean bmðhÞð Þj � k � Std bmðhÞð Þ,
Pr(κ), can be computed readily. Usually, the parameter κ is
selected so that Pr(κ) will be close to one and a reasonable
estimation of the possible range of values of bmðhÞ can be
achieved. For example, typical values are Pr(1.65)=0.90, Pr
(1.96)=0.95, and Pr(2.58)=0.99. A larger κ will lead to a
wider confidence interval and thus a smaller bandwidth
selected, while a smaller κ will obtain a larger ICI-selected
bandwidth. Instead of choosing a fixed and appropriate
value for κ, it is also possible to optimize this value by
assigning a local threshold κ to each locations. In [18],
Katkovnik used the generalized cross-validation (GCV)
to determine the value of κ for each x. It is also based on
an empirical method, where the desired value of κ is
chosen from a finite set of threshold parameters
Γ ¼ k1; k2; � � � ; kKf g. Each threshold parameter k 2 Γ is
used in the ICI rule to calculate a series of adaptive
estimates. The optimal κ is chosen as the one which
minimizes the GCV criterion:

kopt xð Þ ¼ argmin
k

X
i

Yi � bm Xi; hjþjk xð Þ� �
1� Khjþjk xð Þ Xi � xð Þ

 !2

; ð19Þ

where hjþjk xð Þ is the optimal scale with the threshold
parameter κ. This method may lead to a better result at the
expense of significantly higher computational complexity. It is
because we need to compute a bm hj

� �
for each k 2 Γ and each

hj 2 eH, not to mention the GCV computation and comparison.
The mean value of bmðhÞ is difficult to be estimated since

it involves the true value m. The standard deviation ofbmðhÞ, Std bmðhÞð Þ, can be computed with the help of (10).
The quantity σ2(x) in (10) is estimated from the homosce-
dasticity assumption of the additive noise. The robust noise
variance estimator given in [18–20] can be used:

bs ¼ median Yi � Yi�1j jð Þf g=
ffiffiffi
2

p
� 0:6745


 �
: ð20Þ

where median(∙) denotes the sample median operation.
Next, consider a series of confidence intervals Dj ¼

Lj;Uj

 �
from the estimated bm hj

� �
with different values of

scale hj from the scale set eH:

Uj ¼ bm hj
� �þ k þΔkð Þ � Std bm hj

� �� �
; ð21Þ

Lj ¼ bm hj
� �� k þΔkð Þ � Std bm hj

� �� �
; ð22Þ

where Δκ is a threshold parameter used to adjust the width
of the confidence interval. We notice that the confidence
intervals (21) and (22) are biased because the estimated
value bm hj

� �
is used instead of the true value m(Xi). Another

constant Δκ is introduced to reduce the influence of the
estimation bias, and its effect and selection will be
discussed later in the refined ICI method.

For a small value of h, we shall expect the bias will be
small and the confidence interval will gradually decrease
with increasing value of h while the center of the interval
remains more or less fixed. When h is increased to a point
where the observations cannot be satisfactorily modeled, a
large bias will result and the center of the interval will
change significantly with respect to the others, while its
length will still be small. As a result, the confidence interval
will no longer intersect those with smaller values of h.

Motivated by this observation, the ICI scale selection
method computes and examines the following quantities
from the confident intervals in order to detect this sudden
change:

Lj ¼ max Lj�1; Lj
 �

; for j ¼ 1; 2; � � � ; J
Uj ¼ min U j�1;Uj

h i
; for j ¼ 1; 2; � � � ; J

L0 ¼ U 0 ¼ 0:

ð23Þ

It can be seen that Lj is the largest upper bound of the
confidence interval for scale evaluated up to hj, while U j is
the corresponding lower bound. The largest value of these j
for which U j � Lj, denoted by j+, gives the desirable scale
hj+, because above which the confidence intervals no longer
intersect with each other. In the ICI rule, it has been shown
in [21] that if the two confidence intervals Di and Dj

intersects, then:

jbm hið Þ � bm hj
� �j � k þΔkð Þ � Std bm hið Þð Þ þ Std bm hj

� �� � �
:

ð24Þ

3.2 Refined ICI Method

We now consider the selection of Δκ and give a refined
version of the conventional ICI rule. From (21), (22), and
(24), it can be seen that the threshold Δκ can significantly
affect the performance of the ICI algorithm. When Δκ is
large, the confidence interval Dj becomes wide, and it may
lead to a large value of hj+. This will result in over-
smoothing of the observations. On the contrary, when Δκ is
small, the interval Dj will become narrow, and it may result
in a very small value of hj+ so that the additive noise cannot
be removed effectively.

The selection and adjustment of Δκ have been discussed
in [20] and [23]. By substituting the optimal scale (15) into
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the asymptotic bias and variance expressions in (12) and
(13), we have:

Bias2 bm kð Þ x; hoptð ÞjeXn o
Var bm kð Þ x; hoptð ÞjeXn o ¼ 2Kþ dð Þ

2 p�Kþ 1ð Þ : ð25Þ

To simplify notations, let

bmðhÞ ¼ Bias bmðhÞjeXn o
; ð26Þ

s2
mðhÞ ¼ Var bmðhÞjeXn o

; ð27Þ
b ¼ 2 pþ 1�Kð Þ; and n ¼ 2Kþ d: ð28Þ

Then, one gets b2mðhÞ ¼ Bhb, s2
mðhÞ ¼ Vh�n , and

MSEðhÞ ¼ Bhb þ Vh�n . The optimal scale can then be
written as

hopt ¼ b
v
� V
B

� 	 1
bþn

: ð29Þ

In [23], Δκ is chosen as κ because the bias and standard
deviation are assumed to be equal. In [20], Katkovnik
showed that Δk ¼ b=nð Þk was an appropriate choice
because it can minimize the upper bound of the estimation
error. That is, Δκ should be selected as the ratio of the
squared bias and the variance at the optimal scale hopt.

It can be seen that the above method can only select the
optimal scale hopt=hj+ from the finite scale set eH.
Generally, the exact optimal scale is not included in the
scale set eH. In [21], the computation of a more exact
optimal scale for the general ICI scale selection problem
with given bias and variance formulas was considered. The
importance of the result is that explicit knowledge of B and
V in (12) and (13) is not required. Here, we shall employ
this method to further refine the ICI adaptive scale for the
LPR problem using the bias and variance formulas in (12)
and (13).

By assuming that hoptI is close to the conventional ICI-
based optimal bandwidth hjþI 2 eH, we can write
hjþ ¼ ahhopt, where a is the step factor and η is a variable
to be determined for refining the optimal scale. The entries
in the scale set eH of (16) can thus be rewritten as

eH ¼ hjIjhj ¼ hjþa
j�jþð Þ ¼ hopta j�jþþhð Þ; j ¼ 1; � � � ; J

n o
:

ð30Þ
Substituting (30) into (12) and (13), the bias and

standard deviation can be written as:

bm hj
� � ¼ ffiffiffiffiffiffiffiffiffi

Bhj
b

q
¼¼

ffiffiffiffiffiffiffiffi
n=b

p
sm hoptð Þa

b j�jþþhð Þ
2 ; ð31Þ

sm hj
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

V=hj
n

q
¼¼ sm hoptð Þa

�n j�jþþhð Þ
2 : ð32Þ

In the ICI rule, the optimal hj+ is the largest scale where
the confidence intervals Djþ�1 and Djþ intersect, but not Djþ

and Djþþ1. Given an appropriate value of κ such that
Pr(κ) ≈ 1. From the p.d.f. of (17), we have high confidence
that bm hj

� �
will lie in the confidence interval:

mþ bm hj
� �� ksm hj

� � � bm hj
� � � mþ bm hj

� �� ksm hj
� �

:

ð33Þ
Making use of (33) and substituting (16) to (24), one

gets, after slight manipulation, the condition for Djþ�1 and
Djþ to intersect as:

bm hjþ�1

� �þΔksm hjþ�1

� � � bm hjþ
� �þΔksm hjþ

� �
;

ð34Þ
and the condition for Djþ and Djþþ1 not to intersect as:

bm hjþ
� �þ 2k þΔkð Þsm hjþ

� �
bm hjþþ1

� �
� 2k þΔkð Þsm hjþþ1

� �
: ð35Þ

Substituting the estimated bias (31) and variance (32)
into the inequalities (34) and (35), the threshold parameter
Δκ and the refining parameter η in the expressions can be
determined as follows:

Δk ¼ 2k

a bþnð Þ=2 � 1
; ð36Þ

h ¼ 2

b þ n
loga Δk

ffiffiffi
b
n

r
1þ an=2

1� a�b=2

 !
: ð37Þ

Thus, given an appropriate value of the threshold
parameter κ, say 1.96, in LPR problem, Δκ and η can be
obtained from (36) and (37). Hence, a refined adaptive
scale is hopt ¼ hjþa�h.

Since the scale set is constructed in a geometric order,
we still need to add a logarithmic shift Δη to η for
compensating for the difference between the arithmetic
mean and the geometric mean. This shift value can be
approximated as [21]:

Δh ¼ 2 loga 1þ a bþnð Þ=2� �
=2

� � �
b þ n

� 1

2
: ð38Þ

Finally, the desired optimal scale is determined as:

hopt ¼ hjþa
� hþΔhð Þ: ð39Þ

We now summarize the refined ICI (RICI) adaptive scale
selection method as follows:

1) Set up a finite scale set eH as in (16);
2) Compute bm hj

� �
for hjI 2 eH;

3) Select the threshold κ and compute Δκ from (36);
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4) Find hjþ from the set eH with the ICI rule;
5) Compute the refined parameters η and Δη from (37)

and (38);
6) Calculate the refined optimal scale hopt ¼ hjþa� hþ$hð Þ.

Note that in step 3), the threshold parameter κ can be
chosen as some reasonable values such as 1.96. If κ is
selected by (19), the result may be better but the complexity
is higher.

4 Data-Driven LPR for Image Processing

Recently, bivariate LPR has received considerable attention
in image processing field. Katkovnik et al. [18–20]
successfully applied LPR with ICI bandwidth selection to
de-noising, de-blurring, and edge detection of images.
Takeda et al. developed a steering kernel regression method
for image de-noising, interpolation, and fusion [22]. In this
section, we shall extend the adaptive scale selection method
developed in Section 3 to kernel that can adapt to the local
orientation of an image. This steering-kernel-based LPR-
RICI (SK-LPR-RICI) will then be applied to smoothing and
interpolation of noisy images.

An N1 × N2 gray-scale image can be viewed as the
observations of a 2-dimensional (2D) function where the
samples are taken along the 2D explanatory variable x ¼
x1; x2ð Þ at x1 ¼ 1; 2; � � � ;N1 and x2 ¼ 1; 2; � � � ;N2 with
Y x1; x2ð Þ the intensity of the image pixel. In principle, the
locations of the samples can be non-uniformly spaced. This
makes LPR very useful in general interpolation and
smoothing problems. The smoothed result is obtained from
the estimated bm x1; x2ð Þ ¼ b0;0 by applying LPR with a
suitably chosen 2D kernel KH �ð Þ to the original image. The
quantities b1;0 ¼ @m x1; x2ð Þ=@x1 and b0;1 ¼ @m x1; x2ð Þ=@x2
represent respectively the first-order partial derivatives of
an image along the x1 and x2 coordinates. When x is
evaluated at a series of 2D grid points, we obtain a
smoothed surface representation of the data from the noisy
image Y. Therefore, the smoothing and interpolation of
digital images can be performed through LPR.

4.1 Kernel Selection

The Gaussian-type kernel is employed in our analysis work
and experiments on image processing because it can be
transformed to produce a steering kernel. Given a band-
width matrix H, the Gaussian kernel is calculated as:

KH uð Þ ¼ 1

2pjHj exp �uT H�1
� �T

H�1u=2
n o

ð40Þ

Since the Gaussian kernel is not of compact support, it
should be truncated to a sufficient kernel size Nk×Nk to

reduce the arithmetic complexity, which will be discussed
later in this section.

When the bandwidth matrix is chosen as H=hI, a
symmetric Gaussian kernel results, which is used in most
LPR methods for image processing because of its simplic-
ity. For the symmetric basis-kernel, the locally adaptive
scale parameter h at a point x will control the amount of
smoothing to be performed at that point. When h is small,
image details such as edges and textures will be preserved.
However, possible additive noise may not be removed
effectively. On the contrary, a large-scale kernel has better
de-noising properties at the expense of possibly blurring of
the image details. Therefore, a locally adaptive scale
selection method is very crucial to LPR in image process-
ing. The ICI rule with a symmetric circular kernel has been
shown to be an effective tool for adaptive scale selection
[18–20].

Recently, Takeda et al. [22] proposed a steering kernel,
which is obtained by elongating and rotating a symmetric
Gaussian kernel so that it can adapt to the dominant
orientation locally. In [22], the orientation and scale of the
steering kernel was determined using principal compo-
nents analysis (PCA). The resultant iterative steering
kernel regression (ISKR) method was shown to have a
better performance than the conventional symmetric
kernel, especially along image edges. In the ISKR method,
the local scaling parameter was obtained as hi ¼ h0gi,
where h0 and γi are respectively the global smoothing
parameter and the local scaling parameter. The local
scaling factor γi was estimated using the local energy
distribution of the image, while h0 was chosen as to
minimize the root mean squared error (RMSE) value for
known test images or to yield most visually appealing
results for real images. Consequently, the scale selection
process is not fully automatic and the criterion for
selecting the global smoothing parameter for real images
is somewhat subjective.

To address this problem, we propose a fully data-driven
adaptive scale selection method using the RICI rule
proposed in Section 3. Specifically, we will extend the
RICI rule for symmetric kernel to the steering kernel and
obtain a new steering-kernel-based LPR with refined ICI
bandwidth selection (SK-LPR-RICI). To this end, we
propose to construct the local steering kernel Kh uð Þ ¼
1
h2 K u=hð Þ at each sample x of an image by a steering basis-
kernel K(u) and a scale parameter h. The shape of the local
basis-kernel K(u) will be determined first based on the local
dominant orientation estimation around x which can be
achieved by the PCA method in [22]. The details of the
PCA method is omitted to save place, and please be
referred to [22] for details. Then, the RICI rule is employed
to choose the optimal scale parameter h for the steering
basis-kernel K(u).
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4.2 Steering-Kernel-Based LPR with RICI Method

Once the locally adaptive steering basis-kernel is deter-
mined, the RICI adaptive scale selection method can be
used with slight modification to determine the locally
adaptive scale parameter h. More precisely, with different
scale parameter hj from the scale set eH, we use the steering
kernel Khj X� x;HS;

� � ¼ 1
h2j
K X� xð Þ=hj;HS

� �
with a

bandwidth matrix hjHS to fit a p-order polynomial at x
and obtain a series of smoothed estimates of bm x; hj

� �
. The

traditional ICI rule is then invoked to select a preliminary
scale parameter hjþ. For d=2 and k=(0,0), the bias and
variance of the estimator are

Bias bm x; hð ÞjeXn o
¼

ffiffiffiffi
B

p
hpþ1; ð41Þ

Var bm x; hð ÞjeXn o
¼ Vh�2: ð42Þ

The refined scale hopt can then be determined by the
RICI method. A LPR using this refined scale parameter is
then performed on the image to yield the final estimatebm x; hoptð Þ ¼ bb0;0 x; hoptð Þ.

Inspired by the ISKR method, the local steering matrix
estimation and LPR with RICI rule can be executed
iteratively to achieve better de-noising results, if necessary.
The proposed iterative SK-LPR-RICI method can be
summarized as follows:

Step 1 Initial gradient estimation
With an initial bandwidth matrix Hð0Þ ¼ hð0ÞI,

calculate the initial values of bmð0Þ x;Hð0Þ� �
and the

gradient estimation bbð0Þ0;1 x;Hð0Þ� �
and bbð0Þ1;0 x;Hð0Þ� �

.
Step 2 Steering kernel estimation (l-th iteration)

The first-order gradient estimates bb l�1ð Þ
0;1

x;H l�1ð Þ� �
and bb l�1ð Þ

1;0 x;H l�1ð Þ� �
are used to calcu-

late the steering bandwidth matrix HðlÞ
S;x and the

steering basis-kernel KðlÞ
x u;HS;x

� �
.

Step 3 Local scale parameter estimation (l-th iteration)
Obtain a series of LPR results using kernels

with the bandwidth matrix h �HðlÞ
S;x with h belong-

ing to eH. Determine the scale parameter hopt;ðlÞ

using the RICI rule.
Step 4 LPR with estimated steering kernel (l-th iteration)

A LPR is performed with the estimated bandwidth
matrix HðlÞ ¼ hopt;ðlÞHðlÞ

S;x to obtain bmðlÞ x;HðlÞ� �
,

along with its partial derivatives bbðlÞ1;0 x; hoptð Þ andbbðlÞ0;1 x; hoptð Þ.
Generally, more iterations will reduce the estimation

variance, but the bias will increase, As a result, when the
additive noise is small, the number of iterations should also
be small to avoid over-smoothing for the image. When the
image is contaminated by large amount of noise, more
iterations can improve the de-noising results. Similarly,

given prior knowledge of additive noise, the initial scale
parameter h(0) should be selected as a large value when
noise component is significantly large, while a small value
of h(0) is more appropriate when the additive noise is small.

The computational complexity of the SK-LPR-RICI
method is mainly determined by the polynomial order p
and the kernel size NK. For each data sample, the
complexities of computing X

T
WX and X

T
WY in (7) are

O q2N2
K

� �
and O qN2

K

� �
respectively, and the matrix inversion

needs a complexity of O q3ð Þ, where q ¼ Qp
j¼1

d þ jð Þ=j½ � is the
length of the coefficient β. If q≪NK, the complexity of the
WLS solution is O N2

K

� �
. As a result, a large p, which means

a large q, will lead to a very heavy computational
complexity. Hence, a linear (p=1) regression is generally
used, and the kernel size NK is given a small value of, say 9
or 11. Since the SK-LPR-RICI method involves the SVD,
which has a complexity of O N 3

K

� �
, it has a higher arithmetic

complexity than the symmetric-kernel-based LPR. As for the
ISKR method, if there is no a prior knowledge about the
global smoothing parameter h0, each h0 from eH has to be
tested and more importantly the quality has to be judged
manually. Hence, the complexity of ISKR and the proposed
iterative SK-LPR-RICI method are comparable.

4.3 LPR for Image Smoothing and Reconstruction

Since LPR is applicable to uniformly as well as non-
uniformly sampled observations, it is very useful in smooth-
ing and interpolation of generally sampled data set. One
useful application is the reconstruction of a high-resolution
(HR) image from multiple shifted low-resolution (LR) images
in super-resolution imaging [25–28]. Since the LR images
may be shifted arbitrarily from each other, the image samples
are non-uniformly sampled. Using LPR, we can construct a
HR image from the non-uniform spaced image samples.
More information about super-resolution and image registra-
tion can be found in [25–30]. Here, we only focus on the
application of the SK-LPR-RICI method to the HR imaging
from LR images without blurring. The image samples may be
corrupted by noise due to imprecise registration.

As shown before, LPR is a practical de-noising and
interpolation technique for image processing. Therefore, it
can be used to interpolate noisy uniformly spaced images
and remove possible artifacts due to data compression. This
will be illustrated further by examples in Section 5.
However, it is worth noting that the proposed LPR-based
methods are only capable of handling the artifacts that can
be modeled as an additive Gaussian white noise. It will be
interesting to improve the LPR-based methods to deal with
other unwanted effects like illumination or blurring, but it is
outside the scope the paper and we will pursue such
direction in further study.
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5 Experimental Results

In this section, we will evaluate the proposed RICI method
for image smoothing, coding artifacts removal, and super-
resolution imaging. Peak signal-to-noise ration (PSNR),
PSNR ¼ 10 � log10 2552=MSE

� �
, is used here as the perfor-

mance criterion for evaluation. The PSNR values shown in
the tables are averages of 100 independent Monte-Carlo
realizations, and one realization is illustrated in figures.

5.1 Image De-Noising

We now apply the proposed SK-LPR-RICI method to
suppress the additive Gaussian white noise in gray-scale
images. Two 256 × 256 8-bit images, Test and Lena are
used in the simulation, and the noise-free original images
are shown in Figs. 1a and 2a. The image Test contains
distinct edges and corners, and the performances around
image edges are easier to be visualized and compared. Lena
also contains a good mixture of details, flat area, and

texture, which makes it a commonly used test image.
Gaussian kernels are used here, and the scale set of (16) is
chosen as eH ¼ hj : jhj ¼ 1=4; 1=2; 1; 2; 4

� �
. The kernel

size parameter NK is set to 11.
Four different adaptive scale selection methods are

evaluated:

1) LPR-ICI: it uses the traditional ICI adaptive scale
selector introduced by Katkovnik in [18], for the
symmetric circular kernel.

2) LPR-RICI: it uses the refined ICI adaptive scale
selector method proposed in Section 3, and a symmet-
ric circular kernel.

3) Iterative SK-LPR-RICI: it uses the iterative steering-
kernel-based LPR with the refined ICI adaptive scale
selector, as proposed in Section 4.

4) ISKR: it uses the iterative steering kernel regression
method introduced by Takeda et al. [22].

For the ISKR method, the global smoothing parameter
h0 is chosen from scale parameters in the set eH. The
number of iterations in the SK-LPR-RICI and ISKR

Figure 1 Comparison of different adaptive scale selection methods
for smoothing the image Test: a original noise-free image, b noisy
image, c ISKR, d LPR-ICI, e LPR-RICI, f SK-LPR-RICI, g adaptive
local scale with ICI rule, h adaptive local scale with RICI rule, i
adaptive local scale with RICI rule based on steering kernel, j enlarged
image of ISKR, k enlarged image of LPR-RICI, l enlarged image of
SK-LPR-RICI.

Figure 2 Comparison of different adaptive scale selection methods
for smoothing the image Lena: a original noise-free image, b noisy
image, c ISKR, d LPR-ICI, e LPR-RICI, f SK-LPR-RICI, g adaptive
local scale with ICI rule, h adaptive local scale with RICI rule, i
adaptive local scale with RICI rule based on steering kernel, j enlarged
image of ISKR, k enlarged image of LPR-RICI, l enlarged image of
SK-LPR-RICI.
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method is set to 3. We shall estimate the smooth functionbm Xið Þ using linear regression with p=1. As a result, we
have b ¼ 2 pþ 1�Kð Þ ¼ 4 and n ¼ 2Kþ d ¼ 2 in the
bias and variance expressions (31) and (32). More
precisely, the estimate bias is proportional to the squared
scale while the variance is inversely proportional to the
squared scale. The threshold parameter κ used for the ICI-
based methods is selected as 1.96 so that the probability
that bm Xið Þ lies in the confidence interval is 95%. With these
parameter and Eqs. 36–39, we can calculate the parameters
for the RICI method: Δκ=0.56, η=0.55, Δη=0.22, and
hopt ¼ 0:59hjþ .

The corresponding smoothing results are shown in
Figs. 1 and 2 where the additive noise is Gaussian
distributed with zero mean and variance σ2=25. To
evaluate the best possible performance of the ISKR, we
assume that the “true image” is available so that the best
global smoothing scale h0 can be found by a one-
dimensional search. We found that the MSE curve as a
function of h0 is convex near the global minimum, and,
therefore, a bisection search is employed to seek for the
best value of h0 from the bandwidth set eH.

The smoothing results of ISKR method in Figs. 1c and 2c
are obtained with the optimal global smoothing parameter h0
from eH and the optimal number of iteration l. For the Test
and Lena images, the optimal global smoothing parameters
are h0=1.27 and h0=0.65, respectively. The number of
iteration for images Test and Lena are both l=1 in the ISKR
method. The results of the iterative SK-LPR-RICI method
illustrated in Figs. 1f and 2f, are obtained with the same
number of iteration. It also gives the best PSNR value.

We can see from Figs. 1c-f and 2c–f that all the four
adaptive scale selection methods have satisfactory results:
the noise in flat area is suppressed and the edges are preserved
quite well. By comparing the PSNR values in Table 1 (a), we
find that the SK-LPR-RICI method has the highest PSNR.
Some specific areas are enlarged in Figs. 1j-l and 2j–l for
better visualization. It shows that the SK-LPR-RICI method
also have a better visual performance.

Next, we evaluate the performances of various scale
selection methods under different noise variances. The

PSNR values are summarized in Table 2. It can be seen
from Table 2 that:

1. Generally, the PSNR values of the four adaptive scale
selection methods in ascending order are: LPR-ICI,
LPR-RICI, ISKR, SK-LPR-RICI. Note that the best
performance in the ISKR method cannot in general be
realized because h0 is chosen to minimize the MSE,
which is unavailable in practice.

2. The best global smoothing parameter h0 for the ISKR
method varies with the noise variance. For small noise
level, h0 is relatively small, while for large noise level,
h0 increases accordingly.

3. More iterations generally cause more smoothing of the
images. Therefore, the number of iteration should
increase with the noise level of the images, if it is
known in prior. More iterations should only be applied
to rather noisy images in order to avoid over-
smoothing.

Finally, the computational complexities of these methods
under test are compared. The detailed analysis of one LPR
operation in a pixel can be found in Section 4.2. The LPR-
ICI method has the lowest complexity because it does not
need to refine the ICI-based bandwidths and to calculate the
steering kernels. The SK-LPR-RICI and ISKR methods
have higher complexities than LPR-ICI and LPR-RICI
methods because the parameters to construct the steering
kernels have to be estimated. The SK-LPR-RICI method
has a higher complexity than ISKR because it includes
additional ICI bandwidth selection and refinement. In
summary, the computational complexities of the four
methods in ascending order are: LPR-ICI, LPR-RICI,
ISKR, SK-LPR-RICI.

5.2 Coding Artifacts Removal

LPR can also be used to suppress the quantization noise
in image and video compression. This is because the
artifacts or noise produced during the compression and
quantization can be roughly modeled as Gaussian

Table 1 PSNR comparisons of variable basis-kernel and scale selection methods for image processing (σ2=25).

(a). De-noising (Gaussian noise) LPR-ICI LPR-RICI SK-LPR-RICI ISKR

Test 38.58 43.58 49.00 (l=3) 48.79 (h0=1.27, l=1)

Lena 38.48 38.64 41.32 (l=3) 41.28 (h0=0.65, l=1)

(b). De-noising (Coding artifacts) LPR-ICI LPR-RICI SK-LPR-RICI ISKR

Lena 36.97 37.69 37.97 37.96 (h0=1)

(c). Super-resolution LPR-ICI LPR-RICI SK-LPR-RICI ISKR Bicubic spline IBP

Lena 37.23 39.57 43.09 42.75 (h0=1) 35.82 36.97
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distributed. This is supported by observations in [31],
which reported that the JPEG compression noise is
Gaussian distributed with zero mean and a covariance
matrix determined by the quantization table and DCT
transform matrix.

To evaluate the effectiveness of the LPR algorithms, we
compressed the image Lena by JPEG with a compression
ratio 50%, as shown in Fig. 3b. Only one iteration is
employed in the ISKR and iterative SK-LPR-RICI
methods because the quantization noise is not very
severe. Other experimental settings are the same as the
previous de-noising experiment. The compression arti-
facts mainly occur near sharp edges and have block-like
shapes, which are illustrated in Fig. 3. It can be seen
that the blocking artifacts are suppressed satisfactorily
by the LPR-based methods. The proposed SK-LPR-RICI
method can achieve the best results among these LPR-
based methods, and their PSNR values are summarized
in Table 1 (b).

5.3 Super-Resolution Imaging

In this section, the applications of the proposed SK-
LPR-RICI method to super-resolution of test gray-scale
images and real color photos are presented.

1) Gray-scale images: A set of four LR (128 × 128)
images are generated from the original HR (256 × 256)
Lena by decimating it by a factor of 2 both horizontally
and vertically and then with a shift of zero pixels, one
pixel to right, one pixel to bottom, and one pixel to
right and bottom, respectively. Gaussian noise of zero
mean and variance σ2=25 is added to the LR images.
The scale set eH, the threshold parameter κ, and the
kernel size NK used in this experiment follow their
values in previous de-noising experiment.

Experiments on test image Lena are carried to evaluate the
performances of the SK-LPR-RICI method with other
traditional reconstruction methods based on bicubic spline
interpolation, the iterative back-projection (IBP) method [28,

Table 2 PSNR comparisons of variable basis-kernel and scale selection methods for image de-noising (against different noise variance).

Noise
variance

LPR-
ICI

LPR-
RICI

SK-LPR-
RICI

ISKR

h0=1/4 h0=1/2 h0=1 h0=2 h0=4 h0
opt

Test σ2=25 38.58 43.58 49.00 (l=3) 42.58 (l=1) 45.94 (l=1) 47.83 (l=1) 48.07 (l=1) 43.22 (l=1) 48.79 (h0=1.27, l=1)

σ2=100 34.97 37.67 45.07 (l=3) 34.86 (l=1) 39.33 (l=1) 42.46 (l=1) 44.33 (l=2) 42.02 (l=2) 44.96 (h0=2.18, l=2)

σ2=225 34.71 35.67 42.35 (l=3) 34.19 (l=3) 34.43 (l=3) 39.11 (l=3) 41.92 (l=3) 40.14 (l=3) 42.36 (h0=2.43, l=3)

σ2=400 34.19 34.84 39.28 (l=3) 33.37 (l=3) 32.54 (l=3) 36.74 (l=3) 39.14 (l=3) 38.89 (l=3) 39.33 (h0=2.89, l=3)

σ2=625 33.60 34.08 37.99 (l=3) 32.65 (l=3) 31.28 (l=3) 34.70 (l=3) 37.34 (l=3) 37.50 (l=3) 38.10 (h0=3.15, l=3)

Lena σ2=25 38.48 38.64 41.32 (l=1) 39.74 (l=1) 41.05 (l=1) 40.69 (l=1) 38.16 (l=1) 36.46 (l=1) 41.28 (h0=0.65, l=1)

σ2=100 35.33 35.88 39.10 (l=1) 34.61 (l=1) 36.09 (l=1) 38.66 (l=1) 37.78 (l=1) 36.38 (l=1) 39.08 (h0=1.22, l=1)

σ2=225 34.09 34.91 37.38 (l=1) 33.97 (l=1) 33.60 (l=1) 36.57 (l=2) 37.12 (l=2) 36.13 (l=2) 37.41 (h0=1.72, l=2)

σ2=400 33.60 33.90 36.94 (l=3) 33.60 (l=3) 32.30 (l=3) 35.00 (l=3) 36.61 (l=3) 36.00 (l=3) 37.05 (h0=2.23, l=3)

σ2=625 32.27 33.20 36.28 (l=3) 33.24 (l=3) 31.46 (l=3) 33.64 (l=3) 36.11 (l=3) 35.69 (l=3) 36.37 (h0=2.71, l=3)

Figure 3 Comparison of different adaptive scale selection methods
for smoothing the JPEG coded image Lena: a original noise-free
image, b JPEG compressed image, c ISKR, d LPR-ICI, e LPR-RICI, f
SK-LPR-RICI, g-i enlarged images of the original image, j-l enlarged
images of SK-LPR-RICI.
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29], and ISKR. The IBP method minimizes the LS error
between the HR image to be estimated and a set of known
LR images using LS estimation method with regularization.
In LPR, we model the each pixel in the true image as a local
polynomial and solve a series of local LS estimation problem
using the samples from the known LR images, instead of the
whole image. As a result, compared with the IBP method,

the LPR-based reconstruction methods can better adapt to
local orientations in the image and achieve a better
performance at the expense of a much higher complexity.

As shown in the results of Fig. 4, the IBP method in (c)
has a better result than the bicubic interpolation method in
(b). But, the edges are blurred as compared with the LPR-
based methods in (d)–(f). The main difficulty of the LS
regularization method is to choose a global regularization
parameter to suppress the additive noise wile preserving
image edges. The PSNR values of Fig. 4b–f are listed in
Table 1 (c). The proposed SK-LPR-RICI method has a
higher PSNR value than other methods tested.

2). Color images: We now consider the reconstruction of real
color photos. In color images, each pixel consists of the
red (R), green (G), and blue (B) components in the RGB
color space. Therefore, it is possible to extend the gray-
scale super-resolutionmethods to color images by treating
each channel in the color space as an individual image and
employing the gray-scale super-resolution methods to
each channel independently. However, as pointed out in
[27], this method will produce undesirable color artifacts
because it ignores the correlation between different
channels. In this paper, we first convert the image to
the HSI (Hue, Saturation, and Intensity) color space. The
adaptive scale selection methods will be applied to the
intensity channel to obtain the local basis-kernel and
scale parameters. A LPR using the resulting basis-kernel
and scale parameters is then applied to the R, G, and B
channels of the image, respectively. An iterative maxi-
mum a posteriori (MAP) color super-resolution method
proposed in [26, 27] is also included in the experiment
for comparison. The MAP method also solves a global
LS problem with regularization to minimize the estima-
tion error between the HR and LR images.

Six LR (456 × 289) color photos were captured by a
commercial digital camera (Canon IXUS 600). The SK-

Figure 4 Comparison of different super-resolution methods for the
image Lena: a one low-resolution noisy image, b bicubic spline
interpolation, c IBP, d ISKR, e LPR-RICI, f SK-LPR-RICI, g enlarged
images of the original HR image, h enlarged images of the bicubic
spline interpolation, i enlarged images of IBP, j enlarged images of
SK-LPR-RICI.

Figure 5 Comparison of different super-resolution methods for real color photos: a one LR image and its enlarged images, b iterative MAP
method and its enlarged images, c SK-LPR-RICI and its enlarged images.
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LPR-RICI super-resolution method is applied to increase
the spatial resolution by a factor of 3 to yield a 1368×867 HR
image. A frequency-domain based motion estimation and
image registration technique developed in [30] is employed
to determine the relative shifts of these LR images.

For comparison, we display the LR photo in the same
size as the HR image by resizing each pixel to a 3×3 block.
Some areas of the LR and resultant HR images are enlarged
so that these details can be seen clearly. From visual
inspection of the results in Fig. 5, it can be observed that
the SK-LPR-RICI method is able to preserve image edges
while remove the image noise effectively.

Overall, based on the experimental results in this section,
it can be concluded that the proposed SK-LPR-RICI
method is a useful tool in smoothing and reconstruction
of noisy images. It can preserve local characteristics well
and has a systematic algorithm to automatically calculate
the parameters involved in the method.

6 Conclusion

A study on the multivariate LPR for analysis of multidimen-
sional signals was presented. A new refined ICI adaptive
bandwidth selection method was first developed for the
multivariate LPR and it was shown to have a better bias-
variance tradeoff than the traditional ICI rule. This method is
further extended to the case of a steering kernel with local
orientation for better adaptation to local characteristics of
multidimensional signals. The data-adaptive scale selection
method was then applied to smoothing and reconstruction of
noisy images. Simulation results on test and true images
showed that the proposed SK-LPR-RICI method had a better
PSNR and visual performance than the conventional LPR-
based methods in image processing.
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