569 research outputs found

    MOLECULAR STUDIES ON HOXD GENES: NEW INSIGHTS INTO THE MECHANISMS OF LIMB DEVELOPMENT AND PATHOGENESIS.

    Get PDF

    Modular Middleware for Gestural Data and Devices Management

    Get PDF
    In the last few years, the use of gestural data has become a key enabler for human-computer interaction (HCI) applications. The growing diffusion of low-cost acquisition devices has thus led to the development of a class of middleware aimed at ensuring a fast and easy integration of such devices within the actual HCI applications. The purpose of this paper is to present a modular middleware for gestural data and devices management. First, we describe a brief review of the state of the art of similar middleware. Then, we discuss the proposed architecture and the motivation behind its design choices. Finally, we present a use case aimed at demonstrating the potential uses as well as the limitations of our middleware

    Closed mitosis requires local disassembly of the nuclear envelope

    Get PDF
    At the end of mitosis, eukaryotic cells must segregate the two copies of their replicated genome into two new nuclear compartments1. They do this either by first dismantling and later reassembling the nuclear envelope in an ‘open mitosis’ or by reshaping an intact nucleus and then dividing it into two in a ‘closed mitosis’2,3. Mitosis has been studied in a wide variety of eukaryotes for more than a century4, but how the double membrane of the nuclear envelope is split into two at the end of a closed mitosis without compromising the impermeability of the nuclear compartment remains unknown5. Here, using the fission yeast Schizosaccharomyces pombe (a classical model for closed mitosis5), genetics, live-cell imaging and electron tomography, we show that nuclear fission is achieved via local disassembly of nuclear pores within the narrow bridge that links segregating daughter nuclei. In doing so, we identify the protein Les1, which is localized to the inner nuclear envelope and restricts the process of local nuclear envelope breakdown to the bridge midzone to prevent the leakage of material from daughter nuclei. The mechanism of local nuclear envelope breakdown in a closed mitosis therefore closely mirrors nuclear envelope breakdown in open mitosis3, revealing an unexpectedly high conservation of nuclear remodelling mechanisms across diverse eukaryotes

    The Markov-Dubins Problem with Free Terminal Direction in a Nonpositively Curved Cube Complex

    Get PDF
    State complexes are nonpositively curved cube complexes that model the state spaces of reconfigurable systems. The problem of determining a strategy for reconfiguring the system from a given initial state to a given goal state is equivalent to that of finding a path between two points in the state complex. The additional requirement that allowable paths must have a prescribed initial direction and minimal turning radius determines a Markov-Dubins problem with free terminal direction (MDPFTD). Given a nonpositively curved, locally finite cube complex X, we consider the set of unit-speed paths which satisfy a certain smoothness condition in addition to the boundary conditions and curvature constraint that define a MDPFTD. We show that this set either contains a path of minimal length, or is empty. We then focus on the case that X is a surface with a nonpositively curved cubical structure. We show that any solution to a MDPFTD in X must consist of finitely many geodesic segments and arcs of constant curvature, and we give an algorithm for determining those solutions to the MDPFTD in X which are CL paths, that is, made up of an arc of constant curvature followed by a geodesic segment. Finally, under the assumption that the 1-skeleton of X is d-regular, we give sufficient conditions for a topological ray in X of constant curvature to be a rose curve or a proper ray

    10th SC@RUG 2013 proceedings:Student Colloquium 2012-2013

    Get PDF

    Real-time Body Tracking and Projection Mapping in the Interactive Arts

    Get PDF
    Projection mapping, a subtopic of augmented reality, displays computer-generated light visualizations from projectors onto the real environment. A challenge for projection mapping in performing interactive arts is dynamic body movements. Accuracy and speed are key components for an immersive application of body projection mapping and dependent on scanning and processing time. This thesis presents a novel technique to achieve real-time body projection mapping utilizing a state of the art body tracking device, Microsoft’s Azure Kinect DK, by using an array of trackers for error minimization and movement prediction. The device\u27s Sensor and Bodytracking SDKs allow multiple device synchronization. We combine our tracking results from this feature with motion prediction to provide an accurate approximation for body joint tracking. Using the new joint approximations and the depth information from the Kinect, we create a silhouette and map textures and animations to it before projecting it back onto the user. Our implementation of gesture detection provides interaction between the user and the projected images. Our results decreased the lag time created from the devices, code, and projector to create a realistic real-time body projection mapping. Our end goal was to display it in an art show. This thesis was presented at Burning Man 2019 and Delfines de San Carlos 2020 as interactive art installations
    • …
    corecore