View metadata, citation and similar papers at core.ac.uk

Hindawi

Journal of Sensors

Volume 2017, Article ID 9196070, 13 pages
https://doi.org/10.1155/2017/9196070

Research Article

brought to you by

provided by Archivio istituzionale della ricerca - Universita di Palermo

Hindawi

Modular Middleware for Gestural Data and

Devices Management

Fabrizio Milazzo,' Vito Gentile,' Giuseppe Vitello,'

Antonio Gentile,"? and Salvatore Sorce">

'Ubiquitous Systems and Interfaces Group, Dipartimento dell Innovazione Industriale e Digitale (DIID),
Universita degli Studi di Palermo, Viale Delle Scienze, Edificio 6, 90128 Palermo, Italy
*InformAmuse Srl, Academic Spin-Off, Via Nunzio Morello 20, 90144 Palermo, Italy

Correspondence should be addressed to Fabrizio Milazzo; fabrizio.milazzo@unipa.it

Received 4 November 2016; Revised 27 February 2017; Accepted 6 March 2017; Published 18 May 2017

Academic Editor: Jose R. Martinez-De-Dios

Copyright © 2017 Fabrizio Milazzo et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

In the last few years, the use of gestural data has become a key enabler for human-computer interaction (HCI) applications. The
growing diffusion of low-cost acquisition devices has thus led to the development of a class of middleware aimed at ensuring a
fast and easy integration of such devices within the actual HCI applications. The purpose of this paper is to present a modular
middleware for gestural data and devices management. First, we describe a brief review of the state of the art of similar middleware.
Then, we discuss the proposed architecture and the motivation behind its design choices. Finally, we present a use case aimed at
demonstrating the potential uses as well as the limitations of our middleware.

1. Introduction

Many works in psychology and social science have shown the
relevance of gestures as a mean for communications among
human beings [1]. This is probably one of the main reasons for
the recent investigations on the use of midair (or touchless)
gestures as a mean for easing human-computer interactions
[2,3].

The touchless nature of gestures makes it possible to think
about new modalities for accessing information and con-
trolling the surrounding environment. For instance, ambient
intelligence and smart-home systems can use gesture recog-
nition to control lighting, temperature, cooling fans, and so
on, by simply recognizing hands and/or body movements
[4-7]. Gesture-based interaction may also come in help to
physically impaired people who may have a chance to interact
with the surrounding environment or with their own aids,
such as a wheelchair [8]. Gestural interfaces can also be useful
for enhancing the protection of interaction devices against
vandalism [9].

In our opinion, the today’s gesture interaction can be
considered a research branch of the broad Ubiquitous

Computing (UC) and Internet of Things (IoT) paradigms,
which obviously includes the modalities with which the
users interact with their surrounding environment and in
particular the ways they access sensors and visualization
devices [10, 11]. In this sense, recent works in HCI have
focused their attention on the development of a class of
middleware specifically aimed at the management of gestural
data and the communication with the related input devices
(12, 13].

In the ideal case, gesture management middleware should
offer a fast solution to the problem of connecting the
input devices to the end-user gesture-based applications. In
particular, it should act as a transparent layer able to manage
communication towards the devices, to unify heterogeneous
gestural data, and to provide easy access to the same data
through software services.

To the best of our knowledge, very few gesture manage-
ment middleware solutions are able to support the above
desiderata. The goal of this paper is to propose novel modular
middleware aimed at the management of gestural data. It is
able to manage different acquisition devices and to provide
a unified model for the heterogeneous input data. Moreover,

https://core.ac.uk/display/98112923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/9196070

it allows for a transparent communication between the end-
user applications and multiple input devices and offers a web
services based access to the gathered data and to the gesture
management services.

The rest of the paper is arranged as follows: Section 2
presents a brief review of the state of the art of the gesture
management middleware; Section 3 presents the architecture
of the proposed middleware as well as the provided features;
Section 4 highlights some technical limitations in the use
of the middleware and evaluates its performance in a real-
world scenario. Finally, Section 5 discusses some possible
improvements of our proposal, along with the future works.

2. Related Works

The purpose of this section is to review a list of selected
relevant solutions for gestural data and devices management.
We overview their history and the technical improvements
over the time; we also arrange a brief comparison of the main
features of the selected reviewed solutions and our proposed
one.

According to our analysis of the relevant literature, we
have recognized some peculiar features for classifying gesture
management middleware:

(i) Managed devices: this feature indicates which devices
the middleware is able to manage (2D devices such as
touchscreen and mouse or 3D devices such as RGB
and depth cameras).

(ii) Abstraction: this feature indicates whether the mid-
dleware provides a unified access to all the managed
devices.

(iii) Gestural data processing: this feature indicates which
operations can be carried out with input gestural
data, for example, gestures management (recording,
retrieving) and gestures recognition.

(iv) N-by-M communication: this feature indicates wheth-
er the middleware is able to manage multiple con-
nected devices and multiple end-user gestural appli-
cations.

The first notable gesture management middleware is
iGesture [14] (2007). It is written in the Java programming
language and is able to manage only 2D devices such as digital
pens and mice. Devices communicate within the middleware
by means of a device abstraction layer. The recognition
capabilities are limited to few hard-coded gestures. Moreover,
the middleware can manage only one device at a time.

The work proposed in [15] consists in an improvement
of the iGesture middleware and implements support for
3D devices. As the authors claim, it is possible to connect
Wii Motion and Wii Remote simultaneously for gesture
acquisition. The gesture recognition task is carried out by
means of Dynamic Time Warping [16].

AQUA-G [17] is another gesture management middleware
which offers support for 2D/3D acquisition devices. It has
introduced the concept of three-layered architecture, which
can be seen as a reference for the gesture management
middleware. The architecture includes the input layer, which

Journal of Sensors

allows connecting different input devices and accesses their
input streams; the gesture processing layer, which implements
recognition and learning services; the application layer, which
provides some ready-to-use services for the end-user appli-
cations (e.g., stream access, gesture recording, and playing
back).

The ARAMIS [18] framework (2011) was written with
the purpose of providing gesture management software
for the development of pervasive computing applications.
It differs from the previous works as it introduced data-
synchronization and data-fusion: this ensures that data com-
ing from different input device classes (e.g., environmental
and wearable ones) follow the correct time order. A fur-
ther extension of ARAMIS, named FEOGARM, has been
described in [19]. It is a modular framework for multimodal
and multisensor applications, developed to evaluate the
performance of different gesture recognition algorithms. This
work proposes a novel gesture segmentation method, which
operates on the raw data and, as a result, speeds up the process
of dataset collection and labeling. Anyway, it appears to be a
closed system and it is not clear if and how it is possible to
add new classes of input devices.

One solution for pervasive computing applications is
proposed in the work by Chaczko et al. [20] (2015). It was
developed with the aim of supporting Kinect-like devices,
that is, devices able to provide RGB, depth, and skeletal
information [21]. Data can be managed via a web-service
based access [22, 23]. The middleware has been tested in
an environment which included a Microsoft Kinect, a Leap
Motion, and a Thalmic Labs Myo. One key ability is to
recognize and select the user’s nearest device while keeping
the farther ones in an idle state; this allows lowering power
consumption and network bandwidth.

A more recent work, proposed by Moreno et al. [24],
has demonstrated real time capabilities for the management
of the RGB, depth, and skeleton channels coming from a
Microsoft Kinect. The channels can be accessed by means
of web sockets (which allow many client applications to
simultaneously read the data). The main flaw of this work is
its inability to work with other gestural input devices and the
impossibility of recording and playing back the input data.

In Table 1 we have summarized the main features offered
by both the revised middleware and our proposal. Our
middleware offers an all-in-one solution for easing the
development of gesture interaction applications. It provides
a unified model for all the 2D/3D supported gestural inputs.
Moreover, our framework can be easily expanded by adding
new classes of input devices. It is designed to support N-by-
M communication, that is, managing N different connected
devices and sending their data towards M end-user applica-
tions, with some limitations (see Section 4 for more details).
It offers the possibility of acquiring, reading, and editing
new gestural datasets, by means of a networked database (no
matter if it is local or remote). We also provide the possibility
of using different recognition algorithms for the gestures, in
order to let users test the recognition performance for the
acquired datasets. All the middleware features are accessible
by dedicated web services, which implement them as REST
APIs.

Journal of Sensors

TABLE 1: Main features of the middleware for gesture interaction.

Approach 2D/3D devices ~ Abstraction layer ~ Gestures management Gestures recognition ~ N-by-M communication
iGesture [14] v X X X v X
AQUA-G [17] vy e X v N
Bas [15] vy X X v X
ARAMIS [18] Y Y X Y v
FEOGARM [19] Y Y X v X
Chaczko et al. [20] Xy Y v X X
Moreno et al. [24] Xy X X X Y
Our proposal VY v v v v

It is worth noting that many general-purpose solutions
have been described in prior works (especially in the area
of robotics), which in principle may implement most of the
features proposed by our middleware. Probably, the most
known one among these frameworks is the Robot Operating
System (ROS) [25]. It is a modular solution which is thought
to make the development of robotic applications easy. It
provides support for several input sensors (including the
classical gestural input ones such as Kinect and Leap Motion
Controller) and some features for recording and playing back
data. However, since ROS was not developed to target gesture
interaction applications, its use in this field is quite limited by
some issues. First, it lacks a unified representation model for
gestures; also, the data storage system is based on the so-called
“bag-files,” which necessarily introduces unwanted delays in
the record/retrieval process; finally, as a design choice, our
middleware accesses data streams natively, by using only the
official device drivers, whereas in ROS this kind of support is
only partial and not at the native level, as stated in the official
ROS website [26].

3. Middleware Overview

The proposed middleware is aimed at supplying end-user
gesture interaction applications with a set of facilities, ranging
from transparent communication towards gestural input
devices, to data acquisition, retrieval, and recognition. Its
architecture expands upon three layers, as shown in Figure 1.

The Physical layer communicates with the input devices
and is mainly responsible for providing access to their data
streams. The Processing layer implements all the gesture data
management features, including acquisition, retrieval, and
recognition of each stream coming from the Physical layer.
Finally, the Service layer is responsible for the provision
of services to be used by the end-user gesture interaction
application. At this purpose, the services will be provided as
a set of RESTful APIs allowing a remote, easy, and protected
access to the system.

The three layers are implemented by six main compo-
nents, which serve the following tasks:

(i) Device: the software representation of an input device

(ii) Communication: implementing services to exchange
data among layers

(iii) Gesture: implementing gesture recognition features

(iv) Database: representing the software interface towards
the actual storage

(v) Controller: exposing facilities for end-users gestural
interaction applications

(vi) Model: containing the description of the data flowing
in/out the middleware.

The configuration of the above components is written in a
specific file described in Section 3.7.

The following sections put the emphasis on some promi-
nent implementation details and explain how the features
provided by our middleware and claimed in Table 1 are
achieved. The architecture is conceived for Object Oriented
Programming (OOP). For this reason, we will make use of
UML diagrams for describing its components implementa-
tion.

3.1 Device. The Device component actually implements the
Physical layer. It is in charge of managing each of the
connected devices and of relaying their data to the upper
(Processing) layer. Figure 2 depicts its composing classes,
namely, the DevicesManager and DeviceDriver.

The DevicesManager class is a sort of devices container
which is able to start/stop them as well as enable/disable their
data streams. The DeviceDriver class, in turn, is a generic
representation of what a gesture device should be capable of
and is in charge of communicating with the native drivers of
the related input device. The dev_state variable represents
its current state which can be one among the following:
(i) ready, meaning the device is attached and ready to be
started; (ii) shared, meaning the access to the device streams
will be allowed for more than one end-user application; (iii)
exclusive, meaning the access to device streams is restricted to
just one application and rejects any new request for accessing
its data streams.

Since each device has a variable number of manageable
streams, then each driver contains a variable named buses
which associates a stream name (i.e., a string) to a Bus class
instance. As an example, Kinect can have three manageable
data streams (one for RGB, another for the depth map, and
the last for skeletal data), whereas a Leap Motion Controller
is able to produce only depth and skeletal data.

New devices can be easily integrated within the middle-
ware. In order to do so, it will be sufficient to implement an

Journal of Sensors

End-user application

File

Proposed middleware

Processing

Communication

%y

Model

ll:l
= °.|:]: = Controller
LS

/S Gesture & Database
—

Device

External devices

FIGURE 1: The layered structure of the proposed middleware.

Journal of Sensors

DevicesManager

+ devices: List<DeviceDriver>

- startDevice(string dev_id, string mode, List<string> streams): bool
- stopDevice(string dev_id): bool

<<abstract>>
DeviceDriver

+ buses: Dictionary<String, Bus>

+ databusParams: Dictionary<String, String[]>
+ pushThreads: Dictionary<String, Thread>

+ dev_state: String

+ identifier: String

+ model: String

+ name: String

+ producer: String

Kinect1Driver

- override start(string stream): bool

- virtual start(string mode): bool

- stop(): bool

- virtual enablewriteonbus(string stream): bool
- destroybus(string stream): bool

- stop(): bool
- override enablewriteonbus(string stream): bool
- pushRGBData(): void

- pushDEPTHData(): void
- pushSKELETONData(): void

RealSenseDriver

MouseDriver Kinect2Driver

- toRGBModel(): RGBFrame
- toDEPTHModel(): DEPTHFrame

- toSKELETONModel: SKELETONFrame

FIGURE 2: UML diagram of the device component.

actual driver which inherits from the (abstract) DeviceDriver
class.
The following methods must be implemented:

(i) start (start_mode): it tries to connect to the device,
checks whether the device can be started in the
selected model, and returns a Boolean as a result.

(ii) enablewriteonbus(stream): it checks whether the
requested stream is managed and, if yes, starts a
thread running the pushStreamData method.

(iii) pushStreamData: it is the method which actually
sends the stream data to the output bus. Clearly, the
driver must implement one method for each stream
it is intended to manage.

(iv) toStreamModel: this method converts the data com-
ing from a given device stream (necessarily device
dependent) into the standard and unified represen-
tation adopted in the middleware (see Section 3.6 for
details).

Currently, our middleware implements the drivers for
computer mice (2D device) and some common 3D gestural
devices such as Kinect v1, Kinect v2, and the Intel RealSense
Camera (model F200).

3.2. Communication. This component implements the chan-
nels devised for hosting data gathered from input devices.
The Bus class (abstract) is very similar to an actual “bus”
and is characterized by an address, that is, its URI, and the
ReceiveAndOutput method, which is in charge of writing data
in the channel. Its use is straightforward: whenever data is
read from the input device, then the pushStreamData method
of the DeviceDriver class selects an appropriate bus and calls

ReceiveAndOutput in order to make the data available to the
end-user applications.

This component is very important as it makes the way
data are gathered from the input device and relayed to
the outside transparent. The current implementation of the
middleware offers WebSocket and File buses. As an example,
it will be possible to configure a Kinect to send its data to a
file and a RealSense sending data to a web socket connection.

3.3. Gesture. The Gesture component implements gesture
recognition features. It is able to train different gesture
recognizers based upon the gestural data stored in the
database. As shown in Figure 3, the component is composed
of four classes: (i) RecognitionManager, (ii) Recognizer, (iii)
ClassifierStrategy, and (iv) HMMStrategy.

The RecognitionManager is the container for all the
recognizers instances. Its init method accepts as input the list
of the data streams to be recognized as well as a confidence
threshold to be used for recognition. The init method fills a
list of the Recognizers available for the requested data streams.
We want to point out that there is a one-to-one mapping
between recognizers and device streams. For instance, there
will be one recognizer for the pair (Kinectl, SKELETON) and
another one for (Kinect2, SKELETON).

The start/stopRecognizeDevice method accepts as input
parameters the dev_id, that is, the device identifier and the
name of the stream to be recognized; the saveRecognizer
method allows saving a Recognizer instance into a binary
format. The trainModel method allows training a classifier
based on the data recorded in the database. In particu-
lar, the method accepts as input the strategy class name
(i.e., which classifier should be used for recognition), its
confidence threshold, the device identifier, and the stream
name.

Journal of Sensors

"

Lo

RecognitionManager

Recognizer

+ List<Recognizer> recognizers

+ strategy: ClassifierStrategy

- startRecognizeDevice(string dev_id, string stream): bool
- stopRecognizeDevice(string dev_id): bool
- saveRecognizer(string dev_id, string stream): bool

- init(List<string, string, bus> recoparams, double confthreshold): bool
- trainModel(Tuple<string, object[]> params, string dev_id, string stream, double confthresh): double

+ confidencethresh: double
+ input: Bus

+ output: Bus

+ buffer: List<Frames>

- startRecoGestures(): bool
- stopRecoGestures(): bool

HMMStrategy
+ classifier: HiddenMarkovClassifier <<abstract>>
+ states: int ClassifierStrategy
+ iterations: int
- override test(double[][][] testset, string[] outlabels): int ‘—|> + dev1cefld: N tring
- override train(double[][][] inputs, string[] outlabels): int *+ stream: string
- override classifyOne(double[][] sample): string - virtual test(double[][][] testset, string[] outlabels): int
- override serializeMySelf(): void - virtual train(double[][][] inputs, string[] outputs): int
- override deserializeMySelf(): void - virtual classifyOne(double[][] sample): string
- virtual serializeMySelf(): void
- virtual deserializeMySelf(): void

- processFrame(): void

2

FIGURE 3: UML diagram of the gesture component.

By following the principles of the Strategy design pattern
[27], each Recognizer owns an instance of the Classifier-
Strategy class, which actually implements the classifier. The
motivation behind such choice is to allow end-users to
train and test different recognition algorithms over the same
gestural data.

Currently, the middleware implements only a Hidden
Markov Model (HMM) classifier for training/recognizing
gestures; anyway, it is very easy to extend the available recog-
nition algorithms by inheriting from the ClassifierStrategy
class. In particular, each actual Strategy must implement the
train, test, and classify methods. Since the classifiers must be
stored within the physical database, they must implement
the serializeMySelf and deserializeMySelf methods, which
encode/decode the recognizer into/from a convenient binary
format.

3.4. Database. The Database component is an abstract rep-
resentation of the physical storage. It is in charge of pro-
viding recording and retrieval features for the gestural data.
The current implementation relies on a physical MongoDB
database [28], a NoSQL solution which uses a JSON-like
language for representing query results, stored as collections
of documents.
The database manages the following four collections:

(i) Device: it stores the identifier, name, model, and
producer of the known devices.

(ii) Streams: it contains identifier and name of all the
known streams.

(iil) Gestures: each record represents a sequence of ges-
tural data and is characterized by a tag (the gesture

name), device_id (the input device), stream (the
input stream), and the array frames (the gestural data
sequence).

(iv) Strategies: it contains the binary representation of the
classifiers trained by the RecognitionManager.

3.5. Controller. The role of the Controller component is to
work as a wrapper for the entire middleware. Any application
built on top of our middleware must use its services exposed
as REST APIs. The available web services are highlighted in
Box 1.

The List Device service returns the list of the working
devices, together with their accessible streams. The Start
Device service accepts as input the device identifier, a list of
streams to be read, and the working mode of the device; the
answer specifies whether the device is available in the current
chosen mode and the list of the URI to access the requested
streams.

The Start Recognition service is characterized by a device
identifier and the streams onto recognition must be activated.
The answer indicates (i) whether the recognition service can
be activated for the device (it must be working in shared
mode); (ii) whether there is a Recognizer available for each
of the requested streams and, if the case, (iii) the URI to
access the tags of the recognized gestures. A negative answer
means that recognizers have not been previously trained for
the requested device-stream pairs.

The Show Gesture service provides retrieval from
database. The resulting gestures can be filtered by device,
stream type, gesture tag, and position in the output collection.
The Delete Gesture service needs only the gesture identifier
parameter.

Journal of Sensors

List Device:

http://{server_url}/devices

Start Device:
http://{server_url}/devices/start/?id={dev_id}&streamsName={stream_1, ...}
&mode={exclusive|shared}

Stop Device:

http://{server_url}/devices/stop/?id={dev_id}

Start Recognition:

http://{server_url}/devices/startRecognition/?id={dev_id}
&stream={stream}&mode=shared

Stop Recognition:
http://{server_url}/devices/stopRecognition/?id={dev_id}&stream={stream}
Show Gesture:
http://{server_url}/gestures/show/?id={dev_id}&stream={stream}
&tag={gesture_tag}&pos={cursor_pos}

Delete Gesture:

Save Gesture (HTTP POST):

Update Gesture (HTTP POST):

http://{server_url}/gestures/delete/?id={gesture_id}

[type: post, url: http://{server_url}/gestures/save,
contentType: application/json, data: gesture]

[type: post, url: http://{server_url}/gestures/update,
content Type: application/json, data: {gesture_id, gesture}]

Box 1: The service strings exposed by the REST API Controller.

{
_ID: string
NAME: string
MODEL: string
PRODUCER: string

Box 2: Device class.

While the aforementioned services were implemented as
simple HTTP GET, the Save/Update Gesture services require
the use of the HTTP POST method. This is because, in
such particular case, the invoker must send the gestural data
frames to be written in the database. The format of the
gestures accepted by these services is specified in Section 3.6.

3.6. Model. The purpose of this section is to describe the
format of the data managed within the middleware. The
Model component is implemented as a set of classes con-
taining the metadata useful for managing (i) devices, (ii)
streams, (iii) strategies, and (iv) gesture data. The aim of such
classes is to provide a link between the unstructured data,
physically stored in the database, and the middleware objects.
The Device class stores the four fields (see Box 2).

The Stream class contains only two values (see Box 3).

The Strategy class contains all the metadata needed for
instantiating a strategy previously trained over gestural data.
It holds a type (currently it can be only the HMMStrategy),
the device identifier, the stream name, and its serialized

{
_ID: string
NAME: string
}

Box 3: Stream class.

{
_ID: string
TYPE: string
DEV_ID: string
STREAM: string
SERIALIZED_REPRESENTATION: byte(]

Box 4: Strategy class.

representation which will be converted (at run-time) into a
real classifier object (see Box 4).

The Gesture class contains metadata devised for the
description of a physical gesture, in particular an identifier,
a gesture tag (i.e., a label indicating the gesture name), the
source device, and stream. Furthermore, a gesture clearly
holds a sequence of frames; the latter are composed of a
timestamp and an array of joints (i.e., the connection points
between two bones). Each joint is identified by a name, its
position in the world (x, y,z), the position in the depth

Journal of Sensors

GESTURE:

{
_ID: string
TAG: string
DEV_ID:string
STREAM:string
FRAMES: frame_type(]

}

FRAME:

{
JOINTS: joint_typel]
TIMESTAMP: long

}

JOINT:

{
NAME:string

ORIENTATION: float(]
VELOCITY: float(]
CONFIDENCE: float
STATE: string

WORLD_POSITION: float[]
DEPTH_POSITION: float|]

// %, y, z coordinates
/] %,y

// a, b, c, wangles
// vx, vy, vz

Box 5: Gesture class.

map (x, y), the local orientation (ie., a quaternion repre-
senting rotational angles), the space velocity, a confidence
value (between 0 and 1), and its state (i.e., “tracked” or
“not_tracked”) (see Box 5).

3.7 Configuration File. The configuration file is written in
JSON [29] and holds the information needed to start up
middleware. The content of such file is loaded just before its
execution; then, the components are configured accordingly.
A typical scheme for the configuration file is shown in
Box 6. First of all, the information about the location of the
physical database is provided. Connection is implemented
via a network protocol, so it will be sufficient to provide the
database name, the IP address of the hosting machine, and
the process port.

Furthermore, the information about the devices to be
controlled at run-time is written in the Devices section. In
particular, each device is characterized by an identifier, the
Driver class which should be used for connecting to the
device, and the managed streams; each stream, in its turn,
will be characterized by its name and the bus to be used
for writing output data, and the IP address/port over the
output data will be made available. The Controller section
contains the IP address/port to access the REST APIs. The
RecognitionManager section provides all the information
needed for loading Recognizers. We want to point out that
each Recognizer is associated with a bus and that such bus
can be accessed in order to read which gestures have been
recognized. At this purpose, the section contains a confidence
threshold (currently the same confidence threshold will be
shared among all the recognizers) and an array containing
for each element a device identifier, the stream name, the
bus class, and the IP address/port address over which the
recognized gesture labels will be available.

4. Middleware Evaluation

The purpose of this section is to evaluate the computational
requirements of the proposed middleware. First, we will
describe some technical hardware limitations which users
must be aware of before running the middleware. Then we
will report the performance of the middleware obtained in a
real deployment.

4.1. Hardware Limitations. The proposed middleware can be
replicated on different machines, so, in principle, there are
no particular limitations on the number of supported devices
(say N) or requesting end-user applications (say M). Anyway,
some important considerations should be done in the very
basic case where a middleware instance is running on a single
machine.

The hardware limitations are mainly due to the machine
bandwidth and the CPU resources. Reading from a specific
device stream and writing to a specific output stream are
the most bandwidth demanding operations; on the contrary,
executing gesture recognition algorithms is the heaviest CPU
demanding task. For clarity’s sake, Table 2 summarizes the
bandwidth requirements for each of the supported device
streams, as well as the number of instructions required by
the recognition algorithm (currently, the framework supports
only the Hidden Markov Model recognizer).

The columns report, respectively, the name of the device,
the stream, the available resolution at 30 fps, the read/write
required bandwidth (Mbps), the number of millions of
required instructions per second (MIPS) by one Hidden
Markov Model, and some particular hardware notes. The data
reported in the table was taken by the official documenta-
tion of the Kinect vl [30], Kinect v2 [31], and RealSense
F200 [32].

Journal of Sensors

{

b

b
{

]
}
]

{

"DATABASE" : {
"dbname" : "database name",
"ip":"ip address",
"port":"port number"

"CONTROLLER" : {
"ip":"ip address",
"port":"port number"

"DEVICES": [
"jid":"id of the device",

"driverclass":"name of the controlling driver",
"streams":[

{

"name" :"stream name",

"busclass":"the bus for writing output",
"ip":"ip address of the output bus",

"port":"port number"

"RECOGNITIONMANAGER" :{
"threshold":"confidence of recognizers",
"buses": |

"id":"device over activating recognition",
"stream":"stream to be recognized",
"bus":"bus for writing recognized gestures",
"ip":"address of the output bus",

"port":"port number"

Box 6: Configuration file for the proposed middleware.

TABLE 2: Requirements for the supported devices and the recognition algorithm.

. . Recognition Hardware
Device Stream Resolution @30 fps R/W (Mbps) (MIPS) requirements
RGB 640 x 480 pixels 2212 NA WG‘;%";” 3 7
Kinect 1 Depth 320 x 240 pixels 18.4 NA .
Skeleton 20 joints 0.633 0125 32-bit CPU
J)) DX 9.0c video card
RGB 1920 x 1080 pixels 1492.9 NA W;‘;gg“;so&l
Kinect 2 Depth 512 x 424 pixels 52.1 NA .
Skeleton 26 joints 0.824 0.160 64-bit CPU
’ ’ DX 11 video card
RGB 1920 x 1080 pixels 1492.9 NA Windows 10
RealSense F200 Depth 640 x 480 pixels 73.7 NA 64-bit CPU
Skeleton 22 joints 0.697 0.136

10

As regards recognition, we have computed the time
complexity required for recognizing gestures by using Hid-
den Markov Models [33], in the hypothesis that observed
and hidden variables are discrete. We will assume that the
recognizer is able to classify G different gestures, which means
that G different Hidden Markov Models will be trained. Also,
we assume recognition is continuous, which means any time a
new frame is read from the input device, and then recognition
is redone. In order to compute the exact number of needed
operations, let us define the following quantities:

(i) G represents how many gestures can be recognized.

(ii) J represents the number of components of one frame
in the gesture.

(iii) F represents the frame rate of the input device.

(iv) Z represents the number of clusters containing the
gesture space, that is, the number of observable states.

(v) K represents the number of hidden states.

(vi) T represents the time length of a gesture.

Basically, the tasks needed to classify a gesture are two: (i)
discretization of the input gesture by means of clustering and
(ii) computation of the probability that the observed gesture
belongs to each of the trained HMMs by using the so-called
Forward-Backward algorithm [34].

First of all, let us assume the input space is partitioned into
Z equal hypercubes (i.e., clusters). The former task consists in
the computation of the centroid closest to the input gesture
frame, that is, computing the Euclidean distance between the
frame and the Z centroids.

The latter one is a recursive technique called Forward-
Backward, applied T times, which computes the probability
(represented as a K x K matrix) of having the observed gesture
at time t € {0, 1,...,T}. The technique is applied to each of
the G HMMs and the one with the highest probability will
represent the recognized gesture.

The most complex and predominant operation of the
two above tasks is the floating point multiplication. Without
loss of generality, we assume here that one floating point
multiplication consists in a single CPU instruction. The
total number of instructions per second IPS,, required for
recognition is

. Forward algorithm
Cluster selection 8

IPS,,, = GF ZI + TK* W

For reader’s commodity, we reported in the table the
normalized version of IPS,, that is, IPS, /G, which rep-
resents the number of operations needed by the recognizer
for computing the output probability from just one Hidden
Markov Model. In the real-case scenario, such a value must
be clearly multiplied by G. Also, as explained in [35], some
typical values for all of the above parameters are F = 30,
Z = 64,K = 4,and T = 20; the value of J, in a 3D space,
is simply three times the number of tracked joints.

Journal of Sensors

4.2. Experimental Assessment. In this section we will report
the timing performance of our middleware for two typ-
ical real-world applications: (i) multiple clients requiring
accessing the same devices channel; (ii) multiple recognition
algorithms running simultaneously for different connected
devices.

In our experiments we used HP Laptop Model 7265NGW
(year 2016) mounting an Intel i7-6500 at 2.6 GHz, 16 GB of
RAM, 4 USB 3.0 ports, ITB Crucial CT105 SSD with Windows
10 at 64 Dbits. We connected a Kinect version 1, a Kinect
version 2, and a RealSense F200 camera and then run our
middleware. In all the experiments the devices were set to
30 fps.

Bandwidth Demanding Test. The first experiment was aimed
at checking the performance of the middleware for a typical
highly bandwidth demanding scenario.

In order to do so, we connected the input devices and
accessed their skeleton channels from a variable number
of connected clients (WebSockets) running on the same
machine. Then we checked the average latency between the
time a frame was read from the input device and the time the
same frame was written to the related output bus.

Figure 4 reports the observed latency by varying the num-
ber of clients connected to one or more of the input devices.
The read-write (R/W) latency increases almost linearly with
the number of connected clients. This is due to the WebSocket
bus (see Section 3.2) which manages only unicast connec-
tions. As suggested by [36, 37], we fixed a latency threshold
to 0.1 seconds, as it is the maximum acceptable delay in a real
time visualization task. We thus obtained that the middleware
can support up to 105 connected clients before the latency
becomes unacceptable. A possible improvement may be the
implementation of a multicast bus which may allow for much
more connected clients.

CPU Demanding Test. The second experiment was aimed
at verifying the performance in the case of a highly CPU
demanding task such as gesture recognition.

First, we have recorded into our MongoDB database
four different gestures (represented as skeleton sequences),
namely, the swipe left to right, swipe right to left, zoom-in, and
zoom-out from 24 different users. Each gesture was repeated
two times by the users which stand in front of the Kinect vl,
Kinect v2, and RealSense F200.

After that, we trained one Hidden Markov Model for each
gesture (and for each different device) by using the previously
recorded gestures as training set.

In the testing stage we attached the input devices to
the middleware while one user was placed in front of them
to perform some of the aforementioned gestures. Then we
have run the gesture recognition service and checked the
latency between the time input skeleton frame was read from
the device and the time the gesture was classified. In order
to check the CPU pressure, we varied the length of the
windowed buffer containing the last T observed frames to be
fed in input to the HMM.

The first three rows of Figure 5 report the recognition
latency in the case of one input device performing recognition

Journal of Sensors

Kinect v1
= 8%% Real time limit ~ " - - - - - - - - - - - - >
> 0.08 A -
25 006 |
=i
s 0.
Hooe—m e
1 10 25 50 75 100 110
0.12 Kinect v2
= 010 Real time limit : : : : : : : : : - - 3
= > 0.08 . .]
£ 8 006 |
=L i
< A
S e
1 10 25 50 75 100 110
0.12 RealSense
Z 010 Real time Limit - : -
= 0.08 A - :
E 2 0.06 PO 3 °
2§ b :
< . o R
= 0.00 E—— : : : : . . . : : : . . : : :
1 10 25 50 75 100 110
Kinect v1 + Kinect v2 + RealSense
2 0.10 Real time limit —
> 0.08 . Rk }
25 006 |
=54
< N
X e S S I
1 10 25 50 75 100 110
Connected clients
FIGURE 4: Read/write latency of skeleton frames by varying the number of connected clients.
Kinect v1
= ~ 0.030
S Z o0
Togmo
) E—
< 0. SIS L
& = 0.000
5 10 15 20 25 30
Kinect v2
2~ 0
S 20
= =0
[~RS] 0
23538
RealSense
o —~ 0.030
S 2 0.025 ;
o i —
S 2 s :
< 0005} o ° 0 R
& = 0,000
5 10 15 20 25 30
Kinect v1 + Kinect v2 + RealSense
o —~ 0.030
2 2 0.025
< im oty it
%" § 88(1)2 (i plonvergent fatency lmit -
3 0.
& = 0,000

5 10 15 20 21 25 30
Window Size

FIGURE 5: Recognition latency for different connected device.

1

by varying the length of the window buffer. As it can be easily
seen, the latency varies according to a linear dependency
(the result is in line with the result of (1)) and appears to be
independent of the input device.

Finally, the fourth row of the figure reports the recog-
nition latency in the case of three attached input devices
performing recognition simultaneously. Still the dependency
is linear, but for values of the window buffer greater than 21

we obtained a divergent latency (i.e., the recognition becomes
computationally too expensive for the middleware). This can
be explained as follows: the middleware runs continuous
gesture recognition which means that the Forward-Backward
algorithm is performed every time a frame is read from the
input device. Thus, provided that F is the frame rate of the
input device, then, the middleware has at most 1/F seconds
for gesture recognition. On the contrary, the latency of

12

recognition becomes growing, and the calls to the recognition
method would rapidly fill up the program stack. In our test,
since we fixed F = 30 the maximum feasible latency resulting
is equal to 0.033 seconds, as confirmed by the breakpoint in
the figure.

There are two ways to overcome this limitation: down-
sampling the input stream (but this may result in poor
recognition accuracy) or implementing an alternative version
of the continuous gesture recognition, named isolated gesture
recognition [38] which runs recognition only after having
identified the boundary frames of a gesture.

5. Conclusion and Future Works

In this paper we have described a modular middleware
which aims at making the development of gesture interaction
applications easy. In particular, the middleware provides
some basic communication features to access gestural input
devices such as the Microsoft Kinect or the RealSense
cameras. All the middleware functionalities are provided by
REST-based web services.

We have conducted a study on the performance of the
middleware aimed at discovering its hardware and software
limitations. First, the study reports the exact amount of
read/write bandwidth for each of the currently supported
device streams, as well as the required amount of CPU
instructions in a typical task of gesture recognition; this data
can be used by the middleware end-users which can easily
check the requirements of their own applications.

We have also tested the middleware performance in a
real-case scenario in order to check (i) how many clients can
simultaneously read a single device stream with a real time
constraint and (ii) how many recognition tasks can be run in
parallel before the CPU load becomes unmanageable for the
middleware.

The obtained results allow room for future improvements.
First of all, we are planning to add support for multicast
connections which should allow much more simultaneously
connected clients to read different device streams. Also
we are working on the implementation of isolated gesture
recognition, which is much less computationally expensive
than its continuous counterpart. This would allow for more
simultaneous recognition tasks to be performed in real-time.

Finally, we are also working to include support to other
classes of input devices (such as the Leap Motion Controller)
as well as to new gesture recognition algorithms, for example,
the Dynamic Time Warping or Support Vector Machines in
order to allow users to choose the more suitable recognition
algorithm for their own gesture datasets.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is funded by a research grant by the Italian Ministry
of University and Research, namely, project NEPTIS (Grant
no. PONO3PE_00214_3).

Journal of Sensors

References

[1] M. L. Knapp, J. A. Hall, and T. G. Horgan, Nonverbal Commu-
nication in Human Interaction, Cengage Learning, 2013.

[2] D. Wigdor and D. Wixon, Brave NUI World: Designing Natural
User Interfaces for Touch and Gesture, Morgan Kaufmann
Publishers Inc, 2011.

V. Gentile, S. Sorce, A. Malizia, D. Pirrello, and A. Gentile,
“Touchless interfaces for public displays: can we deliver inter-
face designers from introducing artificial push button ges-
tures?” in Proceedings of the International Working Conference
on Advanced Visual Interfaces (AVI ’16), pp. 40-43, ACM, Bari,
Italy, June 2016.

D.-D. Dinh, J. T. Kim, and T.-S. Kim, “Hand gesture recognition
and interface via a depth imaging sensor for smart home
appliances,” Energy Procedia, vol. 62, pp. 576-582, 2014.

—
=

=

[5] E.Daidone and E. Milazzo, “Short-term sensory data prediction
in ambient intelligence scenarios,” in Advances onto the Internet
of Things, pp. 89-103, Springer, 2014.

[6] E Sadri, “Ambient intelligence: a survey, ACM Computing
Surveys, vol. 43, no. 4, article 36, 2011.

[7] A. De Paola, G. L. Re, E Milazzo, and M. Ortolani, “Adaptable
data models for scalable ambient intelligence scenarios,” in
Proceedings of the International Conference on Information
Networking (ICOIN ’I1), pp. 80-85, January 2011.

[8] A. Skraba, A. Kolozvari, D. Kofja¢, and R. Stojanovi,
“Wheelchair maneuvering using leap motion controller and
cloud based speech control: prototype realization,” in Pro-
ceedings of the 4th Mediterranean Conference on Embedded
Computing (MECO ’15), pp. 391-394, IEEE, Budva, Montenegro,
June 2015.

V. Gentile, A. Malizia, S. Sorce, and A. Gentile, “Designing
touchless gestural interactions for public displays in-the-wild,”
in Proceedings of the 17th International Conference on Human-
Computer Interaction, pp. 24-34, Springer, Los Angeles, Calif,
USA, 2015.

V. Gentile, S. Sorce, A. Malizia, and A. Gentile, “Gesture
recognition using low-cost devices: techniques, applications,
perspectives,” Mondo Digitale, vol. 15, no. 63, pp. 161-169, 2016.
[11] S. Fong, J. Liang, I. Fister, and S. Mohammed, “Gesture

recognition from data streams of human motion sensor using

accelerated PSO swarm search feature selection algorithm,”

Journal of Sensors, vol. 2015, Article ID 205707, 16 pages, 2015.
[12] P. Ramanahally, S. Gilbert, T. Niedzielski, D. Velazquez, and
C. Anagnost, “Sparsh UL a multi-touch framework for col-
laboration and modular gesture recognition,” in Proceedings of
the ASME/AFM World Conference on Innovative Virtual Reality
(WINVR °09), pp. 137-142, February 2009.

[13] U. Laufs, C. Ruff, and J. Zibuschka, “Mt4j-a cross-platform
multi-touch development framework,” in Proceedings of the
Workshop of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, Berlin, Germany, June 2010.

—
)

(10

[14] B. Signer, U. Kurmann, and M. C. Norrie, “iGesture: a general
gesture recognition framework,” in Proceedings of the 9th
International Conference on Document Analysis and Recognition
(ICDAR °07), vol. 2, pp. 954-958, September 2007.

J. Bas, A 3D gesture recognition extension for iGesture [Ph.D.
thesis], Vrije Universiteit Brussel, 2011.

[16] M. Muller, “Dynamic time warping,” in Information Retrieval

for Music and Motion, pp. 69-84, Springer, Berlin, Germany,
2007.

=
)

Journal of Sensors

(17]

(18]

(20]

(21]

(22]

(23]

(34]

(35]

[36]

J. Roltgen, AQUA-G: a universal gesture recognition framework
[Ph.D. thesis], Digital Repository Iowa State University, 2010.

S. Carrino, E. Mugellini, O. Abou Khaled, and R. Ingold,
“ARAMIS: toward a hybrid approach for human-environment
interaction,” in Human-Computer Interaction. Towards Mobile
and Intelligent Interaction Environments: 14th International
Conference, HCI International 2011, Orlando, FL, USA, July 9-14,
2011, Proceedings, Part I1I, vol. 6763 of Lecture Notes in Computer
Science, pp. 165-174, Springer, Berlin, Germany, 2011.
S.Ruffieux, D. Lalanne, E. Mugellini, and O. A. Khaled, “Gesture
recognition corpora and tools: a scripted ground truthing
method,” Computer Vision and Image Understanding, vol. 131,
pp. 72-87, 2015.

Z.Chaczko, C.Y. Chan, L. Carrion, and W. M. G. Alenazy, “Hap-
tic middleware based software architecture for smart learning,”
in Proceedings of the Asia-Pacific Conference on Computer-Aided
System Engineering (APCASE ’I5), pp. 257-263, Quito, Ecuador,
July 2015.

V. Gentile, S. Sorce, and A. Gentile, “Continuous hand openness
detection using a kinect-like device,” in Proceedings of the 8th
International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS ’14), pp. 553-557, July 2014.

R. Perrey and M. Lycett, “Service-oriented architecture,” in
Proceedings of the Symposium on Applications and the Internet
Workshops (SAINT °03), pp. 116-119, January 2003.

E Wang, L. Hu, J. Zhou, and K. Zhao, “A data processing
middleware based on SOA for the internet of things,” Journal
of Sensors, vol. 2015, Article ID 827045, 2015.

FE. Moreno, E. Ramirez, E Sans, and R. Carmona, “An open
source framework to manage kinect on the web,” in Proceedings
of the 41st Latin American Computing Conference (CLEI ’15), pp.
1-9, Arequipa, Peru, October 2015.

M. Quigley, K. Conley, B. Gerkey et al., “ROS: an open-source
robot operating system,” in Proceedings of the ICRA Workshop
on Open Source Software, Kobe Japan, 2009.

Sensors-ROS wiki, http://wiki.ros.org/Sensors.

E. Gamma, Design Patterns: Elements of Reusable Object-
Oriented Software, Pearson Education India, 1995.
https://www.mongodb.com/it.

D. Crockford, “The application/json media type for javascript
object notation (json),” Tech. Rep., RFC Editor, 2006.

“Kinect vl documentation,” https://msdn.microsoft.com/en-
us/library/hh855359.aspx.

Kinect vl documentation, https://developer.microsoft.com/en-
us/windows/kinect/hardware.

Kinect vl documentation, https://communities.intel.com/docs/
DOC-24012.

How to do gesture recognition with kinect using hidden Markov
models, http://www.creativedistraction.com/demos/gesture-
recognition-kinect-with-hidden-markov-models-hmms/.

C. M. Bishop, Pattern Recognition and Machine Learning,
Information Science and Statistics, Springer, New York, NY,
USA, 2006.

E-S. Chen, C.-M. Fu, and C.-L. Huang, “Hand gesture recog-
nition using a real-time tracking method and hidden Markov
models,” Image and Vision Computing, vol. 21, no. 8, pp. 745-
758, 2003.

B. A. Myers, “Importance of percent-done progress indicators
for computer-human interfaces,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’85),
pp- 11-17, San Francisco, Calif, USA, April 1985.

13

[37] J. Nielsen, Usability Engineering, Elsevier, 1994.
[38] Y. Wu and T. S. Huang, “Vision-based gesture recognition: a

review;” in Proceedings of the International Gesture Workshop,
pp- 103-115,1999.

http://wiki.ros.org/Sensors
https://www.mongodb.com/it
https://msdn.microsoft.com/en-us/library/hh855359.aspx
https://msdn.microsoft.com/en-us/library/hh855359.aspx
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://communities.intel.com/docs/DOC-24012
https://communities.intel.com/docs/DOC-24012
http://www.creativedistraction.com/demos/gesture-recognition-kinect-with-hidden-markov-models-hmms/
http://www.creativedistraction.com/demos/gesture-recognition-kinect-with-hidden-markov-models-hmms/

International Journal of

Rotating
Machinery

The Scientific
quld Journal

Journal of

Sensors

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of
Navigation and
Observation

Aoet®

International Journal of
Anten nas and
Propagation

International Journal of
Chemical Engineering

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Active and Passive
Electronic Components

Modelling &
Simulation
in Engineering

ekt sty S
e L

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of

Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

and Vibration

