68 research outputs found

    A frequency-domain machine learning method for dual-calibrated fMRI mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen consumption (CMRO2)

    Get PDF
    Magnetic resonance imaging (MRI) offers the possibility to non-invasively map the brain's metabolic oxygen consumption (CMRO2), which is essential for understanding and monitoring neural function in both health and disease. However, in depth study of oxygen metabolism with MRI has so far been hindered by the lack of robust methods. One MRI method of mapping CMRO2 is based on the simultaneous acquisition of cerebral blood flow (CBF) and blood oxygen level dependent (BOLD) weighted images during respiratory modulation of both oxygen and carbon dioxide. Although this dual-calibrated methodology has shown promise in the research setting, current analysis methods are unstable in the presence of noise and/or are computationally demanding. In this paper, we present a machine learning implementation for the multi-parametric assessment of dual-calibrated fMRI data. The proposed method aims to address the issues of stability, accuracy, and computational overhead, removing significant barriers to the investigation of oxygen metabolism with MRI. The method utilizes a time-frequency transformation of the acquired perfusion and BOLD-weighted data, from which appropriate feature vectors are selected for training of machine learning regressors. The implemented machine learning methods are chosen for their robustness to noise and their ability to map complex non-linear relationships (such as those that exist between BOLD signal weighting and blood oxygenation). An extremely randomized trees (ET) regressor is used to estimate resting blood flow and a multi-layer perceptron (MLP) is used to estimate CMRO2 and the oxygen extraction fraction (OEF). Synthetic data with additive noise are used to train the regressors, with data simulated to cover a wide range of physiologically plausible parameters. The performance of the implemented analysis method is compared to published methods both in simulation and with in-vivo data (n = 30). The proposed method is demonstrated to significantly reduce computation time, error, and proportional bias in both CMRO2 and OEF estimates. The introduction of the proposed analysis pipeline has the potential to not only increase the detectability of metabolic difference between groups of subjects, but may also allow for single subject examinations within a clinical context

    Explainable machine learning for LoRaWAN link budget analysis and modeling

    Get PDF
    This article explores the convergence of artificial intelligence and its challenges for precise planning of LoRa networks. It examines machine learning algorithms in conjunction with empirically collected data to develop an effective propagation model for LoRaWAN. We propose decoupling feature extraction and regression analysis, which facilitates training data requirements. In our comparative analysis, decision-tree-based gradient boosting achieved the lowest root-mean-squared error of 5.53 dBm. Another advantage of this model is its interpretability, which is exploited to qualitatively observe the governing propagation mechanisms. This approach provides a unique opportunity to practically understand the dependence of signal strength on other variables. The analysis revealed a 1.5 dBm sensitivity improvement as the LoR’s spreading factor changed from 7 to 12. The impact of clutter was revealed to be highly non-linear, with high attenuations as clutter increased until a certain point, after which it became ineffective. The outcome of this work leads to a more accurate estimation and a better understanding of the LoRa’s propagation. Consequently, mitigating the challenges associated with large-scale and dense LoRaWAN deployments, enabling improved link budget analysis, interference management, quality of service, scalability, and energy efficiency of Internet of Things networks.</p

    State Estimation Fusion for Linear Microgrids over an Unreliable Network

    Get PDF
    Microgrids should be continuously monitored in order to maintain suitable voltages over time. Microgrids are mainly monitored remotely, and their measurement data transmitted through lossy communication networks are vulnerable to cyberattacks and packet loss. The current study leverages the idea of data fusion to address this problem. Hence, this paper investigates the effects of estimation fusion using various machine-learning (ML) regression methods as data fusion methods by aggregating the distributed Kalman filter (KF)-based state estimates of a linear smart microgrid in order to achieve more accurate and reliable state estimates. This unreliability in measurements is because they are received through a lossy communication network that incorporates packet loss and cyberattacks. In addition to ML regression methods, multi-layer perceptron (MLP) and dependent ordered weighted averaging (DOWA) operators are also employed for further comparisons. The results of simulation on the IEEE 4-bus model validate the effectiveness of the employed ML regression methods through the RMSE, MAE and R-squared indices under the condition of missing and manipulated measurements. In general, the results obtained by the Random Forest regression method were more accurate than those of other methods.This research was partially funded by public research projects of Spanish Ministry of Science and Innovation, references PID2020-118249RB-C22 and PDC2021-121567-C22 - AEI/10.13039/ 501100011033, and by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors, reference EPUC3M17

    Model building in neural networks with hidden Markov models

    Get PDF
    Centre for Intelligent Systems and their ApplicationsThis thesis concerns the automatic generation of architectures for neural networks and other pattern recognition models comprising many elements of the same type. The requirement for such models, with automatically determined topology and connectivity, arises from two needs. The first is the need to develop commercial applications of the technology without resorting to laborious trial and error with different network sizes; the second is the need, in large and complex pattern processing applications such as speech recognition, to optimise the allocation of computing resources for problem solving. The state of the art in adaptive architectures is reviewed, and a mechanism is proposed for adding new processing elements to models. The scheme is developed in the context of multi-layer perceptron networks, and is linked to the best network-pruning mechanism available using a numerical criterion with construction required at one extreme and pruning at the other. The construction mechanism does not work in the multi-layer perceptron for which it was developed, owing to the long-range effects occurring in many applications of these networks. It works demonstrably well in density estimation models based on Gaussian mixtures, which are of the same family as the increasingly popular radial basis function networks. The construction mechanism is applied to the initialization of the density estimators embedded in the states of a hidden Markov model for speaker-independent speech recognition, where it offers a considerable increase in recogniser performance, provided cross-validation is used to prevent over-training

    Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin

    Get PDF
    Collaborative robots are expected to physically interact with humans in daily living and the workplace, including industrial and healthcare settings. A key related enabling technology is tactile sensing, which currently requires addressing the outstanding scientific challenge to simultaneously detect contact location and intensity by means of soft conformable artificial skins adapting over large areas to the complex curved geometries of robot embodiments. In this work, the development of a large-area sensitive soft skin with a curved geometry is presented, allowing for robot total-body coverage through modular patches. The biomimetic skin consists of a soft polymeric matrix, resembling a human forearm, embedded with photonic fibre Bragg grating transducers, which partially mimics Ruffini mechanoreceptor functionality with diffuse, overlapping receptive fields. A convolutional neural network deep learning algorithm and a multigrid neuron integration process were implemented to decode the fibre Bragg grating sensor outputs for inference of contact force magnitude and localization through the skin surface. Results of 35 mN (interquartile range 56 mN) and 3.2 mm (interquartile range 2.3 mm) median errors were achieved for force and localization predictions, respectively. Demonstrations with an anthropomorphic arm pave the way towards artificial intelligence based integrated skins enabling safe human–robot cooperation via machine intelligence

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Neural networks

    Get PDF
    An overview of neural networks, covering multilayer perceptrons, radial basis functions, constructive algorithms, Kohonen and K-means unupervised algorithms, RAMnets, first and second order training methods, and Bayesian regularisation methods
    corecore