5,295 research outputs found

    Fuzzy Controller for Matrix Converter System to Improve its Quality of Output

    Full text link
    In this paper, Fuzzy Logic controller is developed for ac/ac Matrix Converter. Furthermore, Total Harmonic Distortion is reduced significantly. Space Vector Algorithm is a method to improve power quality of the converter output. But its quality is limited to 86.7%.We are introduced a Cross coupled DQ axis controller to improve power quality. The Matrix Converter is an attractive topology for High voltage transformation ratio. A Matlab / Simulink simulation analysis of the Matrix Converter system is provided. The design and implementation of fuzzy controlled Matrix Converter is described. This AC-AC system is proposed as an effective replacement for the conventional AC-DC-AC system which employs a two-step power conversion.Comment: 11 page

    Conventional Space-Vector Modulation Techniques versus the Single-Phase Modulator for Multilevel Converters

    Get PDF
    Space-vector modulation is a well-suited technique to be applied to multilevel converters and is an important research focus in the last 25 years. Recently, a single-phase multilevel modulator has been introduced showing its conceptual simplicity and its very low computational cost. In this paper, some of the most conventional multilevel space-vector modulation techniques have been chosen to compare their results with those obtained with single-phase multilevel modulators. The obtained results demonstrate that the single-phase multilevel modulators applied to each phase are equivalent with the chosen wellknown multilevel space-vector modulation techniques. In this way, single-phase multilevel modulators can be applied to a converter with any number of levels and phases avoiding the use of conceptually and mathematically complex space-vector modulation strategies. Analytical calculations and experimental results are shown validating the proposed concepts

    Open-End Winding Induction Motor Drive Based on Indirect Matrix Converter

    Get PDF
    Open-end winding induction machines fed from two standard two-level voltage source inverters (VSI) provide an attractive arrangement for AC drives. An alternative approach is to use a dual output indirect matrix converter (IMC). It is well known that IMC provides fully bidirectional power flow operation, with small input size filter requirements. Whilst a standard IMC consists of an AC–DC matrix converter input stage followed by a single VSI output stage, it is possible to replicate the VSI to produce multiple outputs. In this chapter, an open-end winding induction machine fed by an IMC with two output stages is presented. Different modulation strategies for the power converter are analyzed and discussed

    Reduction of output common mode voltage using a novel SVM implementation in matrix converters for improved motor lifetime

    Get PDF
    This paper presents the study of an alternative Space Vector Modulation (SVM) implementation for Matrix Converters (MC) which reduces the output Common Mode (CM) voltage. The strategy is based on replacing the MC zero vectors by the rotating ones. In doing this, the CM voltage can be reduced which in-turn reduces the CM leakage current. By reducing the CM current, which flows inside the motor through the bearings and windings, the Induction Motor (IM) deterioration can be slowed down. The paper describes the SVM pattern and analyses the CM voltage and the leakage current paths. Simulation and experimental results based on a MC-IM drive are provided to corroborate the presented approach

    Predictive control in matrix converters. Part I, Principles, topologies and applications

    Get PDF
    This paper presents an overview of the predictive control principles applied to matrix converters and also the different topologies where this control technique is applied. It will be shown that the predictive strategy is a promising alternative to control matrix converters due to its simplicity and flexibility to include additional aspects in the control being suitable for different industrial applications

    Predictive control in matrix converters. Part II, Control strategies, weaknesses and trends

    Get PDF
    The second part of this paper presents an overview of different control strategies and applications for matrix converters (MCs) where predictive control techniques are applied. It will be shown that predictive control is a promising alternative to control MCs due to its simplicity and flexibility to include different constrains in the con¬trol for different industrial applications such as renewable energies, grid interconnection, multi-drives systems control, among others. In addition, some limitations and weaknesses of predictive control in MCs will be discussed as well as some future trends and applications

    Boost Matrix Converters in Clean Energy Systems

    Get PDF
    This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid.Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype

    A finite control set model predictive control method for matrix converter with zero common-mode voltage

    Get PDF
    In this paper a finite control set model predictive control method is presented that eliminates the common-mode voltage at the output of a matrix converter. In the predictive control process only the rotating vectors are selected to generate the output voltage and the input current in order to remove the common mode voltage. In addition, a modified four-step commutation strategy is proposed to eliminate common-mode voltage spikes caused by the conventional four-step commutation strategy based on the current direction. The proposed method reduces the computational complexity greatly compared with the enhanced space vector modulation with rotating vectors. The feasibility and operation of the proposed method are verified using experimental results. The resulting common-mode voltage is near to zero with good quality input and output converter waveforms
    corecore