
REAL-TIME BODY TRACKING AND PROJECTION MAPPING IN THE

INTERACTIVE ARTS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Sydney Baroya

December 2020

© 2020

Sydney Baroya

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Real-time Body Tracking and Projection

Mapping in the Interactive Arts

AUTHOR: Sydney Baroya

DATE SUBMITTED: December 2020

COMMITTEE CHAIR: Christian Eckhardt, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Jonathan Ventura, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Real-time Body Tracking and Projection Mapping in the Interactive Arts

Sydney Baroya

Projection mapping, a subtopic of augmented reality, displays computer-generated

light visualizations from projectors onto the real environment. A challenge for pro-

jection mapping in performing interactive arts is dynamic body movements. Accuracy

and speed are key components for an immersive application of body projection map-

ping and dependent on scanning and processing time.

This thesis presents a novel technique to achieve real-time body projection mapping

utilizing a state of the art body tracking device, Microsoft’s Azure Kinect DK, by

using an array of trackers for error minimization and movement prediction. The

device’s Sensor and Bodytracking SDKs allow multiple device synchronization. We

combine our tracking results from this feature with motion prediction to provide an

accurate approximation for body joint tracking. Using the new joint approximations

and the depth information from the Kinect, we create a silhouette and map textures

and animations to it before projecting it back onto the user. Our implementation of

gesture detection provides interaction between the user and the projected images.

Our results decreased the lag time created from the devices, code, and projector to

create a realistic real-time body projection mapping. Our end goal was to display it

in an art show. This thesis was presented at Burning Man 2019 and Delfines de San

Carlos 2020 as interactive art installations.

iv

ACKNOWLEDGMENTS

Thanks to:

• Shanti Baroya, my grandmother, who I dedicate this thesis to and wish could

have seen me finish

• My parents, brothers, and extended family, for their continual support and love

• Noah Paige, for always supporting and believing in me

• Christian Eckhardt, for introducing me to Computer Graphics and pushing me

out of my comfort zone

• Irene Humer, for helping when needed and making me coffee when necessary

• Lucia Apocado, for allowing me to participate in her art show

• CPConnect Steering Committee, for awarding me 4 Azure Kinects DKs through

the CPConnect Grant

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

2 Background . 5

2.1 Projection-Based Augmented Reality 5

2.1.1 Projection Mapping . 8

2.1.1.1 Body projection mapping 8

2.2 User . 9

2.2.1 Passive . 9

2.2.2 Active . 10

2.3 Interaction Interfaces . 11

2.3.1 Natural User Interface . 11

2.4 Textures in Computer Graphics . 12

2.4.1 Image Masking . 14

2.4.2 Depth Map . 15

2.4.3 Point Cloud Image . 16

2.5 Related Works . 17

3 System Development . 19

3.1 Hardware and Software Requirements 19

3.1.1 Microsoft Azure Kinect DK 20

3.1.2 Azure Kinect Sensor SDK . 21

3.1.3 Azure Kinect Body Tracking SDK 22

vi

3.1.4 Multiple Kinect Synchronization 24

3.1.5 Note on Latency . 25

3.2 Development Environment . 27

3.2.1 Visual Studio . 27

3.2.2 Unity . 28

3.3 Kinect Setup and Configuration . 29

3.4 Joint Tracking . 30

3.4.1 Body Tracking . 31

3.5 Minimizing Tracking Error . 31

3.5.1 Point Cloud Map . 32

3.5.2 2D Coordinate Rotation from Averaged Joint Angles 33

3.6 Motion Prediction . 35

3.6.1 Body Approximation . 36

3.7 Gesture Detection . 37

4 Results . 41

4.1 Experimental Setup . 41

4.2 Analysis . 41

4.2.1 Averaging Joint Angles . 46

4.2.2 Motion Prediction . 47

4.2.3 Body Approximation . 48

4.3 Proof of Concept . 49

4.3.1 Burning Man 2019 . 49

4.3.2 Delfines de San Carlos: Un Proyecto de Esperanza 2020 51

5 Future Work . 56

6 Conclusion . 59

vii

BIBLIOGRAPHY . 60

viii

LIST OF FIGURES

Figure Page

1.1 A snapshot from the color-changing chameleon effect designed for
Burning Man 2019. The figure also includes the beginning of a fire
animation that burns from the middle of the body outwards. 3

2.1 Possible image generations for augmented reality displays [5]. Each
column categorizes displays as head-atttached, hand-held, or spatial.
The distance of each display are representative of how far away from
eye’s view they may require. The dashed arrow portrays the look at
direction of an eye through displays of the real object. The black lines
in and on the displays and object represent their surfaces. Notice
that projectors can be in all categories and displayed at any distance
away from eye’s view onto the real object. 6

2.2 One of the quintet of singing busts in the Haunted Mansion shown
(a) without and (b) with projection-based augmentation [23]. . . . 7

2.3 Passive user input/output layout [14]. The arrow direction indicates
interaction flow. Virtual content affects visual, audio and/or haptic
effects. The passive user can receive and experience the effects but
cannot communicate with or influence them. 9

2.4 Active user input/output layout [14]. The arrow direction indicates
interaction flow. Virtual content affects visual, audio and/or haptic
effects. The active user can receive and experience the effects, as
well as interact with and affect them. Based on the active user’s
interaction with the effects, they can change the virtual content. . . 10

2.5 A scene rendered both with (right) and without (left) shadow map-
ping [10]. While the normal mapping and color textures render the
3D objects to look realistic, shadow mapping clearly adds depth and
more photorealism to the scene as opposed to not implementing it. 12

2.6 3D object in OpenGL with two textures: color texture and bump
texture. The right picture depicts the object with only a color tex-
ture. The left picture shows the object with both the color texture
and bump texture [28] . 13

ix

2.7 An example of how to mask an image and an effect that is possible
using the mask [3]. The masked image can be produced program-
matically by the scene’s depth value, by color value, and more. In
this example, the masked image colors pixels black for the portion
of the to mask and white otherwise, resulting in the masked image
on the right with a transparent background and the bird left in the
foreground. 14

2.8 Scene representations of the famous Stanford Bunny: (a) original
model and (b) the depth map representation with red pixels repre-
senting a z-value closer to the camera and blue pixels having values
further away from the camera [7]. 15

2.9 Scene representations of the famous Stanford Bunny: (a) point cloud
with geometry information and (b) point cloud with attribute infor-
mation in the form of a normal denoted with a blue line [6] 16

3.1 The Microsoft Azure Kinect camera [20]. 20

3.2 This figure shows an example depth map (left) and a corresponding
clean IR image (right) from the Azure Kinect. After casting modu-
lated illumination in the near-IR (NIR) spectrum onto the scene, the
Azure Kinect records an indirect measurement of the time it takes
the light to travel from the camera to the scene and back [30]. The
pixel colors in the image are mapped to the scene’s depth values: a
pixel closer to the camera (containing a small depth value) is mapped
to blue and the pixel furthest away from the camera (containing a
large depth value) is mapped to red. 22

3.3 An illustration of the array of joint locations and connections relative
to the human body that the Azure Kinect creates. This skeleton
includes a hierarchy made up of 32 nodes (joints) and 31 connections
(bone) linking the parent joint with a child joint [36]. 23

3.4 The daisy chain device configuration of multiple Azure Kinect syn-
chronizations. There is a maximum of eight subordinate devices syn-
chronized to one master device [34]. This image also shows where to
plug in the audio cables to distinguish between a master devices and
subordinate devices. 24

3.5 System diagram of how our system communicates between each hard-
ware and the user. The Kinects read data from a user, as a gesture
and/or their joint information. The computer reads the data from
the Kinects and sends it to the projector. The projector, in turn,
projects the computer’s images onto the user. 26

x

3.6 An outline result from our body projection mapping algorithm after
being processed through a compute shader. The points in the point
cloud map are rendered with scaled transformation matrix dependent
on their distance compared to the closest and farthest body pixels
in the map. The point with the smallest depth value are scaled by
0.3 and the point with the greatest depth value are scaled by 0.05.
All points in between are mapped to values between 0.05 and 0.3
based on their distance to the the points with smallest and greatest
depth values. Points on the outline of the body are further scaled by
a factor of 0.6. 38

3.7 Body outline results from approximating body segment dimensions
based on the predicted joint positions. 39

3.8 State diagram of how our system handles gesture detection. It tracks
the movement of the user then switches states if a gesture is detected,
otherwise it keeps trackign movement. If waving left or waving right
is detected, then the skin textures effect (i.e. chameleon, see 4.3 for
more) are changed. If arms up is detected, then the animation effects
(i.e. dolphin swimming around, see 4.3 for more) are changed. Then,
the projection mapping is updated and the cycle continues. 40

4.1 Dual axis line graph displaying the results of the right elbow joint’s
motion prediction and averaged angle. The x-axis is time measured
in seconds with a tracking start time of about seven seconds. The
left y-axis represents the rate of change over time of the length be-
tween the predicted position and the position computed from a 2D
rotation of the right elbow joint, measured in meters. The right axis
represents the change of angle, in degrees, over time at the right
elbow joint, which is derived using the right shoulder, elbow, and
wrist joints. The dashed lines are the angle averages. The solid
lines are the position variance. Red colored lines are data from a
three device arrangement. Green colored lines are data from a two
device arrangement. Blue colored lines are data from a one device
arrangement. 42

xi

4.2 Dual axis line graph displaying the results of the right knee joint’s
motion prediction and averaged angle. The x-axis is time measured
in seconds with a tracking start time of about seven seconds. The left
y-axis represents the rate of change over time of the length between
the predicted position and the position computed from a 2D rotation
of the right knee joint, measured in meters. The right axis represents
the change of angle, in degrees, over time at the right knee joint,
which is derived using the right hip, knee, and ankle joints. The
dashed lines are the angle averages. The solid lines are the position
variance. Red colored lines are data from a three device arrangement.
Green colored lines are data from a two device arrangement. Blue
colored lines are data from a one device arrangement. 43

4.3 Dual axis line graph displaying the results of the right hip joint’s
motion prediction and averaged angle. The x-axis is time measured
in seconds with a tracking start time of about seven seconds. The left
y-axis represents the rate of change over time of the length between
the predicted position and the position computed from a 2D rotation
of the right hip joint, measured in meters. The right axis represents
the change of angle, in degrees, over time at the right hip joint,
which is derived using the chest, right hip, and right knee joints. The
dashed lines are the angle averages. The solid lines are the position
variance. Red colored lines are data from a three device arrangement.
Green colored lines are data from a two device arrangement. Blue
colored lines are data from a one device arrangement. 44

4.4 Body projection mapping outline depicting a snapshot from a frame
of lifting the right leg up. The red colored outline is data from a
three device arrangement. The green colored outline is data from a
two device arrangement. The blue colored outline is data from a one
device arrangement. The white pixels designates an overlap between
all outlines. 45

4.5 Body projection mapping outline depicting a snapshot from a frame
of walking to the right. The red colored outline is data from a three
device arrangement. The green colored outline is data from a two
device arrangement. The blue colored outline is data from a one
device arrangement. The white pixels designates an overlap between
all outlines. 46

xii

4.6 Body projection mapping outline depicting a snapshot from a frame
of landing after a jump. The red colored outline is data from a three
device arrangement. The green colored outline is data from a two
device arrangement. The blue colored outline is data from a one
device arrangement. The white pixels designates an overlap between
all outlines. 47

4.7 These figures portray the butterfly morphing effect we implemented.
Over a span of a few seconds, each butterfly from (a) morph into the
eyeballs in (b) at different times. 49

4.8 (a): A full view of the entire eyeball structure at Burning Man 2019.
The structure is 7 feet tall and the eyeball is 3 feet wide. (b): A
closer view of the structure’s iris and ‘pupil’ hole where the Kinect
and projector are looking out of. 50

4.9 The white dolphin structure that Apodaca’s team constructed for our
installation at the 2020 Delfines de San Carlos art show situated on El
Mirador de San Carlos. A low polygon dolphin fixed on top of a wave-
like base made up of recycled cycling wheels. Pictured from left to
right: Noah Paige, Sydney Baroya, Irene Humer, Christian Eckhardt,
Lucia Apodaca, Sara Valle (Mayor of Guaymas), and Enrique Gamez
(comisario of San Carlos). 53

4.10 The psychedelic effect developed for the projection mapping on to
the dolphin structure. This effect was triggered when an active user
waved their arms left or right. Pictured is the team for our interactive
installation at the Delfines art show from left to right: Noah Paige,
Sydney Baroya, Christian Eckhardt, and Irene Humer. 54

4.11 The laptop/projector/Kinect setup for the ‘Delfines’ art show. The
dolphin structure that we are mapping a projection onto is mounted
on a tall base so we required a tall structure for the projector to sit
on along with a platform to keep the laptop and Kinect at body level. 55

xiii

Chapter 1

INTRODUCTION

Computer graphics, a subtopic of computer science that explores digitally synthesizing

and manipulating virtual content, has traditionally attempted to imitate the real

world in a virtual environment. Methods like global illumination add to the realism

of a virtual scene. As computer graphics have evolved, the reverse has been explored

– virtual environments in the real world. From movies like Tron and games like

Pokémon GO, extended reality(XR) has captured the wonder of many. XR is an

umbrella term for immersive technologies including virtual reality(VR), augmented

reality(AR), and mixed reality(MR). Instead of viewing virtual data through a 2D

screen, we can now use our 3D world to portray the same data. This technology

gives users an immersive experience by merging the physical and digital worlds. The

interaction between imaginary, or digitally created, objects and physical objects is

possible due to computer graphics and computer vision.

Virtual reality integrates users and virtual objects into the same virtual world. This

process currently requires a headset that entirely covers the user’s sense of sight in

order to fully submerge them into this new reality, which cuts off their perception

of the real world. Users also need special handheld controllers in order to interact

with the virtual objects in the world. A drawback with this technology is a common

side effect of nausea. Virtual reality games and applications enable users to be in

a fast-moving environment, like a roller coaster or driving a car. At the same time,

their physical body is in a static state, causing motion sickness. This discomfort may

make users uneasy and encourage them to stop or spend less time using virtual reality

1

On the other hand, augmented reality puts realistic overlays of virtual information

on real world objects [8], most popularly through the use of mobile phones and see-

through devices like a HoloLens. Users still have awareness of their surroundings

and no consequences of a sickness. Instead of the user encountering an unknown

virtual world, AR displays virtual information on billboards over physical objects

or by overlaying it in a way that encases the real-world objects that are familiar to

them. This can enhance the information from the surrounding world to provide a

vivid interface to the viewers. Two challenges for augmented reality applications are

displaying onto dynamic objects and full immersion.

With the help from depth sensors and computer vision, AR has the ability to present

information onto a dynamic space. These technologies are able to follow the positions

of physical objects in real time. In performing and interactive arts, there are attempts

to use this technology to serve as a platform for artists to enhance their performance

and to provide the audience with an elevated, visual experience [24]. Because users are

limited to the reach and dimensions their AR device, they are required to keep the de-

vice within their eyesight. Projection-based augmented reality is able to relieve users

of this hassle, using a projector to overlay unique visuals directly onto objects instead

of through a handheld device. Projection mapping is a well-known projection-based

AR technology for displaying computer generated light visualizations from projectors

onto the real environment [23]. Real-time body mapping projection takes this idea

and uses a body tracking device and software(i.e. depth sensor, motion capture suit)

to project visualizations onto bodies as they move. However, a drawback is the com-

munication lag. A communication lag occurs due to the body tracking information

traveling from the body tracking device to the computer and then out through the

projector. Therefore, current implementations of this subtopic of AR either follow

movements from one spot or do not project it directly onto the body [24]. Another

big obstacle for AR is user experience, especially in the interactive arts. If interact-

2

ing with an AR system is too complicated or looks unrealistic, then its immersion

decreases and users become disinterested.

Figure 1.1: A snapshot from the color-changing chameleon effect designed
for Burning Man 2019. The figure also includes the beginning of a fire
animation that burns from the middle of the body outwards.

Our solution described in this work attempts to improve body projection mapping

using motion prediction and tracking error minimization. We chose the state-of-

the-art body tracking device Microsoft Azure Kinect Developer Kit as our hardware

platform. A unique feature of this kit is its ability to synchronize multiple Kinect

devices, which we take advantage of for minimizing tracking errors. We devised a

method that uses multiple Kinects positioned in different positions to average similar

joint angles and that performs a velocity prediction calculation to more accurately

provide joint coordinates. We also explored a technique that utilizes the depth map

from Kinect’s depth camera to build a point cloud map. The results of our work

was presented as art installations in Burning Man 2019 and Delfines de San Carlos:

3

Un Proyecto de Esperanza, see Figure 1.1 for a body projection mapping effect from

Burning Man 2019.

4

Chapter 2

BACKGROUND

This chapter contains background information that we deem necessary to under-

stand the mechanics of our thesis. Because the core of this thesis is projection-based

augmented reality, we explore it and its subtopic projection mapping, in order to

understand body projection mapping. For an interactive AR system, it is key to keep

the user in mind and both types of users are considered in our project. Textures add

photorealistic value to computer graphics applications. We discuss them generally

and the ones we utilize are discussed in depth. Lastly, we describe related projects

and their methods.

2.1 Projection-Based Augmented Reality

Consumer-based augmented reality is distributed through handheld or eyeworn dis-

plays. These applications include face filters apps, mobile apps, and AR glasses.

However, some novel approaches have taken AR beyond these displays, using large

spatially-aligned optical devices (i.e. video projectors). Therefore, this is referred to

as spatial augmented reality (SAR) or projection-based augmented reality. Projection-

based augmented reality is defined as the use of projection technology to enhance 3D

objects and spaces in the physical world by projecting images and animations onto

their visible surfaces [5]. This effect can reproduce or synthesize different surface

attributes. Ramesh Raskar calls this mode of visualizing 3D computer graphics as

shader lamps [29]. Computer graphics shaders give 3D virtual objects their surface

5

Figure 2.1: Possible image generations for augmented reality displays [5].
Each column categorizes displays as head-atttached, hand-held, or spatial.
The distance of each display are representative of how far away from eye’s
view they may require. The dashed arrow portrays the look at direction
of an eye through displays of the real object. The black lines in and on the
displays and object represent their surfaces. Notice that projectors can be
in all categories and displayed at any distance away from eye’s view onto
the real object.

attributes and a projector lights up 3D physical objects like a lamp – hence the name

shader lamps.

The first well-known instance of projection on arbitrarily complex surfaces dates back

to Disneyland’s 1969 opening of Haunted Mansion [4]. The Haunted Mansion ride

featured a disembodied head inside a crystal ball, Madame Leota, and a quintet of

singing busts, the ‘Grim Grinning Ghosts’ [23]. Optical illusions of ‘living’ statues

were created by filming actors singing and talking and then projecting the films onto

busts of their faces, see Figure 2.2.

6

Figure 2.2: One of the quintet of singing busts in the Haunted Mansion
shown (a) without and (b) with projection-based augmentation [23].

The main advantage of SAR is that it can create beautiful dynamic environments and

bring life to a static environment that would be difficult to achieve with traditional

lighting. In addition, it creates a shared experience for an audience, advantageous for

a performance or an interactive art installation with people passing by. In contrast,

device-based AR (i.e. head-mounted displays or handheld devices) does not scale

well since they are typically single-user. Because there is no need to constantly

keep a handheld or eyeworn display in the eye’s view, SAR displays overcome the

technological and ergonomic limitations of traditional AR systems. Items as obvious

as handheld mobile devices often conflict with the design and disenchants the illusion

artists are trying to create.

7

2.1.1 Projection Mapping

A subsection of SAR or projection-based AR is projection mapping. Projection map-

ping is a projection technique that creates “an optical illusion by analyzing three-

dimensional objects, projecting images, and then precisely aligning them” [16]. The

art field has adopted this technique but most implementations project onto fixed ob-

jects with a manual alignment between object and projection. For one of our art

installations, we use this technique to project onto a dolphin sculpture, see Chapter

4.3 at page 53. Automatic alignment is used when projecting images onto dynamic

objects. This can be 3D objects that are being moved around or the bodies of the

performers/users. The other art installation we implemented uses this method to

project onto the bodies of individuals interacting with our system, see Chapter 4.3

at pages 49 and 3.

2.1.1.1 Body projection mapping

Body projection mapping only augments a performer or user in range of the sensor

being used. This effect can be used to decorate a body with different surface attributes

or to illustrate a body as a silhouette within the scene. Recently, various body

projection mapping systems that involve image or depth sensors for rendering in real-

time interactions have been developed. In performing arts, there are attempts to use

this technology to serve as a platform for artists to enhance their performance and to

provide the audience with an elevated, visual experience.

Rendering in real-time requires huge computation, causing latency. As latency in-

creases, the movement of the projected image becomes slower in comparison to the

movement of the body. Consequently, “it generates a visual error, which reduces the

immersion of audiences”[16]. To combat this error, the system rendering real-time

8

projected images needs to apply some type of motion prediction. We will go further

into how we implemented motion prediction in Chapter 3.

Another thing to consider when it comes to body projection mapping is a flexible

shape [16]. The methods mentioned previously have been applied to the surface of

solid 3D objects. Flexible shapes, such as clothing, have silhouettes that are difficult

to predict because their shapes change frequently. When a sensor is tracking a flexible

shape, it can inaccurately predict there to be an edge where the shape is folding or

moving around, causing the projected images to have a visual error.

2.2 User

An important component of interaction in AR systems is the user. There are two

types of users in AR: the passive user and the active user.

2.2.1 Passive

Figure 2.3: Passive user input/output layout [14]. The arrow direction
indicates interaction flow. Virtual content affects visual, audio and/or
haptic effects. The passive user can receive and experience the effects but
cannot communicate with or influence them.

9

A passive user refers to a user who consumes virtual content, receives visual, audio,

and/or haptic feedback, and does not interact with the virtual content [14]. There

can be many passive users as the interaction space for an AR system allows. For

example, a system with haptic feedback gloves limits the amount of passive users to

the amount of gloves available. This system can be used in a performing art show to

allow a whole audience to be passive users. The advantage of using AR in a passive

capacity is its ease of use – “there is no need to provide instructions on how to interact

with the virtual content” [39].

2.2.2 Active

Figure 2.4: Active user input/output layout [14]. The arrow direction
indicates interaction flow. Virtual content affects visual, audio and/or
haptic effects. The active user can receive and experience the effects, as
well as interact with and affect them. Based on the active user’s interaction
with the effects, they can change the virtual content.

An active user refers to a user who can interact with the virtual content in an AR

system through a user interface with seamless control [14]. Like a passive user, they

can receive visual, audio, and/or haptic feedback from the system but they also

have the ability to control it. Usually there can only be one active user for an AR

system. This is because if there were multiple active users simultaneously, especially

10

in a gesture detected interactive system, then the system may be overwhelmed with

which user to take controls from.

2.3 Interaction Interfaces

Since computers were made, it was necessary to interact with it physically or with

another physical device attached to it. As technology has advanced, a wide breadth

of interaction devices has been invented that do not require an attached physical

device, such as a remote control, Bluetooth keyboards, and more. We have even gone

so far as to not need anything in hand while interacting with our computers and

consoles. AR systems also need an appropriate user interface to intuitively interact

with the virtual content appearing in the world. Gesture recognition devices are

“trying to break down technological barriers and . . . to transform technology” [13] to

understand the users. However, due to the learning curve gesture technology brings,

there is hesitation to use them.

2.3.1 Natural User Interface

A natural user interface uses a person’s natural movements as the input for interac-

tion [14], requiring some type of gesture recognition. Gesture recognition is defined

as an interface with computers using gestures of the human body, typically hand

movements. This technology uses a camera to recognize the movements of the human

body and forwards the data to a computer that uses the gestures as input controls.

Using a sensor-based tracking system is an accurate method of tracking body motion,

thereby providing a more accurate interaction [14]. However, this type of system re-

stricts the user. For example, both a motion-capture suit and a sensor with a camera

limits the area that motion can be tracked to the distance that these sensors are able

11

to communicate with a computer or view a user, respectively. Guiding systems for

these systems are mainly designed in an ad hoc manner [11]. Even if isolated design

characteristics exist, they concentrate on limited guidance. If gesture recognition

is to advance, the gesture commands need to be self-revealing or a decided gesture

language that is universal across all gesture-based devices.

2.4 Textures in Computer Graphics

A key component of computer graphics is giving an object’s surface different prop-

erties. Typically, there are three properties: diffuse, specular, and translucent. A

translucent property allows an object to transmit and reflect light. Specular proper-

ties give an object a look that is smooth and shiny by assigning values to parts of an

object where light should bounce off of it. In contrast to the other properties, light

scatters with diffuse. This gives an object its color and roughness. A common way

to give objects these properties is through the use of textures.

Figure 2.5: A scene rendered both with (right) and without (left) shadow
mapping [10]. While the normal mapping and color textures render the
3D objects to look realistic, shadow mapping clearly adds depth and more
photorealism to the scene as opposed to not implementing it.

12

Textures are able to contain any information about a pixel in the scene, not just

about an object’s surface properties. For example, depth map contains the depth

values of each pixel away from the camera. When passed to a shader, it can be used

to alter the scene based on a pixel’s depth value. A shadow mapping also uses this

technique except measures the distance from a light source to the objects in the scene

and then using it to render the scene from the camera’s point of view. Using these

texturing techniques can significantly improve the photorealism of computer graphics

applications, see Figure 2.5.

Figure 2.6: 3D object in OpenGL with two textures: color texture and
bump texture. The right picture depicts the object with only a color
texture. The left picture shows the object with both the color texture and
bump texture [28] .

In OpenGL, “a texture can be used in two ways: it can be the source of a texture

access from a Shader, or it can be used as a render target” [2]. When used as a texture

access, it can contain information about color or other surface attributes stated above.

An example of how an object looks with one or multiple surface attributes via textures

is depicted in Figure 2.6. A texture used as a render target means that a shader will

write information to a texture so that it can be accessed by the CPU and may be

used as a texture for a different shader.

13

2.4.1 Image Masking

Image masking is a process that masks out certain pixels from an image [17], separat-

ing a certain part of the image from its background. Using this, a programmer may

intend to place the part of the image over another background, replace the part of an

image with something else, add a post processing effect on only the part of the image

that is masked, and more. Figure 2.7 gives an example of masking an image and one

effect that a programmer could use with the image mask. It is possible to pre-render

Figure 2.7: An example of how to mask an image and an effect that is
possible using the mask [3]. The masked image can be produced program-
matically by the scene’s depth value, by color value, and more. In this
example, the masked image colors pixels black for the portion of the to
mask and white otherwise, resulting in the masked image on the right with
a transparent background and the bird left in the foreground.

the “Masked Image” in Figure 2.7. But if the bird was a 3D object and moved around

the scene, then all images of the bird flying would have to be pre-rendered. Using a

shader to mask the image, gives a real-time rendered mask and there is no need to

continually pre-render the image when something in the scene changes.

14

2.4.2 Depth Map

Many computer graphics applications use a depth map for various visual effects like

shadows, culling, and image masking. “A depth map is a set of Z-coordinate values

for every pixel of the image” [31] measured away from the camera. It is analogous

to the depth buffer or Z-buffer. This map can be created by calculating the distance

from the camera to every point in the scene, see Figure 2.8 for a comparison of an

image to its depth map.

Figure 2.8: Scene representations of the famous Stanford Bunny: (a) orig-
inal model and (b) the depth map representation with red pixels repre-
senting a z-value closer to the camera and blue pixels having values further
away from the camera [7].

In order to create a depth map of tangible objects of an environment, a depth camera

is required. Time-of-Flight is a principle some depth cameras, including the Microsoft

Azure Kinect, implement to measure depth in the world. The principle is to cast

modulated illumination in the near-infrared(NIR) spectrum onto the scene and then

record an indirect measurement of travel time of the light from the camera to the

scene and back [31]. This can be produced in a static or dynamic context. Within a

dynamic context, a depth map is produced every frame. Latency is a challenge for

15

real-time depth map production due to the amount of time it takes to cast the light

every frame.

Figure 2.9: Scene representations of the famous Stanford Bunny: (a) point
cloud with geometry information and (b) point cloud with attribute infor-
mation in the form of a normal denoted with a blue line [6]

2.4.3 Point Cloud Image

Although depth maps are valuable, they exclusively contain 2D information. However,

we can reproject each pixel in the 2D depth map into 3D space, creating a point

cloud. A 3D point cloud is a set of points, with each point being embedded in the 3D

space and carrying both geometry and attribute information [6], see Figure 2.9. The

geometry information refers to the Cartesian coordinate of the point’s position relative

to the camera. The attribute information may contain various information about the

visual appearance of each point, such as the color and the normal vector. Similar

to the depth map, point clouds can be produced in with static or dynamic content.

With dynamic content, a different point cloud is considered at each frame. The term

”cloud” reflects the unorganized nature of the set [27]. The number of points may

16

vary between frames, resulting in no point-to-point correspondence between clouds

in successive frames.

2.5 Related Works

There are some similar approaches to real-time body projection mapping and inter-

action. The first method is purposed by Dubnov et al. using infra-red (IR) markers

attached to the performer’s arms, legs, or both to detect gestures during practice/-

training and are then fed as training input into a Hidden Markov Model (HMM)

that tracks and recognizes the gestures relative to similar ones [12]. The Microsoft

Kinect, since originally used for interactive Xbox games, already has functionality to

recognize gestures but the added features will help reduce a system’s latency. Once

the model is trained successfully, there is no need to use IR markers. During the

testing/performing phase, Dubnov’s et al. method uses the depth camera from the

Kinect to acquire an IR image and a depth image, derive the 3D coordinates of po-

tential markers, and feed those coordinates into the HMM in order to predict the

performer’s gestures [12].

The next method is proposed by Lee et al. where the real-time projection mapping is

achieved by using a masking technique that tracks different actor’s silhouette, creates

new masked images with the silhouette, composites video on top of the mask, and

projects the newly generated images that aligns with the performer’s costume [16].The

Microsoft Kinect has a depth camera that is able to extract a masked image of bodies

within their fields of view which is limited. For the project Lee et al. worked on,

they found using an IR camera had a wider range, well suited for the large stage the

performers were on [16]. So, they needed to create a real-time masking technique

since the IR camera does not automatically mask the bodies in its image.

17

Morrison et al. proposes an interactive art installation using MAX/MSP/Jitter and

a black and white digital surveillance camera with an IR filter to track real time

movement of participants [25]. When participants step up to the installation, their

silhouettes are projected onto a screen and an image of a young girl moves inside

and across different silhouettes.Depending on the audience member’s gestures, the

girl will dance, skip, twirl, smile, lie down, and more. While the previous method is

capable of detecting small gestures, this method uses larger movements as gestures

for the system.

18

Chapter 3

SYSTEM DEVELOPMENT

Vovk states that there are three principles of AR and spatial computing that influence

a fulfilling experience in AR: ergonomics of the devices being used, the design or

interpretability of the environment, and the value of the content a user experiences

[38]. While creating this project, we kept those three things in mind because the user

determines how successful this project is. It is important to note that we capitalized

Microsoft’s Azure Kinect Sample repository for the initial sensor and body tracking

code organization [21, 22]. This allowed us to solely work on the novel parts of

this project and remove focus from setting up the Kinect and organizing the code.

In this chapter, we discuss the specifics of our implementation of real-time body

projection mapping and interaction in interactive arts. The chapter starts with the

hardware and software requirements in order to run the system. Then, we dive into the

development environments we chose. Lastly, we explain our software implementations

of minimizing both motion error and projection precision error. The sections will also

include the steps we took for each feature as well as the gesture detection and texturing

we applied to fit with our interactive art events.

3.1 Hardware and Software Requirements

We have not seen any documented research using the Microsoft Azure Kinect DK for

body projection mapping, so we chose this hardware platform. The following sections

describe the sensor’s hardware and software requirements and their benefits.

19

3.1.1 Microsoft Azure Kinect DK

Figure 3.1: The Microsoft Azure Kinect camera [20].

The original Kinect was launched as an Xbox accessory and never got very popular.

Customers have commented that although the device is great for exercise-type games

and party games, the gestures aren’t as quick as short finger movements so didn’t

appeal to hardcore gamers or those who like complex games. Because of this, Kinect

lost popularity and Microsoft decided to discontinue developing for it.

The Azure Kinect, on the other hand, was designed for developers, shown in Figure

3.1. Azure Kinect DK is a developer kit that “contains a depth sensor, spatial micro-

phone array with a video camera, and orientation sensor as an all in-one small device

with multiple modes, options, and software development kits (SDKs)” [33]. With

this kit, Microsoft gives developers a platform to experiment computer vision. Each

device purchased, comes with a power cord and adapter, a USB 3A cord to plug into

a computer, and a cover to protect the device. The following list is the minimum host

PC requirements1 for the project we have worked on:

1There are different requirements for the Azure Kinect based on the SDKs being used. This
project requires both the Sensor SDK and the Body Tracking SDK so the requirements are a combi-
nation of more stringent than if only the Sensor SDK was being used. See Microsoft’s Azure Kinect
system requirements [32] to view the requirements for each SDK.

20

• Windows 10 April 2018 (Version 1803, OS Build 171134) release (x64) or a later

version2

• Seventh Gen Intel® CoreTM i5 Processor (Quad Core 2.4 GHz or faster)

• 4 GB Memory

• NVIDIA GEFORCE GTX 1070 or better

• Dedicated USB3 port (for each device being used)

• Graphics driver support for OpenGL 4.4 or DirectX 11.0v [32]

3.1.2 Azure Kinect Sensor SDK

The Azure Kinect Sensor SDK is required to communicate with the Azure Kinect.

Microsoft developed this SDK for the Kinect specifically and it was not the focus of

this project to provide a communication method for the sensors and the computer so

we utilize it. This SDK opens and closes the devices; starts and stops the cameras in

each device; and calibrates the device based on the developer’s specified configurations

(e.g. depth mode for depth camera and color resolution for RGB camera). Once those

steps are successfully run, then we can access the depth image in the Azure Kinect

also using the Sensor SDK. Figure 3.2 shows an example of what the depth image

and the corresponding clean IR image could look like.

The depth mode for our depth camera configuration is the NFOV 2x2 binned (SW).

Even though the resolution of the image in this mode is only 320x288 and has a narrow

field of view (75x65 degrees), we select it because of its ability to capture depth at a

range of 0.5 - 5.46 meters. Because we choose to deploy multiple synchronous devices,

2Another supporting OS is a “Linux Ubuntu 18.04 (x64), with a GPU driver that uses
OpenGLv4.4 or a later version” [32]. However, this project has not been tested with this OS so
we’re not sure if it will support it.

21

Figure 3.2: This figure shows an example depth map (left) and a corre-
sponding clean IR image (right) from the Azure Kinect. After casting
modulated illumination in the near-IR (NIR) spectrum onto the scene,
the Azure Kinect records an indirect measurement of the time it takes
the light to travel from the camera to the scene and back [30]. The pixel
colors in the image are mapped to the scene’s depth values: a pixel closer
to the camera (containing a small depth value) is mapped to blue and the
pixel furthest away from the camera (containing a large depth value) is
mapped to red.

the width of our field-of-view increases, so depth is our top priority. This depth range

allows users and performers to be more immersed in our AR system and not collide

with the hardware setup.

3.1.3 Azure Kinect Body Tracking SDK

Even though a main component of this project is tracking the bodies of the users/per-

formers, it is not a novel part of this project. So, we use Microsoft’s Azure Kinect

Body Tracking SDK in order to focus on the novel aspects. This SDK can create a

tracker, use it to capture a frame with bodies, and track bodies using the image. We

can track the bodies two different ways: a body index map and a body joint structure

hierarchy.

22

Figure 3.3: An illustration of the array of joint locations and connections
relative to the human body that the Azure Kinect creates. This skeleton
includes a hierarchy made up of 32 nodes (joints) and 31 connections
(bone) linking the parent joint with a child joint [36].

For every frame, the Kinect generates a segmentation map for each body in the

depth camera capture resulting in the index map. Each pixel’s value maps to either a

number ID for which body the pixel belongs to (from one to the number of detected

bodies) or the SDK’s enum for the background [35]. Accessing the tracking for body

joints is different from the index map. Instead of an image, the Kinect returns an

ID, which may differ from the ID given by the index map, and a skeleton structure

for each body within its frame. The skeleton structure, see Figure 3.3, contains an

array of joint structures. Each joint structure holds information about its position in

23

camera space, orientation in normalized quaternion, and enum representing the level

of confidence the sensor possesses in regards to tracking the joint.

3.1.4 Multiple Kinect Synchronization

Each Azure Kinect device contains synchronization ports (Sync In and Sync Out)

that can be used to link multiple devices together. The synchronization ports are

fitted for 3.5mm male audio cables, which are not provided with the device purchase.

There are two device configurations that Microsoft recommends: daisy-chain and star

[34].

Figure 3.4: The daisy chain device configuration of multiple Azure Kinect
synchronizations. There is a maximum of eight subordinate devices syn-
chronized to one master device [34]. This image also shows where to plug
in the audio cables to distinguish between a master devices and subordi-
nate devices.

We chose to use the daisy-chain configuration because it provides us with a wider view

of our interest area. For every device in this configuration, a total of number of devices

minus one audio cables are required. The audio cable connection determines the order

24

hierarchy in the program. The master device has an audio cable in the Sync Out port

(the master’s Sync In port must be empty) with a corresponding subordinate device

with the same cable plugged into its Sync In port. Every other subordinate device

follows suits, as depicted in Figure 3.4. The last subordinate device should have an

empty Sync Out port.

The following are benefits of using and synchronizing multiple Azure Kinects:

• Fills in occlusions that may occur from foreground objects, shadows, etc.

• Scans objects in three dimensions

• Increase the effective frame rate to a value that’s greater than 30 frames per

second (FPS)

• Capture multiple 4K color images of the same scene, all aligned within 100

microseconds (µs) of the center of exposure

• Increase camera coverage within the space [34].

3.1.5 Note on Latency

Although the Azure Kinect DK is powerful, it produces a latency when body track-

ing is involved. The Bodytracking SDK processes tracking through a Deep Neural

Network (DNN). As of developing this project, Microsoft has not provided details of

the DNN supplied such as the type of propagation, the activation function, the cost

function, and the number of hidden layers. While DNN is a robust machine learning

algorithm, it is dependent on the quality and performance of the GPU for efficiency

because of its core nature for parallel processing. Not only is there lag time in the

software, but also the hardware. Microsoft measures the idle time for the depth sensor

25

as 1450µs and the exposure time as 12.8ms for the depth modes we consider [30]. As

a note, we only consider the narrow field-of-view depth modes because they are faster

and reach bodies at a longer distance than the depth mode for the wide field-of-view.

We highlight the depth mode we use in Section 3.1.2. Spatial augmented reality re-

quires a projector, which unfortunately also contains visual latency. For example, the

Epson PowerLite Pro G5650W, the projector used for testing, its max sync rate (V

x H) is 85Hz x 92kHz [1]. A system diagram for our hardware configuration and

system communication is illustrated in Figure 3.5. These latency rates assured us

that there’s a need to implement some sort of motion prediction.

Figure 3.5: System diagram of how our system communicates between
each hardware and the user. The Kinects read data from a user, as a
gesture and/or their joint information. The computer reads the data from
the Kinects and sends it to the projector. The projector, in turn, projects
the computer’s images onto the user.

26

3.2 Development Environment

There are three integrated development environments (IDEs) to choose from with the

Azure Kinect as our hardware platform: Visual Studio, Unity, and Unreal. Microsoft

has written base codes and plugins for Visual Studio and Unity to incorporate the

Azure Kinect. There are plugins that non-affiliated programmers have developed

for support in the Unreal engine. We have chosen not to use Unreal based on the

advantages that Visual Studio and Unity provide which we discuss in the next sections.

3.2.1 Visual Studio

Visual Studio is an IDE that is used to edit, debug, and build code and then eventually

publish it as an app. In addition to the standard editor and debugger that other IDEs

provide for the software development process, Visual Studio includes compilers, code

completion tools, graphical displays, and more. The following are the reasons why

we chose this IDE to develop on with the majority of the project:

• IntelliSense for C++ and GLSL files

• Git management and repo creation in the IDE

• Debugger [19]

The IntelliSense is especially helpful when interacting with OpenGL’s libraries. Mi-

crosoft made a git management that is easy to use and visually helpful in comparison

to attempting to recall git commands and typing them on the command line of a ter-

minal. However, the feature with the most impact, especially with computer graphics

applications, is the debugger. Visual Studio allows you to pause code execution at

27

any moment or to insert a breakpoint in order to inspect a bug. There is even a

feature for stepping back through the lines of code in case the debugger went too far

forward or there was an unexpected change. Even though there is no way to pause

code execution and debug inside the GLSL shader code, the debugger for the C++

code eases the software development process.

3.2.2 Unity

Unity is a cross-platform game engine developed by Unity Technologies. Projects

and games developed in Unity can be in 3D, 2D, virtual reality, augmented reality,

and simulations. Features of the game engine include editors for audio, animation,

graphics, UI, and more. However, the most prominent feature is Unity’s Assets

from its Asset Store. A Unity Asset is “an item that you can use in your game or

project” [37] in the form of a 3D model, audio file, image, etc. We were planning on

developing entirely in Visual Studio. However, there was an opportunity to display

this project, discussed in Section 4.3.2 with a short time frame and the access to

Unity’s Assets gave us a quick turnaround. This is because instead of spending time

and resources on creating 3D models and textures, we focused on the effects and

gesture implementations the artist desired.

We choose to run our project on Unity 2019 because the assets we add perform

better and more consistently than in Unity 2020. The Azure Kinect SDKs assets, a

paramount asset for our system, often crashed Unity 2020.

28

3.3 Kinect Setup and Configuration

Microsoft’s base code contains an implementation to configure one device, but not

for multiple synchronized devices. In order to initialize a sensor, there are a few basic

steps:

• Open the device and save it to a device handler

• Set configuration parameters for the device and use it along with the device

handler to start the camera

• Acquire the depth camera calibration and save it to a calibration handler

• Set configuration parameters for a body tracker and use it along with the cali-

bration handler to create a body tracker

Because we are using multiple synchronous Azure Kinects, we loop through the above

steps for the amount of devices available and we set specific device configuration pa-

rameters instead of using Azure Kinect’s Sensor SDK default parameters to configure

a device.

The key parameter is called wired sync mode which configures the device to synchro-

nize as a stand alone device (K4A WIRED SY NC MODE STANDALONE), a

master device (K4A WIRED SY NC MODE MASTER), or a subordinate device

(K4A WIRED SY NC MODE SUBORDINATE). Before step 2 from above, we

use the Sensor SDK’s method called k4a device get sync jack which obtains the de-

vice jack status for the Sync In and Sync Out connectors as boolean values. Both

connectors returning as false will occur when there is one device or multiple devices

that are not connected synchronously and the device(s) will configure as a standalone

29

device. If the method returns with both connectors as true or only the Sync In con-

nector is true, then the device is configured as subordinate. A return of false for the

Sync In connector and true for the Sync Out connector is configured as the master

device. The last requirement for device set up is waiting for all subordinate devices to

finish steps 1-4 from above before performing steps 2-4 on the master device. To pre-

vent the lasers from interfering with one another, Microsoft reccommends the camera

captures to be offset from one another by 160µs or more [34]. For less latency, we use

160µs.

In order to properly shutdown and destroy the trackers, stop the cameras, and close

the devices, we keep store every device and tracker handler after their creation. We

also create a new tracked body class we developed for every device to obtain and keep

track of joint positions from each device. Every frame we call our update function

from our KinectSystem class. Within it, we get a capture from the devices and use

it in our body tracking process through either a body index map or a body joint

structure.

3.4 Joint Tracking

Using the capture from the Kinect setup, we obtain body tracking information in

the form of a joint hierarchy for each body in the frame. We document its tracking

status, body ID, and skeleton structure (as described in Section 3.1.3). We designate

the active user in our system to be the body closest to the device. The reason for

having solely one active user it is simpler to have only one user controlling the system.

Among all the bodies being tracked, we discover which is closest to the device, note

its ID, and record all joint positions that have a decent confidence level. After each

30

body’s joints are tracked, we record the velocity of each joint based on a previously

recorded position.

3.4.1 Body Tracking

Using the capture from the Kinect setup, we obtain body tracking information in the

form of an index map. Although the map contains vital information for body tracking,

it does not contain information about each pixel’s world position. The point cloud

image, which we can obtain through the depth image, stores this information. We re-

quest the 320x288 depth image from the camera and transform it to a point cloud im-

age using the Sensor SDK’s k4a transformation depth image to point cloud. This

function returns the point cloud image as an array containing 3D cartesian coordi-

nates of every pixel in the depth image. A masked image is created based on the

point cloud image and index map. For each valid pixel (a pixel with a z-value that

is not equal to zero and designated as a non-background pixel by the index map), we

store the position in world space, a color based on the body ID the pixel belongs to,

and the transformation matrix we want to apply to the pixel in the vertex shader.

A pixel that is discerned as part of the background and not a body is given a black

color property.

3.5 Minimizing Tracking Error

This section describes our software implementations in real-time body tracking and

projection mapping. Our solution to improve this uses motion prediction and track-

ing error minimization. We explored a technique that utilizes the depth map from

Kinect’s depth camera to build a point cloud map. We also devised a method that

uses multiple Kinects positioned in different positions to average similar joint angles

31

and that performs a velocity prediction calculation to more accurately provide joint

coordinates.

3.5.1 Point Cloud Map

We use our completed point cloud map and send it to the GPU to mark which

pixels fabricate the outline of the bodies. The program performs a 2D compute

operation with a work group size of (8, 18, 1) and a local size for each work group

of (40, 16, 1). A compute shader with this work group configuration is able to

execute 92,160 or 320x288, the resolution of our depth image, processes in parallel.

Each invocation uses the global invocation ID variable (gl GlobalInvocationID) to

calculate the current index and checks the current C(x, y) and neighboring pixel’s

color property. If C(x, y) is non-black, a new color property is assigned based on the

following color map function:

C(x, y) =


white, if C(x+ 1, y) = black || C(x− 1, y) = black ||

C(x, y + 1) = black || C(x, y − 1) = black

C(x, y), otherwise

In other words, a pixel that is non-black and has at least one neighboring pixel that

is black is marked as an outline pixel with a new white color property. Otherwise,

the pixel’s color property does not change. We record the GPU’s execution time to

average as 0.655 ms.

Based on the new outline information and previously retrieved depth values, we de-

crease the size of each point by different factors. If the pixel is marked as an outline

pixel, the size of the billboard at the pixel location is decreased by 0.6. We also

mark the point closest to (zmin) and furthest away (zmax) from the camera, record

32

those point’s z-values, and map them to a scaling factor of 0.3 (smax) and 0.05 (smin),

respectively. Every other pixel’s scaling factor is mapped between this range created

above based on their distance away (z′) from the fore-mentioned points using this

formula:

scale = ((z′ − zmin)/(zmax − zmin)) ∗ (smin − smax) + smax

This creates a tighter look on the body being tracked by containing a majority of the

non-background pixels on the body. As Figure 3.6 shows, even with the flexible shape

of a jacket, the algorithm portrays an accurate representation of the jacket’s creases

and deformation. Although we have not our point cloud map is not amalgamated

with the other features, it was developed as separate research into minimizing tracking

and projection mapping errors and aim to implement this in future effects, discussed

in Chapter 5.

3.5.2 2D Coordinate Rotation from Averaged Joint Angles

Our second algorithm to reduce body tracking error involves averaging joint angles

between each device’s tracked body. Because each device has its own coordinate

system, averaging joint positions from each device is not possible without multiple

device calibration (discussed in Chapter 5). However, the angles made from the joints

should be similar across devices. So, we developed an algorithm that generates and

averages joint angles from each device and performs a 2D coordinate rotation using

the newly averaged joint angles to obtain new joint positions.

First, we iterate through each device and generate a joint angle map for each tracked body.

The map contains a Azure Kinect Bodytracking SDK joint enum as the key and a

double for the calculated joint angle. The key corresponds to the joint for which we

are calculating the angle for. To do so, we run our function calculate joint angles

33

that takes in three parameters: the joint position for the angle we are calculating (pa)

and the two joint positions that most closely make up the body’s natural angle with

the first joint (pb and pc). For example, if calculating the joint angle for the right

elbow, then we would send the function the right shoulder (pa), right elbow (pb), and

right wrist (pc) joint positions as arguments. In calculate joint angles, we create two

normalized vectors: a vector from pb to pa which we called vba and a vector from pb

and pc which we called vbc. These vectors are calculated using the following formula:

vba = normalize(pa.x− pb.x, pa.y − pb.y, pa.z − pb.z)

The cosine of an angle between two vectors is equal to the dot product of the vectors

divided by the product of each vector’s magnitude. Using this relation, we derive the

angle between our two resulting vectors. After normalizing the vectors, the derived

formula is:

α = acos(dot(vba, vbc)/(length(vba) ∗ length(vbc)))

We generate the joint angles for twelve joints that are paramount for gesture detection

and performances, including the shoulders, elbows, wrists, hips, knees, and ankles.

After generating the joint angles for all tracked body instances, we average each cor-

responding joint angle between instances. This is calculated with a standard mean

equation. The arccosine function only returns positive values: 0 ≤ α ≤ π in radians

and 0 ≤ α ≤ 180◦ in degrees. Therefore, a standard mean equation is valid because

there are no coterminal angles. When any body joint is rotated, it can affect multiple

joints. For example, a rotating left shoulder joint moves the left elbow, left wrist, and

left hand joints. So in a map called angleHierarchy, we insert the joint as its key and

the affected joints in a vector as its value. We then calculate the new joint positions

using all the above angle computations:

34

1. Access the current joint’s new angle average and old angle average

2. Calculate the delta angle (θ) between the two angles (new angle - old angle)

3. Iterate through all joints in angleHierarchy and calculate their new position

using θ

In order to retrieve the new positions (x′, y′) of the joints affected by the current joint’s

newest angle change, we use the previous position of the affected joint angleHierarchy

(pi), the position of the current joint (pf), and θ:

x′ = ((pi.x− pf .x) ∗ cos(θ)− (pi.y − pf .y) ∗ sin(θ)) + pf .x

y′ = ((pi.x− pf .x) ∗ sin(θ) + (pi.y − pf .y) ∗ cos(θ)) + pf .y

(3.1)

Once finished, we use the new positions to aid our joint position predictions in motion

prediction.

3.6 Motion Prediction

Our motion prediction algorithm forecasts new joint positions with a change in ve-

locity formula. It utilizes a basic change in velocity formula:

∆V elocity = ∆Position/∆Time

With an initial velocity (vi), a final velocity (vf), an initial time (ti), a final time (tf),

and an initial position (di), we transform the formula in order to find an anticipated

final position (df):

df = di + (vf − vi) ∗ (tf − ti) (3.2)

35

The initial time is received from GLFW’s method glfwGetTime. After much trial and

error, the best final time was found to be ten milliseconds or 0.01 of a second after the

initial time or into the future from the current time. The joints tend to flutter when

experimenting with larger values. For the initial velocity, we save each joint’s position

up to the last five frametimes and use them to achieve a more accurate velocity for

each joint. We not only use the speed of the joint in question, but also the speed of

the two joints closest in the joint hierarchy to the current joint. We average the three

velocities, obtain a delta velocity by subtracting the initial velocity from the average

and multiply it by an error factor, and add the delta to the initial velocity, resulting

in the final velocity. The initial position is recalled as the value of the joint position

stored from body tracking. With all these values, we can plug it into the equation

3.2 and calculate our predicted final position.

3.6.1 Body Approximation

Because the point cloud image is not integrated with the motion prediction and angle

rotation algorithms, we calculate an approximation of each body segment. As Figure

3.3 displays, the joints form a skeleton and do not align with the outline of the body.

After the motion prediction process, we generate vertices using the final joint positions

to construct billboards for each body segment, see Figure 3.7 for an example of the

figure created from these body segement approximations. For example, a billboard

constructed for the torso is calculated by using the elbow joints, shoulder joints, hip

joints, and pelvis joint. For instances where only one body is guaranteed to be in

view, such as testing or a dance audition with one performer, we provided a key

callback tool to adjust the each body segment dimension’s scale factor to ensure a

close alignment.

36

3.7 Gesture Detection

In order for active users to interact with the system, a simple gesture detection is

implemented. Three gestures are detected: arms waving left, arms waving right,

and hands above the head. We track them using the joint positions of the active

user obtained after the motion prediction process. Waving left is detected when the

tracked body’s left hand is above and to the left of its left shoulder. When the right

hand is above and to the right of tracked body’s right shoulder, a waving right action

is recognized. Otherwise, having both the left and right hands above the head joint

signifies the hands up gesture. The active and passive users are then able to view the

new effect being displayed. For both events detailed in Chapter 4.3, we designed 5-7

artistic effects for the both the active and passive users to view and for the active

user to interact with. When the system recognizes a gesture from the active user,

it rotates between each effect. Figure 3.8 is the state diagram of how our system

interacts with gestures.

37

Figure 3.6: An outline result from our body projection mapping algorithm
after being processed through a compute shader. The points in the point
cloud map are rendered with scaled transformation matrix dependent on
their distance compared to the closest and farthest body pixels in the map.
The point with the smallest depth value are scaled by 0.3 and the point
with the greatest depth value are scaled by 0.05. All points in between
are mapped to values between 0.05 and 0.3 based on their distance to the
the points with smallest and greatest depth values. Points on the outline
of the body are further scaled by a factor of 0.6.

38

Figure 3.7: Body outline results from approximating body segment di-
mensions based on the predicted joint positions.

39

Figure 3.8: State diagram of how our system handles gesture detection.
It tracks the movement of the user then switches states if a gesture is
detected, otherwise it keeps trackign movement. If waving left or waving
right is detected, then the skin textures effect (i.e. chameleon, see 4.3
for more) are changed. If arms up is detected, then the animation effects
(i.e. dolphin swimming around, see 4.3 for more) are changed. Then, the
projection mapping is updated and the cycle continues.

40

Chapter 4

RESULTS

This chapter provides an overview and a discussion of the findings of this thesis,

including tests and events exhibiting the work.

4.1 Experimental Setup

The tests were run on Windows 10 version 1909 with an i5-8400 CPU @2.80GHz

processor and a 64-bit operating system. The graphics card we used was an NVIDIA

GeForce GTX 1080, all of which fulfill the hardware requirements put forth by the

Azure Kinect Sensor and Bodytracking SDKs. The latest SDK versions at the time

were used:

• Azure Kinect Sensor SDK 1.4.1

• Azure Kinect Bodytracking SDK 1.0.1 (with its dependencies’ versions at 0.9.1)

We compare body projection mapping results and execution times running configu-

rations of 1-3 Azure Kinects.

4.2 Analysis

In order to collect comparative data, we developed a test that runs on the same joint

data points. We ran the program normally with a three device setup and a user in

the area in front of it, recording all joint positions from each device. The movements

41

6 7 8 9 10 11 12 13 14 15 16 17 18

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Time t [s]

L
en

gt
h

(P
re

d
ic

te
d

-
A

ct
u
al

)
χ

[c
m

]

RIGHT ELBOW JOINT CALCULATIONS VS TIME

−60

−40

−20

0

20

40

60

80

100

120

140

160

180

A
n
gl

e
α

[d
eg

re
es

]

One Device: Two Devices: Three Devices:
Position Discrepancies Position Discrepancies Position Discrepancies
Angle Averages Angle Averages Angle Averages

Figure 4.1: Dual axis line graph displaying the results of the right elbow
joint’s motion prediction and averaged angle. The x-axis is time measured
in seconds with a tracking start time of about seven seconds. The left
y-axis represents the rate of change over time of the length between the
predicted position and the position computed from a 2D rotation of the
right elbow joint, measured in meters. The right axis represents the change
of angle, in degrees, over time at the right elbow joint, which is derived
using the right shoulder, elbow, and wrist joints. The dashed lines are
the angle averages. The solid lines are the position variance. Red colored
lines are data from a three device arrangement. Green colored lines are
data from a two device arrangement. Blue colored lines are data from a
one device arrangement.

42

6 7 8 9 10 11 12 13 14 15 16 17 18

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Time t [s]

L
en

gt
h

(P
re

d
ic

te
d

-
A

ct
u
al

)
χ

[c
m

]

RIGHT KNEE JOINT CALCULATIONS VS TIME

−40

−20

0

20

40

60

80

100

120

140

160

180

200

A
n
gl

e
α

[d
eg

re
es

]

One Device: Two Devices: Three Devices:
Position Discrepancies Position Discrepancies Position Discrepancies
Angle Averages Angle Averages Angle Averages

Figure 4.2: Dual axis line graph displaying the results of the right knee
joint’s motion prediction and averaged angle. The x-axis is time measured
in seconds with a tracking start time of about seven seconds. The left
y-axis represents the rate of change over time of the length between the
predicted position and the position computed from a 2D rotation of the
right knee joint, measured in meters. The right axis represents the change
of angle, in degrees, over time at the right knee joint, which is derived
using the right hip, knee, and ankle joints. The dashed lines are the angle
averages. The solid lines are the position variance. Red colored lines are
data from a three device arrangement. Green colored lines are data from
a two device arrangement. Blue colored lines are data from a one device
arrangement.

43

6 7 8 9 10 11 12 13 14 15 16 17 18

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Time t [s]

L
en

gt
h

(P
re

d
ic

te
d

-
A

ct
u
al

)
χ

[c
m

]

HIP JOINT CALCULATIONS VS TIME

60

70

80

90

100

110

120

130

140

A
n
gl

e
α

[d
eg

re
es

]

One Device: Two Devices: Three Devices:
Position Discrepancies Position Discrepancies Position Discrepancies
Angle Averages Angle Averages Angle Averages

Figure 4.3: Dual axis line graph displaying the results of the right hip
joint’s motion prediction and averaged angle. The x-axis is time measured
in seconds with a tracking start time of about seven seconds. The left
y-axis represents the rate of change over time of the length between the
predicted position and the position computed from a 2D rotation of the
right hip joint, measured in meters. The right axis represents the change
of angle, in degrees, over time at the right hip joint, which is derived using
the chest, right hip, and right knee joints. The dashed lines are the angle
averages. The solid lines are the position variance. Red colored lines are
data from a three device arrangement. Green colored lines are data from
a two device arrangement. Blue colored lines are data from a one device
arrangement.

44

Figure 4.4: Body projection mapping outline depicting a snapshot from a
frame of lifting the right leg up. The red colored outline is data from a
three device arrangement. The green colored outline is data from a two
device arrangement. The blue colored outline is data from a one device
arrangement. The white pixels designates an overlap between all outlines.

performed were waving both arms up and down, stepping with high knees to the

left and right, and jumping up. We examine three dominant right joints in body

movement: right elbow, right knee, and right hip. The entire animation produced

147 data points for the following graphs. The x-axis indicates time between seven

and seventeen seconds. However, the program measured start time to be once it

runs, not once the body was tracked and displayed. We only started collecting data

after the body was tracked, so around seven seconds is our start time. Each device

configuration is represented by the same color throughout all the next six figures:

one device setup is colored blue, two devices setup is colored green, and three devices

setup is colored red.

45

Figure 4.5: Body projection mapping outline depicting a snapshot from
a frame of walking to the right. The red colored outline is data from a
three device arrangement. The green colored outline is data from a two
device arrangement. The blue colored outline is data from a one device
arrangement. The white pixels designates an overlap between all outlines.

4.2.1 Averaging Joint Angles

Once the positions were recorded for the current frame, we processed the positions

through our algorithm as all three device configurations: one device (only consider

data from master device), two devices (consider data from the master and one sub-

ordinate), and three devices (consider all data). Graphs 4.1, 4.2, and 4.3 display the

results from the elbow, knee, and hip angles, respectively, with a dashed line and the

y-axis on the right. In each graph, the overall change of rate is similar. There are

slight angle discrepancies between device configurations. However, this is expected

because only an orthogonal placement relative to the two vectors in the angle cal-

culations can obtain a complete view of the angle. A camera placed at other points

may process the vectors to form a differently sized angle.

46

Figure 4.6: Body projection mapping outline depicting a snapshot from
a frame of landing after a jump. The red colored outline is data from a
three device arrangement. The green colored outline is data from a two
device arrangement. The blue colored outline is data from a one device
arrangement. The white pixels designates an overlap between all outlines.

4.2.2 Motion Prediction

Before averaging the angles, the elbow, knee, and hip joints from the master device

were processed through our motion prediction algorithm, producing an anticipated

joint position 0.01 seconds into the future. We used a timer that, during each frame,

increased by the total elapsed time between frames. We waited until the timer reached

0.01 seconds to compare the master device’s predicted values to the positions we cal-

culated after performing the two-dimensional rotation based on the angle averages,

described in Section 3.5.2. This is visualized in Graphs 4.1, 4.2, and 4.3, respectively,

with a solid line and the y-axis on the left. Each graph shows our motion predic-

tion algorithm produced an 100% accurate position 0.01 seconds into the future for

the master device. In each observed joint for the one device configuration, the the

47

predicted position and the actual position are the same value, confirming our mo-

tion prediction algorithm. With the exception of the hip joint, the two and three

device configurations contain some disparities. The elbow joint’s predictions remains

less than 4.0cm away from the actual prediction in both setups. The knee joint’s

predictions are at most 3.0cm off compared to the actual positions. The differences

between the two and three device setups are not too large; in some cases, the three

device setup provides a more accurate prediction. Referring to the hip joint graph, it

shows that even with different angles there are certain joints that are predicted better

than others. This joint was predicted positions with 100% accuracy across all device

configurations. This may be because the sensors were tracking the hip positions bet-

ter than the knee and elbow or because the hip movements were slower compared to

the movements of the other joints. Overall, we see highly accurate predictions for

joint positions using our motion prediction algorithm, with no significant accuracy

discrepancies between each sensor configuration. However, we can see the slight angle

and position differences from the body approximation images.

4.2.3 Body Approximation

We have shown the statistical differences between camera arrangements. When

aligned by frametime, there are also visual differences. We compared the body pro-

jection mapping from our resulting joint angle and position computations of each

device configuration, see Figures 4.4, 4.5, and 4.6. While the assessed positions and

joints are slightly differing in data, the visual comparisons by frame are noticeable,

especially the joint angle measurement.

48

4.3 Proof of Concept

This section discusses our results from exhibiting our body projection mapping in

events we specifically designed it for. We planned to organize a performing art show

with computer science students who minored in dance. We also auditioned to be

in the established California Polytechnic University Dance Show for Spring Quarter

2020. However, due to social distancing protocols from COVID-19, we put planning a

performance on hold and the university’s dance show was cancelled. Below we discuss

the results of attending two events where the project was displayed as an interactive

art installation. The two events are Burning Man 2019 and Delfines de San Carlos

art show 2020.

Figure 4.7: These figures portray the butterfly morphing effect we imple-
mented. Over a span of a few seconds, each butterfly from (a) morph into
the eyeballs in (b) at different times.

4.3.1 Burning Man 2019

The project participated at the Black Rock City Art installation camp at Burning

Man 2019 [26]. With an art theme of metamorphosis, we created effects that artisti-

49

cally correlate with the theme: butterflies that morph into eyeballs, a skeleton with

a beating heart, chameleon skin that changes colors, and an animation that makes

the body appear to burn away from the inside. Figures 4.7 and 1.1 depict a couple

of the effects.

Due to climate and weather conditions Burning Man experiences in the middle of

the desert, we needed to build a structure that could withstand the elements and

accommodate a projector, Kinect sensor, and a laptop. We committed to our favorite

effect and constructed an eyeball structure made up of wooden slabs for the base and

fiberglass, epoxy, and paint for the containment unit, see Figure 4.8. Originally, the

eyeball was an inflated yoga ball which we then pasted several layers of fiberglass using

epoxy and when the final layer dried we painted it. Apart from the artistic addition,

the eyeball also encases the laptop, projector, and sensor. A hole was shaped where

the pupil should be located for the camera to peer out from and the projector to

project out of.

Figure 4.8: (a): A full view of the entire eyeball structure at Burning Man
2019. The structure is 7 feet tall and the eyeball is 3 feet wide. (b): A
closer view of the structure’s iris and ‘pupil’ hole where the Kinect and
projector are looking out of.

50

As Burning Man attendees walked past a giant eyeball structure, they were curious

to investigate what metamorphosis art they could experience. A dark environment

with a real-time interactive projection caught their attention and allowed them to

be fully immersed with their metamorphosis experience. Burning Man noticed our

popular, novel technology and invited us back as official artists for an art installation

camp at Burning Man 2020. Unfortunately, Burning Man 2020 was cancelled. We

are hopeful and anticipating our project to be invited to a Burning Man 2021 art

installation camp.

4.3.2 Delfines de San Carlos: Un Proyecto de Esperanza 2020

Lucia Apodaca, an artist from San Carlos, Sonora, Mexico, was exposed to the art

and technology of our project and showed interest in showcasing it at her art show

Delfines de San Carlos: Un Proyecto de Esperanza on September 26, 2020 [15]. The

art show consisted of low-polygon dolphin structures, each individually painted by

various artists from Mexico and the United States.

Her team constructed an all-white dolphin structure (Figure 4.9) to map projections

of animated and textured effects onto it and allow the show’s guests to interact with

it. The gestures described in Section 3.7 are used for the guests to switch between

the seven effects in real-time, see Figure 4.10 for an example from the art show.

The other structure depicted in Figure 4.11 performs a similar function to the eyeball

structure from Burning Man 2019: a place to mount the laptop, Azure Kinect, and

projector. Because there was only a month of development time, we modified our

project for the event to run in C# and Unity in order to take advantage of Unity’s

prefabricated assets. Doing so, permitted us time to tweak the variety of effects and

refactor our C++ code into C#.

51

The attendees of the art show enjoyed watching and taking pictures of the dolphin

transforming its effects in real time. Although the hardware configuration was ex-

posed and may have decreased the quality of immersion, it sparked curiosity and

discussion of how the project worked. A discussion about the art on the other dol-

phins also occurred, so our set up may have been advantageous for this type of event.

Even though this event did not involve any body projection mapping, we were still

able to showcase our body tracking algorithm when detecting gestures and were given

the opportunity to projection map onto a unique static object.

52

Figure 4.9: The white dolphin structure that Apodaca’s team constructed
for our installation at the 2020 Delfines de San Carlos art show situated on
El Mirador de San Carlos. A low polygon dolphin fixed on top of a wave-
like base made up of recycled cycling wheels. Pictured from left to right:
Noah Paige, Sydney Baroya, Irene Humer, Christian Eckhardt, Lucia Apo-
daca, Sara Valle (Mayor of Guaymas), and Enrique Gamez (comisario of
San Carlos).

53

Figure 4.10: The psychedelic effect developed for the projection mapping
on to the dolphin structure. This effect was triggered when an active user
waved their arms left or right. Pictured is the team for our interactive
installation at the Delfines art show from left to right: Noah Paige, Sydney
Baroya, Christian Eckhardt, and Irene Humer.

54

Figure 4.11: The laptop/projector/Kinect setup for the ‘Delfines’ art
show. The dolphin structure that we are mapping a projection onto is
mounted on a tall base so we required a tall structure for the projector to
sit on along with a platform to keep the laptop and Kinect at body level.

55

Chapter 5

FUTURE WORK

Although the results and the proof-of-concept events are successful, we have identified

a few features that would enhance the project. The main work we would like to

develop pertains to our point cloud image. First, we would calibrate all the devices to

produce images in a single domain. In a single device, the depth and RGB cameras

are factory calibrated to work together. When multiple devices are synchronized,

they have to be calibrated to transform an image from the domain of the camera

that captured it to the domain of the camera you want to use to process images [34].

We would develop an algorithm that could calibrate devices in order to produce a

cohesive depth map and consequently a cohesive point cloud map. Second, we would

combine the results from averaging joint angles and motion prediction with our point

cloud image. To do so, we would use the point cloud image as a mask texture and

employ it to mask the body approximated figure, see Figure 4.4.

The next two features are associated with the projector. Taking the resolution and

lag rate of a projector into account could provide a sharper image and further com-

bat latency. Although we do predict motion, any reduction of latency would improve

our work. Another projector related improvement involves adding a multi-projector

configuration. This could create various viewing angles that do not vary in quality.

Creating an effective and efficient multi-projector system is an ongoing research topic.

This feature would update our hardware set-up to place projectors surrounding the

object(s) of interest and place 1-2 Kinect sensors by each projector, giving each pro-

jector the “view” they are to project. We would also need to develop an algorithm

that fixes effects from overlapping pixels between projectors.

56

One factor that affects virtual objects to look natural is shadowing and specular

highlights. With a static light, shadowing can be accomplished in a single render

pass. However, specular highlights can be complicated in multi-user systems. Light-

ing effects are typically rendered from one view – the camera view – because users

view it from a 2D screen. When augmented reality projects onto a 3D canvas like a

body, it is viewable by multiple users at various angles, complicating the light ren-

dering. We would need to update specular lighting as users move. To decrease the

complexity, we can utilize the real-time detection for the body closest to the camera

as our view instead of distorting all views. This method would not be viable in a

performing art show, but an interactive art show’s immersion will be increased with

this implementation.

While our program is able to project around the outline of flexible shapes, the pro-

jected effects may be distorted on the non-rigid surfaces. The next feature we would

implement takes deformed non-rigid surfaces into consideration so that the art stays

cohesive in spite of surface deformations. Users and performers will be dressed with

clothes or costumes, so adding this update is a necessary step to increase our immer-

sion.

Although we are confident with our motion prediction and gesture detection, they

can be upgraded for an improved result. Wayne McGregor from “Google Arts &

Culture and Studio Wayne McGregor” uses artificial intelligence (AI) in the form

of a neural network to predict a dancer’s movements [18]. Implementing a similar

artificial intelligence could be helpful for a planned performance. With time for

gathering training input, the AI could learn the individual styles of each dancer in a

performance and predict their movements. In an interactive art installation, the AI

would improve the general motion prediction with each user. Similarly, an addition

57

of AI can enhance the gesture detection process, either in a performing art show or

an interactive art installation.

58

Chapter 6

CONCLUSION

This thesis presents augmented reality and human computer interaction in the inter-

active arts through body projection mapping. To the best of our knowledge, this is

the first solution in this area implemented on Microsoft’s Azure Kinect Developer Kit.

Using the skeleton joint hierarchy from multiple Azure Kinects, we obtain an accu-

rate, real-time body approximation with our 2D coordinate rotation of averaged joint

angles and joint motion prediction algorithm. Combining the body index segmenta-

tion map and the depth maps from the Azure Kinect, a masked point-cloud image is

achieved that is able to detect flexible shaped clothing. We present our results from

averaging joint angles from different device configurations and from prediction joint

movement 0.01 seconds into the future. We also provide our results from exhibiting

our project at Burning Man 2019 and Delfines de San Carlos: Un Proyecto de Es-

peranza art show 2020. While we produced a high-quality body projection mapping,

there are updates for each stage and additional features that can enhance it. We look

forward to future research that takes advantage of the Azure Kinect features and any

future updates to the Azure Kinect Sensor and Bodytracking SDKs.

59

BIBLIOGRAPHY

[1] Epson Powerlite Pro G5650W - 3LCD projector - LAN Specs.

https://www.cnet.com/products/epson-powerlite-pro-g5650w-3lcd-

projector-lan/.

[2] OpenGL Texture. https://www.khronos.org/opengl/wiki/Texture.

[3] Texture masks using a shader, Oct 2017.

http://pirron.one/playingincanvas/texture-masks-using-shader.

[4] J. Baham. The Unauthorized Story of Walt Disney’s Haunted Mansion. Theme

Park Press, 2016.

[5] O. Bimber and R. Raskar. Spatial augmented reality: merging real and virtual

worlds. CRC press, 2005.

[6] C. Cao, M. Preda, and T. Zaharia. 3d point cloud compression: A survey. In

The 24th International Conference on 3D Web Technology, Web3D ’19,

page 1–9, New York, NY, USA, 2019. Association for Computing

Machinery.

[7] C. Chen, B. Wang, C. X. Lu, N. Trigoni, and A. Markham. A survey on deep

learning for localization and mapping: Towards the age of spatial machine

intelligence. arXiv preprint arXiv:2006.12567, 2020.

[8] J. Chen, T. Yamamoto, T. Aoyama, T. Takaki, and I. Ishii. Simultaneous

projection mapping using high-frame-rate depth vision. In 2014 IEEE

International Conference on Robotics and Automation (ICRA), pages

4506–4511, 2014.

60

[9] J. Chen, T. Yamamoto, T. Aoyama, T. Takaki, and I. Ishii. Real-time

projection mapping using high-frame-rate structured light 3D vision. SICE

Journal of Control, Measurement, and System Integration, 8(4):265–272,

2015.

[10] J. de Vries. Shadow mapping.

https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping.

[11] W. Delamare, C. Coutrix, and L. Nigay. Designing guiding systems for

gesture-based interaction. In Proceedings of the 7th ACM SIGCHI

Symposium on Engineering Interactive Computing Systems, pages 44–53,

2015.

[12] T. Dubnov, Z. Seldess, and S. Dubnov. Interactive projection for aerial dance

using depth sensing camera. Proceedings of SPIE - The International

Society for Optical Engineering, 01 2014.

[13] L. Frum. First impressions:Microsoft’s Kinect gaming system, Nov 2010.

https://www.cnn.com/2010/TECH/gaming.gadgets/11/03/kinect.video.game/.

[14] Y. Ghazwani and S. Smith. Interaction in Augmented Reality: Challenges to

Enhance User Experience. In Proceedings of the 2020 4th International

Conference on Virtual and Augmented Reality Simulations, pages 39–44,

2020.

[15] S. Gobo. Interactive Art ”Delfines” Sydney Baroya. YouTube video, Sept. 27

2020. https://youtu.be/Rl8RIrEMia4.

[16] J. Lee, Y. Kim, M.-H. Heo, D. Kim, and B.-S. Shin. Real-time projection-based

augmented reality system for dynamic objects in the performing arts.

Symmetry, 7(1):182–192, 2015.

61

[17] S. Lee, N. U. Islam, and S. Lee. Robust image completion and masking with

application to robotic bin picking. Robotics and Autonomous Systems, page

103563, 2020.

[18] D. Leprince-Ringuet. Google’s latest experiment teaches ai to dance like a

human, Dec 2018. http://www.wired.co.uk/article/google-ai-wayne-

mcgregor-dance-choreography.

[19] Microsoft. Visual Studio 2019: Download for free.

https://visualstudio.microsoft.com/vs/.

[20] Microsoft. Buy the Azure Kinect developer kit – Microsoft, 2019.

https://www.microsoft.com/en-us/p/azure-kinect-

dk/8pp5vxmd9nhq?activetab=pivot%3Aoverviewtab.

[21] Microsoft. microsoft/Azure-Kinect-Samples, Jun 2019.

https://github.com/microsoft/Azure-Kinect-Samples/tree/master/body-

tracking-samples/sample helper libs/window controller 3d.

[22] Microsoft. microsoft/azure-kinect-samples, Jan 2020.

[23] M. R. Mine, J. Van Baar, A. Grundhofer, D. Rose, and B. Yang.

Projection-based augmented reality in disney theme parks. Computer,

45(7):32–40, 2012.

[24] S. A. Mokhov, D. Li, H. Lai, J. Singh, Y. Shen, J. Llewellyn, M. Song, and S. P.

Mudur. ISSv2 and OpenISS distributed system for real-time interaction for

performing arts. In ACM SIGGRAPH 2019 Posters, pages 1–2. 2019.

[25] A. J. Morrison, P. Mitchell, and S. Viller. Evoking gesture in interactive art. In

Proceedings of the 3rd ACM international workshop on Human-centered

computing, pages 11–18, 2008.

62

[26] music vizards. 2019 Art Installations, 2019.

https://burningman.org/culture/history/brc-history/event-archives/2019-

event-archive/2019-art-installations/?yyyy=.

[27] J. Otepka, S. Ghuffar, C. Waldhauser, R. Hochreiter, and N. Pfeifer.

Georeferenced point clouds: A survey of features and point cloud

management. ISPRS International Journal of Geo-Information,

2(4):1038–1065, Oct 2013. http://dx.doi.org/10.3390/ijgi2041038.

[28] Paul. Simple Bumpmapping.

http://www.paulsprojects.net/tutorials/simplebump/simplebump.html.

[29] R. Raskar, G. Welch, K.-L. Low, and D. Bandyopadhyay. Shader lamps:

Animating real objects with image-based illumination. In Eurographics

Workshop on Rendering Techniques, pages 89–102. Springer, 2001.

[30] T. Sych and B. Allen. Azure Kinect DK hardware specifications, Feb 2020.

https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification.

[31] T. Sych, B. Allen, and P. Meadows. Azure Kinect DK depth camera, Jun 2019.

https://docs.microsoft.com/en-us/azure/kinect-dk/depth-camera.

[32] T. Sych, B. Allen, P. Meadows, and C. Edmonds. Azure Kinect Sensor SDK

system requirements, Mar 2020.

https://docs.microsoft.com/en-us/azure/kinect-dk/system-requirements.

[33] T. Sych, P. Meadows, and D. Coulter. About Azure Kinect DK, Jun 2019.

https://docs.microsoft.com/en-us/azure/kinect-dk/about-azure-kinect-dk.

[34] T. Sych and T. Sherer. Synchronize multiple Azure Kinect DK devices, Feb

2020.

https://docs.microsoft.com/en-us/azure/kinect-dk/multi-camera-sync.

63

[35] T. Sych, Y. Wang, B. Allen, S. Leavitt, J. Parente, J. Borsecnik, P. Meadows,

and M. Bradley. Azure Kinect body index map, Jun 2019.

https://docs.microsoft.com/en-us/azure/kinect-dk/body-index-map.

[36] T. Sych, Y. Wang, J. Dunn, P. Meadows, M. Bradley, and K. Toliver. Azure

Kinect body tracking joints, Jul 2019.

https://docs.microsoft.com/en-us/azure/kinect-dk/body-joints.

[37] U. Technologies. Quick guide to the unity asset store.

https://unity3d.com/quick-guide-to-unity-asset-store.

[38] A. Vovk. [dc] dimensionality of Augmented Reality Spatial Interfaces. In 2019

IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages

1377–1378, 2019.

[39] L. Vural. Instructional Methods, pages 107–145. 11 2016.

64

	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 Projection-Based Augmented Reality
	2.1.1 Projection Mapping
	2.1.1.1 Body projection mapping

	2.2 User
	2.2.1 Passive
	2.2.2 Active

	2.3 Interaction Interfaces
	2.3.1 Natural User Interface

	2.4 Textures in Computer Graphics
	2.4.1 Image Masking
	2.4.2 Depth Map
	2.4.3 Point Cloud Image

	2.5 Related Works

	3 System Development
	3.1 Hardware and Software Requirements
	3.1.1 Microsoft Azure Kinect DK
	3.1.2 Azure Kinect Sensor SDK
	3.1.3 Azure Kinect Body Tracking SDK
	3.1.4 Multiple Kinect Synchronization
	3.1.5 Note on Latency

	3.2 Development Environment
	3.2.1 Visual Studio
	3.2.2 Unity

	3.3 Kinect Setup and Configuration
	3.4 Joint Tracking
	3.4.1 Body Tracking

	3.5 Minimizing Tracking Error
	3.5.1 Point Cloud Map
	3.5.2 2D Coordinate Rotation from Averaged Joint Angles

	3.6 Motion Prediction
	3.6.1 Body Approximation

	3.7 Gesture Detection

	4 Results
	4.1 Experimental Setup
	4.2 Analysis
	4.2.1 Averaging Joint Angles
	4.2.2 Motion Prediction
	4.2.3 Body Approximation

	4.3 Proof of Concept
	4.3.1 Burning Man 2019
	4.3.2 Delfines de San Carlos: Un Proyecto de Esperanza 2020

	5 Future Work
	6 Conclusion
	BIBLIOGRAPHY

