214 research outputs found

    Computer Vision for Timber Harvesting

    Get PDF

    A Fast Clustering Algorithm based on pruning unnecessary distance computations in DBSCAN for High-Dimensional Data

    Get PDF
    Clustering is an important technique to deal with large scale data which are explosively created in internet. Most data are high-dimensional with a lot of noise, which brings great challenges to retrieval, classification and understanding. No current existing approach is “optimal” for large scale data. For example, DBSCAN requires O(n2) time, Fast-DBSCAN only works well in 2 dimensions, and ρ-Approximate DBSCAN runs in O(n) expected time which needs dimension D to be a relative small constant for the linear running time to hold. However, we prove theoretically and experimentally that ρ-Approximate DBSCAN degenerates to an O(n2) algorithm in very high dimension such that 2D >  > n. In this paper, we propose a novel local neighborhood searching technique, and apply it to improve DBSCAN, named as NQ-DBSCAN, such that a large number of unnecessary distance computations can be effectively reduced. Theoretical analysis and experimental results show that NQ-DBSCAN averagely runs in O(n*log(n)) with the help of indexing technique, and the best case is O(n) if proper parameters are used, which makes it suitable for many realtime data

    Retrieval of Spatially Similar Images using Quadtree-based Indexing

    Get PDF
    Multimedia applications involving image retrieval demand fast response, which requires efficient database indexing. Generally, a two-level indexing scheme in an image database can help to reduce the search space against a given query image. The first level is required to significantly reduce the search space for the second-stage of comparisons and must be computationally efficient. It is also required to guarantee that no new false negatives may result. In this thesis, we propose a new image signature representation for the first level of a two-level image indexing scheme that is based on hierarchical decomposition of image space into spatial arrangement of image features (quadtrees). We also formally prove that the proposed signature representation scheme not only results in fewer number of matching signatures but also does not result in any new false negative. Further, the performance of the retrieval scheme with proposed ignature representation is evaluated for various feature point detection algorithms

    MEDAVET: Traffic Vehicle Anomaly Detection Mechanism based on spatial and temporal structures in vehicle traffic

    Full text link
    Currently, there are computer vision systems that help us with tasks that would be dull for humans, such as surveillance and vehicle tracking. An important part of this analysis is to identify traffic anomalies. An anomaly tells us that something unusual has happened, in this case on the highway. This paper aims to model vehicle tracking using computer vision to detect traffic anomalies on a highway. We develop the steps of detection, tracking, and analysis of traffic: the detection of vehicles from video of urban traffic, the tracking of vehicles using a bipartite graph and the Convex Hull algorithm to delimit moving areas. Finally for anomaly detection we use two data structures to detect the beginning and end of the anomaly. The first is the QuadTree that groups vehicles that are stopped for a long time on the road and the second that approaches vehicles that are occluded. Experimental results show that our method is acceptable on the Track4 test set, with an F1 score of 85.7% and a mean squared error of 25.432.Comment: 14 pages, 14 figures, submitted to Journal of Internet Services and Applications - JIS

    Giving eyes to ICT!, or How does a computer recognize a cow?

    Get PDF
    Het door Schouten en andere onderzoekers op het CWI ontwikkelde systeem berust op het beschrijven van beelden met behulp van fractale meetkunde. De menselijke waarneming blijkt mede daardoor zo efficiënt omdat zij sterk werkt met gelijkenissen. Het ligt dus voor de hand het te zoeken in wiskundige methoden die dat ook doen. Schouten heeft daarom beeldcodering met behulp van 'fractals' onderzocht. Fractals zijn zelfgelijkende meetkundige figuren, opgebouwd door herhaalde transformatie (iteratie) van een eenvoudig basispatroon, dat zich daardoor op steeds kleinere schalen vertakt. Op elk niveau van detaillering lijkt een fractal op zichzelf (Droste-effect). Met fractals kan men vrij eenvoudig bedrieglijk echte natuurvoorstellingen maken. Fractale beeldcodering gaat ervan uit dat het omgekeerde ook geldt: een beeld effectief opslaan in de vorm van de basispatronen van een klein aantal fractals, samen met het voorschrift hoe het oorspronkelijke beeld daaruit te reconstrueren. Het op het CWI in samenwerking met onderzoekers uit Leuven ontwikkelde systeem is mede gebaseerd op deze methode. ISBN 906196502

    A quadtree approach to parallel image processing

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 93-95).by Hany S. Saleeb.M.Eng

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes
    corecore