75 research outputs found

    Modular Multilevel Converter-Based Hvdc Transmission Systems

    Get PDF
    High-Voltage Direct Current (HVDC) transmission systems based on Voltage Source Converter (VSC) technology has attracted significant interest recently for transmitting large amounts of power over long distances using back-to-back or point-to-point configurations. VSC-HVDC has been addressed for various HV applications such as DC interconnections, Multi-Terminal HVDC Transmission (MT-HVDC), installation of offshore wind power generation such as Europe super DC grid and installation of other renewable energy sources. Several classes of VSC topologies can be employed in HVDC systems including the conventional two and three-level converters, multilevel converters, and Modular Multilevel Converters (MMCs) that has been recently introduced and investigated for HVDC applications. MMC is penetrating the modern HVDC transmission market, due to its inherent features such as scalability, modularity, and fault ride through capability. Therefore, this thesis investigates and models a point-to-point VSC-based HVDC transmission system using nine-level MMC transient model, and 25-level MMC averaged model using MATLAB/Simulink platform to meet the requirements of HVDC systems such as HV requirements and fault ride through capability. However, a point-topoint HVDC system using conventional two-level converter is modeled and simulated using MATLAB/Simulink as a starting and benchmarking model. MMC transient model employed in this study is based on Half-Bridge Sub-Modules (HB-SMs) due to its simple structure, yet, other structures are discussed. Nevertheless, balancing of the floating capacitors is one of the challenges associated with MMCs. Therefore, capacitor voltage balancing and its modeling is addressed. Then the average model of the MMC-based HVDC system is investigated. Moreover, the behavior during DC side faults is investigated, and the employment of hybrid DC circuit breakers and Hybrid Current Limiting Circuit (HCLC) are introduced for protection and limiting the DC fault current. This introduces a platform for studying large MMC-based HVDC systems in normal operation and during faults

    Contributions to Modulation and Control Algorithms for Multilevel Converters

    Get PDF
    Las actuales tendencias de la red eléctrica han lanzado a la industria a la búsqueda de sistemas de generación, distribución y consumo de energía eléctrica más eficientes. Generación distribuida, reducción de componentes pasivos, líneas DC de alta tensión son, entre otras, las posibles líneas de investigación que están actualmente siendo consideradas como el futuro de la red eléctrica. Sin embargo, nada de esto sería posible si no fuera por los avances alcanzados en el campo de la electrónica de potencia. El trabajo aquí presentado comienza con una breve introducción a la electrónica de potencia, concretamente a los convertidores de potencia conectados a red, sus estrategias de control más comunes y enfoques ante redes desbalanceadas. A continuación, las contribuciones del autor sobre el control y modulación de una topología particular de convertidores, conocidos como convertidores multinivel, se presentan como el principal contenido de este trabajo. Este tipo de convertidores mejoran la eficiencia y ciertas prestaciones, en comparación con convertidores más tradicionales, a costa de una mayor complejidad en el control al incrementar la cantidad de los componentes hardware. A pesar de que existen numerosas topologías de convertidores multinivel y algunas de ellas son brevemente expuestas en este trabajo, la mayoría de las aportaciones están enfocadas para convertidores del tipo diode-clamped converter. Adicionalmente, se incluye una aportación para convertidores del tipo multinivel modular, y otra para convertidores en cascada. Se espera que el contenido de la introducción de este trabajo, junto a las contribuciones particulares para convertidores multinivel sirva de inspiración para futuros investigadores del campo

    A New High Power Density Modular Multilevel DC-DC Converter with Localized Voltage Balancing Control for Arbitrary Number of Levels

    Get PDF
    A new modular multilevel DC-DC converter (MMC) with high power density and simplified localized voltage balancing control is proposed. Converter building block and controller module are built separately considering level propagation for each row. In the proposed configuration, the converter building blocks with the same power handling capability are connected in parallel in each row. This leads to a triangular structure from top to bottom. Converter building block consists of integrated H-bridge and mutually coupled inductors whose total current is nearly ripple free. These features are shown to reduce the voltage ripple of DC-link capacitors significantly, leading to a smaller capacitance and size. An optimized control algorithm with voltage feedback PI loop is proposed, resulting in the elimination of current sensors. Thus, the overall system complexity is reduced and the cost-effectiveness is increased. Significant ripple reduction of the inductor current and capacitor voltages is observed based on the simulation and prototype of a 5-level system. With a fully modular power stage module and localized control module, a system which has arbitrary number of level can be built by stacking the modules, thereby contributing to enhanced system redundancy

    Modular Multilevel Converters for Medium Voltage Applications: Low Switching Frequency Modulation Strategies and Circulating Current Control Techniques.

    Get PDF
    233 p.El objetivo de la presente tesis ha sido el aumento de la eficiencia y la mejora del funcionamiento de convertidores multinivel modulares (MMCs) en aplicaciones de media tensión (drives, STATCOMs, redes de media tensión en DC o colectores de energía en parques eólicos). Para ello se ha propuesto la utilización de una modulación de baja frecuencia de conmutación como la Eliminación Selectiva de Armónicos (SHE-PWM). De esta forma se reducen las pérdidas de conmutación significativamente. Las contribuciones de la tesis son:- Nueva formulación para implementar SHE-PWM: Esta nueva formulación, a diferencia de las existentes, proporciona un sistema único de ecuaciones que es válido para cualquier forma de onda. De esta forma, es posible buscar los ángulos de disparo y los patrones de conmutación, que resuelven el problema de SHE-PWM, sin necesidad de predefinir ninguna forma de onda. Por lo tanto, la búsqueda de ángulos de disparo se simplifica significativamente y se puede encontrar un alto número de soluciones diferentes, pudiendo optimizar el diseño de la forma de onda. Además, esta formulación es válida con simetrías de cuarto de onda y de media onda.- Controles de la corriente circulante en MMCs cuando se utiliza SHE-PWM: estos controles, a diferencia de los existentes, no distorsionan la tensión de fase de salida cuando se utiliza SHE-PWM y permiten mantener equilibradas las tensiones de los condensadores de los sub-módulos del MMC, además de reducir rizado de la corriente circulante. En concreto, se han propuesto dos controles, uno con (N+1) SHE-PWM y otro con (2N+1) SHE-PWM

    Double-Carrier Phase-Disposition Pulse Width Modulation Method for Modular Multilevel Converters

    Get PDF
    Modular multilevel converters (MMCs) have become one of the most attractive topologies for high-voltage and high-power applications. A double-carrier phase disposition pulse width modulation (DCPDPWM) method for MMCs is proposed in this paper. Only double triangular carriers with displacement angle are needed for DCPDPWM, one carrier for the upper arm and the other for the lower arm. Then, the theoretical analysis of DCPDPWM for MMCs is presented by using a double Fourier integral analysis method, and the Fourier series expression of phase voltage, line-to-line voltage and circulating current are deduced. Moreover, the impact of carrier displacement angle between the upper and lower arm on harmonic characteristics is revealed, and further the optimum displacement angles are specified for the circulating current harmonics cancellation scheme and output voltage harmonics minimization scheme. Finally, the proposed method and theoretical analysis are verified by simulation and experimental results

    A Multi-level Multi-Modular Flying Capacitor Voltage Source Converter for High Power Applications

    Get PDF
    Two vital and dynamically changing issues are arising in the electric grid - an increase in electrical power demand, and subsequent reduction in power quality. Power electronics based solutions such as the Static Synchronous Compensator are increasingly deployed to mitigate power quality issues while High Voltage DC Transmission converters are currently installed to support the existing grid transmission capacity. Both applications require high power and high voltage power converters using switching devices with limited voltage ratings. The advent of Modular Multilevel Converters (MMC) is one of the recent responses to this need. These use half or full H-bridge circuits stacked up to form a chain, and hence can withstand high voltages using lower-rated switching devices. This thesis introduces a new member into the MMC family, i.e the Modular Multi-level Flying Capacitor Converter (MMFCC). This uses a three-level flying capacitor full-bridge circuit as a sub-module and offers features of modularity, scalability and fault tolerance. The choice of FC topology in place of the simple H-bridge stems from the FC’s ability to offer two extra voltage levels in the sub-module output and hence more degrees of freedom per module in controlling the voltage waveform. A three-level full-bridge FC sub-module uses three capacitors - an outer one for supporting the sub-module voltage, and two inner floating ones with half of the outer one’s capacitance and voltage rating. This use of slightly more complex FC sub-modules gives the benefits of a modular structure but without using twice as many sub-modules with their associated capacitors for the same total voltage. The thesis presents the principles of this topology, switching states redundancies and a method for capacitor voltage balancing. Also discussed are: the configuration of MMCC including the MMFCC in Single-Star Bridge-Cell (SSBC) or Single-Delta Bridge-Cell (SDBC) for FACTS and Battery Energy Storage System (BESS) applications; and Double-Star Chopper-Cell (DSCC) or Double-Star Bridge-Cell (DSBC) for HVDC systems. A novel overlapping hexagon pulse width modulation scheme is introduced and discussed for switching control of the MMFCC. This uses multiple hexagons all centred on one point, the same in number as the cascaded FC sub-modules, which are phase displaced relative to each other. The approach simplifies the modulation algorithm and brings flexibility in shaping the output voltage waveforms for different applications. An MMFCC experimental rig was designed and built in-house to validate some of the simulation results obtained for the modulation of this new topology. Details of the rig as well as results captured are discussed

    Thermal regulation and balancing in modular multilevel converters

    Get PDF
    Modular multilevel converters (MMCs) are envisaged as the key power electronic converter topology to enable a multi-terminal pan-European high voltage direct current (HVDC) Supergrid for the interconnection of offshore wind farms and exchange of energy between different countries. A key feature of MMCs in the large number of semiconductor devices employed in each converter station, distributed over a stack of series-connected sub-modules (SMs). These semiconductors possess strict thermal limits, which can constrain the operating range on the converter by limiting its capability of providing enhanced functionalities to the AC grid such as short-term power overloads. Furthermore, due to different loading conditions and ageing, significant temperature differences can exist between SMs which can lead to a very different lifetime expectancies for the semiconductor modules. This thesis proposes active thermal control methodologies to act of two distinct converter levels. Firstly, two novel dynamic rating strategies are proposed to define the converter current injection limit as a response to the maximum semiconductor temperature feedback. This enables the exploitation of the semiconductors thermal headroom to provide short-term power overloads, which can be used for the improvement of the frequency support of a power-distressed AC grid. Secondly, a SM-level temperature regulation and balancing algorithm is proposed, aiming at the equalisation of the maximum semiconductor die temperature in all the SMs of an MMC arm. The proposed methods are validated in a detailed and combined electro-thermal simulation model with 3 and 10 SMs per arm developed in MATLAB®/Simulink® using PLECS® Blockset. An experimental platform has been designed and utilised to verify the effectiveness of the dynamic rating strategies and the SM temperature regulation and balancing strategy

    Active control of DC fault currents in DC solid-state transformers during ride-through operation of multi-terminal HVDC systems

    Get PDF
    When a pole-to-pole dc fault occurs in a multi-terminal HVDC system, it is desirable that the stations and dc solid-state transformers on healthy cables continue contributing to power transfer, rather than blocking. To reduce the fault current of a modular multilevel converter based dc solid-state transformer, active fault current control is proposed, where the dc and ac components of fault arm currents are regulated independently. By dynamically regulating the dc offset of the arm voltage rather than being set at half the rated dc voltage, the dc component in the fault current is reduced significantly. Additionally, reduced ac voltage operation of the dc solid-state transformer during the fault is proposed, where the ac voltage of transformer is actively limited in the controllable range of both converters in the transformer to effectively suppress the ac component of the fault current. The fault arm current peak and the energy absorbed by the surge arrester in the dc circuit breakers are reduced by 31.8% and 4.9% respectively, thereby lowering the capacities of switching devices and circuit breakers. Alternatively, with the same fault current level, the dc-link node inductance can be halved by using the proposed control, yielding lowered cost and volume. The novel active fault current control mechanism and the necessary control strategy are presented and simulation results confirm its feasibility

    Анализ способов модуляции напряжения активных выпрямителей на базе модульных многоуровневых конвертеров

    Get PDF
    The article deals with multilevel converters based on a modular design (MMC), intended for high-voltage networks as active rectifiers controlled AC drives and static var compensator. The structure of the MMC, a distinctive feature of which is that each phase contains a number of series-connected sub-modules of the same. The typical topology submodule consisting of a capacitor, bypassed anti-parallel connection of diodes and transistors. Possible operating states submodule affecting the level of the voltage at the input terminals. Analyzed in detail three known modulation method voltage MMC: method pulse amplitude modulation method with the purpose of dial-submodule and the method of comparison with a reference voltage.Powered harmonic content in the output line voltage MMC for these three modulation techniques. It is shown that the method of comparison with the reference voltage level THD voltage at the input terminals of the converter is of the order of 4 % when the switching frequency of power switches 300 Hz.Рассмотрены многоуровневые конвертеры на базе модульной конструкции (ММС), предназначенные для высоковольтных сетей в качестве активных выпрямителей регулируемых электроприводов переменного тока, а также статических компенсаторов реактивной мощности. Приведена структура ММС, отличительная особенность которой заключается в том, что каждая фаза содержит ряд последовательно включенных одинаковых подмодулей. Представлена типовая топология подмодуля, состоящая из конденсатора, шунтируемого встречно-параллельным соединением диода и транзистора. Рассмотрены возможные рабочие состояния подмодуля, влияющие на уровень напряжения на входных зажимах. Детально проанализированы три известных способа модуляции напряжения ММС: метод амплитудноимпульсной модуляции, метод с назначением коммутируемого подмодуля и метод сравнения с опорным напряжением. Приведено содержание высших гармоник в выходном линейном напряжении ММС для трех перечисленных способов модуляции. Показано, что в методе сравнения с опорным напряжением уровень THD напряжения на входных зажимах конвертера составляет значение порядка 4 % при частоте коммутации силовых ключей 300 Гц
    corecore