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Summary

The goal of this thesis is to investigate computer vision methods for timber har-
vesting operations. The background for developing computer vision for timber
harvesting is to document origin of timber and to collect qualitative and quan-
titative parameters concerning the timber for efficient harvest planning. The
investigations in this thesis is done as initial work on a planning and logistic
system for timber harvesting called logTracker1.

In this thesis we have focused on three methods for the logTracker project, which
includes image segmentation, image classification, and image retrieval. Segmen-
tation is to partition an image based on image characteristics and in our study
we have focused on image texture. Our segmentation method is inspired by iter-
ative function systems and contractive maps, which makes the basis for both our
texture characterization and our method for obtaining the image segments. The
purpose of image segmentation is to make the basis for more advanced computer
vision methods like object recognition and classification. Our second method
concerns image classification and we present a method where we classify small
timber samples to tree species based on Active Appearance Models and texture
characteristics. The last method is image retrieval based on the so called “bag
of visual words” procedure. An image is characterized as a distribution of local
image descriptors, which is the basis for effective image search.

These methods are described and discussed in relation to the logTracker project
and ideas for further development of the system is provided. Building a complete
logTracker system is a very demanding task and the conclusion is that it is

1The logTracker project is owned by the company Dralle A/S who has hosted this industrial
PhD project.
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important to focus on the elements that can bring most value to timber harvest
planning. Besides contributing to the development of the logTracker system the
described methods have a general applicability making them useful for many
other computer vision problems.



Resumé

Målet med denne afhandling er at undersøge computer vision metoder til brug
i forbindelse med tømmerhugst. Baggrunden for at udvikle computer vision for
tømmerhugst er dels at tilvejebringe dokumentation for træets oprindelse, og
dels at indsamle kvalitative og kvantitative parametre om tømmeret til brug for
effektiv hugstplanlægning. De undersøgelser, som er foretaget i forbindelse med
denne afhandling, er indledende arbejde p̊a et planlægnings- og logistiksystem
til brug ved tømmerhugst kaldet logTracker2.

Vi har i denne afhandling fokuseret p̊a tre metoder, som har betydning for
logTracker-projektet. Det drejer sig om billedsegmentering, billedklassifikation
og objektgenkendelse. Segmentering er at opdele et billede ud fra billedkarak-
teristika, og vores fokus har været p̊a billedtekstur. Vores segmenteringsme-
tode er inspireret af iterative funktionssystemer og kontraktive funktioner, som
danner grundlag for teksturkarakteriseringen og vores metode til identifikatio-
nen af billedsegmenterne. Billedsegmentering har til form̊al at danne grundlag
for mere avancerede computer vision metoder, som eksempelvis objektgenk-
endelse og klassifikation. Vores anden metode omhandler billedklassifikation,
og vi præsenterer en metode til klassifikation tømmer som ved hjælp af active
appearance models og teksturkarakteristika klassificeres til træart. Den sidste
metode omhandler objektgenkendelse og er baseret p̊a det s̊akaldte bag of vi-
sual words procedure. Her bliver et billede bliver karakteriseret som en fordeling
af lokale billed-descriptors, hvilket danner grundlag for en effektiv metode til
billedsøgning og objektgenkendelse.

Disse metoder er beskrevet og diskuteret i relation til logTracker-projektet,
hvorved der skabes fokus p̊a den videre udvikling af systemet. At bygge et

2logTracker-projektet ejes af Dralle A/S, som har været vært for dette Ph.d.-studie.
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fuldstændigt logTracker-system vil være en meget krævende opgave, s̊a konklu-
sionen er, at indsatsen bør rettes mod de elementer, som kan bidrage med mest
værdi til hugstplanlægningen. Ud over at bidrage til udviklingen af logTraker
har de beskrevne metoder generel karakter, der gør dem anvendelige til løsning
af mange computer vision problemer.
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Chapter 1

Introduction

This thesis aims at computer vision methods for improving the effectiveness and
quality of timber harvesting operations. The studies that we will present in this
thesis are very preliminary in relation to an operational computer vision system
for timber harvesting, but the development of such a system has not been the
goal. Instead, we have investigated different elements and identified relevant
problems of computer vision in relation to timber harvesting in particular, but
also in relation to more general computer vision problems for example the prob-
lem of classification and image segmentation. This thesis shows that computer
vision is a valuable tool for solving important problems in the timber harvesting
process. These problems concern tracking the wood for documentation of ori-
gin and obtaining information about volume and quality in an efficient manner.
Furthermore, the methods developed in the thesis has general applicability for
problems other than timber harvesting, and hopefully this can act as a small
contribution to the research within the field of computer vision. First we will
discuss the motivation of the thesis concerning potential forestry applications,
then we will give a short outline of the basic elements of computer vision, and
finally we will give a outline of the contributions of this thesis.



2 Introduction

1.1 Project background

The goal of this thesis is to investigate computer vision methods for visual
tracking of wood logs, and for obtaining information about the logs concerning
volume and quality. The desired application is the logTracker system1, which is
a logistic system to be used in the process of timber harvesting, with the purpose
of tracking wood logs in the production chain from the harvesting in the forest
to the logs enter a wood processing industry. The idea is to equip each machine
that handles the wood with cameras to acquire images of each individual log,
and also a GPS for positioning where the images were acquired. These images
should be analyzed to obtain log specific information about wood quality and
quantity, but also to get a log “fingerprint”, which can be used for recognition.
By recognizing the log each time it is handled and coupling it with a GPS
position, it will be possible to document the origin of the wood. The motivating
background for the logTracker system is politically founded in an increasing
demand for the sustainable timber production methods. The environmental
issues regarding forest management were made a public concern in the 1980’s
especially in relation to deforestation of tropical rainforests and illegal logging of
tropical hardwoods. This concern enhanced the need for systems to ensure good
management practices, and certification was seen as a solution. Certification was
introduced as methods to benefit all stakeholders in the forest production. The
lumber produces would gain the benefit of higher timber prices from a market
willing to pay for sustainably produced timber, and the consumers would benefit
from the option of purhacing products from legally logged forests. Different
certification systems like the FSC2, PEFC3, SFI4, etc., was introduced, and are
currently used for marketing products from sustainable managed forests, and
this sustainability covers environmental and socioeconomic aspects. Despite the
initial concern towards tropical forests was soon extended to the rest of the world
[52]. In certified forests the land owners have to fulfill a number of rules and
regulations in their production methods to meet these political goals. Today,
organizations like the FSC enforce this through consulting and inspection, but a
weak link in the system is the transport of wood from the forest to the industry,
the so called chain of custody [43, 52, 93].

Different labeling technologies have been employed to document the chain of
custody. The traditional way is to paint or engrave the label into the log end
face, which is a simple way to mark individual logs, but the amount of in-
formation is limited and it is in risk of fraud. Traditional barcode labels are
also used for tracking wood logs, where the information can be referenced in

1http://www.dralle.dk
2http://www.fsc.org/
3http://www.pefc.org/internet/html/
4http://www.sfiprogram.org/
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(a) (b)

(c)

(d)

Figure 1.1: Wood harvesting operation. Figure (a) illustrates the harvester, (b)
is the forwarder, (c) is the road side truck, and (d) is the industry.

a database or directly encoded in the barcode. In general the two-dimensional
barcodes can encode sufficient information. The most promising technology is
the Radio-Frequency Identification (RFID) labels, which can both receive and
send data without need of physical contact. RFID can store large amounts of
data concerning the wood log, and the data can be stored and accessed in a
secure manner. The primary problem of this method is the price of the RFID
which is still too costly to implement as a standard for wood tracking [43]. The
logTracker system is potentially an alternative solution to these problems, where
the idea is to obtain a wood log “fingerprint” from digital images of the wood
logs, which can be used for documenting the chain of custody problem.

The timber transport chain is illustrated in Figure 1.1. The chain begins with
a harvesting operation (a) where the trees are cut down and debranched. The
next step is a forwarding operation where the individual logs are collected from
the forest floor and transported to the road side (b). At the road side a truck
picks up the wood logs (c) for transportation to the timber industry (d). All
the machines handling the wood can be equipped with cameras to gather infor-
mation about the wood, both in relation to documentation and logistical issues.
This will enable an objective system for documenting the origin of the wood
and through this increase the reliability of a labeling system.
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The support of decisions in relation to logistic issues is another important ele-
ment, and solving the computer vision problems related to the logTracker system
is a demanding task and far from accomplished. This thesis contains preliminary
studies in methods related to logTracker, which addresses some fundamental
computer vision problems.

1.2 Computer vision

The human vision is an important sense that enables us to identify and relate
objects, and to react to what wee see without any physical contact. Transferring
these abilities to computers is the fundamental task of computer vision, which
has a wide variety of useful applications. It can for example be used to help
navigate cars in crowded traffic, guide a precise automated harvesting of crops,
or improve the quality of timber harvesting, which is the goal of this thesis.
Computer vision is to provide machines with the benefit of vision making them
capable of acting and reacting to the surrounding environment on the basis of
visual input.

A computer vision system typically consists of an image acquisition step, a
pre-processing step, a feature extraction step where the elements of interest
are detected, and a high level vision step. The implementation of these steps
is dependent on the task to be solved. Computer vision is based on a range
of image types including gray level images with two spatial dimensions and
one intensity dimension. Gray level images can be acquired from light sensitive
sensors capturing emitted or reflected light, for example in the visible or infrared
spectrum, where the intensity value reflects the received amount of light. Other
gray level images can be X-rays or ultrasound images where the image intensities
reflect absorption of X-rays or reflectance of ultrasound waves. Color images
typically include three intensity dimensions and the normal representation is
the red, green, and blue color band containing information about the color of
the received light. Multispectral images can contain a number of spectral bands
where each band normally covers a limited range of wavelengths. 3D information
can be obtained from range sensors, which consists of a depth map in addition
to a gray level image. This depth map just covers the surface of the depicted
objects, whereas 3D information from for example MRI or CT scanners give
voxel based information making all the 3D information available.

Some computer vision procedures require a preprocessing of the acquired images.
Images can be resampled to account for lens distortion, which is necessary in
for example structure from motion systems where multiple camera views are
used for reconstructing the 3D surface of a scene [66]. Other preprocessing
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(a)

(b) (c)

Figure 1.2: Segmentation, classification, and image retrieval in computer vision.
Figure (a) shows an example of image segmentation where the image is decom-
posed into regions. Figure (b) illustrates the problem of classification where the
goal is to find a specific image class, in this case matching the image at the top
to one of the three classes below. In Figure (c) the problem of image retrieval
is illustrated. Here the goal is to find the actual depicted scene.

steps can be noise reduction, if for example the images are acquired in low light
conditions, or enhancing the contrast of the image. Building a scale space is
another element that can be computed as a preprocessing step. This is done to
enable invariance to scale change in the feature extraction step.

Image features are the characteristic image elements that make up the basis
for obtaining higher level information. Features include lines, edges, corners,
regions, etc., which contain information about for example object boundaries
and shape. Texture is another important feature for object characterization.
The image features are useful for image segmentation, for detecting regions of
interest, or for finding interest points for object characterization, etc. Object
recognition and classification are typical high level tasks, which are based on the
feature characterization. A large amount of research effort is put into high level
vision tasks and there is a wide variety of methods. Typically, these methods
are developed to solve specific vision problems, but the research evolves in the
direction of generalizing these procedures to solve more demanding problems.
Examples of high level vision tasks are object recognition via model verification,
feature based image scene classification, and tracking and pose estimation of
people useful for surveillance. These examples are just a few of the many useful
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(a) (b)

(c) (d)

Figure 1.3: Image change due to noise. Figure (a) is the original image, Figure
(b) is added Gaussian noise with a standard deviation of 4 % of the image range.
Figure (c) has added 20 % noise and Figure (d) shows a random permutation
of the image, but retaining the original pixel intensities. It remains quite easy
to see what is depicted in the image, even with relatively high amounts of noise
(Figure (b) and (c)), whereas the original image values in random order contains
very little usable information.

applications of high level vision systems.

Solving computer vision problems is a demanding task because the spatial res-
olution of an image is a limiting element for any computer vision system. This
implies a limit to the level of detail at which it is possible to analyze the image
and obtain information. There is also a limit to the temporal resolution, be-
cause time is a limiting factor in most computer vision applications. Often, the
limited temporal resolution result in low quality image data that are blurred and
contain noise. These limitations in the spatial and temporal resolution make the
image processing elements of computer vision hard, both concerning the low and
high level vision problems. In this thesis we focus on 2D image processing, and
we have not investigated the initial steps of computer vision concerning image
acquisition or preprocessing. Our work has concerned the low level computer
vision tasks of feature extraction and segmentation, where we have suggested
a solution for identifying homogenous regions in highly textured and diverse
images. We have also worked with the higher level tasks of classification and
image retrieval, where we have made a system for wood species identification
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and a image retrieval application. The basic elements of these computer vision
problems are illustrated in Figure 1.2.

2D digital images, as the investigations in this thesis build on, are characterized
by pixels, i.e. a set of numbers ordered in a grid structure, but far from all
grid-ordered sets of numbers will make much sense as an image, for example an
image of random numbers. On the other hand images of scenes familiar to the
viewer contain much information and even different or noisy versions of the same
scene type might be easy to recognize. But in the pixel domain these images can
be very different, which illustrates a fundamental problem of computer vision,
see Figure 1.3. An important observation is that images are not random or
chaotic, but highly structured elements with much fewer degrees of freedom
than the pixel distribution might suggest. This structure will often be reflected
in that a few parameters can control highly complicated image structures. An
example is the iso-metric feature embedding of Tenenbaum et al. [141] who
reduces the parameter characterizing an image of a head from 4096 dimensions
of 64× 64 input images to two dimensions reflecting the two directions of head
pose change. In computer vision we are faced with the problem of identifying
unique visual characteristics that bridge the perception of what we see to the
pixel-representation of images.

The characteristics of digital images make computer vision non-trivial because
small changes of visual appearance can dramatically change the pixel represen-
tation. This is especially relevant considering the motivation for this thesis,
which concerns computer vision applications for outdoor forest scenes. Under
these conditions computer vision is very demanding, because the methods have
to be robust to large changes in object appearance due to change in light, view-
ing angle, scale, and also physical change of the scene elements. We will begin
by explaining the practical background of the thesis.

1.3 Layout of the thesis

This thesis contains a public and a confidential part. The public part covers
the three main topics, i.e. image segmentation, image classification, and image
retrieval, which is covered in one chapter each. The confidential part contains
contributions with particular value for the host company.

The three topics of the thesis are related, and they have many elements in
common. A theoretic background for some of these topics is discussed in Chapter
2. Chapter 3 describes image segmentation based on contractive functions and
IFS, which is related to fractal image compression, see for example [53, 76].
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Classification is described in chapter 4 and an approach based on an Active
Appearance Model (AAM) [31] and second order textural statistics [64, 25] is
shown. Finally, image retrieval is presented in Chapter 5 and an example is
given building on dimensionality reduced SIFT features [95]. The public part of
the thesis is concluded in Chapter 6. The contribution of this thesis is described
in three papers listed below. The segmentation method in Chapter 3 is based
on our paper in [35], but the method has been modified, so to give a complete
description of the method this Chapter is written independently of the paper.
In Chapters 4 and 5 the original papers are included with only minor clarifying
changes. The topic of all the chapters are related to the problem of the thesis
and the practical use of these methods is discussed.

Publications from this thesis:

A. B. Dahl, H. Aanæs, R. Larsen, and B. K. Ersbøll. Classification
of Biological Objects using Active Appearance Modeling and Color Co-
Occurrence Matrices. Scandinavian Conference on Image Analysis, Aal-
borg 2007, Denmark.

A. B. Dahl and H. Aanæs. Effective Image Database Search via Dimen-
sionality Reduction. IEEE Conference on Computer Vision and Pattern
Recognition, Anchorage 2008, Alaska, USA.

A. B. Dahl, P. Bogunovich, A. Shokoufandeh, and H. Aanæs. Texture
Segmentation from Context and Contractive Maps. Submitted to IEEE
Conference on Computer Vision and Pattern Recognition, Miami 2009,
Florida, USA.



Chapter 2

Theoretic background

Generally scientific concepts and terms are dependent on the context in which
they are used, and the goal of this chapter is to introduce and discuss some
basic theoretic concepts related to the methods introduced in the later chapters.
We will start by discussing image characteristics and some general approaches
for image processing. Following this general discussion we will introduce the
theoretic background of Iterative Function Systems (IFS), which is a central
element of the segmentation method that is presented in Chapter 3. Both our
segmentation procedure in Chapter 3 and the classification procedure in Chapter
4 make use of image texture characteristics. Therefore, we will end this chapter
by discussing the basic concepts and characteristics of image texture.

2.1 Image processing

The objective of image processing is to obtain information from digital images,
which is highly dependent on the tasks to be solved. Some computer vision
systems are constructed to make the image processing tasks very easy to solve.
This is done by constructing the image acquisition step to give high constrast
images and the image processing can be performed by simple classification meth-
ods. This is typical for some industrial or medical applications. For many other
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(a) (b) (c)

Figure 2.1: Visual perception. Figure (a) and (b) depicts the American president
Barack Obama with his mouth turned upside down. With the entire image
turned upside down it appears reasonably normal, but with the image in the
right position, this mouth misplacement becomes very apparent. In Figure (c)
a poster from the American presidential campaign is shown. It is quite easy to
see that it is a picture of Barack Obama despite the difference from his natural
appearance in both color and texture.

applications it is not possible to control the environment for image acquisition
making the image processing harder. Computer vision has long been a very
active field of research and a wide range of methods have been developed based
on mathematical and statistical tools. Despite remarkable results and solutions
to many demanding problems, there are still many open problems and the ca-
pabilities of computer vision systems are inferior the human vision.

Image information Many physical properties of vision are well understood
and examples include the anatomy of the eye and which wavelengths are visible
[50, 51]. But there is only little understanding of the visual perception, i.e. how
the visual stimuli of the receptor cells are interpreted by the brain. Modern
digital cameras are good at accurately capturing the visual input, but the task
is to couple this visual input to perception. Because of the lacking knowledge
of how we transform what we see to what we understand, it is impossible to
build a computer model that exactly copies the human vision. Despite this little
understanding there are some characteristics that perhaps can act as a guide
for the direction of artificially modeling vision. People usually find it hard to
precisely reconstruct what we have seen, for example making an exact drawing
of an object. This indicates that we do not remember visual input as it was
received from our eyes. On the other hand we are very good at generalizing and
we can easily recognize who is depicted in a cartoon even though the person
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might be highly changed and simplified. Our visual perception can also be
confused if we see something different from what we expect. This indicates that
we somehow have an expected model of objects, especially for familiar things
like peoples faces. Some examples are given in Figure 2.1. The question is
how the visual perception of humans can be used in developing computer vision
methods.

There are many ways to obtain information about the content of an image.
One way to approach this is based on the idea that objects and scenes have a
unique visual appearance which can be used for retrieval. Given a very large
collection of labeled images the goal is to find the most similar image and transfer
the labels to the unknown image. An example of this approach is shown in
Torralba et al. [142] with high recognition rates and capacities of more than
10 million images. Another related example is the Video Google of Sivic and
Zisserman [133], where they built an image representation as an independent set
of appearance features. Utilizing techniques from text retrieval enables them to
do very fast object recognition on a large set of data. These appearance based
image processing models clearly differ from human vision in the capability of
generalization. It would be problematic for example to recognize the similarity
between Figure 2.1 (b) and (c). A way to get around this would be to have
both examples labeled as the American president, but this does not capture the
actual similar features.

Another group of computer vision methods is related to the geometric informa-
tion in objects. If we describe for example a tree, we would say that it has a
trunk with branches attached to it and leaves attached to the branches. This
kind of geometric information and rules about object relations can be used in
a computer vision system. One way to model objects is as a set of geomet-
ric primitives and an example is Dickinson et al. [40], where they match 3D
primitives, including cylinders, cones, blocks, etc., to the image and use the ge-
ometric configuration to find the similarity to model objects. Modeling objects
this way is related to how we describe objects, but generalizing the approach is
problematic because it requires a geometric description of each object type in
the data set. Furthermore, it can be hard to fit the geometric primitives to the
visual information in images. This can be the explanation of why the geometric
based methods lost their popularity to appearance based methods from the late
1990’s, see for example [127].

In Chapter 4 we investigate object classification based on an Active Appearance
Model (AAM) which is an object specific model related to modeling geometric
elements of objects, and in Chapter 5 we do image retrieval based on appearance
features. Both these methods have elements of high level vision, whereas the
segmentation procedure that we describe in Chapter 3 is a low level task, that
provides minor information about the depicted objects, but can act as a very
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(a) (b)

Figure 2.2: Examples of fractals, i.e. the fixed point of an iterated function
system. The Koch curve (a) and the Sierpinski gasket (b).

important step in higher level tasks. Low level methods like this segmentation
procedure is a way of combining ideas from both the geometric and appearance
based methods for improving existing computer vision methods.

2.2 Iterative Function Systems

The segmentation procedure described in Chapter 3 builds on Iterative Func-
tion Systems (IFS) and we will in this section describe some of the important
mathematical elements for developing this procedure.

IFS and contractive maps An observation made by Mandelbrot [99] was
that many natural objects resembles properties related to fractal sets. He dis-
cusses the problem of determining the length of certain curves, and it turns out
that the length greatly depends on the measuring unit used. The measuring
unit should be seen as the minimum distance between two points on the curve,
so everything smaller than the measuring unit is neglected. When the length
of measuring unit approaches zero the curve length approaches infinity. This
is because such curves have infinitely many small “turns” or features and they
can only be measured if the length of the measuring unit is smaller than feature
itself. An example is the Koch curve [115], see Figure 2.2. Any two points on
this curve have an infinite distance between them. Coast lines are examples
of natural objects that have nearly the same property. Mandelbrot claimed
that these natural curves exhibit a property known as statistical self-similarity,
i.e. that each portion of the curve is a scaled down version of the curve.

We will now explain some of the details of the IFS theory, but a more elaborate
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discussion of fractals can be seen in for example [9, 47, 115]. We begin this
discussion by some definitions

Definition 2.1 (Metric space) A set X together with a function d : X×X →
R is called a metric space [11] and is denoted by (X, d) iff d has the following
properties

1. d(x, y) ≥ 0, ∀x, y ∈ X,

2. d(x, y) = 0 ⇐⇒ x = y,

3. d(x, y) = d(y, x), ∀x, y ∈ X,

4. d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X.

Definition 2.2 (Cauchy Sequence) Given a metric space (X, d), a sequence
Y = (y1, y2, . . . ) with yi ∈ X is called a Cauchy Sequence [123] if for any η > 0
there exists N ∈ N such that for all n,m ≥ N we have d(yn, ym) < η.

Definition 2.3 (Complete Metric Space) A metric space (X, d) is called
complete if all Cauchy Sequences in X converge to a point in X [123].

Definition 2.4 (Hausdorff Space) For the complete metric space (X, d) the
so called Hausdorff Space H(X) denotes the set of all non-empty compact sub-
sets of X.

Definition 2.5 (Hausdorff Metric) Given a complete metric space (X, d)
with x ∈ X and B ∈ H(X), let d(x,B) = inf{d(x, y) : y ∈ B}; i.e. the
distance to x from the point y ∈ B which is closest to x. If A ∈ H(X) then let
d(A,B) = sup{d(x,B) : x ∈ A}; i.e. the distance to set B from the point x ∈ A
which is furthest from B. The Hausdorff metric h : H(X) × H(X) → R [9] is
defined as h(A,B) = max{d(A,B), d(B,A)}.

Definition 2.6 (Attractor Set) Given an IFS, {X,w} and a set S ⊂ X, let
wi(S) = {wi(x) : x ∈ S} and denote the set operator associated with w as

Fw(S) = ∪ni=1wi(S). (2.1)

An attractor set or sometimes called a fractal set [10] is defined as a set A ⊂ X
with the property that Fw(A) = A. In other words, an attractor is a set that is
invariant to Fw.

IFS can be defined based on contractive transformations.
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Definition 2.7 (Contractive Transformation) Given a metric space, (X, d),
a transformation, f : X → X, is called contractive or a contraction with con-
tractivity factor s [47] if the exists a constant s ∈ [0, 1) so that

d(f(x), f(y)) ≤ s · d(x, y) ∀x, y ∈ X. (2.2)

Definition 2.8 (Iterated Function System) A family of contractions w =
{w1, w2, . . . , wn} with respective contractivity factors {s1, s2, . . . , sn} in a com-
plete metric space (X, d) is called an iterated function system or IFS [47]. Such a
family of contractions is also sometimes also called a hyperbolic iterated function
system [10].

Applying an IFS to a point x ∈ X will converge to a fixed point. A fixed point
is defined as

Definition 2.9 (Fixed Point) Given a transformation f : X → X, then a
point x∗ ∈ X where f(x∗) = x∗ is called a fixed point of f [9].

Contraction is the property that guarantees that the IFS applied to any point
x ∈ X will become a fixed point x∗. The following theorem is very important
in this regard.

Theorem 2.10 (Contractive Mapping Fixed Point Theorem) Let (X, d)
be a complete metric space, with points x ∈ X and distance metric d. If
f : X → X is a contractive mapping on X, then there exists a unique point
xf ∈ X such that for any point x ∈ X

xf = f(xf ) = lim
n→∞

f◦n(x), (2.3)

xf is called a fixed point or attractor of f .

limn→∞ f◦n(x) is limit of reapplying the function f (f(f(...f(x)))) infinitely
many times. See for example [53, 107] for a proof of the theorem. It has been
shown that given an IFS, i.e. is a set of functions, there is one unique attractor
[107], and the attractor is obtained by iteratively applying the set of contractor
functions. The inverse problem of IFS is to find the set of contractor functions
that will result in an attractor set that is close to a given set. Formally the
inverse problem of IFS is stated as
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Let (X,h) be a complete metric space with A ∈ H(X) and η > 0.
Does a contractive function f : H(X) → H(X) exists such that
h(A,Af ) < η?

where Af is the attractor of f and h(·) is the Hausdorff metric. It can be hard
to find the set of contractive functions with an attractor fulfilling h(A,Af ) < η.
The collage theorem helps in solving that problem

Theorem 2.11 (Collage Theorem) Given an IFS: {X, f}, fi ∈ f , i = {1, ..., n}
in the complete metric space (X, d) with the contractive factor 0 ≤ c < 1. Let
η > 0 and suppose that there exists an x ∈ H(X) we obtain

d(x, xf ) ≤ 1
1− c

d(x, f(x)), (2.4)

where xf is the fixed point of the function f .

Proof. We use the triangle inequality to obtain

d(x, xf ) ≤ d(x, f(x)) + d(f(x), xf ) (2.5)

We know that the fixed point maps onto itself: f(xf ) = xf , so we get

d(x, f(x)) + d(f(x), xf ) = d(x, f(x)) + d(f(x), f(xf )) (2.6)
≤ d(x, f(x)) + c d(x, xf ). (2.7)

From this we obtain

d(x, xf ) ≤ 1
1− c

d(x, f(x)). (2.8)

The collage theorem gives a limit to the difference between a given point x and
it’s fixed point xf with the contractive map f . This is very useful because we
get an indication of how close we are to the attractor of a give function. This
leads to the notion of collage error, which can be used to find a good solution
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of the inverse problem. Let ε denote the collage error, then we can estimate the
collage error of a point x and the contractive function f as

ε = d(x, f(x)). (2.9)

If we obtain a low collage error for a given f and x, we know that x is close to
the fixed point of f . This is the important observation enabling us to handle
the inverse problem. The inverse problem can be reformulated as

Let (X,h) be a complete metric space with A ∈ H(X) and η > 0.
Does a contractive function f : H(X) → H(X) exists such that the
collage error h(A, f(A)) < η?

Finding a map that has a small collage error is computationally less expensive
than finding maps that has a close fixed point. Using the collage error for
identifying maps with fixed points close to a given point is not guaranteed to be
optimal, but the result will have an upper bound given by equation (2.4), see
for example [4] for further discussion.

The Sierpinski gasket and the Koch curve shown in Figure 2.2 are examples
of fractals obtained from IFS. Fractals can be generated very easily using an
algorithm based on the so called chaos game. Given the IFS consisting of the
functions fi, i = {1, ..., n} in the metric space (X, d), we can find the fractal
using Algorithm 1 shown below. Note that there is a probability associated
with each function in the chaos game algorithm. Another way of constructing
a fractal is to pick a set C ∈ X and iteratively apply each map to this set until
convergence.

Algorithm 1 Chaos game
Pick an initial point x0 ∈ X
Choose number of iteration M
for m = 1 to M do

pick a random i with probability pi, i = {1, ..., n}
xm ← fi(xm−1)

end for

It can seem quite surprising that a very ordered image is obtained by having a set
of functions and randomly selecting and reapplying one of these functions. This
is caused by the contractive nature of the IFS, which is a very useful property
and the key element for fractal image compression, which we will discuss in
Chapter 3.
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2.3 Texture characterization

Image texture is an important element in our segmentation procedure described
in Chapter 3 and our classification procedure in Chapter 4. A good texture char-
acterization is important for both applications and we will give an introduction
to some aspects of texture. Texture has been a very active field of research and
many computer vision applications are based on textural image information. It
is not the goal of this section to give a complete overview of ways to characterize
texture, but merely to give some examples of how texture can be described. We
will focus on explaining texture characterizations that have been used or have
inspired the development of our methods.

There is no clear definition of visual texture, but some features are important for
characterizing it. In Figure 2.3 we show some examples of natural textures with
varying degree of homogeneity. Some authors have grouped textures in rela-
tion to their homogeneity from periodic to random patterns [73, 120]. Haralick
[63] describes texture in relation to pixel intensity and a spatial organization
of texture primitives, which is the motivation for his texture features. Tex-
ture primitives are also the observation that Julesz [79] uses for characterizing
texture in the form of textons. Additional features like smoothness, roughness,
orientation, regularity, repetition, etc. are also important for texture description
[17, 71, 79, 103]. Texture characterization is only useful if there is some degree
of structure and repetition in the patterns. So, the periodic element of many
textures is very important in texture characterization and has been the basis for
some recent computer vision applications, see for example [8, 69, 71, 157]. The
frequency of these periodic elements relates to the scale of the texture, which is
also an important issue, because it indicates at which scale descriptors should
be calculated, but also because it is an important feature itself [71, 75, 98].

2.3.1 Texture descriptors

Identifying the characteristic elements of texture has been done in multiple ways,
and we will now describe some of these characterizations and discuss how they
have be used.

Statistical methods Statistical methods for texture characterization are typ-
ically grouped as first, second, and higher order statistics. First order statistics
concern the distribution of pixel intensities, second order concerns the joint dis-
tribution of intensities, and higher order concerns the joint distribution of more
than two pixels [17, 25, 103]. We will give a short introduction to these texture
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(a) (b) (c)

Figure 2.3: Examples of natural textures. Figure (a) shows a brick wall where
each brick is a relatively regular pattern repeated over the image. Figure (b)
is a carpet with varying intensity in the repetitive patterns, but with relatively
uniform intensity and scale of the patterns. Figure (c) is a bark texture with
large variation in intensity, orientation, and scale of the image patterns. Images
are from the UIUCTex database [89].
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Figure 2.4: Gray level co-occurrence matrix (GLCM). Figure (a) illustrates
a simple image with four intensity values. The associated GLCM is shown in
Figure (b) for the displacement vector h = (0, 1) shown in the bottom part of
the figure. To obtain the actual probabilities of the GLCM, it is normalized
with the total sum, which is 20 in this example.

statistics and their associated features. The pixel distribution or the gray level
histogram can be used for estimating features as the mean gray level, variance,
skewness, entropy, etc. [25]. Second order statistics can be calculated as Gray
Level Co-Occurrence Matrices (GLCM) introduced by Haralick et al. [64], and
higher order statistics include for example gray level run length matrices and
neighboring gray level dependence matrix [25].

We have used GLCM calculated from color images in our work on tree species
classification presented in Chapter 4. We will now give a short discussion of
the GLCM and how descriptors can be obtained. The GCLM expresses the
probability of a given intensity change between two relative positions in the
image. Let c be a GLCM with a displacement h and the intensity elements
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(k, l). Then the GLCM is defined as c = P ((k, l)|h). An example of a GLCM
is shown in Figure 2.4. It is possible to calculate the GLCM from an infinite
number of displacements, so to make this manageable the typical choice is to use
a fixed number of angles and radii. Even with a limited number of displacements,
for example 8 angles and 3 radii, the result will be 24 GLCM for one image. To
reduce this number and obtain invariance to rotation the GLCMs are averaged
for the rotations resulting in an isotropic GLCM. It should be noted that this
averaging removes information about the relative GLCM orientation which turns
out to be an important characteristics in our experiment, see Section 4.2.5.

Palm [112] investigates the use of color in co-occurrence matrices, both as single
channel (SCM) and multi-channel (MCM). In the single channel approach the
isotropic GLCM is calculated in each color channel resulting in independent
texture statistics for the color bands. In the multi-channel approach this is
extended to include co-occurrence between texture channels, i.e. P ((k, l)|h) for
k ∈ K and l ∈ L where K and L are color bands and K 6= L. Palm uses
different combinations of the SCM and MCM together with a subset of the
Haralick features [64] to form a multidimensional feature vector. He obtains the
best classification results by combining both SCM and MCM in the LUV color
space. In our paper we use the combination of SCM and MCM, but only for
the RGB color space, see Section 4.2.

Another example is the Local Binary Patterns (LBP) of Ojala et al. [140]. The
texture descriptor is obtained by measuring the intensity difference between a
point and it’s neighbors. If this difference is negative the descriptor is assigned
the value 0 and if it is positive or equal to zero it is assigned 1. This results in a
binary string with a size given by the number of neighbors that it is compared
to. The obtained string is made invariant to rotation by grouping all rotated
versions of the same pattern. Furthermore, Ojala et al. observed that only
some patterns were occurring frequently enough to give reliable information, so
the final characterization is a distribution of what they call “uniform” binary
patterns. The LBS are fast to estimate and they obtain good classification
rates. Singular value decomposition has also been used for statistical texture
characterization [96], where the largest normalized singular values are used as a
feature vector for texture description.

Fractal dimension Fractal dimension comes from fractal geometry and is
a measure of how much of the space is occupied around a point on a fractal,
which is typically measured as the Hausdorff dimension [47]. This is typically
approximated by the box counting dimension [153]. Varma and Grag [149]
observe that the sum of intensities within a disk follows a power law as a function
of the radius of the disk. Formally this is logµ = D log r + L where µ is the
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pixel sum within a disk of radius r. D is the fractal dimension, also known as
the Hölder exponent, and L is the intercept, and these measures turns out to
be independent of the texture scale. They measure the distribution of D and
L, and the obtained distributions are good at characterizing texture, which is
demonstrated with impressive classification results.

Wavelet features Wavelets have successfully been used for texture charac-
terization. The principle of the discrete wavelet transform is to represent an
image as a set of multiscale wavelet features. This is obtained from applying a
vertical and horizontal convolution and a down sampling, where high and low
frequency signals are separated into combined high and low frequency elements,
a high frequency element, and a low frequency element. The low frequency el-
ement can then be further convolved creating the multiscale wavelet encoding
[103]. Different basis functions are used for wavelet transforms, for example the
Haar basis or Gabor filters. Gabor filters are combined Gaussian and harmonic
oscillating functions, which have also been used for texture characterization
[54]. The wavelet transform is used for building texture descriptors based on
the wavelet coefficients. Examples are the channel energy [103], co-occurrence
features [5], and the wavelet coefficients directly [48].

Texture scale Texture is only characteristic within a certain scale range. If
viewed from a far enough distance a textured object will seem uniform, and as
you get closer the texture will appear, and zooming very close to the texture it
will disappear again, because the view would be below the scale of the texture.
An example is a brick wall and viewed from far away it will seem uniform, but
at some distance individual bricks will appear as a texture. A very close view
will only reveal a part of one brick, and the view will be below the scale of the
texture. Malik et al. [98] found the characterization of texture scale to be a
fundamental issue for texture analysis and many texture descriptors will change
if scale changes. Scale is also an important factor in itself, which is shown
by Hong et al. [71] who characterizes texture by local scale estimation which
they use for texture segmentation. Their texture scale model is based on local
intensity distribution and includes dissimilarity in pixel distribution, estimated
as the Wasserstein or Kullback-Leibler divergence, and the entropy of the pixel
distribution. Estimating the model parameters is done by comparing a small
image region to neighboring regions. The texture scale is found by optimizing a
function that favors small patch size, high pixel distribution similarity, and high
entropy (uniform distribution). Huang et al. [75] also use the texture scale for
segmentation. They identify the minimum scale by identifying the size of image
textons based on the Bhattachayya distance. These experiments demonstrate
the importance of scale.
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Figure 2.5: Gaussian derivatives (a) and basic image features (b). The top im-
age in (a) is the zeroth order Gaussian derivative, the next two are the first order
derivative, and the last three are the second order derivatives. The seven basic
image features shown in (b) are obtained by convolving with these Gaussian
derivatives.

Algorithm 2 Basic image features
Measure filter responses: ρij
Compute:

λ = σ2(ρ20 + ρ02)
γ = σ2

√
(ρ20 − ρ02) + 4ρ2

11

Classify according to the largest of the following features:
Flat: ηρ00

Slope: 2σ
√
ρ2
10 + ρ2

01

Blob: +
−λ

Line: 2−
1
2 (γ+
−λ)

Saddle: γ

Basic Image Features Basic Image Features (BIF) is a set of scale-space
features obtained from Gaussian convolution of the image [32, 92]. BIF is based
on the six Gaussian derivative filters up to the second order which are illustrated
in Figure 2.5. This figure also illustrates the seven basic image features which are
calculated according to Algorithm 2. ρij is the filter response from the Gaussian
derivatives, η is a parameter controlling the assignment of features as flat, and
σ is the standard deviation used in the Gaussians. Each pixel is assigned to
the highest feature response, so every pixel in the image is represented by one
BIF. Changing the standard deviation will result in a scale change of the feature
response, so these features can easily be adapted to different scales. Orientation
can also be included in the feature descriptors. The slope, line, and saddle
features have principal directions, which has been used in for example [92] for
orientated BIF, the so called oBIF’s.
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Crosier and Griffin [32] use the BIF for texture classification, where they obtain
an image characterization as a histogram of the BIF distribution. To improve the
discriminative power of the features, each BIF is calculated over four scales, re-
sulting in 1296 -dimensional (64) normalized descriptor histogram, which shows
to have very good classification performance. We will later show that BIF also
performs well for texture segmentation, see Section 3.4.

Textons Textons is a set of local image features, which was first described
by Julesz [79]. Julesz used the term texton to describe a set of discriminative
features of first and second order statistics. Later more operational approaches
for the modeling of textons have been given. Examples include a generative ap-
proach described by Olshausen and Field [110] and a discriminative procedure
described by Leung and Malik [90] and Malik et al. [98], and these methods are
compared by Zhu et al. [159]. We will give a short explanation of the funda-
mental elements of the two approaches. The generative method for modeling
textons is based on a over-complete set of basis functions, for example Gabor
basis or Laplacian of Gaussians. Let us denote the set of basis functions ψ. An
image can then be modeled as

I =
n∑
i=1

aiψi + ε. (2.10)

ε is an image noise element and ai are the contributions of the basis functions.
144 basis functions are used in [110], but the modeling is done sparsely so most
of the ai’s are set to zero. The basis functions ψi are treated as latent variables
and they are inferred in a probabilistic model base on an EM-learning algorithm
[159].

The discriminative approach for modeling is based on a set of filter responses.
Each basis is convolved with the image giving a response in each pixel. These
responses are placed in a vector with the same dimensionality as the number of
filters. Let us denote the filters {φ1, ..., φn} and we denote the image I. From
this we obtain the filter response vector

b = [φ1 ∗ I, ..., φn ∗ I]T . (2.11)

The hypothesis is that these features is well represented as a discrete set of
image patterns. The image patterns can be found as clusters in the feature
space and in [98] this is done using k-means. The cluster centers are the image
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textons and the rest of the feature vectors are viewed as noisy versions of these
patterns.

Both the generative and discriminative texton modeling are good at identifying
characteristic texture features in the images that they are trained from, mak-
ing useful as basic image elements for solving different computer vision tasks
including image segmentation and classification.
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Chapter 3

Image segmentation

The work in this chapter is done in collaboration with Ali Shokoufandeh and Pe-
ter Bogunovich from Drexel University, Philadelphia, USA, and Henrik Aanæs
from DTU Informatics, Lyngby, Denmark.

Image segmentation is the problem of partitioning an image into a set of co-
herent parts. This is useful for many computer vision applications like image
retrieval, object recognition, object classification, image registration, etc. Typi-
cally these applications rely on matching the visual patterns of different objects.
Most natural images contain several objects with occluding boundaries and the
objects of interest may also be occluded by other objects. Segmentation can
be a pre-processing step that allows objects to be matched with minimal influ-
ence of other scene elements. Segmentation is also very important tool for the
logTracker system, where many of the visual features relevant for estimating
wood quality and volume will benefit from image segmentation. Examples of
applications are finding wood logs in the forest or estimating the shape of a log.
Our segmentation procedure includes texture analysis which is important for
the highly textured wood logs.

In this chapter a novel image segmentation method is introduced. The method
is partly described in [35], and a segmentation example is shown in Figure 3.1
illustrating the potential of the procedure. Our segmentation method is based
on Iterative Function Systems (IFS) and the principle of contraction which is
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(a) (b) (c)

Figure 3.1: Texture segmentation from contextual contractive maps. Figure (a)
shows a heterogeneous image created by composing a bark texture with itself
rotated 90o in a masked out area. The mask is obtained from the zebra as seen
in figure (b) and the resulting segmentation is shown in figure (c).

also the foundation of our method. Our work on segmentation is inspired by the
use of IFS for image compression, know as Partition Iterative Function Systems
(PIFS) [4, 53, 76].

We will begin the chapter by discussing the problem of texture segmentation
and how it relates to other work. We will then introduce PIFS and show how
it is used for image compression. We use this theory to develop a novel set of
image features that we call kernel -PIFS (kPIFS). The segmentation procedure
is based on these features, and we will explain this procedure in the following.
Finally, experimental results are presented which shows the high potential and
flexibility of the procedure.

3.1 Related methods for segmentation

In segmentation we want to group pixels that share some property [23, 48]. The
simplest segmentation problem is intensity based segmentation, where image
regions with uniform color or intensity are identified. But many images have
a degree of complexity that limits the usefulness of these methods, for exam-
ple the problem of textured image regions. Texture segmentation is usually
harder because identifying uniformly textured regions requires a texture analy-
sis included in the segmentation procedure. Probably the hardest segmentation
problems are identifying semantically meaningful regions that can have high
variation in both texture and color within the same region. An example is peo-
ple that often resembles large visual variation. In this chapter we have focused
our work on texture segmentation.
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(a) (b) (c)

Figure 3.2: Problem of boundary detection of textured objects. Figure (a)
shows the original tiger image and Figure (b) and (c) are small image patches
obtained from the white squares in Figure (a). Looking at the tiger as a whole
it is quite easy to identify the boundary, but the black stripes merge into the
background at a local level.

Approaches for segmentation Segmentation can be approached in many
ways, but an important element is the degree of prior knowledge that is used
for guiding the partitioning. Methods building on prior knowledge are called
supervised segmentation, and this can be done by giving initial seed points to the
segmentation algorithm [8, 75], by predefining the number of segments [7, 114],
by searching for known image features [7, 98] or image classes [23], or by having
a predefined shape model that is fitted to the image [12, 60]. Segmentation
based on no prior assumptions is called unsupervised segmentation [48].

The typical way of segmenting an image is by image similarities. Supervised
methods are typically guided by known image elements or features, whereas un-
supervised methods are limited to the similarities within the image. This makes
the choice of image characterization an important element for a segmentation
method. We will now discuss some procedures for obtaining the image segments.

A common way to perform segmentation of textured images is to extract a set
of texture descriptors and use the similarity of the descriptors to find homoge-
neous image regions. Typically, the segmentation should be found close to pixel
accuracy, but the problem is that the scale of the texture is much larger than the
pixels making it hard to find accurate boundaries. Malik et al. [98] point at this
scale and boundary issue as the two major problems for texture segmentation.
The issue of scale relates to the distribution of the repeatable image patterns
making up the texture. The repetitions may vary over scale, for example the
stripes of the zebra in Figure 3.1 (b). The stripes on the back are much wider
than the ones on the leg, but both should be categorized as the same texture.
Figure 3.2 illustrates the issue of detecting boundaries of textured objects. At
a large scale the boundaries are quite easy to find, see Figure 3.2 (a), but at a
local level the stripes of the tiger merge into the background, see Figure 3.2 (b)
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and (c), which makes it impossible to segment the object based only on local
pixel information.

Splitting vs. merging Segmentation procedures can roughly be categorized
as either bottom-up or top-down. The top-down segmentation is performed
starting with the image as a whole and splitting it until a desired segmentation
level is reached. One of the simplest ways to perform top-down segmentation is
through thresholding of intensity values. The basic approach is to find a number
of thresholds for grouping the pixels which has been done in a number of ways.
The simplest thresholding is binary segmentation, where the pixels are grouped
in two. One criteria for a binary segmentation is formulated in [111] where a
threshold value is selected to minimize the within class variance. Many other
criteria for selecting thresholds have been developed and a survey can be seen
in [128]. Despite the robustness and simplicity of the technique, making it good
for example character segmentation, it cannot handle many natural images,
especially images containing texture. A more advanced example of top-down
segmentation is the normalized cut algorithm of Shi and Malik [132]. In this
procedure the image is modeled as a graph, with each pixel being a node, and
the segmentation is performed as graph-cuts.

In the bottom-up approach small image elements, for example pixels, are treated
as initial segments, and the process is to merge these basic image elements. An
example of a bottom-up approach is the region growing algorithm of Adams
[2] where a number of seed regions is found. Image segments are obtained by
adding neighboring pixels to the regions according to some similarity measure.
Another bottom-up approach for segmentation is the mean-shift algorithm of
Comaniciu and Meer [30]. Mean-shift is a clustering algorithm and the segmen-
tation is performed by grouping the image pixels. Each pixel is treated as an
image descriptor based on pixel intensity and the spatial location make up the
descriptor. An iterative procedure is applied to each image descriptor, and in
each iteration the mean value of a local neighborhood is found. The descriptor
is replaced by this mean value until convergence. The neighborhood is found
as all points within a given distance from the descriptor, and this distance is
given as a parameter to the procedure. Mean-shift has later been used for other
segmentation procedures such as based on wavelet features [48]. k-means is
another cluster-algorithm that has been used for segmentation [72].

Class-specific supervised segmentation Knowing what you are looking for
can be a great help for precise segmentation which has been shown in Borenstein
and Ullman [23]. They perform object specific segmentation by matching a set
of image patches with regions labeled as background and object. To handle
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scale variation they obtain and match the templates at a range of scales, and
the segmentation is done by selecting the most probable matching templates.
In [22, 130] this method is extended to encoding the image in a tree structure
and performing the segmentation using a normalized cut like criteria. Each
node in the tree is assigned to be either foreground or background by combining
the information obtained from matching the labeled templates and information
from local similarity including intensity, texture, and boundary properties. In
[85, 91] this was further extended to include neighbor information by the use
of markov-random-field. These methods have been shown to perform well with
a limited number of known classes, but extending them to a large number of
classes will be hard, because class specific labeled image patches have to be
available for each class.

Active contours The difficulty of texture boundary segmentation can be
handled by modeling them as active contours. Active contours, also known as
snakes, was introduced by Kass et al. [81] and has been used in a large number
of texture segmentation procedures, see for example [6, 26, 70, 71, 74, 78, 114,
121, 124, 160]. The basic active contour as introduced by Kass et al. is an energy
minimizing spline which contains an internal energy term, external energy term,
and an energy term related to the image information. The internal energy affects
the bending of the spline and consists of a first and second order element. The
external energy is model-defined and acts like springs on the active contour.
Features like edges and corners affect the image dependent term. These three
energy terms are modeled as a weighted sum and the goal of the active contour is
to minimize this sum which makes the snake follow the contours of the objects.
The original formulation of the active contour model is problematic for texture
segmentation, because it depends on image features like edges, and textured
images typically contain many internal boundaries [75]. To overcome this issue
the image energy term is modified also to be based on region characterization
of the image by a set of image descriptors. In Houhou et al. [74] the descriptors
are based on the principal curvatures of the image surface, in Paragios and
Deriche [114] the descriptors are modeled as a mixtures of Gaussians for filter
response distributions, and in Zhu et al. [160] as a mixture of Gaussians for
intensity distributions. Finding the place to initialize an active contour can be
problematic, but when this is solved the active contours give impressive results
for unsupervised texture segmentation, which is also why they have become very
popular.

Watershed Segmentation has been inspired by watersheds from topography,
which are the phenomena of water flowing to the lowest parts in the landscape.
Viewing the image as a landscape with the intensity being the altitude, seg-
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mentation is performed by simulating flow of water. Vincent and Soille [150]
presented an algorithm based on these ideas. The principle of the algorithm is
to initially find the lowest parts of the image “landscape” and start flooding the
image from here. This is effectively done by sorting the pixels and adding them
to the image with increasing intensity, which leads to connected components
making up the segments. Boundaries between segments are found when con-
nected components meet. A similar procedure based on color utilizing the LUV
color space is presented in Shafarenko et al. [129], where they segment natural
images based on color gradients. A very fast version of the basic watershed al-
gorithm is presented in Sun et al. [138] based on chain codes. They obtain high
computational performance while retaining the precision. In Haris et al. [65] a
watershed segmentation method is presented. In their procedure image is ini-
tially smoothed while preserving the edges and a set of segments is obtained
using the watershed algorithm. The final segmentation is done by grouping
neighboring segments based on an adjacency graph utilizing the edge response.
The ideas of noise reduction and adjacency graph matching have similarities to
our procedure.

Repetitive patterns and image self-similarity An important element of
texture characterization is repetition of small image patterns [120], which has
been used as the basis for several segmentation procedures. This use of repetitive
elements relates both to texture and larger image structures. The segmentation
procedure described in Zeng and Van Gool [157] is based on identifying repetitive
patterns in images. k-means clustering of pixel color is used for initializing the
procedure resulting in an over-segmentation. Based on these segments they find
point wise repetitive patterns. The comparison of patterns is based on mutual
information. This makes the method capable of handling imperfect repetitions
of image elements, which is often seen in natural images.

Repetitive elements are also an important aspect of the segmentation procedure
of Bagon et al. [8]. Their method is based on the principle of segmentation by
composition described in [20]. They introduce what they call “a good image
segment” as one that is easy to compose from parts of the segment but hard
to compose from other parts. In their procedure image elements are compared
by composing, in a puzzle-like manner, one part of the image from other image
parts. If it is possible to compose large image elements form other large image
elements, then these elements are likely to belong to the same segment [19, 21].
Salient image regions can also be detected, because these regions are hard to
compose from other parts of the image. Their segmentation procedure is based
on maximizing the sum of three measures including a foreground to foreground
similarity measure, a foreground to background dissimilarity measure, and a
boundary measure. The boundary measure favors large gradients. Similarity
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is found within a transformation map, and the procedure builds on local ev-
idence, i.e. similarity within a window, and global evidence, which is across
the entire image. The similarities found in [8] are based on SIFT [95], color
histograms, texton histograms [98], shape context [15, 16], and self-similarity
descriptors [131]. Self-similarity is the property that one image element is sim-
ilar to other image elements. An example is an image of a face where one
half of the face is similar to the other half through a mirror transformation.
Self-similarity is a common property in images especially for small image pat-
terns. The self-similarity descriptors of Shechtman and Irani [131] capture local
geometric self-similarities which enables matching of similar geometric shapes
despite significant texture differences. This idea of encoding images in relation
to self-similarities characterizes the geometry of objects, which is important
in many applications besides segmentation. These applications include image
registration, object recognition, object classification, etc. The segmentation re-
sults obtained from “segmentation by composition” [8] are very impressive, for
example accurate segmentations of people.

The suggested procedure The procedure that we suggest for image segmen-
tation is unsupervised, so the number of image segments and their localization is
automatically found by the method. It combines the top-down and bottom-up
approach, by initially decomposing the image into a set of sub-images structured
in a quadtree. The decomposition is guided by IFS and contractive functions,
and it is only done on boundary regions. We apply a bottom-up merging step
based on planar graph merging for identifying the final image segments. Image
elements are compared based on a set of descriptors that we developed from the
ideas of PIFS, BIF, and textons.

3.2 PIFS for image compression

Our segmentation procedure builds on IFS and the principle of contraction. We
have developed a novel set of image features called kPIFS which is based on
the ideas of PIFS for image compression. We will first introduce PIFS and then
describe the kPIFS image characterization.

Partition Iterative Function Systems Storing images as raw pixel intensi-
ties can take up much memory, and often images contain redundant information,
which enables a more effective data representation. Image compression is the
problem of transforming an image to a representation, which takes up less mem-
ory than the original pixel representation. Compression involves an encoding
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Figure 3.3: PIFS maps for image compression. This is a simple illustration of
how the PIFS maps can be obtained. The original image shown in (a) is divided
into a set of domain and range blocks, and a small sample of these blocks is
shown in (b). The contractive PIFS maps are obtained by identifying the best
matching domain block for each range block. In this process the domain blocks
are down-sampled to have the same size as the range blocks. Furthermore, the
domain blocks are allowed to be rotated and flipped, and the intensity can be
changed within the limits of a linear transformation.

step, where the image is transformed, and a decoding step, where the image is
transformed back to original pixel intensities. Compression can be exact, where
the image can be reconstructed so every pixel value is the same as the original,
or it can be lossy, which is when the reconstructed image looks like the original
but not all pixel values are the same as the original [53]. For systems with lim-
ited memory or networks with limited transmission capacity, image compression
can be a great advantage. We will now present the PIFS for image compression.

PIFS have been developed for image compression, and the fundamental obser-
vation behind this approach is that an arbitrary image can be encoded by a
set of contractive functions. The decoding process is to iteratively apply these
functions to an arbitrary image, making this image converge to a fixed point
approximation of the original image. The contractive properties of the PIFS
make the decoding independent of the starting image, so the typical choice is to
start with an empty image of all zeros. The only information necessary for re-
constructing the original image is the set of image maps, so the PIFS procedure
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transforms the image representation from an array of pixel intensities to a set of
contractive maps [53, 76]. Several authors have shown that the effective encod-
ing and stability properties of PIFS make it suitable for image compression, see
for example [4, 53, 56, 76, 151]. There have also been suggestions for using the
PIFS encoding for other image processing tasks, see for example [4, 156, 158],
which is in line with our technique.

The main problem in PIFS based image compression is to obtain a set of con-
tractive maps with a fixed point image close to the original. Jacquin [76] was one
of the first authors to suggest partitioning an image into a set of range blocks
and larger domain blocks to obtain these maps, and the mapping is found by
comparing domain and range blocks as illustrated in Figure 3.3. The image
is encoded by self-mappings, i.e. contractive maps from a part of the image
onto itself. We will now give a detailed description of the image compression
technique.

The compression technique Details of the PIFS codes, how they are ob-
tained, and how the image is decoded will now be presented. Image compression
based on PIFS is lossy, but has potential for high compression rates. The method
is based on a set of contractive self-mappings, which is mapping a part of the
image onto itself. The only restriction is that these maps have to be contrac-
tive, but for simplicity reasons these maps are normally constrained to be affine
transformations. If we let fi be an affine contractive self-mapping for the i’th
element in the PIFS then we can write fi as:

fi

 x
y
z

 =

 ai bi 0
ci di 0
0 0 αi

 x
y
z

+

 tx
ty
βi

 . (3.1)

These affine self-mappings are obtained by comparing parts of the image to
itself. A simple way of doing this, is by partitioning the image into a set of
non-overlapping square sub-images of size nr × nr. They are the range blocks
and denoted rk. Furthermore, we partition the image in to a set of square sub-
images of size nd × nd, which are called domain blocks and denoted dj , and the
domain blocks are allowed to be overlapping. In this example the size relation
between the range and domain blocks are: nd = 2nr. The domain blocks are
allowed to be overlapping. The affine transformations described in equation
(3.1) should ideally fulfill the criterion

rk = fk(dj), (3.2)
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but normally it is not possible to find exact matches between range and domain
blocks. This block is found by estimating the affine transformation making the
domain block as similar to the range block as possible. This map contains a
geometric and an intensity element. Let us denote the intensity map φ and the
geometric map γ, then we get the total map

f(dj) = φ(γ(dj)), (3.3)

where dj is the domain block. The first step of the geometric map is to down-
sample the domain blocks to the size of the range blocks. To reduce the compu-
tational complexity of the geometric map, the domain blocks are restricted to
eight configurations, i.e. four 90 o rotations and the mirrored versions of these.
Let us denote the geometrically transformed domain block d̄j . The intensity
map is found by the following minimization

min
(α,β)

||αd̄j + β − rk||. (3.4)

As shown in for example Fisher [53] this is simple to solve using least squares

min
(α,β)

(αd̄j + β − rk)2. (3.5)

Given one geometrically transformed domain block d̄j containing pixels ai, i =
{1, ..., n} and a range block rk containing pixels bi, i = {1, ..., n}, we want to
minimize the following equation with regard to α and β

ψ =
n∑
i=1

(αai + β − bi)2. (3.6)

Finding the minimum squared distance of the pixel intensities in the two image
blocks is done by estimating where the partial derivatives with respect to α and
β are equal to zero. The solution is
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α =

[
n

n∑
i=1

aibi −
n∑
i=1

ai

n∑
i=1

bi

]
n n∑

i=1

a2
i −

(
n∑
i=1

ai

)2
 (3.7)

β =
1
n

[
n∑
i=1

bi − α
n∑
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ai

]
. (3.8)

The image is encoded by finding the domain block that minimizes ψ from equa-
tion (3.6) and storing that map, i.e. the geometric map (origin, rotation, and
mirror) and the intensity map (α and β). Both the intensity map and the
geometric map have to be contractive for obtaining a fixed point image. The
contraction of the geometric map is done by scaling down the domain block,
which helps in obtaining the individual pixel values. If for example no geomet-
ric contraction was involved, we could have two image blocks acting as domain
blocks for each other. These blocks would have an attractor with only one value
for all pixels in the blocks, removing the detailed pattern of these blocks. Even
though we will find a unique attractor without geometric contraction, there
would be a risk of a poor reconstruction result. This makes the contractive
property of the geometric map important. The intensity map is made contrac-
tive by ensuring that |α < 1|, but in practice this has shown not to be strictly
necessary [53]. It turns out that some intensity maps can be non-contractive as
long as the PIFS encoding is contractive as a whole.

The decoding process is to apply these maps to an arbitrary image. Given a
contractive PIFS encoding we know that it has one unique fixed point, so we
will obtain the same fixed point independent of the initial image. The PIFS
decoding is usually fast, as the example in Figure 3.4 shows.

The described procedure is relatively simple and can be extended in several
ways. Decomposing the image into range and domain blocks does not have
to be squares, but can be shaped as rectangles or triangles. Furthermore, the
scale relation between the domain blocks and range blocks does not have to be
two, as long as the domain blocks are larger than the range blocks resulting
in a contractive geometric map. Changing the image domain from intensity to
wavelet has also shown to be effective. In the intensity domain the compression
often results in images with blocky artifacts, which can be avoided using the
wavelet domain. Many other issues have been investigated for improving the
quality and speed of the compression procedure, see for example [4, 53, 56, 152]
for a discussion of these issues.



36 Image segmentation

(a) (b)

1. 2. 3.

4. 5. 10.

Figure 3.4: Reconstruction of an image using PIFS. Figure (a) shows the orig-
inal and Figure (b) shows the iterations from one to five and iteration number
10 of the reconstruction. The shape of the see star is apparent already after the
first iteration and it is almost fully reconstructed after 5 iterations. There is
almost no change after 10 iterations.

Related image processing based on PIFS By far the most work based
on PIFS is for image compression, but the method has also been used for other
image processing tasks. Alexander [4] suggested an interesting extension of PIFS
for edge detection. He found that edges are more likely to occur if the average
collage error of the domain blocks is high, which he used for edge detection.
Related to this procedure, Xu and Wang [154] suggested to use the collage error
as an indexing technique for image retrieval. They found an image descriptor
by building a histogram of collage error for the best matching domain block in
each range block, and they used this descriptor for image retrieval of textured
images.

Zhang et al. [158] used the PIFS encoding for a texture based retrieval system.
The system is based on measuring the similarity between images by comparing
PIFS image maps, i.e. both the geometry and intensity maps. The hypothesis
is that similar images will have similar PIFS encoding. For identical images this
will work perfect, but it will be problematic for images covering different parts of
a scene because the set of domain blocks change. To overcome this problem they
suggest to use a so called nona-tree which is built from a hierarchical splitting
of the images into sub-images. Each sub-image contains a set of domain blocks
which is used for encoding. This procedure will ensure that two images parts
depicting the same scene element will have the same PIFS code.
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Figure 3.5: Domain kernels for kPIFS image characterization. Domain kernels
are mapped to image range blocks, and from this we obtain an image descriptor
as a normalized histogram of domain kernel distributions.

The common theme for several image retrieval methods are based on variations
of of PIFS feature histograms [41, 108, 117]. These methods either encode the
PIFS parameters as an index or bin the parameters into a histogram. The PIFS
parameters used in the image descriptors include both the parameters in the
intensity map, parameters in the geometric map, and the mean intensity value
of the range blocks. These image encodings are used as image signatures for
retrieval applications. Many suitable distance measures exists for solving this
problem.

Our segmentation procedure is similar to the above mentioned techniques be-
cause it is based on a set of histogram descriptors obtained from the PIFS
method presented by Jacquin [76]. But there are some significant differences in
how we obtain our kPIFS features that differentiates our image characterization
from the methods described above. Using kPIFS features is only one part of
the method, and we will later describe how we use IFS and contractive maps
for the actual segmentation. First we will explain our kPIFS features before we
give an explanation of the actual segmentation procedure.

3.2.1 Image characterization from kernel-PIFS

Instead of the contractive self-mappings, which is the basis of traditional PIFS,
we make an accurate characterization of image textures by replacing the domain
blocks with an over-complete basis set of image blocks which we call domain
kernels. An example of a set of domain kernels is illustrated in Figure 3.5.
Our image descriptors is a distribution of domain kernels found by mapping the
domain kernels to the image range blocks. We call this modification kernel PIFS
(kPIFS).
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Figure 3.6: Mapping of domain kernels to image range blocks. The range
blocks are exemplified from a small sample from the original (a), but in the
actual application the whole image is divided into range blocks. Each range
block is matched to the best mapping domain kernels illustrated in (b). Just
the best mapping domain kernel is chosen here for illustrative purposes, but in
the actual matching a number of best mapping domain kernels are chosen as
explained in the text.

Figure 3.6 illustrates the mapping of domain kernels to the image range blocks.
The size of the domain kernels and the range blocks are the same, so there is no
scaling involved in these maps. We also avoid the reorientation of the kernels,
because this will remove important information from the image characteriza-
tions. The procedure of the mapping is to decompose the image into a set of
image range blocks just like in the traditional PIFS mapping. All the domain
kernels are mapped to each range block, and the best mapping domain kernels
will characterize the range block, i.e. the domain kernels resulting in the lowest
collage error. The kPIFS descriptors are inspired by the textons [98, 110] and
BIF [32]. Both textons and BIF densely describe local image patterns over the
image, and this way characterize the basic image structure, which is similar to
how we use kPIFS. An advantage of the kPIFS procedure is that the descriptors
are localized precisely because there is no smoothing effect from a convolution,
which is the case for both BIF [32] and textons [90]. We will now give a detailed
description of the kPIFS descriptors.
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Figure 3.7: Mapping image blocks using Least Squares (LS) and our variance
approach (Var). Each row displays a map from the image patches in the first
column to the patches in the second column. The resulting maps are shown
in column three (LS) and four (Var). The first image patch shows a blob that
is mapped to a blob with inverted colors. LS maps perfect by inverting the
color whereas the variance approach keeps the color relations and make a poor
match. The variance approach does a better job in relation to a discriminative
objective because this method reveals the difference between a light and a dark
blob. For a block with half of the block being similar as shown in row two
the LS approach results in a flat block, whereas the variance approach keeps the
original intensities revealing the difference between the blocks. The last example
shows a linear transformed block, and both methods are capable of finding the
exact map.

kPIFS maps The first element in the kPIFS image characterization is to
map the domain kernels to the image range blocks, and we will now describe
the details for obtaining these maps. It should be noted that the kPIFS maps
are not contractive. The usual way of mapping domain blocks to range blocks
is by least squares, see equation (3.5), but we have found it better to find a
map where the transformed domain kernel and the range block have the same
standard deviation of the pixel intensities. Figure 3.7 illustrates some examples
where this approach is superior to the normal least squares approach. Let us
denote the standard deviation of the range block σrk

, the domain blocks σd`
,

and the transformed domain block σf(d`). We have the linear transformation
relating the domain and range blocks and we restrict the standard deviations of
the range block and the domain block to be the same

rk = f(d`) = αd` + β (3.9)
σrk

= σf(d`). (3.10)
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From this we get the standard deviation of the transformed domain block

σf(d`) =
√

var(αd` + β) =
√
α2var(d`) = ασd`

. (3.11)

From this we can estimate the parameters

α =
σrk

σd`

, (3.12)

β = rk − αd`. (3.13)

This restriction enables us to normalize the image blocks, so they can be pro-
cessed as data points. Observe that the ranking of the domain kernels relative to
a given range block will stay the same independent of an affine transformation
of the range block. This is under the constraint that both range blocks and
domain kernels have the same σ. This observation enables us to normalize the
blocks to have zero mean and standard deviation of one. Then the matching
problem is simplified to the absolute difference between the range blocks and
domain kernels

d′` =
d` − µd`

σd`

, (3.14)

r′k =
rk − µrk

σrk

, (3.15)

ε′[d`,rk] = ||d′` − r′k||1. (3.16)

The normalization will be highly influenced by noise if σrk
is small, and it is not

possible to estimate it if σrk
is zero. To avoid this situation we use a measure of

flatness for the range blocks which is done relative to the mean intensity value.
Let us denote flatness of the range blocks bf and let the flatness be estimated
as

bf =
σrk√
µrk

. (3.17)

We categorize the range block as flat if bf < tf where tf is a threshold. Mea-
suring the flatness relative to the mean value allows for higher variance at high
intensities.



3.2 PIFS for image compression 41

The domain kernel maps are used for calculating the kPIFS image descriptors
and we will give a detailed explanation of the elements involved in this charac-
terization.

kPIFS descriptors The kPIFS descriptors are based on all elements involved
in the kPIFS maps. This includes the best mapping domain kernels and the α,
β, flatness, and collage error parameters. All of these elements are represented
as a histogram, and in the following we will explain how to obtain this histogram.
The image descriptors are built by combining domain kernel distributions and
map parameters. The map parameters are continuous, so their distribution is
found using a discrete set of bins within an interval.

The set of parameters is treated as independent random variables, which might
cause loss of valuable information, but we found it to be a good compromise
for limiting the dimensionality of the descriptor vectors. The combinatorial
consequence of treating a set of parameters as dependent variables leads to high
dimensional descriptors. An example is the BIF features in Lillholm and Griffin
[92], where each pixel has six possible values over four scales resulting in a
1296 dimensional descriptor. The size of the descriptors will grow exponentially
with the number of scales for BIF descriptors and sample points for the LBP.
One extra scale in the BIF feature will give 7776 dimensional descriptors and
six scales will result in 46656 dimensions. The problem of high dimensional
descriptors is that we will need many observations to get a reliable distribution.
There are ways to reduce the descriptor dimensionality, for example principal
component analysis (PCA) [67], but we have chosen the simpler solution, i.e.
to treat the parameters independently. We will first explain how the descriptor
containing the domain kernel is built and then explain the other parameters and
how they are combined.

A subset of the domain kernels is used for characterizing each range block, so
the histogram characterizing the range block will contain a contribution from
a number of domain kernels. The contribution to the histogram is found by
weighing the domain blocks relative to the similarity of the range block. Let us
denote the dissimilarity between a domain kernel and a given range block by δ,
the standard deviation of all the domain kernels and this range block σδ and
the minimum dissimilarity by mδ, then we obtain the weight as

tw = γσδ +mδ, (3.18)
w[rk,d`] = max{tw − δ, 0}, (3.19)
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tw is the parameter for the distance weight. γ is a parameter controlling the
contribution of the closest domain kernels. If γ is close to zero, only the closest
domain kernels contribute, whereas larger values will increase the number of
non-zero domain kernels. We found a value of γ = 1 to be appropriate. The
normalized descriptor vector is obtained as

wrk
=

( ∑
d`∈DI

w[rk,d`]

)−1

{w[rk,d1], ..., w[rk,dn]}. (3.20)

For each of the parameters α, β, flatness (bf ), and collage error (ε) we define
an interval which we divide into nb equally spaced bins. The interval for α is
(0.005, 0.15), for β it is (−25, 0), for bf it is (0.1, 4.5), and for ε it is (20, 60), and
if any parameter value is above or below the defined interval it will be placed
in the first or last bin. We found the descriptors to be good with a low number
of bins and nb = 3 to be good choice. The different descriptor parts is weighed
with a weight of 0.5 for the kernel part and 0.125 for the other parameters.
These parameters are all obtained empirically. The resulting descriptor is of 89
dimensions.

Color can also be added to the image descriptors. This is done in a very simple
manner by first histogram equalizing the image. Then the frequencies of R, G,
and B values within a descriptor patch are counted in nc equal sized intervals
resulting in a 3× nc normalized histogram which is concatenated to the kPIFS
texture descriptor. This placement of colors in bins is similar to the binned
texture parameters, i.e. α, β, flatness and collage error. Equal weights are given
to the texture and color parts of the descriptor. We found the best performance
with a relative low number of bins and we chose tree bins for each color channel.
The resulting color added descriptor has a dimensionality of 98 dimensions.

In contrast to the PIFS image compression method we obtain the range blocks
as overlapping image parts which gives a denser sampling of the image compared
to traditional non-overlapping blocks. From these range block descriptors we
can obtain an image descriptor from an arbitrary part of the image by combining
range block characterizations and normalizing the obtained histogram.

3.3 Segmentation from contractive maps

Having described the kPIFS image characterization we will now describe the
actual segmentation procedure. The principles of the procedure is shown in
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(a) (b)

(e)(d)(c)

Figure 3.8: Elements of the suggested segmentation procedure. Figure (a) is
the initial image. Figure (b) is the PIFS inspired features that we map to the
original image to obtain a feature space representation. Figure (c) shows the
decomposition of the image into small image samples. The samples in border
regions are decomposed to deeper levels than samples in non-border regions.
The top image of Figure (d) is the over-segmented image obtained from the
top-down procedure in (c). These segments are merged in relation to the planar
graph shown in the middle image resulting in the final segmentation in the
bottom image. The final segmentation is shown in Figure (e).

figure 3.8 and it involves a top-down decomposition of the image and a bottom-
up merging of the decomposed regions. From the decomposition we obtain a
quadtree graph where each sub-image results in a descriptor forming the nodes
in the quadtree. The edges in the tree connect the sub-image to its parent and
children. The root node is a descriptor covering the entire image, the next four
nodes cover a quarter of the image each, etc., see Figure 3.8 (c). The bottom
up grouping of the decomposed regions is based on image discrepancy. We will
start by explaining the top-down procedure.
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Top-down decomposition In the first step of the top-down procedure we
begin the construction of the quadtree by decomposing the image to some start
level lstart, where level 1 is the root covering the entire image, by splitting the
region nodes at each level into 4 child sub region nodes. Once we are at level
lstart we calculate a descriptor histogram for each of the 22(lstart−1) region nodes
by averaging the kPIFS descriptors making up each region and normalizing.
From this point onward iterative transformations for each node at the current
level are constructed based on the local spatial neighborhoods and are applied
to each of the nodes until an approximate convergence is reached. At this point
stable regions are identified and the next level of the quadtree is constructed
from the children of the nodes based on some stability (or discrepancy) measure.

In practice the choice of lstart is important in determining the resulting segments.
If lstart is a small number then there is a risk that the region nodes identified
as stable will still contain much heterogeneity while a larger lstart can result in
an over-segmentation. We have experimentally found that lstart = 6 is a good
choice as a start level, i.e. at 32× 32 sub-image nodes.

An IFS consists of a set of contractive maps as described in section 2.2. Our
segmentation method has similarities to the PIFS for image compression. Our
method is based on finding a set of contractive maps f and where we obtain one
map for each sub-image. The maps are applied in the feature space, i.e. on the
kPIFS characterization of the sub-image. In the iterative mapping procedure
the image descriptors are combined with their spatial neighbors. The idea is
to make similar neighboring descriptors become more similar and let dissimilar
descriptors keep their dissimilarity. We will now explain the details of obtaining
the set of contractive maps.

The convergence of the transformation rely on properties of contractive trans-
formations in a metric space which is described in Theorem 2.10 [122]. The
importance of this theorem is that if we can show a transformation to be con-
tractive in a defined metric space, then we are sure that some fixed point will be
reached by applying the transformation iteratively. The metric space is defined
as the set of kPIFS image region descriptor histograms which can be thought of
as lying in the space Rd. It follows that any metric on Rd can be chosen, but in
practice however we have just used the L1 distance metric, denoted by δL1 and
defined as δL1(x,y) =

∑d
i=1 |xi − yi|.

Specifically, given some descriptor wi at the current level of the quadtree, let
Ni denote the set of n × n spatially local neighbor descriptors around wi but
not including wi, and let µNi be the average L1 distance from wi to all of the
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other descriptors in Ni. We then denote a weighted average distance

tNi
= ψµNi

, (3.21)

where ψ is some weighting constant. Let N ′i = {wi} ∪Ni. We now define a set
of scalar weights for every descriptor in N ′i such that s(i,j) represents a measure
of similarity between wi and wj for wj ∈ N ′i . The weights are defined as

s(i,j) = max{(tNi
− δL1(wi,wj))/ci, 0}, (3.22)

where ci is a normalization constant so that
∑|N ′

i |
j=1 s(i,j) = 1. In this way all

s(i,j) ≤ 1, and each descriptor wj ∈ Ni has an associated similarity weight
s(i,j) with the special scalar s(i,i) being the weight for wi. Now define a new
descriptor vi to be a linear combination of the descriptors in Ni as

vi =
∑

wj∈Ni

s(i,j)wj , (3.23)

and our affine transformation Gi for descriptor wi is given by

Gi(w) = s(i,i)w + vi. (3.24)

We iteratively apply Gi to wi obtaining wn
i = G◦ni (wi) until convergence, but

due to the simple affine form of Gi it is particularly easy to demonstrate the
contractivity of the transformation. For arbitrary descriptors x,y ∈ Rd we have

δL1(Gi(x), Gi(y)) =
d∑
j=1

|(s(i,i)xj + vij )− (s(i,i)yj + vij )|. (3.25)

Notice that the vij ’s all cancel out and the s(i,i) can be factored out, simplifying
to

δL1(Gi(x), Gi(y)) = s(i,i)

d∑
j=1

|xj − yj | = s(i,i)δL1(x,y), (3.26)
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(b) (c)

(g)(f)(e)

(d)(a)

Figure 3.9: The contractive step with lowering ψ. The image is decomposed
into 16× 16 sub-images each characterized by a kPIFS descriptor. Each image
shows the L1 distance between the descriptor in the upper left corner and the
other descriptors. The original image is shown in Figure (a). Figure (b) is
without contraction, (c) the first step, (d) is the second, (e) is the fourth, (f)
the seventh, and (g) the tenth step. In each step ψ is lowered with 0.1 and the
start value of ψ = 1. In each step the contractive function is recalculated.

and since s(i,i) ≤ 1, we have that Gi is either contractive or it does not move
wi at all. If s(i,i) < 1 we are guaranteed by Theorem 2.10 to reach a fixed point
descriptor which we can denote by wi. In the case of s(i,i) = 1 the descriptor
will not move and the final descriptor will be the same as the one we start out
with. But we always choose to apply the function set on the same image that
we used for obtaining the function set, so this situation will have no practical
effect. In practice the convergence is quite fast and we generally need less than
10 iterations for ε = 0.01.

The neighborhood weighing factor ψ affects the segmentation result. Choosing
a large ψ results in relatively large but rather non-uniform image segments,
whereas a small ψ will give many small image segments. To ensure that the
image is not over-segmented, but still contain uniform regions we reapply the
contractive step at the same level in the quadtree with decreasing ψ. This is
illustrated in Figure 3.9.

When the fixed point descriptors wi are reached for all regions at the current
level, we identify the stability of each region based on the discrepancy of its fixed
point to the fixed point of its neighbors. SinceGi average each wi with its similar
neighbors, there is a strong possibility that sub-images in the regions with high
local discrepancy after the iterative procedure will cover different textures. To
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avoid misclassifications we split and repeat the contractive mappings on these
regions at the next level of the quadtree, as illustrated in Figure 3.8(c). The
discrepancy of a node is measured by comparing wi to the fixed points of its four
spatially nearest neighbors which we denote by the set N i. Let µN i

denote the
average L1 distance from wi to the descriptors in N i and let mN i

denote the
maximum distance from wi to N i, then the discrepancy measure of the region
is defined as

Di = µN i
+mN i

. (3.27)

Though we are only concerned with splitting and reprocessing unstable regions,
in practice all regions are split, and the stable regions are fixed and will not
change their descriptors. From Di we are able to calculate a border measure for
each node where max{Dj : j ∈ {1, . . . , Nk}} > 0 as

Bi = Di/max{Dj : j ∈ {1, . . . , Nk}}, (3.28)

where Nk is the total number of nodes at the current decomposition level. If
max{Dj : j ∈ {1, . . . , Nk}} = 0 then we set Bi = 0. Bi determines how wi’s
children descriptors are calculated. Let {w(i,j)j ∈ {1, . . . , 4}} denote the 4 initial
descriptors of wi’s children used in the next level of the quadtree. If Bi = 0
then the region is stable and there is no chance of wi covering a boundary
region and so we assign w(i,j) = wi for all children. When Bi > 0 we let
{v(i,j) : j ∈ {1, . . . , 4}} denote the descriptors of the child regions calculated as
the normalized sum of kPIFS histograms in the same manner as at the starting
level lstart. Then we obtain the new descriptors as

w(i,j) = (1− Bi)wi + Biv(i,j). (3.29)

An example of the resulting decomposition is shown in Figure 3.10.

Bottom-up merging of regions Upon the completion of the top-down pro-
cedure we obtain a quadtree decomposition of the image with leaves representing
non-overlapping stable image regions. The goal of the bottom-up procedure is to
merge these leaves into homogeneous clusters which form the final segmentation.

Our approach begins by forming a planar graph G so that the vertices of G are
the leaf nodes and an edge (i, j) is formed between vertices representing adja-
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Figure 3.10: Top-down decomposition of border regions. The shaded areas in
the images in the left column are image parts with high discrepancy, i.e. border
regions, and the right column shows the fixed point image.
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(a) (b)

Figure 3.11: Bottom-up merging of image regions. Part (a) shows the obtained
segments and (b) show the corresponding graph. Edge weights are given simi-
larity between the segments. In the right hand of (a) and (b) segments 1 and 2
of the left sides of (a) and (b) are merged.

cent image regions with edge weight equal to δL1(wi,wj), the distance between
the associated fixed point descriptors. The bottom-up procedure then merges
adjacent vertices of G based on edge weight. Let αi denote the percentage of
the total image covered by vertex i. Then αi is considered in the merging, so
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(a) (b)

(c) (d)

Figure 3.12: The bottom-up merging procedure. Figure (a) is the over-
segmented image obtained from the top-down procedure where each segment
has its own color. Figure (b) illustrates the boundary discrepancy with bright
colors indicating high discrepancy. High discrepancy indicates large difference
between segments. Figure (c) shows the final obtained segments, and Figure (d)
is the final segments shown on the original image.

the smallest regions will be forced to merge with the most similar neighboring
region and when merging any two vertices i, j the ratio αi

αi+αj
, αj

αi+αj
is used

for weighing i, j so that the merged vertex has a descriptor which is mostly
influenced by the relatively larger region.

The merging of vertices is done in two steps. Initially we merge all vertex pairs
i, j where the edge weight is close to 0, i.e. less than some small positive ε.
These regions had nearly identical fixed points and the disparity is most likely
only due to the fact that the fixed point is approximated. In the second step
we let ∆G denote the average weight in the current graph G which is updated
after each merging is performed. We proceed in merging the vertices i, j with
the smallest current edge weight until the relative weight δL1(wi,wj)/∆G is
larger than some threshold γmerge ∈ [0, 1). Figure 3.11 gives an illustration of
the process and Figure 3.12 shows an example on a real image.
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3.4 Experimental results

In this section we show the experimental results of our procedure. The images
used for testing our procedure are from the Berkley image database [101], the
UIUCTex texture database [89], the Brodatz textures [24], the Internet, and
images taken by the author. Our procedure has shown to be very powerful for
texture segmentation, which is demonstrated on a set of composed and a set of
natural gray scale images, and we compare our method composed textures in
Fauzi and Lewis [48] and to natural images in the state of the art methods of
Hong et al. [71] and Houhou et al. [74]. Our method is very flexible and we show
that it can handle many different segmentation problems by changing the set
of image descriptors. First this is demonstrated on a set of color images, which
is done by adding color information to the kPIFS descriptors. We have also
tested the procedure on images characterized by BIF features [32], see Section
2.3. Most results are displayed and qualitatively evaluated.

The first image set is from the UIUCTex texture database [89], and the images
are built by composing randomly chosen texture images into five regions, con-
sisting of four squares and an elliptical center region. Some segmentation results
are shown in Figure 3.13. The first six segmentations results shown in Figure
(a) to (f) are nearly perfect where all five regions are found and the borders
are found very precisely. In the next four segmentations shown in Figure (g) to
(j) the five regions are also found, but there are larger errors along the bound-
aries. Errors mostly occur where the boundaries are locally hard to distinguish.
In the last six segmentations shown in Figure (k) to (p) the number of classes
is wrongly found. For most of these images the textures can be very hard to
separate because they visually appear similar, for example in Figure (o) where
the transition from the center texture to the upper left texture is smooth. The
lower right texture in Figure (p) is separated into two along a scale gradient.
The blocky structure seen in for example Figure (h) probably caused by the
textures being hard to characterize at a fine scale making the descriptors very
influenced by the contextual inheritance. Therefore, the descriptors will stay
in the same segment throughout the top-down procedure. Overall, we find the
performance good. In most cases the right number segments are found and the
boundaries are found well. For most wrongly segmented textures it is easy to
see the reason for the errors.

Figure 3.14 shows results of the segmentation procedure on a set of natural
images. The dominating textures are separated quite well, but especially in
images with textured backgrounds there is a tendency for the background to be
partitioned into many regions. This is for example the case in Figure (a), (b),
and (h). A relatively easy image is shown in Figure (e) where the background
is very uniform. In Figure (f) there is a horizontal segment which is probably
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caused by the intensity gradient in this part. Figures (c) and (d) are especially
nice segmentations, because the tree trunks are found well despite the highly
textured background. These examples illustrate shows the large variation that
the procedure can handle.

In Fauzi and Lewis [48] they perform unsupervised segmentation on a set of
composed Brodatz textures [24]. We have compared the performance of our
method to their results by composing a set of images from the same set of
Brodatz textures. The compositions are made by randomly selecting a number
of these textures. We composed the images similar to [48], which is shown in the
first two rows of Figure 3.15. The composition into these square parts is very
well suited for our method because the descriptors precisely cover one texture.
To avoid this overlap between image composition and model we also made some
images with a round center surrounded by four elements divided in a cross. The
textures are D001, D011, D012, D017, D018, D024, D026, D053, D054, D055,
D065, D066, D074, D077, D086, and D102. The result of our procedure is shown
in Figure 3.15 and we obtain a very good segmentation for composed images
of two to five different textures. For most images there were only small errors
along the boundaries of the textures. We tested if the procedure was able to find
the correct number of textures in the examples containing five samples, shown
in row two of Figure 3.15, and in 19 out of 20 we were able to find the correct
number. Only in the example with the texture shown in the lower right corner
in Figure (h) was wrongly segmented, and the question is if this should be one or
two textures. In [48] they found 7 of 9 composed images. We conclude that the
selected Brodatz textures are quite easy because all images are characterized by
one scale and with good sharpness and contrast. This is not the case for the for
example UIUCTex data [89] (Figure 3.13), which was also harder to segment.

We have tested our procedure on the same set of images from the Berkley
segmentation database [101] as was used in Hong et al. [71] and Houhou et
al. [74]. The results are compared in Figure 3.16 and 3.17. Our method performs
well compared to that of Hong et al. especially in Figure 3.16 (a) and (c). It
should be noted that the focus of their paper is on texture scale applied to
texture segmentation. The results of Houhou et al. is very comparable to our
method and both methods find the depicted objects in all images. In Figure
(e) and (f) our method finds some extra textures which are clearly distinct. In
figure (k) and (l) both methods find segments that are not part of the starfish,
but are clearly distinct textures. There are slight differences in the two methods,
for example in Figure (a) and (b) where the object is merged with a part of the
background in our method, whereas it is found very nicely in the method of
Houhou et al. [74]. An example in favor of our procedure is Figure (m) and (n)
where part of the head and the tail is not found well by their method, whereas
it is segmented nicely by our procedure.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.13: Segmentation results on a composed set of texture images from the
UIUCTex database [88]. The borders are shown with a white line and texture
segmentation is performed using the kPIFS texture features.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.14: Segmentation results on a demanding set of images. The borders
of the segmentation are shown with a white line and the segmentation is based
on kPIFS.
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(a)

(h)(g)(f)(e)

(d)(c)(b)

(l)(k)(j)(i)

Figure 3.15: Segmentation of the Brodatz textures [24]. The composition of
the textures is inspired by the segmentation procedure of Fauzi and Lewis [48].
Segmentations borders are marked with white lines except (h) where a part in
the lower right is marked in black to make it visible.
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(a) (b) (c)

Figure 3.16: Comparative results. This figure shows our results compared to
that of Hong et al. [71]. Our results are on the top in (a) and (b) and right in
(c).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 3.17: Comparative results. This figure shows our results in column one
and three compared to the results from Houhou et al. [74] in column two and
four.
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(a)

(f)

(l)(k)(j)

(i)(h)(g)

(e)(d)

(c)(b)

Figure 3.18: Segmentation results with descriptors including color.

In Figure 3.18 we show an experiment where we have included color in the de-
scriptor. The performance of the color segmentation was quite good. Especially
images with clear color differences, like Figure 3.18 (b), (f), and (l), came out
very well. But also the oranges in Figure (d) and the flower of Figure (e) are
segmented into meaningful parts. Images with complex combinations of tex-
tures and color are now also possible to segment. A good example is the tiger in
Figure (j) but also the butterflies in Figure (g) and (i) are found very precisely.
The conclusion is that the method is strengthened by adding color to the image
descriptors. This experiment shows that the method is capable of doing a range
of tasks by varying the input image descriptors, which is extended in the next
experiment.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.19: Experiments with kPIFS and BIF texture descriptors. The images
in column one and three are kPIFS based segmentation and the images in column
to and four are the texture segmentation based on BIF descriptors.

Figure 3.19 shows the performance of our method when the kPIFS descriptors
are replaced by BIF features [32, 92], see Section 2.3. In this experiment we use
BIF as a basis for the texture descriptors in the same way as the domain kernels
of kPIFS. The image descriptors are built from the seven basic BIF responses
across nb scales resulting in a 7× nb histogram in each pixel. These histograms
are L1-normalized. The characterization of the sub-image in the top-down step
of the procedure is done by averaging the descriptors. This characterization
differs slightly from the description in [32] and [92] where they characterize the
image by the dominating feature response. But we found this soft assignment
to improve the performance of the model. We found three scales, i.e. standard
deviations σb = {0.5, 1, 2}, to be a good choice. The results shown in Figure
3.19 illustrates that the model is also capable of performing equally well with
the set of BIF features. In the first image of the bird shown in Figure (a) and
(b) the kPIFS performs slightly better than the BIF by finding the front part
of the bird very well, whereas in Figure (c) and (d) BIF performs better than
kPIFS. But both descriptor sets are capable of precise image segmentation.



3.5 Conclusion on image segmentation 59

3.5 Conclusion on image segmentation

The problem of texture segmentation is to identify coherent image parts based on
textural characteristics. Textured image elements can be hard to distinguish at
a detailed level making precise boundary detection difficult. Furthermore, some
textures have a similar visual appearance and a precise texture characterization
essential for a segmentation procedure. We propose a method to solve these
problems that makes use of contextual characterization and the principles of
contractivity.

The proposed procedure builds on a top-down image decomposition and a
bottom-up merging of similar image segments. To identify local structural char-
acteristics of the image we introduced a novel set of texture features based on
PIFS. These features employ a set of domain kernels which makes up an over-
complete basis of simple image patterns. The top-down aspect of our method
consists of a decomposition of the image from larger to smaller regions with
each region forming a node in a quadtree and characteristic information is passed
down the tree. By utilizing contractivity, we described a technique for iteratively
exchanging information in a local neighborhood resulting in fixed points. Often
these fixed points form a slight over-segmentation of the image, and to identify
regions belonging to the same texture segment we employ a bottom-up merging
step. This bottom-up merging is based on a neighborhood graph with edges
between neighboring segments and edge weights explaining similarities between
the segments. Connected nodes are merged if they fulfill a global similarity
criterion. Experimentally we have demonstrated state of the art performance
on a set of natural textured images. Furthermore, we showed the flexibility of
our method, by obtaining equally good results using a basis set of over-complete
scale space features, and color.

Texture segmentation is very useful for the logTracker system, and there are
many tasks where segmentation is necessary for gaining useful information. This
could for example be identifying wood logs in the forest, either before they are
harvested or when they are placed on the forest floor. In many cases the wood
logs have a characteristic texture that makes them distinguishable from the
background. Another important issue is the quality of the wood which is related
to the visual information. This includes the shape of the wood log, number and
sizes of knots, presence of rot, width of year rings, etc. The identification of
these characteristics could benefit from texture segmentation, and an example
is segmenting the surface of a wood log or part of it and classifying the segments
as being knots or bark.

The proposed procedure has potential for many applications because of its sim-
plicity and high performance, but the method still needs improvements to make
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it operational. Speed of the procedure is the first major concern. In our very
simple MATLAB implementation it takes around five minutes to perform a
segmentation of a 480 × 720 pixel image, which is very far from that half or
one second that will be available in an industrial application. But parts of the
procedure could be done in parallel, for example the descriptor assignment. An-
other speed-up could be to avoid many of the calculations in the contractive
step, where descriptors are moved closer together. Some descriptors are moved
very little and the calculation of their displacement could possibly be avoided.
To enable this speed up it will be important to determine how large a part of
the descriptors this concerns. Another obvious speed-up would be to choose
another programming language. So, despite the apparent long calculation time,
there is a high potential for bringing that down. Another important issue for
improving the procedure is the image characterization. Some textures are hard
to distinguish using our kPIFS texture characterization, so there are potentially
better results using an improved kernel set. We have only used kPIFS blocks of
size 8× 8 with an overlap of half a block. These parameters could be adjusted
and it might also improve the performance to conduct a multi scale feature
assignment. There are still many issues to address for future improvements of
our segmentation procedure, but despite this the method is simple, flexible, and
has a high performance, which makes it potentially good for solving demanding
segmentation problems. The general framework proposed may also be useful to
other fields of computer vision.



Chapter 4

Image classification

There is a wide range of uses for automatically assigning an image to a spe-
cific class, and this has made image classification an important and very active
field of research. Many image elements are useful for guiding the classifica-
tion, for example color, image gradients, or features such as edges, corners,
blobs, etc. Images in particular pose a great difficulty, because textures con-
tains many internal features such as edges and corners that are not at object
boundaries. As discussed in the previous chapters, texture characterization is
especially important for the motivating problem of this thesis, the classification
of textured objects is essential for the logTracker system. In this chapter we
will give an example of wood species classification based on Active Appearance
Models (AAM) and texture, but many other classification problems are relevant
for the logTracker system. An important step in solving these problems is an
investigation of methods for texture classification.

We will start this chapter by briefly discussing some practical applications of
texture classification and its potential use in the logTracker system before pre-
senting our paper on AAM and co-occurrence matrices for classification of tree
species [34]. The paper is included in its original form, with only minor clari-
fying changes. Finally, we conclude and give a perspective on future needs for
classification applications in relation to the logTracker system.
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(c)(b)(a)

Figure 4.1: Images of some biological objects. Image (a) contains three dom-
inating textures which are examples of relatively different textures, i.e. the
feathers of the birds, the nest, and the background. Image (b) is a close up
image of the bark texture of an oak tree showing a relatively uniform texture.
Image (c) shows a birch tree, which has a very non-uniform bark texture, and
the background is also highly textured and non-uniform. Classification of tex-
tures in (a) and (c) would require a segmentation prior to the actual texture
classification whereas (b) is a typical image for texture classification.

4.1 The problem of classification

The classification of biological objects addresses the general problem of cate-
gorization and recognition of highly varying objects. Many biological objects
show particularly large visual variation with textured and irregular surfaces,
some examples of which are shown in Figure 4.1. The problem of wood log
classification are illustrated in Figure 4.1 (b) and (c). Wood logs have a highly
textured and irregular bark, and the background forest as shown in Figure 4.1
(c) further enhances the difficulty for classification methods.

4.1.1 Related methods for texture classification

Classifying an image based on textural appearance requires a texture charac-
terization and a classifier applied to these characteristics. This characterization
concerns some of the same aspects as the texture characterization used for image
segmentation, as described in Section 2.3. We will briefly discuss some issues
that are special for the problem of texture classification before we give some
examples of traditionally used classifiers.

Image texture characterization The characterization of texture for clas-
sification problems is typically done after a segmentation procedure, see for
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example [3, 147], or on images containing only the one texture that has to be
classified, see for example [36, 68, 89]. This excludes the issue of characterizing
texture in boundary regions where there is a high risk that texture descriptors
cover more than one texture, which is a great difficulty for texture segmenta-
tion. But the number of textures to distinguish in a segmentation procedure
is typically less than many texture classification problems. This is reflected
in the number of samples of some widely used test databases. Examples are
the UIUCTex database [89] containing 25 textures, the CUReT containing 61
textures [36], and the KTH-TIPS containing an extension of 10 of the CUReT
textures at different scale and angle. A unique texture characterization is also
very important for classification, as we discussed in Section 2.3, especially con-
sidering the large number of textures to distinguish. We will now describe some
of the commonly used classifiers.

Classifiers The choice of classifier can have great influence of the performance
of a classification procedure. There is a wide range of classifiers, which has been
designed to solve many problematic classification problems, see for example
[18, 42, 67]. We will not go into detail in this large field of research, but rather
mention just a few popular methods for image classification.

One of the simplest methods for classification is the k-nearest neighbor classifier
(kNN). A sample is assigned to the majority among the k nearest neighbors
from a training set. Despite the simplicity of the method it is often a robust and
flexible way to obtain good classification results. Another approach is to assign
the sample to the most probable class using a maximum likelihood procedure,
which is referred to as the Bayes classifier in our classification paper (Section
4.2). If the image descriptors are normally distributed random variables, then
the probability of a given class can be estimated as

P (x ∈ ci) =
1

(2π)N/2|Σi|1/2
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)
, (4.1)

where x is the image descriptor, ci is class i, Σi is the covariance matrix of class
i, and µi is the mean value of class i. The mean value and the covariance matrix
has to be computed from a training set. The covariance matrix is inverted so it
is important that it has full rank, which can be a problem for high dimensional
data. This can be solved by using a diagonal covariance matrix or using PCA
to reduce the dimensionality of the data [67].

Fisher’s linear discriminant analysis, also known as canonical discriminant anal-
ysis, is a classifier that is based on the idea of projecting the data to a hyperplane
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with optimal separation. This hyperplane has a dimensionality of min(d, nc−1)
where d is the dimensionality of the data points and nc is the number of classes.
This is done by minimizing the within class variance, which we denote W, and
maximizing the between class variance, which we denote B. From this we get
the following maximization problem

max
a

aTBa
aTWa

, (4.2)

where a is the min(d, nc−1) eigenvectors corresponding to the largest eigenvalues
of W−1B. The eigenvectors in a spans the data points [67].

Other popular classifiers include boosting, which is based on linearly combining
a set of weak classifiers to construct a strong classifier [58]. Support vector
machines (SVM) is a classification technique which is based on identifying an
optimal decision boundary between data points, i.e. a boundary that minimizes
classification error. This can be combined with the so-called kernel-trick, where
data points are mapped to higher dimensions to perform non-linear classification
using a linear classifier [67].

Applications of texture classification Texture classification is useful in
many applications, and examples include remote sensing [29, 83, 100], medical
applications [28, 139], and industrial applications [17]. Classification is also very
important in relation to the logTracker project, for example identification of tree
species. We will now discuss the use of classification for the logTracker system.

The tree species composition of the forest stands are important to consider when
planning the harvest operations. Traditionally tree stands have been monocul-
tures with only one species represented. But with the change in the direction
of close-to-nature forest management, which has been a tendency in Europe
the last 10–15 years [59, 87], forest stands with a mixture of tree species will
become normal in the future. This makes a precise volume assessment of the
different tree species hard. This assessment is normally done in the harvesting
operation. A computer vision system for automatic species detection could be a
great help for solving this, either as a system placed on the harvester or on one
of the other machines involved in the transport of the wood logs from the forest
to the industry. In the following we will present an investigation for species
classification. Our investigation shows that it is possible to identify tree species
from the surface characteristics of wood logs. This has previously been based
on the public available BarkTex database containing bark texture of six tree
species [86]. Examples are methods based on Gabor filters [113], co-occurrence
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matrices [112, 118], and local binary patterns [119]. Our investigation differs in
that it both involves a localization and segmentation based on an AAM and a
texture analysis on the segmented bark.

Many issues have to be considered for a system to be operational in a real
application. This includes placement of cameras, image acquisition in a forest
environment with changing viewing angles, changing weather conditions, chang-
ing light, etc. These issues are essential and very difficult, and will require large
amounts of data and intensive investigations. So, it is important to note that
our work on classification by no means resembles a realistic species detection
scenario, but it shows that species detection from bark characteristics is possi-
ble, in relation to segmentation and classification. It also indicates some of the
problems that have to be solved in relation to the computer vision methods for
a system to be operating in the forest. We will now present our paper on wood
species classification.

4.2 Paper: Classification of biological objects

Our paper on classification of biological objects [34] is presented here in its
original form.

Authors: Anders Bjorholm Dahl, Henrik Aanæs, Rasmus Larsen, and Bjarne
Kjær Ersbøll, DTU Informatics, The Technical University of Denmark. (Pre-
sented at the Scandinavian Conference on Image Analysis, Aalborg, Denmark
2007).

4.2.1 Classification of Biological Objects using Active Ap-
pearance Modeling and Color Co-occurrence Matri-
ces

Abstract We use the popular active appearance models (AAM) for extracting
discriminative features from images of biological objects. The relevant discrimi-
native features are combined principal component (PCA) vectors from the AAM
and texture features from co-occurrence matrices. Texture features are extracted
by extending the AAM’s with a textural warp guided by the AAM shape. Based
on this, texture co-occurrence features are calculated. We use the different fea-
tures for classifying the biological objects to species using standard classifiers,
and we show that even though the objects are highly variant, the AAM’s are



66 Image classification

well suited for extracting relevant features, thus obtaining good classification
results. Classification is conducted on two real data sets, one containing various
vegetables and one containing different species of wood logs.

4.2.2 Introduction

Object recognition is one of the fundamental problems in computer visions, and
plays a vital role in constructing ’intelligent’ machines. Our initial motivation
for this work is the construction of an automated forestry system, which needs
to keep track of wood logs. Many of the objects in our daily environment in
general, and in our motivating problem in particular, are biological, and pose
special problem to a computer vision system. The origin of these problems are
the high degree of intraclass variation, which we as humans are very good at
dealing with, e.g. consider the multitudes of ways a face or a potato can look. To
enable biological variation to be handled in a classification system, we have to
find methods for extracting discriminative features, from the depicted objects.
AAM’s have proven very well suited for addressing the problems of handling
biological variation in the case of image registration [31]. It is thus highly inter-
esting if this property of the AAM’s also proves well for classification of objects,
and how this should be implemented. Therefore, we have investigated AAM’s
for extracting discriminative features by conducting the following experiments

1. Classification based on Multiple AAM’s, i.e. building an AAM for each
class and assigning images of unknown objects to the most probable AAM.

2. Classification based on a global AAM, i.e. building one single AAM and
using model parameters for assigning images of unknown objects to the
most probable class.

3. Identify relevant discriminative patches from the use of an AAM. The
object is identified by shape alignment from the AAM and texture is
extracted and used for second order texture analysis.

Two data sets have been investigated in this paper, one containing vegetables
and one containing wood logs. Experiment 1 and 2 have been conducted for
both data sets and experiment 3 has been conducted only for the wood log data
set.

Related work The environment plays a vital role in solving object recognition
problems. In a natural environment objects may be seen from many different
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angles, they may be occluded, light may change, etc. Efforts on solving this
type of problem have been put in identifying local object features invariant to
the changing conditions, see for example [127, 94, 95], and the way to match
these features to a model, see for example [38, 39].

Controlling the environment in some way, gives the opportunity of easing the
flexibility constraints of the object recognition system. In some situation object
recognition on whole objects is a reasonable approach, giving the option of e.g.
extracting global PCA features. This is done for face recognition by e.g. Turk
& Pentland [144] with the eigenface, and Belhumeuer et al. [14] for their fish-
erface based on Fishers Linear Discriminant Analysis. No shape information is
included with these methods. Edwards et al. [44] introduces the use of an AAM
for face recognition based on both shape and texture information. Fagertun
et al. [46] improves this method by the use of canonical discriminant analysis.
AAM’s have been used for related recognition problems, e.g. eye tracking by
Stegmann [135] and Hansen et al. [62].

Pure texture has also been used for object recognition. The second order texture
statistics based on co-occurrence matrices, was originally developed by Haralick
et al. [64] for pixel classification. This method has been extended to object
recognition by e.g. Chang & Krumm [27] using color co-occurrence histograms.
Palm [112] does classification of different textures, including wood bark textures,
using color co-occurrence matrices. He extends from gray level to color images
and improves the classification.

In this paper we focus on object recognition in an environment with some degree
of controlled conditions. We use a black background, controlled lighting, and
we make sure that the whole object is visible.

4.2.3 AAM and texture features

In the following we describe the methods for extracting the discriminative fea-
tures used in the three experiments.

AAM The AAM model - in 2D as it will be used here - is a description
of an object in an image via it’s contour or shape and it’s texture. Each of
these entities can be represented as a vector, i.e. ~si and ~ti respectively, where
the subscript, i, denotes an instance (image). The parameters of the AAM is,
however, a lower dimensional vector, ~ci, and a specific AAM consists of an linear
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mapping for ~ci to ~si and ~ti, i.e.

~mi =
[
~W~s
~t

]
i

= Φ~ci , (4.3)

where Φ is a matrix representing the linear map. The AAM or Φ is estimated
from an annotated training set. By optimizing the AAM to a new depicted
object, an image close to the original is synthesized, and the model parameters ~ci
is a vector of principal components describing the unknown object with regards
to the shape and texture of the object. The interested reader is referred to
Cootes and Taylor [31] for a more detailed description and Stegmann et al.
[136] for a detailed description of the model implementation.

Features from multiple AAM’s In this case an AAM, Φj , is fitted to each
class Cj , i.e. the training set is divided into its component classes, and one AAM
is fitted to each.

Here there is a feature vector ~ci i specific for each model, and these features are
not comparable, because they belong to a specific model and can not be used
directly for classification.

Given an AAM for each class Cj , you would expect the optimization of an image
i to perform best for the class that the object belongs to. Therefore, a goodness
of fit would be a reasonable measure for classifying the object. For a given
unknown object image textural difference between the object texture giobj

and
the model instance ḡmod is calculated

E =
n∑
i=1

(giobj
− ḡmod)2 = ||giobj

− ḡmod||22, , (4.4)

where E is the difference between the model image and the measured image by
the squared 2-norm.

Features from a global AAM In this case a single global AAM, Φ, is fitted
to instances of all classes. Following this, the ~ci are calculated for each instance
in the training set. The elements of ~ci, containing both shape and texture
information, are used in a linear classifier.
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Textural warp The basis for making a textural warp is knowledge of the log
localization in the image. This comes from the AAM shape alignment. The
warp is done by sampling pixels along elliptic curves on the surface of the logs
using bilinear interpolation, see Figure 4.2. The elliptic curves are calculated
from the shape of the end face of the wood log, and guided by the shape of
the sides of the log. A square image of the bark texture is the result of the
warp, which is illustrated in Figure 4.3. One end of the log is usually smaller
than the other, resulting in a difference in the sampling intensity in the warped
bark image. Other shape variations may result in the same kind of sampling
variation. These small variations have not been considered as a problem for the
texture analysis.

Figure 4.2: Illustration of bark texture warp. Left is an image of a Birch log shown
with a few of the elliptic sampling curves shown in red. Blue lines show the AAM
shape alignment. The right image is a close up of sampling points.

Color co-occurrence matrices As mentioned above, the AAM classification
is extended by texture classification where the texture is obtained via texture
warp as described in Section 4.2.3. This classification is done via second order
textural statistics in the form of co-occurrence matrices (CM) [25, 64, 112]. The
fundamental element of calculating CM’s is the probability of a certain change
in pixel intensity classes (k, l) given a certain pixel displacement h equivalent to
Pr(k, l|h). The CM’s can be extended to color, by calculating the displacements
in each band and across bands. The CM’s have proven useful for classification
[112]. Sample CM’s for the relevant bark textures is shown in Figure 4.3. In this
paper the textures have been pre-processed by Gaussian histogram matching,
in order to increase robustness to lighting conditions [25]. In this paper we use
the following CM classes: contrast, dissimilarity, homogeneity, energy, entropy,
maximum, correlation, diagonal moment, sum average, sum entropy, and sum
variance.
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Figure 4.3: Illustration of co-occurrence matrix (top) of bark texture (bottom). Higher
intensity illustrates larger co-occurrence. From left to right: Birch, Spruce, and Pine.
The displacement is (1, 1) in a 64 level image.

Classifier The classifiers used in experiments 1 to 3 are as follows:

1. Multiple AAM’s. The model minimizing (4.4) is chosen.

2. Global AAM. Here three different classifications schemes based on the
AAM feature vector are evaluated. These are: Bayes classifier, Canonical
discriminant analysis, and LARS-EN classifier [45, 67, 161].

3. AAM and Texture. Here LARS-EN is applied to the texture, obtained
via the AAM based warp described in Section 4.2.3.

4.2.4 Data

Experiments were conducted for two groups of biological objects: vegetables,
see Figure 4.4 and wood logs see Figure 4.2. The vegetables are apples, carrots
and potatoes and consist of 189 images totally where 27 are used for training
the models, i.e. 9 from each group. The wood log data consists of the three
species Scotch Pine, Norway Spruce and Birch. There was a total of 164 wood
log images, 18 from each group were used for training. Also a reduced wood
log data set, consisting of the 30 most characteristic logs from each group (90
in all) was used.
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Figure 4.4: Illustration of AAM alignment. The light blue line illustrates the shape
and the blue crosses mark the annotated points.

4.2.5 Experiments

All three experiments are illustrated in Figure 4.5. The procedure is as follows.

Experiment 1 For each class there is built an AAM based on the training
images. All models are matched to each of the test images giving model tex-
tures for all classes. The model texture is then compared to the original image
by calculating the texture difference, see section 4.2.3. Classification is done
by assigning the test image in question to the model giving the least texture
difference.

Experiment 2 In this experiment one AAM is built based on training images
from all classes. The parameters from matching the model to a test image are
used for classification. Based on these parameters the image is assigned to the
most probable class.

Experiment 3 As in experiment 2, one AAM is matched to a test image,
but here the alignment is used for extracting texture features. To enable a
calculation of co-occurrence features from the bark texture, a warp of the bark
area of the image is conducted.

4.2.6 Results and discussion

Results of our three experiments are presented in table 4.1 and 4.2.
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Figure 4.5: Schematic representation of the three experiments.

Experiment 1 This experiment gave rather stable and good results. In the
vegetable data only one image of a potato was misclassified as an apple, giving
an average classification rate of 99.3%. The wood log data set gave stable
classifications around 83% except for the whole log model, where many Spruce
logs were misclassified as Pine logs and visa versa.

Experiment 1 2
Model Texture difference Bayes Canonical LARS-EN

Vegetable 99.3% 100.0% 93.7% 100.0%
Log end 82.8% 70.2% 71.0% 75.5%
Large images 83.5% 64.1% 48.3% 82.1%
Whole log 67.8% 72.8% 71.1% 72.8%
Log end, reduced 82.5% 71.4% 38.1% 85.7%

Table 4.1: Classification rates of experiment 1 and 2 using the different classifiers. In
the Vegetable and Whole log experiments, the shape covers the entire object, whereas
in the rest, only the end part of the object is covered. Large images refer to the use
of higher resolution images. Reduced refers to the reduced data set.

Experiment 2 For this experiment three different classifiers have been tried.
The vegetable experiment obtains 100% correct classification with the Bayes
classifier and LARS-EN but the canonical discriminant analysis gives only a
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classification rate of 93.7%. The canonical discriminant analysis is also very
unstable for the wood log data set. The Bayes classifier gives around 70%
correct classification and LARS-EN around 80%.

AAM results in a relatively large number of features, and therefore, it is nec-
essary to have many observations for training a classifier. A limited number
of observations could be one reason for the relatively poor performance of the
classifiers.

LARS-EN gives a good indication of the importance of the features in a linear
model. For both data sets, the first two principal components are the most
discriminative features. But there is large difference in the discriminative capa-
bilities of the parameters from the two data sets, which also would be expected
when the features are plotted, see Figure 4.6. The rest of the principal com-
ponents are selected somewhat randomly, showing that feature reduction using
PCA is not necessarily in accordance with classification criterions.

Figure 4.6: Plot of the first two principal components from the AAM in the vegetable
experiment (left) and wood log experiment (right).

A problem encountered using canonical discriminant analysis, is a good sepa-
ration of the training data, but a poor performance of assigning the unknown
objects to the right classes. For the vegetable data, where we have a very good
separation, this becomes very clear. We would expect to retain the separation,
but that is not the case because of variation in training data. This sensitivity
towards variation is a clear limitation to the canonical discriminant analysis.

The AAM’s in the reduced data set is based on only 9 images of each class.
This is probably too few to get good estimates of Φ, and could be a cause of
the poor AAM classification performance.
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Experiment 3 The best performance for the wood logs is achieved by the
texture analysis in experiment 3, reaching close to 90% correct classification
rates for the whole data set, and 96.8% correct classification in the best experi-
ment of the reduced data set. This shows an accordance between what we see
as humans and the predictions of the model.

Model LARS-EN
Data set whole reduced
Gray level 78.4% 93.7%
Gray level directional 89.9% 96.8%
Color 89.5% 90.5%

Table 4.2: Classification rates of experiment 3 using LARS-EN for classification based
on texture features.

A varying number of features are calculated because the three models shown in
Table 4.2 contain a varying number of distances, directions, and color bands. In
the first model we have 33 features (only different distances), in the second 132
features (different distance and direction), and 528 features in the third (varying
all three).

Looking at which features are selected by the LARS-EN classifier, we can see
a pattern in the features selected for classification. The sum average and the
diagonal moment are the most frequently used features, even though, there is
not a clear pattern in which features works best for classifying the wood logs.
In contrast to Palms [112] investigations, the performance in our experiments is
not improved by extending the analysis to include color images.

A hard task using the LARS-EN algorithm is to find the right stopping criterion
[161]. The results presented here is the number of features giving the best
classification rates. Therefore, the LARS-EN algorithm will be problematic to
implement in a real world application.

In these experiments we have used logs of young trees where some important
biological characteristics have not yet developed, for example the colored core of
Scotch Pine, which could improve the hard distinguishing of Pine and Spruce.

4.2.7 Conclusion

We have investigated the use of active appearance models (AAM’s, cf. [31]) for
classification of biological objects, and shown that this approach is well suited
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for different objects. Two data set, one of vegetables and one of wood logs have
been investigated.

In experiment 1 an AAM is built for each class, and we obtain results close to
100% correct classification for the vegetable data, and around 80% classification
rates for wood logs.

In experiment 2 one AAM for all classes is built, and model parameters for test
images are used for classification. Most models gave 100% correct classification
for the vegetables. On average the classification for the wood logs was not as
good as experiment 1, and especially canonical discriminant analysis gave very
poor results.

In experiment 3 LARS-EN has been used for classifying texture features, where
only the wood log data is investigated. This experiment gave the best results
classifying about 90% of the test set correct in the best cases of the whole data
set, and up to 96.7% correct classification using a reduced data set.

It is hard to find a good stopping criterion for the LARS-EN model, which is
problematic for classification. Therefore, we conclude that the most promising
classification model is the texture difference used in experiment 1.

4.2.8 Acknowledgements

Thanks to Mikkel B. Stegmann for the AAM API and Karl Skoglund for the
LARS-EN classifier [134, 136]. Also thanks to Dralle A/S for partial financial
support.

4.3 Conclusion on image classification

We have presented a segmentation and classification procedure for solving the
problem of classifying samples of wood logs to tree species. The presented
method is based on Active Appearance Models and second order statistical
texture features from co-occurrence matrices.

The segmentation element was not the focus of this procedure and we initialized
the AAM close to the final position. Note that this should be automated for
this application to operate in a real world system. Furthermore, the images of
the wood logs are acquired under very controlled conditions from one viewing
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angle and with plenty of light. For the logTracker system the requirements for
a system will be more demanding and it should be able to handle changing
light, occlusions, background clutter, etc. An advantage for a vision system
placed on for example a harvester is that it will be possible to acquire a series
of images of each log. This will provide the opportunity to get multiple views of
the same log, and thus information from one image could be supported by the
next. Many images will also increase the computational demands, so another
important element is to keep the computational cost low. Most of these issues
are not solved in the suggested procedure and should be investigated in future
projects.

Our investigation shows that it is possible to perform species classification based
on bark features. A classification rate around 90%, as we have achieved as the
best results, is probably adequate for an operational system, but this issue has
to be investigated further.

Bark textures are highly varying and the question is how suited the second or-
der statistics, applied in our procedure, are for characterizing the common bark
structure of a tree species. One issue is scale that is important for texture char-
acterization, see Section 2.3, which is not accounted for in these co-occurrence
matrices. The bark texture changes scale within the same wood log, and typi-
cally the texture is coarse at the bottom of a trunk and becomes finer towards
to top, and the trunk might also change color. This issue has to be solved,
which requires a texture characterization that is robust towards scale and large
visual variation. Another way to handle this change in appearance could be to
introduce subclasses within the same tree species. Another problem that has to
be considered is the change of visual appearance over time. For example, wet
bark looks different than dry bark, and bark with snow poses a special prob-
lem. Typically, these issues affect all the trees in a stand, so there will be some
common properties for the same tree species. To handle these large variations
the classification procedures have to be developed and new investigations have
to be done. Despite the difficulties issues for this problem, it should be possible
to find a solution to classify the perhaps 5-10 most important tree species used
in forestry in Northern Europe.
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Image retrieval

Image retrieval is the problem of searching a large collection of image data.
This is traditionally done by associating metadata with the images, and using
text search methods for image matching. An example is image search in web
browsers where the associated text on the web pages act as metadata. This kind
of metadata is not accurate, which a normal web search reveals. The typical
experience is that many of the retrieved images not contain what was searched
for. This is one example that has motivated an intensive research in content
based image retrieval. Image retrieval is also a way to perform individual object
recognition, which is done using a database of known objects. The kind of object
recognition is what the motivation of this topic in relation to the logTracker
system. An image retrieval system could potentially solve the tracking problem
of wood logs and make it possible to document timber origin.

In this chapter we present a bag-of-words (BOW) image retrieval system that
is based on our work in [33]. We have tested our procedure on a public image
database [109]. Our contribution is a large scale database search approach that
builds on SIFT features [95], where the dimensionality is reduced and color is
added to the feature descriptors. We will begin this chapter by discussing the
background for image retrieval. Then we will present our paper on the suggested
approach for large database image search. Finally we will discuss the limitations
of the BOW approach in relation to the logTracker system and give some ideas
for how to overcome these limitations.
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5.1 Related methods for image retrieval

Many of the methods for image retrieval builds on local image features, which
are obtained from image regions with expected high information content related
to the depicted objects. These regions are the so called interest points, and the
image is characterized as a set of interest point descriptors. We will now discuss
some techniques for image retrieval and the associated image descriptors.

Image interest points and descriptors Typically, image retrieval is done
for large image collections and time is a critical issue. A popular approach for
solving this has been to use the interest point descriptors as a bag-of-visual-
words, where the descriptors are treated independently. The expectation is that
two images will contain the same objects if they have the same set of descriptors.
Therefore, it is important that the distribution of descriptors characterizing
an object is unique, and that this distribution can be found under changing
conditions of the image acquisition. This is done by making the descriptors
invariant to scale, rotation, translation, deformation, light, occlusion, clutter,
etc. This invariance includes both the detection of the interest points and the
associated descriptors. We will now discuss the detection of interest points, and
then discuss the assignment of an image descriptor to these points.

Schmid and Mohr [127] were among the first to build a model for image retrieval
based on a distribution of interest point descriptors. They find interest points
as the maximum principal curvature. In the Scale Invariant Feature Transform
(SIFT) developed by Lowe [94, 95] interest points are found as the maximum in
difference of Gaussians in scale space, making the SIFT interest points invari-
ant to scale change. Affine transformations, which for example happens when
the viewpoint change, is a problem for the SIFT interest point detection. But
an example, where this has been solved, is the Maximum Stable Extremal Re-
gions (MSER) [102]. This procedure builds on ideas related to segmentation
and watershed algorithms. Interest points are detected as image regions that
resemble maximum stability as a function of intensity change. The principle is
to threshold the image at each intensity level, for example the interval [0, 255],
and look at how connected regions change. Regions that change very little
over a large interval are detected as maximum stable. By fitting an elliptical
shape to the obtained regions, and calculating the descriptors relative to this,
the characterization is made invariant to affine transformation. MSER is one
example of an affine covariant region detector, and it is compared to five other
detectors in [61]. This include the Harris-affine and Hessian-affine detectors,
see for example [104], edge-based and intensity based region detectors, see for
example [145, 146], and an entropy-based region detector [80]. The detectors
were compared relative to change in viewpoint, scale, blur, JPEG artifacts, and
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light. The conclusion of the survey was that all detectors perform well, but the
MSER performed best on most image types. Lately, the MSER region detector
has been extended to color regions [55] resulting in better performance.

After the detection of interest points a descriptor is calculated. In the proce-
dure of Schmid and Mohr [127] this was done as a nine dimensional histogram of
Gaussian derivatives at a number of scales, which makes this descriptor invari-
ant to scale change. The SIFT descriptor is typically found as a 128 dimensional
histogram of directional image gradients calculated around the interest point. In
Lowe’s original procedure [94, 95] the scale invariance is found by estimating the
gradients at the same scale as the interest point was found. Furthermore, the de-
scriptor is made invariant to rotation by orientating it relative to the maximum
gradient direction. The SIFT descriptor has also been used for affine invariant
descriptors, for example by estimating the SIFT around a MSER [109]. In [105]
image region descriptors are compared, which includes SIFT [95], gradient lo-
cation and orientation histogram (GLOH) [105], shape context [16], PCA-SIFT
[82], spin image [88], steerable filters [57], differential invariants [84], complex
filters [125], moment invariants [148], and cross correlation of sampled pixel val-
ues. The descriptors are evaluated in relation to the same changes as the region
detection survey [61], but also including image rotation. GLOH and SIFT are
concluded to be the best high dimensional descriptors, whereas gradient mo-
ments and steerable filters are the best performing low-dimensional descriptors.

Image retrieval techniques Having characterized the image as a collection
of interest point descriptors, the next step is to estimate the similarity between
images. In Schmid and Mohr this was done using a nearest neighbor voting algo-
rithm [127]. The object recognition system presented by Lowe [95] is also based
on nearest neighbors. To improve speed he employs a Best-Bin-First search
algorithm [13], but despite fast nearest neighbor approximation algorithms, the
complexity of this nearest neighbor feature search grows dramatically with the
number of images, and it can only handle a limited image database. Sivic and
Zissermann [133] introduced the idea of characterizing an image as a distribu-
tion of descriptor representatives, the so called “visual words”, instead of the
original descriptors. These representatives are found by clustering the features
and selecting the cluster center point as the representative. Furthermore, they
adopted ideas from text retrieval and used indexing techniques for large image
collection based on the visual words. It should be noted that the frequency of
visual words is related to how useful they are for uniquely characterizing an
image. Visual words occurring in many images contain less information than
visual words that occur in few. Therefore, frequent words are weighed down
relative to the infrequent ones. The images are matched by building a database
index with a reference to each image in the database. This is done in a pre-
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processing step, and this can dramatically speed up the matching at runtime.
Assigning the image descriptors to visual words become a bottleneck in very
large image collections. Therefore, Nistér and Stevénius [109] propose to use
a hierarchical tree structure, both for clustering the image descriptors and for
retrieving the images. This tree based search significantly increases the speed
of the matching. Lately other approximation algorithms have been developed
to solve this problem of feature assignment in high dimensional data, see for
example [106, 116].

In our image retrieval procedure we have addressed some of these issues, which
build on the ideas of invariant features and a bag-of-visual-words. In the follow-
ing we will present our paper [33] in its original form. The paper was presented at
The First International Workshop on Internet Vision, IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska,
2008.

5.2 Paper: Image retrieval

Authors: Anders Bjorholm Dahl and Henrik Aanæs, DTU Informatics, The
Technical University of Denmark. Presented at International Conference on
Computer Vision and Pattern Recognition, Anchorage 2008, Alaska, USA.

5.2.1 Effective Image Database Search via Dimensionality
Reduction

Abstract Image search using the bag-of-words image representation is inves-
tigated further in this paper. This approach has shown promising results for
large scale image collections making it relevant for Internet applications. The
steps involved in the bag-of-words approach are feature extraction, vocabulary
building, and searching with a query image. It is important to keep the com-
putational cost low through all steps. In this paper we focus on the efficiency
of the technique. This is obtained by substantially the dimensionality of the
features by the use of PCA and addition of color. Building of the visual vo-
cabulary is typically done using k-means. We investigate a clustering algorithm
based on the leader follower principle (LF-clustering), in which the number of
clusters is not fixed. The adaptive nature of LF-clustering is shown to improve
the quality of the visual vocabulary using this. In the query step, features from
the query image are assigned to the visual vocabulary. The dimensionality re-
duction enables us to perform exact feature labeling using kD-tree, instead of



5.2 Paper: Image retrieval 81

approximate approaches normally used. Despite the dimensionality reduction
to between 6 and 15 dimensions we obtain improved results compared to the
traditional bag-of-words approach based on 128 dimensional SIFT feature and
k-means clustering.

5.2.2 Introduction

The bag-of-words approach have shown promising results for large scale image
search [77, 109, 116, 126, 133] and for image categorization [49, 143, 155]. There
are three main steps in the bag-of-words representation: (i) Feature extraction
from the database images, (ii) building the bag-of-words representation, (iii)
and searching with a query image.

Image features (i) The image features are descriptions of local image pat-
terns, see for example [61, 95, 102, 104]. In the bag-of-words representation
they are treated as an independent collection of data points characterizing the
depicted scene. Features are typically n-dimensional vectors of unit length, thus
points on an n-dimensional hypersphere.

Representing features as 128 dimensional SIFT vectors have shown to be very
effective for object recognition problems [95, 105]. Despite the discriminative
power of the SIFT features it is computational expensive to represent image
features with 128 dimensions. PCA have been applied to SIFT features of
different dimensionality [77, 82, 105]. The performance of these descriptors was
comparable to the original descriptor, with a reduction to the range of 20 to 36
dimensions.

In this paper we show it to be efficient to reduce the dimensionality of the feature
descriptor much further. We use PCA on SIFT features with a reduction in the
range of 6 to 15 dimensions including 3 color dimensions. This is a very compact
representation compared to the 128 dimensional SIFT features.

Visual vocabulary (ii) Features have been used for object recognition where
similarity between images is found by comparing features directly, see for ex-
ample [94, 95, 127]. For large image collections this is not feasible, which is the
motivation for the bag-of-words representation.

The bag-of-words approach is based on representing features by canonical repre-
sentative instead of features themselves. Canonical feature representatives can
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be viewed as visual words. Each feature in an image is labeled with a reference
to a visual word. This way the image is described as a histogram of visual
words - a frequency vector, which is a much more compact representation than
the individual features.

It was proposed by Sivic and Zisserman [133] to build a image search method
based on he idea of text retrieval in large document collections. They demon-
strated an efficient algorithm based on inverted files and feature weighing. Fea-
ture weights are found from the distribution of visual words in the database
images.

Visual words are typically found by clustering of features from a database of
images. Often k-means clustering is used for building the visual vocabulary. In
k-means the number of clusters is fixed, which can lead to undesirable partition-
ing of the data. This way natural clusters have the risk of being merged or split,
leading to mislabeling of features and loss in discriminative power. Philbin et
al. [116] did not find other clustering methods than k-means an option, because
of the high number and high dimensionality of the features.

The dimensionality reduction applied in this paper, enables us to use a clustering
approach inspired by the sequential leader-follower clustering (LF-clustering)
[42, 97]. This way we are able to find clusters in a very effective manner, without
knowledge about the number of clusters before the clustering takes place.

Image query (iii) The features in a query image is labeled with a reference
to the nearest visual words in the vocabulary. The complexity of this assignment
is dependent on the size of the visual vocabulary. It is empirically shown that
visual vocabularies have to be relative large to be effective. I.e. in the range
from 5K to 1M visual words typically of 128 dimensional SIFT descriptors [77,
109, 116, 126, 143, 155]. Finding the exact nearest neighbor in high dimensions
is hard to carry out in less than O(n2) complexity, so approximations are used.

Nistér and Stewénius [109] came up with the idea of using a tree structure to
simultaneously speed up the clustering and the feature labeling. This Vocabulary
Tree is made by a hierarchical k-means clustering approach. The tree can be
used for an approximate feature search which reduces the complexity from O(n2)
to O(n log n). The approximate feature search is improved in [126] based on the
ideas of [13].

Despite the efforts of improving the feature assignment for the query images,
the computation is still approximate. The dimensionality reduction of image
features that we use enables us to effectively use a kD-tree for feature labeling.
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This way we obtain an exact nearest feature assignment.

These modifications simplifies the computation of the bag-of-words represen-
tation, in both building, storing and searching the image database. This is
even done with an improvement in recognition quality. Effective computation
is essential for reaching Internet scale image search.

Methods The methods used for improving the efficiency of the bag-of-words
approach is described in the following. The improvements are related to reduc-
ing the size of the feature descriptors, improving the clustering approach, and
improving the feature assignment. The steps in building the bag-of-words model
is illustrated in figure 5.1.

Feature representation PCA is applied to reduce the dimensionality of the
feature vectors. We calculate the eigenvectors for the PCA from all features in
our training set. The reduction of the SIFT descriptor is from 128 to between
3 and 12 dimensions.

After dimension reduction we add color to our features. The color is simply
the mean RGB value in a 10 × 10 pixels patch around the localization of each
feature. The color patch is concatenated to the PCA reduced SIFT vector

s = [αsPCA, (1− α)sRGB ], (5.1)

where sPCA is the PCA reduced SIFT feature, sRGB is the mean RGB values,
and α is a weighing parameter. In our experiments we found α = 0.5 to be a
good choice. So, the final feature gets a size of 6 to 15 dimensions.

We use histogram equalization of the whole image for the R, G, and B bands
separately, before we extract the color features. This is done to minimize the
effect of change in light between two images of the same scene. Both the PCA-
SIFT and color feature are normalized to unit length before concatenation, and
normalized again after concatenation. This way we try to avoid non intended
bias because of difference in size of the two features.

Clustering We investigate the use of LF-clustering [42, 97] as an alternative
to k-means. The motivation for this method is to avoid the risk of undesirable
partitioning of data caused by a wrong number of clusters. In the LF-clustering
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algorithm, data is treated sequentially without any iterative steps. This gives
the method a potential for being less computational expensive than k-means.

LF-clustering builds on the idea of defining a minimum dissimilarity between
clusters. This is similar to the Mean-Shift clustering algorithm [30], where
clusters are found according to a certain bandwidth. But the computational
cost of LF-clustering is far less than Mean-Shift.

Algorithm 3 Hierarchical Leader Follower clustering (LF-clustering)
Set data in one cluster: dcl
Initialize number of levels: n, bandwidth start: bs, bandwidth end: be
Set number of clusters: ncl = 1
Bandwidth step bst = (bS − be)/(n+ 1)
for i = 1 to n do
bnow = be + (n− i+ 1)bs + be
for j = 1 to ncl do

cluster(dcl, bnow)
update ncl, dcl
save clusters

end for
end for

The hierarchical LF-clustering algorithm is summarized in Algorithm 12. The
procedure of the cluster step is to treat the features sequentially one at a time.
The first feature makes up the first cluster. If the next feature is closer to the
existing cluster than the defined bandwidth, it will be assigned to this cluster.
Otherwise, it is will make a new cluster. When a feature is assigned to an existing
cluster, the center of the cluster is updated. We use Euclidean distance, so the
cluster center is updated by

cn =
cono + fa

nn
, (5.2)

where cn is the new cluster center, co is the old cluster center, no is the number
of features in the cluster before the feature fa is added, and the number of
features is updated with one: nn = no + 1.

To avoid clusters coming too close together we merge clusters being closer than
the bandwidth, and we also set a minimum limit to the number features in a
cluster. Clusters with too few point will be merged with the nearest cluster. In
both steps the center of the cluster is updated according to equation (5.2).

The speed of this algorithm is dependent on the number of clusters. The ex-
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pected complexity is O(kn), where k is the number of clusters and n is the
number of points. Small bandwidths and high dimensions result in many clus-
ters and slows down the algorithm. To compensate for that we perform the
clustering hierarchically, starting with a large bandwidth and shrink it through
the clustering process. We start clustering the whole point set. The obtained
clusters are subsequently clustered into new clusters in the following steps. This
way we obtain a substantial increase in speed. To avoid clusters getting to close
the hierarchical clustering is followed by a merging step. All clusters closer than
the bandwidth are removed.

We compare the performance of the LF-clustering to k-means. k-means is also
applied hierarchically to obtain increased speed. We also define a minimum
number of clusters for k-means clustering. Further clustering is stopped if a
cluster has less than a minimum number of points. This can lead to very small
clusters, but in our experiments the number of clusters containing very few
points is negligible.

With hierarchical clustering we get clusters at each level in the hierarchy. But
we only use the clusters found at the last level for the visual vocabulary.

Feature assignment Similarity of images are found by comparing frequency
vectors of a query image to images in the database. Frequency vectors are made
from the frequency of visual words in an image weighed with an entropy weight.
The entropy weight is based on the distribution visual words in the database
images. We use the same weight as used in [109], which is defined as

wi = log(
N

ni
), (5.3)

where wi is the weight of word i, N is the total number of images in the database,
and ni is the number of images where word i occurs.

Frequency vectors for database images are given from clustering. But for a
query image we need to label the features with visual words, so we need to find
the visual words closest to the features in the query image. The dimension-
ality reduction of the features enables us to effectively use a kD-tree instead.
This makes the feature assignment exact [37]. For small dimensions the ex-
pected complexity of the kD-tree is O(n log n), whereas for high dimensions
the complexity becomes O(n2). Therefore, the kD-tree is only applicable with
substantial dimensionality reductions.
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Image matching Frequency vectors are compared using the L1 norm, which
is found to be superior to the Euclidean distance just as observed in for example
[109]. Our explanation for the L1 norm being superior to the L2 norm is the
nature of the problem we are solving. We expect the same features to occur
in images from the same scene. So, the frequency vector overlap is a good
measure for similarity between images. The L1 norm gives equal weight to
the overlapping and non overlapping parts, whereas the L2 norm gives more
weight to the non overlapping parts. Before comparing the frequency vectors
are normalized to unit length using the L1 norm.

Inverted files are used for fast image retrieval. An inverted file is kept for each
visual word in the vocabulary. In the inverted file is a reference to the images in
the database containing that word. The frequency vector value of each reference
image is stored together with the reference. Image retrieval is obtained by
first calculating the frequency vector for the query image using the weights in
equation (5.3). With the frequency vector value for the reference images stored
in the inverted files, we can compute the L1 norm without looking up the entire
frequency vectors of the reference images. This can be done because the L1

norm can be calculated from the frequency vector overlap

L1 = 2− 2O, (5.4)

where L1 is the L1 norm and O is the frequency vector overlap:

O =
∑

i|qi 6=0∧di 6=0

min(qi, di), (5.5)

where qi and di is the frequency values of query and database images respec-
tively. Instead of ranking images by smallest L1 norm we rank by largest overlap.
Storing a value for each image together with the pointer in the inverted file has
a memory cost, which should be viewed in relation to looking up frequency
vectors for relevant images.

5.2.3 Experiments and Results

The results in this paper are primarily found through empirical studies described
in the following section.
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Data set We use the first 1400 images from the Nistér and Stewénius data
set [109, 137] in our experiment. This data set contains a series of 4 images of
the same scene, so we have 350 different scenes. We use three of the images
from one scene to train the model and the last for testing. The test result is
the percentage of the correct images ranked in top 3. This data set is relatively
small compared to other experiments, but we found it sufficient for illustrating
the effects of our model choices. In future work this should be extended to a
larger data set. We also use the preprocessed SIFT features supplied with this
data set.

Experiments To test the effect of using color added SIFT features and LF-
clustering we have made experiments with and without color features and with
ordinary k-means and LF-clustering. We have also built a model based on the
128 dimensional SIFT features with and without color to illustrate the perfor-
mance of the ordinary SIFT features.

Color added PCA SIFT These features are made as described in section
5.2.2. We use 3, 8, and 12 dimensional PCA SIFT features, so the resulting color
added features are 6, 11, and 15 dimensions. To compare to features without
color we take SIFT features reduced with PCA to 6, 11 and 15 dimensions.

Clustering experiments For all test sets we have done clustering using k-
means and LF-clustering. The number of features from the LF-clustering are in
the range from 8,000 to 12,000 clusters, so we have chosen to let the k-means
cluster hierarchically to 10 clusters in 4 levels resulting in 10,000 clusters.

Results We have summarized the experimental results in table 5.1 and 5.2.
The best classification results are obtained with LF-clustering with 15 dimen-
sional color added features. LF-clustering is slightly better than k-means. But
the most pronounced effect is the addition of color, which significantly improves
the result. It should be noticed, that performance is improved in relation to the
full SIFT feature, even with added color. In the full model we also use exact
feature assignment for comparison, even though it would not be fast enough for
a real application.

Addition of color also gave a ranking of the images that seemed more logical,
which is shown in figure 5.2.
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With color
Method 6 dim 11 dim 15 dim
k-means 81.7 87.2 88.4
LF-clustering 84.0 87.5 89.9

Without color
Method 6 dim 11 dim 15 dim
k-means 73.3 81.6 82.2
LF-clustering 76.3 81.9 83.9

Table 5.1: Model performance with different clustering methods, dimensions of
the features, and with and without color. Notice the effect of adding color the
SIFT features. The best performance is marked in bold.

Method 128 dim 131 dim (color)
k-means 85.7 89.6

Table 5.2: k-means clustering for the full SIFT features. The results for 128
dimensions is the normal SIFT feature and the 131 dimensions is with color
added.

5.2.4 Discussion of the paper

Our experiments shows that it is possible to obtain a good recognition perfor-
mance with the bag-of-words model with a substantial reduction in dimension-
ality of the features. A reduction to between 6 and 15 dimensions makes it
possible to use exact methods for feature assignment, where we use a kD-tree.

For our experiments the best results are obtained with a vocabulary based on
15 dimensional PCA color features using on LF-clustering. It even outperforms
the full SIFT features including color, and it is substantially better than the
normal 128 dimensional SIFT features. Even with 11 dimensions we obtain
better results than with normal SIFT.

Especially the effect of adding color to the PCA reduced SIFT features is very
important for the performance. The method for adding color to the features is
extremely simple and yet very powerful, which indicates that there are much
information in image color. The histogram equalization works well for this data
set. But this might be overly simple for images with high variation in viewpoint.
Other ways of combining the gradient information from the SIFT features and
color information might be even more powerful, and should be investigated
further, see for example [1].



5.2 Paper: Image retrieval 89

Another very important benefit from the information gain from adding color,
is the dimension reduction of the features. Low dimensional features makes the
model computational less expensive. This is mostly in relation the clustering for
building the visual vocabulary, which can be done off line. But on line feature
assignment can also be computed faster and have a higher quality, because of
the option of doing exact feature search using a kD-tree.

The LF-clustering for building the vocabulary showed a slight improvement in
performance. The speed of the hierarchical LF-clustering was about the same as
k-means in our implementations, but the LF-clustering has potential for being
faster because each point is only treated once in each level in the clustering
hierarchy. A requirement is, that the number of clusters does not become too
large in one clustering operation.

We did not apply LF-clustering to the 128 dimensional SIFT features, because
we found it performing very poorly. The data did not cluster, so we had either
one cluster containing all features or all features in their own cluster depending
on the bandwidth. For the 128 and 131 dimensional features we chose only to
use the k-means clustering.

Our results are good compared to [77, 109] but this might partly be due to the
fact that we have only conducted experiments on 1400 images. We also just
look at one data set, so for future work the model should be tested on a larger
set of data. It is worth noting that the improvement is also shown relative to
the normal 128 dimensional SIFT feature, but this observation should also be
shown to hold for a larger data set.

We have not included any form of blocking of visual words, as suggested in [133].
In [155] stop words are used in relation to different criteria, but without any
clear improvement. We experience that the entropy weighing of the descriptors
improves the results. Information about the entropy of the visual words could
be included already in building of the visual vocabulary, so the total entropy of
the model would be maximized relative to the number of clusters, and we might
be able to obtain good performance with a small vocabulary. This is to be done
in future work.

A problem of the design of the bag-of-words model is it’s static nature. It is
not designed for adding or removing images from the database, because it will
require a new clustering of all the images in the database, which is very time
consuming. In future work it will be relevant to investigate how the method
could be designed for the dynamic nature of many databases, for example image
databases on the Internet.
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5.2.5 Conclusion of the paper

We have shown a way to substantially reduce the dimensionality of the SIFT
features used in the bag-of-words model through PCA and addition of color to
the features. This has enabled us to use a kD-tree for feature labeling, which is
an exact method. When 128 dimensional SIFT features are used it is necessary
to apply approximations. The reduction in feature dimensions enabled us to ap-
ply a clustering algorithm based on the leader follower principle (LF-clustering)
where the number of clusters is a result of the clustering. The addition of color
and use of LF-clustering are compared to normal PCA SIFT and k-means clus-
tering, which is normally applied in the bag-of-words model. We obtain a clear
improvement in performance on a test set containing 1400 images. Especially
adding color to the features improves the performance, whereas the clustering
algorithm gives a slight improvement. We also get a clear performance im-
provement compared to the bag-of-words model based on 128 dimensional SIFT
features and k-means clustering.

5.3 Conclusion on image retrieval

We have presented a paper on image retrieval based on the ideas of a bag-
of-visual-words representation of interest point descriptors. In relation to the
logTracker system, image retrieval could be a solution for identifying individual
wood logs for documenting their origin. There are some issues that have to be
investigated for such a system to be feasible. These issues relate to interest point
localization, descriptor assignment, and matching of the images. Also practical
issues concerning processing and storage of data have to be addressed.

The idea, of the logTracker system, is to place cameras on machines that handle
the wood logs. In a normal harvesting and transport operation this concerns
the harvester, the forwarder, the road side truck, and can also include transport
trucks at the industry, see Section 1.1. The first machine handling the wood
logs is the harvester, and the idea is to build a model of each log to store in a
database for later recognition, based on images taken from the harvester. New
images of the wood logs will be acquired at the later transport operations, and
these images should be matched to the database. This will result in practical
issues concerning processing, storage, and exchange of data that have to be
solved. An issue that can make the recognition problem easier would be to use
a GPS position of where the logs are photographed, and this way reduce the
number of wood logs from perhaps several thousands to perhaps fifty to one
hundred.
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The computer vision problems for tracking of wood logs are not solved by the
presented method. The core elements of the method are a possible way to
approach a solution, but there are still many unanswered questions that have to
be addressed. It should be investigated if the existing interest point detectors are
good at handling the appearance of wood logs. Descriptor assignment is another
issue, and it should be tested if the typical SIFT-like descriptor is sufficient to
uniquely characterize wood logs. Otherwise, object specific information could
be added to the descriptor, for example by using object specific knowledge. In
the process of obtaining the initial characterization of the log, it would be an
advantage if the log was seen from all sides. Then an arbitrary view could be
matched to the model. This could be solved by having a matching procedure
that takes each view into account and the effectiveness of the bag-of-words
approach is well suited for this.

The computational issues, which we addressed in our paper, are important, not
only for the logTracker system, but also for computer vision in general. Exam-
ples are computation time, data storage, etc., especially when large amounts
of images should be handled. In this case a reduction from 128 dimensional
descriptors to for example 10 dimensions can be what makes a system possible.
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Figure 5.1: Illustration of the bag-of-words model. Features are extracted from
the image database. The visual vocabulary is build using clustering, and in-
verted files is made based on the feature labeling of the database images. Finally
feature vectors are used for matching images, with the frequency vector overlap
giving the matching score.
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Query image

With color

Without color

Figure 5.2: First 6 images retrieved using 11 dimensional vectors with and with-
out color. With color the highest ranked images looks alike, whereas without
color number 5 and 6 are quite different from the rest. This was observed as a
general trend.
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Chapter 6

Conclusion of public part

The motivation for this thesis is a computer vision system for improving the
efficiency of timber harvesting for the use in a system called logTracker. We
have investigated three vital problems in relation to this computer vision system.
First, we considered the low-level vision problem of image segmentation, where
we focused on textured images. Second, we studied the high-level vision problem
of the classification of wood logs. Third, we studied the high-level problem of
image retrieval. We have identified solutions within all three problem areas and
we will now give a detailed description of the contributions.

Our segmentation procedure deals with the problem of segmenting inhomoge-
neous and textured images that are difficult to segment because of variability
of the image patterns. Our hypothesis is that coherent image parts correspond-
ing to depicted objects can be found using an appropriate image characteri-
zation. We verified this by constructing a segmentation procedure based on
two elements: a texture characterization and an image segmentation step. The
method is based on partition iterative function systems, which were developed
for image compression, and we successfully apply them to segmentation. Our
method for image characterization is based on a domain kernel set, and the im-
age is characterized by the distribution of mapping these kernels to the image.
This characterization shares properties with textons and basic image features,
but the novelty is a separation of the characterization to the elements of tex-
ture, intensity, variance, and color. The segmentation step is constructed as an
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iterative function system, where the function’s parameters are estimated from
self-similarities in a local neighborhood in the image, and segments are obtained
as attractor sets. This has shown to be very effective for obtaining good segmen-
tation results, and the procedure has been validated by segmenting synthetic
and real images where we obtained improved results compared to state of the
art. Our contribution is a simple, robust, and flexible method for unsupervised
image segmentation.

The second study concerns the classification of wood logs to identify tree species
from visual surface characteristics. This classification problem is demanding be-
cause the wood logs have highly varying visual appearance within the same tree
species. Our assumption is that the same species have distinctive texture ele-
ments, and we investigate this based on an active appearance model combined
with second order texture statistics. This assumption is confirmed through high
classification rates: a result which is valuable for this study and shows that it
would be reasonable to base tree species classification on a texture characteri-
zation. The novelty of the study concerns partly the application, but also the
usefulness in precise object localization for extracting essential visual informa-
tion.

Image retrieval for large scale image databases is the subject for our third study.
Time and precision are especially important considerations for image retrieval
problems. Our method is based on the bag-of-visual-words approach where an
image is characterized as a distribution of descriptor representatives. Our hy-
pothesis is that there is a tradeoff between uniqueness of visual features and
performance of the procedure. Higher uniqueness can be obtained by increas-
ing the size of the visual vocabulary and through higher dimensionality of the
image descriptors. The consequence will be higher computational costs. The
purpose of our investigation is to demonstrate that the uniqueness of the visual
words can be retained using low dimensional features and relatively small vi-
sual vocabularies. This is achieved through PCA dimensionality reduction of
SIFT descriptors and an addition of color. Furthermore, we introduce a simple
leader-follower clustering algorithm that also increases the performance. The
novelty of our procedure is the very low dimensional descriptors that we obtain
significantly lower than previous methods for dimensionality reduction while
high performance rates are preserved. This is an important contribution in ad-
vancing state of the art within image retrieval. Our hope is that the presented
procedures can be a small contribution to advance computer vision and help to
build better and more reliable vision systems in the future.
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