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Abstract

Multimedia applications involving image retrieval demand fast response, which requires

efficient database indexing. Generally, a two-level indexing scheme in an image database

can help to reduce the search space against a given query image. The first level is required

to significantly reduce the search space for the second-stage of comparisons and must be

computationally efficient. It is also required to guarantee that no new false negatives may

result. In this thesis, we propose a new image signature representation for the first level of

a two-level image indexing scheme that is based on hierarchical decomposition of image

space into spatial arrangement of image features (quadtrees). We also formally prove that

the proposed signature representation scheme not only results in fewer number of matching

signatures but also does not result in any new false negative. Further, the performance of

the retrieval scheme with proposed signature representation is evaluated for various feature

point detection algorithms.
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Chapter 1

Introduction

The old saying “A picture is worth a thousand words” [53] still bears strong importance in

the modern world of science and technology. In fact, with the increasing use of streaming

and embedded multimedia on the internet, the importance of pictures and videos is continu-

ously on the rise. We see an extensive use of photographic materials in almost every step of

our life, from buying a new car to monitoring heart conditions. Therefore, organization of

photographic materials is a fundamental component of efficient operation of any multime-

dia system. Content-based image retrieval (CBIR) is any technique that helps to organize

archive of digital pictures by their visual content for easy matching and retrieval [15].

One of the most challenging problems in the field of multimedia and computer vision is

the automatic interpretation of image information. Generally speaking, exact characteriza-

tion of human vision and perception is difficult, if not impossible. The knowledge base of

humans gradually evolves with the help of the surroundings, whereas machines are usually

built and trained for a specific task only. As a result, machines can only try to simulate

human behavior. But obviously, the task of image retrieval from a large collection through

human only is impractical. As a result, CBIR is of utmost importance and is a subject of

1



CHAPTER 1. INTRODUCTION 2

intense research [15]. Generally speaking, CBIR requires automatic identification and un-

derstanding of the semantics of image contents for search and retrieval of similar images

against a given query image.

One of the fundamental requirements of a CBIR system is the fast response which

requires quick searching capabilities to search suitable images from a given image database.

It is well known that the efficiency of search and retrieval of information in a database

system is index dependent. In an image database with a large number of images, sequential

search is not an option. Therefore, some indexing scheme is required to facilitate search and

retrieval process. In an image database, the purpose of indexing is to reduce the cardinality

of search space only. This allows the potentially similar images to go through more rigorous

matching process that is generally more exhaustive and computationally expensive.

Most of the existing image indexing techniques are essentially based on quantifiable

dominant visual image features such as color, texture, spatial arrangements of image con-

tents, etc. [5, 40, 42, 47]. In [1], a new and different indexing scheme that is based on hier-

archical decomposition of image space and quadtrees has been presented. In this scheme,

abstract or symbolic images are used to improve the speed and efficiency of the search and

retrieval process. A symbolic image is an abstraction of the actual or physical image and

is based on its salient features [1]. Such images are generally used for comparisons only

or to establish index structures to reduce the cardinality of the search space. The physical

images are retrieved from the database only when a suitable match is determined. Some of

the important advantages of this scheme are as follows:

• It is independent of basic geometric transformations (i.e., translation, rotation and

scaling).

• The use of hierarchical decomposition allows representation of image at various level



CHAPTER 1. INTRODUCTION 3

of details (from coarse to fine) through the use of quadtrees.

• Its computational time is independent of the complexity of the physical image.

• It uses a two-level indexing that allows to curtail search space in the earlier stages of

comparison with the help of image signatures.

One of the key aspects of this scheme is the improvement of retrieval efficiency by

curtailing the search space in earlier stages of computation. An image signature in this

scheme is essentially a representation of a symbolic image in a form so as to facilitate

identification of only those images that satisfy a matching criteria. Therefore, selection of

proper signature representation is extremely important. However, it involves the following

trade-offs:

• The result of signature matching should be a limited number of potentially matching

candidate images for the second level of filtering.

• The signature matching process should not result in any new false negative. In other

words, due to signature matching, any potentially relevant image should not be left

out from more intensive second level filtering.

These two competing and opposite trade-offs make it difficult to find a suitable signature

representation scheme. In this thesis, We present a new image signature representation

scheme. Like the scheme in [1], it also results in non-unique signatures but significantly

increases the overall efficiency of the system by reducing the possible number of candidate

images for intensive second level of filtering. In addition, it is mathematically proven that

this scheme does not result in any new false negative.
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Another important aspect of indexing scheme in [1] is the process through which sym-

bolic images from the physical images are generated. Since physical images are not actually

considered in the filtering process, the results and performance of the whole system is heav-

ily dependent on accuracy of information encoded in symbolic images. In this scheme, a

symbolic image is derived from feature points using corner detection algorithm. A survey of

literature [56] indicates several corner detection methods. These methods vary considerably

in term of their output and underlying philosophy. Therefore, in this thesis, We evaluate and

compare results of three different popular corner detection algorithms, namely, the Smallest

Univalue Segment Assimilation Nucleus (SUSAN) Detector [58], the Harris Detector [25]

and the method proposed in [60], which we call the Wedge Detector.

The rest of this thesis is organized as follows: in Chapter 2, We provide an overview

of Content-Based Image Retrieval. In Chapter 3, the idea of symbolic image representa-

tion is discussed along with some description of the three aforementioned corner detection

methods. We also provide a brief description of the idea of hierarchical decomposition

and introduce the notion of quadtree in this chapter. Chapter 4 provides details of the new

signature representation scheme and various experimental results including extensive com-

parisons between the existing and the proposed signature representation schemes. Finally,

Chapter 5 provides some concluding remarks.



Chapter 2

Content-based Image Retrieval

Content-Based Image Retrieval (CBIR) is an active area of research for quite some time

[61]. The emphasis of CBIR is primarily on finding quantifiable visual features which

can describe image contents. Prominent among these features are the image color, texture,

shape, spatial image features etc [15]. Each of these features has its own advantages and

limitations with some discussion in subsequent Sections. However, the ultimate choice of

feature is generally domain specific.

Some techniques combine more than one of the above mentioned features and try to take

advantage of the ones used. Query By Image Content, also known as QBIC by IBM [19]

is a notable example of a such system. It combines color, texture and shape-based features.

QBIC uses a graphical query language where the user can compose a query graphically by

drawing, selecting or by some other graphical means. The images are stored in the database

in such a way that they can be classified based on features such as colors, textures, shapes

etc. The query is performed by matching the query image features with the database image

features. VisualSEEK [57] is another notable scheme that allows the user to form visual

queries by creating spatial arrangement of color regions through a diagraming process. It

5



CHAPTER 2. CONTENT-BASED IMAGE RETRIEVAL 6

combines both color and spatial information to match a query image with the database

images.

2.1 Color-based Retrieval

The most widely discussed visual feature to represent image contents is its color. A survey

of literature indicates number of different ways of summarizing colors in an image [15].

Essentially, most of the techniques based on this feature make use of color histograms [19].

Any technique that is based on this feature alone does not take any advantage of either

the local or the spatial image features. As a result, two entirely different images can be

described by the same color contents [1]. Also, there are too many independent dimensions

in a generic color histogram, such as choice of color space, choice of quantization in color

space and quantization of the histogram values, which makes the interpretability between

different color descriptors a difficult task [39]. A set of color and texture descriptors for

MPEG-7 standard has been described in [39] which are well suited for both images and

videos. One of them is the Scalable Color Descriptor (SCD), which uses the HSV color

space and encodes the histograms using Haar transform. Another one is the Color Structure

Descriptor (CSD), which uses the HMMD color space. However, for complex backgrounds

or cases where the object occupies only a small portion of the scene, matching the histogram

of the entire scene against the histogram of a model may fail to perform satisfactorily [26].

2.2 Texture-based Retrieval

Texture is another important feature for images that contain repetitive patterns such as car-

pets, grass field, checker boards etc. The use of texture features is generally domain spe-
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cific with common application in aerial images. A discussion of texture feature extraction

methods using wavelet and cosine transforms is presented in [16] and [38] . In [39], three

different texture descriptors are listed for the MPEG-7 standard. One of them is the Texture

Browsing Descriptor which concentrates on the regularity, directionality and coarseness of

textures. The Homogeneous Texture Descriptor is probably the most robust texture descrip-

tor specifically targeted to similarity-based retrieval [24]. It is calculated in the frequency

domain by using different kinds of filters. The third one is the Edge Histogram Descriptor

which captures the spatial distribution of edges. This descriptor is used in the cases where

the texture is not homogeneous. As stated before, in most cases only color or texture fea-

tures alone are not sufficient to describe the complete pictorial information present in an

image.

2.3 Shape-based Retrieval

Shape-based retrieval [12, 63, 65] is another important aspect of image databases and a pri-

mary requirement in many applications, specially those dealing with security and surveil-

lance. The principal focus of schemes using shape feature is on shape representation and

on matching of different shapes. In [12], moment invariants and Zernike moments are used

to represent the shape feature vectors. k-means clustering is then used to group the im-

ages with similar shapes together. To match a query image with database images, neural

network is used with the clusters. Latecki, et al. [35] describes another method of shape

representation using discrete curve evolution. Since contours of objects in an image can

be distorted due to noise and segmentation errors, instead of using the original contours,

an approximation is used. Every curve is approximated by a polygon by considering pair

of consecutive line segments and substituting them by a single line segment by joining the
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end points. This iterative process is stopped with the help of a shape similarity measure,

which is calculated by finding visual correspondence of the different parts. In [4], curves

are represented by a set of segments. These features (curvature and orientation) are then

arranged in a metric tree [13] to facilitate matching and retrieval. A Dynamic Programming

(DP) approach has been discussed in [47]. In this approach, a shape is represented by a

sequence of convex and concave segments. These segments are merged using DP where

the program searches for the least cost path in a DP table. After merging, the merged seg-

ment is compared with larger segments from other shapes. All of the shape-based retrieval

methods require extensive computations and are time-intensive and, hence, cannot be used

when dealing with large collections of images [20].

2.4 Spatial Similarity-based Retrieval

Spatial arrangements of image objects and mutual relationships among them are the focus of

spatial similarity-based retrieval schemes. Geographical and medical information domains

are the primary beneficiaries of such type of image retrieval. Much of the approaches in

spatial retrieval have been inspired by the classical iconic indexing scheme proposed by

Chang, et al. [8].

2.4.1 Iconic Indexing

The basic idea of iconic indexing is to represent each object in an image by a symbol. A

real image is then transformed to an equivalent symbolic image, where a matrix of symbols

represent the objects of the real image. Figure 2.1 shows a sample image and the corre-

sponding symbolic image representation. Here, the vocabulary or the set of symbols is
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a b

c d

e

Figure 2.1: A sample image and the corresponding symbolic image

V = {a,b,c,d,e}. The symbols are projected in 2 directions (X and Y axes) to generate the

2D-string. Let us assume that the set of operators (explained in the following paragraph)

is U = {=,<}. The 2D-string representation of the symbolic image for Figure 2.1 can be

formulated as follows:

( a = e < c < b = d,a = b < c = d < e)

= (x1 y1 x2 y2 x3 y3 x4 y4 x5 , x1 z1 x4 z2 x3 z3 x5 z4 x2),

where

x1 x2 x3 x4 x5 is a e c b d

x1 x4 x3 x5 x2 is a b c d e

y1 y2 y3 y4 is = < < =

z1 z2 z3 z4 is = < = <

(2.1)
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Here, the operators {=,<} denote spatial relationships. The operator {<} denotes left-

right or below-above spatial relationship for the first and second string respectively, whereas

the operator {=} denotes the “same location” spatial relationship.

In this way, an image can be represented by a 2D-string of symbols. A query image can

then be transformed to a 2D-string in the same way where the user can specify the query

graphically by drawing an iconic figure. This figure is then translated to a 2D-string and

matched with the iconic index of a database image, which is basically the 2D-string repre-

sentation of the database image itself. Therefore, the problem of image retrieval reduces to

a 2D-string matching problem.

However, the 2D-string matching problem is similar to the Longest Common Subse-

quence Problem (LCS) [6] and is NP complete. Hence, this scheme is not computationally

feasible for large image databases. Further, multiple occurrences of projection of symbols

along the axes lead to ambiguity in the string representation. Moreover, since the infor-

mation is encoded in the form of 2D-strings, this scheme fails to represent complete de-

scription of spatial relationships between the overlapping objects of an arbitrarily complex

image [36]. This scheme also cannot recognize any rotational variant of an image [20].

2.4.2 Extensions to Iconic Indexing

To overcome the aforementioned limitations, many extensions to the original iconic index-

ing scheme have been proposed. These extensions include extended 2D-strings [30, 31], 2D

C and 2D C+-strings [28, 29, 37], 2D B-strings [36], Θℜ-strings [20] etc. In [30], the idea

of splitting an object into several parts is introduced to handle overlapping objects. New

local operators are also introduced to handle more spatial relationships. The 2D C-strings

method described in [37] introduces 13 types of spatial relationships, which are basically



CHAPTER 2. CONTENT-BASED IMAGE RETRIEVAL 11

modified and extended versions of the relationships described in [30] so that they can be

incorporated in a global 2D-string representation. Another recent extension to the iconic

indexing method is the “two dimension begin-end boundary string” or 2D-Be-string [62].

This scheme uses the idea of Minimum Bounding Rectangle (MBR) [44] to represent object

locations inside an image more precisely. In this scheme, “dummy objects” are introduced

to simplify the string representation, and the number of required operators are reduced to

only one, the {=} operator.

However, being variants of the LCS problem, most of these methods are computation-

ally expensive. Also, most of them are not invariant to the basic geometric transformations

(translation, rotation, scaling) [51].

In [45], a symbolic representation of images termed as virtual image is proposed and

consists of entities (objects) and binary spatial relationships among them. Although virtual

images are independent of translation and scaling, they are sensitive to rotation.

Also, most of the string-based techniques discussed above do not use any multi-dimensional

indexing mechanism. As a result, for a given query image, an exhaustive search is made to

find all relevant images which is not suitable for large image databases. Some string-based

methods have also been proposed which use signature files for indexing. The method using

Nine Direction Lower Triangular (9DLT) matrix was proposed in [7]. The 9DLT matrix

basically uses 9 directional code values to represent binary spatial relationships among ob-

jects. An example of a 9DLT matrix is shown in Figure 2.2, where we show the 9DLT

matrix for the symbolic image from Figure 2.1. Here, we can see that there are 9 possi-

ble directions in which a symbol (object) can exist with respect to another symbol. These

9 directions are represented by 9 values, {0,1,2,3,4,5,6,7,8}. Finally, the 9DLT matrix

contains the values corresponding to the spatial relationships between the objects. Exten-
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a b

c d

e
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Figure 2.2: Example of a 9DLT matrix

sions to the 9DLT matrix based method such as unique-ID based [11], generalized prime

number based [9] and bit pattern based [10] matrix strategies are also found in literature.

However, most of the matrix based approaches also suffer from considerable number of

problems, such as storage overhead, inability to deal with geometrical transformations, etc.

[22].

2.5 Multi-dimensional Indexing

To support efficient indexing and faster retrieval of images from a given image database,

several multi-dimensional algorithms have also been proposed [5, 42, 46]. In [46], R-

trees are used for indexing images represented as Attributed Relational Graphs (ARGs).

In an ARG, image objects are represented by the graph vertices and their relationships

are represented by the edges. Both the vertices and the edges are labeled by attributes

corresponding to properties of the objects and their mutual relationships, respectively. The

ARGs corresponding to the images are mapped to a high-dimensional point using FastMap

[18]. These high-dimensional points are then indexed in the database using R-trees [23].

R*-trees [2] for image indexing has been discussed in [42], which are improvement over the
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R-trees. Graph-based image representation and indexing algorithm has been proposed in

[5]. Several other multi-dimensional indexing methods such as multi-dimensional binary-

trees [3], K-D-B-trees [52], BD-trees [14], G-trees [34], grids [43], multi-attribute hashing

[54] etc. also exist. However, unlike quadtrees [55], none of these indexing methods can be

directly related to the notion of recursive decomposition of an image (explained in Section

3.2), which is one of the key motivations behind our retrieval system because of its ability to

represent an image at various level of details. As a result, quadtree is picked as the preferred

representation method of multi-dimensional indexing in our case. The structure and formal

definitions related to quadtrees are described in detail in Section 3.2.2.

2.6 Summary

This chapter discusses the evolution of content-based image retrieval throughout the past

few years. The various areas of CBIR have been presented with emphasis on spatial

similarity-based retrieval. From the discussions we see that despite having advantages

and applications in their own domains, most of the existing methods suffer from several

drawbacks.



Chapter 3

Symbolic Image Representation and

Recursive Decomposition

The key to the notion of a spatial similarity-based image retrieval system is the symbolic or

abstract image representation of an actual image. A symbolic image is an abstraction of the

actual image and contains pertinent information necessary for comparison purposes only.

Such a representation also provides physical data independence, and hence, eliminates the

repetitive task of spatial and semantic information encoding [1].

3.1 Feature Image Representation

Each image Ii in an image database is unique and distinct and can contain one or more

objects Ok,k ≥ 1. In many applications, an image can be described by the help of a set of

significant feature components, defined as Fk = {F1
k ,F2

k , . . ., Frk
k }. These features can be

described as follows [21]:

Physical features: Physical features are those features which can be expressed quantita-

14
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tively. These features can be measured directly from the physical image. As a result,

physical feature identification can be an automated process. Example of physical

features are number of image objects, object positions, object areas etc.

Logical features: Logical features are those features which can not be calculated directly,

rather those have to be retrieved semantically. Attaching a label (e.g. “sky”) to a part

of the image is an example of a logical feature.

Features can also be described as:

Global features: These kind of features are directly associated with physical features and

can be easily computed. These features are based on the overall image composition

and generally applicable to the whole image. Example of these kind of features are

image size, overall image color composition etc.

Local features: Local features contain low-level characteristic information associated with

the image. Computation of these kind of features require extensive low level process-

ing, and hence, are computationally expensive. These kind of features usually contain

spatial information about the image. Image boundary points and centroids of image

objects are example of these kind of features.

In spatial similarity-based retrieval, Only those image features that provide spatial infor-

mation about the image objects (spatial positions, mutual relationships etc.) are considered

important. These features are termed as spatial features.

A spatial feature F j
k of an image object Ok in a 2D image space can be represented as a

set of points P j
k = {p j,1

k , p j,2
k , . . .}, where p j,m

k = (x j,m
k ,y j,m

k ) are the coordinates of the said

point. These points can be tagged with labels from the representative domain to capture
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necessary semantics [1]. Each of these individual points represent some spatial feature of

an image object and is called a feature point. For the sake of clarity, it is assumed that only

a single feature point represents a spatial feature of an image object. Thus, the entire image

is represented by a set of representative feature points.

The identification and labeling of feature points in a physical image essentially converts

it into an equivalent symbolic image, also called feature image [1]. For feature image

extraction, one can take advantage of the existing image processing techniques such as

detection of corner points. Corner points represent important local features in images.

Generally speaking, they are the points that have high curvature and lie at the junction

of different brightness regions of an image. Generally corner points are not affected by

illumination and have the property of rotational invariance [59]. Therefore, corner points

can serve as feature points for generation of an equivalent symbolic image of an actual

image. As indicated before, symbolic images are used for comparison and to determine

suitability of match for retrieval of actual images against a given query image. Actual

images are retrieved from the database only when the retrieval results are presented to the

user. Therefore, feature image generation is one of the fundamental steps in the retrieval

process and can effect the overall accuracy and performance of the system.

A survey of literature indicates several different corner point detection methods [59].

The output provided by these methods vary considerably due to differences in the under-

lying techniques of each method. Most of the commonly used methods usually rely on

intensity derivatives to find high curvature points. Some methods use direct intensity val-

ues of the pixels inside a pre-defined window to find corners whereas some other methods

try to define a corner model and match the image regions with it. As a result, the methods

behave differently in terms of accuracy, robustness and sensitivity [60].
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To test our retrieval system against varying detection algorithms, we selected the fol-

lowing three important contemporary methods. Our selection is essentially based on the

differences in their underlying philosophies and, consequently, different output feature im-

ages in terms of spatial similarity.

3.1.1 SUSAN Detector

The method introduced in [58] is a popular corner detector. In this method, no image deriva-

tives are used and no noise reduction is needed. The method works on a small pre-defined

window called Univalue Segment Assimilating Nucleus (USAN). A pixel is considered as

the nucleus and the area of USAN, also called mask, is defined by the pixels which have

same or similar intensity as that of the nucleus. Let r0 and r represent coordinates of nu-

cleus and some other point within the mask c(r,r0) of an area M. Every pixel is compared

to the the nucleus using the comparison function:

c(r,r0) = exp
{
− [I(r)− I(r0)]6

t

}
(3.1)

where t is the threshold and determines how similar the intensity values should be so as

to be considered in the same USAN. This threshold varies from image to image between

different image databases and must be tuned for each image database. The size of USAN

is given as:

n(M) = ∑
r∈M

c(r,r0) (3.2)

If c is the rectangular function then n is the number of pixels in the mask which are

within t of the nucleus. The area of USAN falls to a local minima for a corner (Smallest
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Figure 3.1: The principle behind SUSAN (a) Pre-defined windows with nuclei marked (b)
Area of USAN falling to minimum in case of a corner

USAN). The idea is evident from Figure 3.1, where we see an image containing a simple

triangular object. Three sample pre-defined windows are shown in Figure 3.1-a , with the

nucleus (center) of each marked. In Figure 3.1-b, the area of USAN for each of the three

windows is marked in black. As stated before, the pixels with same or similar intensity are

considered to be in the same USAN as the nucleus. We see that for the corner, the area of

USAN falls to minimum indeed.

The response of SUSAN operator is given by:

n(M) =





g−n(M), if n(M) < g

0, otherwise
(3.3)

where g is the geometric threshold which determines the acute level of a corner. The

value of g determines the minimum size of the univalue segment. This geometric threshold

is necessary to filter out the false positives which can result from detecting multiple corners

on a straight edge. This threshold ensures that a corner is acute enough to be considered as
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Figure 3.2: Application of the SUSAN detector on a facial image

a corner point.

Figure 3.2 shows the output corner points marked for a facial image after applying the

SUSAN detector. The image is taken from the ORL face database [64], details of which

can be found in Section 4.4. The threshold t was tuned properly to generate the best output.

Here, we see that the SUSAN principle gives reasonably correct output in terms of detected

corners. However, we also see that some expected corners (specially around the chin area)

were not detected. If the intensity values are not different enough for the surroundings of

the corner, the area of USAN will not fall to a local minima and, as a result, the SUSAN

detector will not detect a corner.

3.1.2 Harris Detector

Harris detector [25] is another common corner detection method. In this method, the image

intensity derivatives are used to find corners with a pre-requisite of a smoothing operator

to reduce the sensitivity to noise. The Harris detector is an improvement over Moravec’s

corner detector [41]. In Moravec’s detector, a small window is considered and the average

intensity value in the window is calculated. Then the window is shifted in different direc-

tions to calculate the average change in intensity. For a corner, the shift of the window in

any direction will result in large change of intensity value. As the shifts are too discrete
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and the used window is rectangular, the output of the Moravec’s detector has room for im-

provement. Harris proposed a different way of calculating corner scores to get rid of these

drawbacks. For an image pixel (x,y) of an image I, the Harris method first calculates the

autocorrelation matrix given as:

M(x,y) = S∗




I2
x IxIy

IxIy I2
y


 , (3.4)

where Ix and Iy are the image intensity gradients and S denotes the smoothing opera-

tor [49]. The use of a smoothing operator is optional, but advisable as this function uses

image derivatives which can be susceptible to noise. The greatest eigenvalue of M(x,y)

corresponds to the rate of change in the direction of highest variation, while the smallest

eigenvalue corresponds to the rate of change in perpendicular direction of the highest vari-

ation. If both of these eigenvalues have high magnitudes, then (x,y) can be considered as

a corner point. Since calculating eigenvalues is computationally expensive, the following

approximation has been suggested to determine the corner strength:

R(x,y) = det(M(x,y))−κ(trace(M(x,y)))2. (3.5)

Suitable value of κ has been determined to be 0.04− 0.15 [56]. The value of R(x,y)

is generally larger than the specific threshold for a corner point. The threshold is again,

dependent on the type of images used and may vary from database to database.

Figure 3.3 shows the output corner points marked for the same facial image as in Fig-

ure 3.2 after application of the Harris detector. The threshold was properly tuned again to

generate acceptable output. Here, we see that compared to the output of the SUSAN de-

tector, the corner points detected by the Harris detector are spread more equally across the
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Figure 3.3: Application of the Harris detector on a facial image

image. Rather than using the pixel intensity values directly, the Harris detector uses image

derivatives. As a result, the output provided is different than that of the SUSAN detector.

3.1.3 Wedge Detector

We call the method described in [60] as the Wedge detector. It uses a simple corner model

to detect corner shapes. The corner model consists of a wedge (the corner), having its origin

at the center of a circular neighborhood (the background) and is described by an angular

position θ and an angular width ϕ (Figure 3.4). For each pixel, the circular area around

it is segmented into background and foreground by using a sigmoid function. The corner

strength is then calculated using the following equation:

C(x,y,W ϕ
θ ) =

∫ ∫

Cx,y

|W ϕ
θ (i, j)− sig(I(x+ i,y+ j)− I(x,y))|did j, (3.6)

where Cx,y is the circular area around (x,y), W ϕ
θ is the binary map of the corner model

being used, sig() is the sigmoid function for background and foreground segmentation and

I(x,y) is the average pixel intensity in Cx,y. The sigmoid function sig() is defined as follows:

sig(I(x,y)− I(x,y)) =
1

1+ es(I(x,y)−I(x,y))
. (3.7)
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Figure 3.4: A simple corner model

Figure 3.5: Application of Wedge detector on a facial image

Here, s is a constant whose value is adjusted to determine to which extent a pixel is

segmented as a foreground pixel. Instead of using a constant threshold for background and

foreground segmentation, use of a sigmoid function is deemed to be more stable.

Instead of finding the optimal θ and ϕ for the corner model which can be too time

consuming, the values are approximated by calculating the union of smaller foreground

wedges. Finally, only those points are considered as corners for which the value of C(x,y,W ϕ
θ )

from Equation 3.6 exceeds a pre-determined corner strength value. This threshold is the pri-

mary control parameter and varies from one database to another.

Figure 3.5 shows the output corner points marked for the same facial image as in Figure
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(a) (b) (c) (d)

Figure 3.6: (a) Input image (b) Output of the SUSAN Detector (c) Output of the Harris
Detector (d) Output of the Wedge Detector

3.2 and 3.3 after applying the Wedge detector. The corner strength threshold was prop-

erly tuned to generate acceptable output. Here, we see that the output of this method has

similarity to the SUSAN detector. Like SUSAN detector, this method also does not detect

expected corner points around the chin region. The reason for the similar outputs from these

two methods is the similarity in their underlying mechanism. SUSAN detector also relies

on a simple segmentation to obtain the USANs. But unlike SUSAN, this method explicitly

compares the segments to a pre-established corner model. In that sense, this method has

some difference in principle compared to the SUSAN detector and, hence, the output corner

points are not exactly the same.

Figure 3.6 shows the comparison of the results obtained by these three corner detection

methods on the same image (Figure 3.6-a) as depicted before. As can be seen, the corner

points obtained by these three methods are considerably different in terms of spatial rela-

tionships among them. As a result, our retrieval system will behave differently to each of

these methods and we have observed the same in experiments (Section 4.4).
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3.2 Recursive Decomposition

Recursive decomposition is the method of dividing the feature image into distinct regions

to capture and recognize the spatial and semantic relationships among individual feature

points and is defined as follows [1]:

Definition 3.1. The process of recursively dividing an image space into four equal size

quadrants 0, . . . ,3 is termed as the recursive decomposition of an image. The resultant

quadrants are recognized by four directional relations as North-West (NW), North-East

(NE), South-West (SW), South-East (SE), respectively. The decomposition process stops

only when each and every feature point can be identified by a distinct quadrant and, there-

fore, each quadrant can contain exactly one point in it.

The decomposition hierarchy can be mapped to a top-down built quadtree [55] of height

h such that:

• The root of the tree is assumed to be at level l = 0 and represents complete image.

• The level i, i≥ 0, of the tree corresponds to the ith level of decomposition.

• The leaf nodes of the tree represent the smallest quadrants resulting from the decom-

position, and each encloses only a single feature point.

Figure 3.7 is an example of a hierarchically decomposed feature image and its corre-

sponding quadtree representation. In this figure, the root of the tree corresponds to the

original non-decomposed image. Each level of the quadtree corresponds to subsequent lev-

els of decomposition. The circles represent internal nodes of the tree whereas leaf nodes

correspond to the smallest quadrants. Quadrants containing feature points are represented

by black rectangles and white rectangles represent empty quadrants.
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Figure 3.7: A recursively decomposed image and its corresponding quadtree

3.2.1 Geometric Transformation Independence

During the semantic conversion process, each feature point is considered as a reference

point to recalculate the orientation of the principal axes of the feature image using the

method described in [27]. The basic idea here is to fit a simple straight line

y = a+bx

to the set of feature points based on the criterion of least absolute deviations [50]. Based

on the fitted line, the principal axes and the centroid of the image are recalculated. After

all the feature points are considered and the new centroid and principal axes of the feature

image are found, the coordinates of all the feature points are recalculated with respect to

the new centroid and principal axes (Figure 3.8), thus making the representation translation,

rotation and scale independent.
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a(x1,y1)

b(x2,y2)

c(x3,y3)

d(x4,y4)

e(x5,y5)

Old image size :  480X480

New image size:  636X636

New centroid    :  (211,221)

Angle             :  30                 
0

Figure 3.8: A feature image with recomputed boundaries parallel to the new principal axis

3.2.2 Quadtrees

To establish a measure of similarity between the images matched in first stage of filtering,

their corresponding quadtrees are matched. The quadtrees are matched with the help of

a distance function (Definition 3.7). The distance function is defined in such a way that

the distance is computed node by node, starting from the root and going down along both

of the trees gradually. This results in reduced number of comparisons since it allows to

eliminate trees that appear to be different at the initial stages of processing. To formulate

spatial filtering and indexing scheme, the following terminologies are necessary [1]:

Definition 3.2. A quadtree is defined as follows:

• A single node©M is a quadtree. This node is a leaf as well as the root of the tree.

m ≥ 0 is called the occupancy of this node. It is meant to capture the number of
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feature points in the region of the image corresponding to the node. The coordinate

sequence of this node is λ, the empty sequence.

• If T1,T2,T3,T4 are quadtrees whose roots have occupancies m1,m2,m3 and m4 respec-

tively, where m1 +m2 +m3 +m4 ≥ 0, we have that

m1+m2+m3+m4

T1 T2 T3 T4

is a quadtree. The node (m1 + m2 + m3 + m4) is the root of the resulting quadtree.

The leaves of T1,T2,T3 and T4 are the leaves of the resulting quadtree. The coordinate

sequence of root node is λ. If seq is coordinate sequence of a node in Tj, for 1≤ j≤ 4,

then j • seq is the coordinate sequence of this node in the resulting quadtree, where •
is the sequence concatenation operator.

In these definitions, the root node of the quadtree T is denoted by root(T ) and the

occupancy of the node n of a quadtree is denoted by occupancy(n).

Definition 3.3. The level of a node, n, in a quadtree is the length of the coordinate sequence

of that node and is denoted by level(n).

Definition 3.4. The height of a quadtree T , denoted by height((T ), is one more than the

maximum level of any node in the quadtree.

Definition 3.5. The ith approximation of a quadtree T , for i ≥ 0, is the quadtree which

results by removing all nodes on level j > i. It is denoted by T (i).

Definition 3.6. A quadtree is complete iff each leaf node has an occupancy of 0 or 1.
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Now the distance function is defined as:

Definition 3.7. The distance between two quadtrees T and U , d(T,U) is defined as follows:

case 1: Suppose height(T ) = height(U) = 1 and occupancy(root(T )) + occupancy(root(U))

= 0. Then

d(T,U) = 0

case 2: Suppose height(T ) = height(U) = 1 and occupancy(root(T )) + occupancy(root(U))

> 0.

Also, let M =occupancy(root(T )) and N = occupancy(root(U)). Then

d(T,U) =
|M−N|

max(M,N)

case 3: Suppose height(T ) = 1 and occupancy(root(T )) = 0 and height(U) > 1. Then

d(T,U) = 1

case 4: Suppose height(T ) = 1, occupancy( root(T ) ) = 1, height(U) > 1 and at least one

child of the root node of U has an occupancy greater than 0. Then

d(T,U) =
|N−1|

N

case 5: Suppose height(T ) = 1, occupancy( root(T ) ) = 1, height(U) > 1 and at least one

child of the root node of U has an occupancy equal to 0. Then

d(T,U) = 1
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case 6: Suppose height(T ) > 1 and height(U) > 1.

For 1≤ j ≤ 4, let the subtree of T and U determined by the nodes having coordinate

sequence j be called Tj and U j respectively.

Let occupancy(root(T )) = M and occupancy(root(U)) = N.

For 1≤ j ≤ 4, let occupancy(root(Tj)) = m j and occupancy(root(U j)) = n j. Then

d(T,U) = max

(
4

∑
j=1

m j

M
d(Tj,U j),

4

∑
j=1

n j

N
d(Tj,U j)

)

Theorem 3.1. Let T and U be two complete quadtrees. Then, for i≥ 0,

d(T i,U i)≤ d(T (i+1),U (i+1))

Proof. (Adapted from [1])

Basis − Case i = 0: Case 1: height(T ) = height(U) = 1.

Then, T (0) = T (1) and U (0) = U (1) and the result follows.

Case 2: height(T ) = 1 and occupancy(root(T )) = 0 and height(U) > 1.

Then, T (0) = T (1) = T and height(T (1)) = 1.

From Definition 3.7, Case 3 we have that

d(T (0),U (0)) = d(T (1),U (1)) = 1.

Case 3: height(T ) = 1 and occupancy(root(T )) = 1 and height(U) > 1.

Then, T (0) = T (1) = T and height(T (1)) = 1.
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Suppose occupancy(root(U (0)))= N. From Definition 3.7, Case 4 we have that

d(T (0),U (0)) = |N−1|/N.

Now, height(T (1)) = 1. ∴ from Definition 3.7, Case 4 and 5 we have that

d(T (1),U (1))≥ |N−1|/N and the result follows.

Case 4: height(T ) > 1 and height(U) > 1.

For 1 ≤ j ≤ 4, let the subtree of T and U determined by the nodes having coordi-

nate sequence j be called Tj and U j respectively. Let occupancy(root(T )) = M and

occupancy(root(U)) = N.

For 1≤ j ≤ 4, let occupancy(root(Tj)) = m j and occupancy(root(U j)) = n j.

Without loss of generality, we assume that M ≥N. By Definition 3.7, Case 2 we have

that

d(T (0),U (0)) = (M−N)/M.

Now, consider the following term:

Q =
4

∑
j=1

m j

M
|m j−n j|

max(m j,n j)
,

where, if m j = n j = 0, the jth summand is equal to 0.

For 1≤ d ≤ 4, if md ≥ nd , then

md

M
|md−nd|

max(md,nd)
=

md−nd

M
.

Again, if md < nd , then

md

M
|md−nd|

max(md,nd)
>

md

M
md−nd

md
=

md−nd

M
.
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∴ Q≥
4

∑
j=1

|m j−n j|
max(m j,n j)

=
(M−N)

M

. Now, d(T (1),U (1))≥ Q.

∴ d(T (1),U (1))≥ Q≥ (M−N)
M

= d(T (0),U (0)).

Hence, the result follows.

Induction: Assuming that the theorem is true for i = 0, . . . ,k, we will show that it is true

for i = k +1.

For 1 ≤ j ≤ 4, let the subtree of T and U determined by the nodes having coordi-

nate sequence j be called Tj and U j respectively.Let occupancy(root(T )) = M and

occupancy(root(U)) = N.

For 1≤ j ≤ 4, let occupancy(root(Tj)) = m j and occupancy(root(U j)) = n j.

Then, we have that the subtree of T (k) and U (k) determined by the nodes having

coordinate sequence j are T (k−1)
j and U (k−1)

j respectively. We also have that:

d(T (k)
j ,U (k)

j ) = max

(
4

∑
j=1

m j

M
d(T (k−1)

j ,U (k−1)
j ),

4

∑
j=1

n j

N
d(T (k−1)

j ,U (k−1)
j )

)
,

and

d(T (k+1)
j ,U (k+1)

j ) = max

(
4

∑
j=1

m j

M
d(T (k)

j ,U (k)
j ),

4

∑
j=1

n j

N
d(T (k)

j ,U (k)
j )

)
.

But, by hypothesis we already have that d(T (k−1)
j ,U (k−1)

j ) ≤ d(T (k)
j ,U (k)

j ). Hence,

our result follows.
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This theorem implies that for two trees T and U , if d(T i,U i) ≥ γ, where γ ≥ 0 is the

allowable deviation in similarity or threshold and i ≥ 0, then the distance between these

two trees at subsequent levels d(T (i+1),U (i+1)) will never be less than the threshold γ.

This means that one can start comparing the trees from the root level and as soon as it is

discovered that the distance between the two trees at a given approximation is greater than

the threshold, its corresponding database image can be discarded without any additional

computation. The distance function is defined in such a way ( Definition 3.7) that the

minimum distance between two trees can be 0 and the maximum distance can be 1. As a

result, the value of γ can range from 0 to 1.

A suitable value of γ is critical to the filtering process. A small value though reduces

the search space, but carries the risk of leaving out some of the potential candidates. On

the other hand, a value close to 1 may not leave out potential candidates but may result in a

larger set of candidates for a potential match, including those which may not be close to the

query image at all. The optimal value is both application and user expectation dependent

and cannot be predicted in advance.

With the help of a quadtree, we can represent an image at various levels of details and

provide different measurements of similarity between a query and the database images. In

terms of quadtree representation, the extent of fineness is directly proportional to the depth

of the quadtree [1]. The smaller the depth of the tree, the more coarse or less accurate is

the description. The most coarse is the root level, where all feature points are only in one

square. Hence, the less the depth of the tree traversed during comparisons, the more is the

chance that there will be a match, specially when most of the images in the database are

similar to some extent. This is an important observation and serves as the basis of our new
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signature representation scheme.

3.3 Summary

In this chapter, the notion of symbolic image representation has been presented. The im-

portance of underlying corner detection method in our proposed system has been discussed

with details of three different corner detectors: SUSAN, Harris and the Wedge detector. The

idea of recursive decomposition with its advantages and the process of quadtree building

and matching are also presented.



Chapter 4

The Proposed Signature Scheme with

Experimental Results

As mentioned before, the first of the two-level hierarchical indexing scheme in [1] is based

on the concept of signature matching. It serves as a spatial filter to discredit unqualified

images against a given query image. The second stage (as described in Section 3.2.2) is

based on tree matching that not only serves as a secondary filter but also provides a measure

of similarity to rank-order retrieved images. The main purpose of two-staged filtering is to

reduce the cardinality of the search space in first level of filtering so that the second level

that performs more intensive computations has to deal with only a limited set of candidate

images. It is important to note that in the first stage of filtering, if the search space is too tight

and small, there is a likelihood of leaving out some of the potentially useful matches a.k.a

false negatives. On the other hand, if the search space is too wide, there is a possibility of

retrieving irrelevant information a.k.a false positives [17]. In an ideal system, the number of

both false negatives and false positives should be zero. In reality, it is always better to have

false positives than false negatives and most of the image retrieval systems are designed on

34
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this philosophy.

4.1 The Existing Scheme

In [1], a signature is defined as a 32-bit number and is a combination of both disjoint and

superimposed coding methods [17, 48]. Each signature in this scheme consists of two

disjoint fields. First one of these fields is based on population standard deviation of the

number of feature points in the four quadrants after only first level of decomposition. It can

be represented by the following equation [1]:

Si
1 =

√√√√∑3
j=0(a j−µ)2

∑3
j=0 a j

, (4.1)

where µ = ∑3
j=0 a j/4 and a j is the number of feature points in each of the four quadrants

after the first level of decomposition.

The second field is the average number of feature points at each level of decomposition

of the image and can be represented by the following equation [1]:

Si
2 =

∑3
j=0 a j

h
, (4.2)

where h is the height of the quadtree.

After building the signature, the notion of Tolerance Factor (Definition 4.1) is used to

relax the signature to accommodate the concept of similarity. A step-by-step example of

how a signature is formed is given later in Section 4.3.

The main problem with this signature representation is the generalization in both of its

fields. As a result, this signature matching scheme results in too many false positives. This
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can be observed from the results in Section 4.4. As stated before, having too many false

positives leads to poor performance due to higher number of comparisons. Moreover, im-

age retrieval systems are most likely to be used in specialized applications where images

are generally similar to each other to some extent (e.g. medical imaging, facial recognition,

etc.). As an example, a typical facial image database consists of close-up facial shots of

all subjects. Here the basic shape of face in all of the images is similar. When most of the

images in a database have some type of similarity, the distribution of feature points in the

first level of decomposition does not exhibit much variance for creation of distinguished

signatures. As a result, many of the signatures will be identical. The signature representa-

tion scheme defined in [1] only deals with the standard deviation in first level and average

number of points in each level. This is not suitable for many applications, particularly

those involving specialized databases. However, it is important to note that whatever can

be accepted in the second stage of filtering must not be rejected in the first stage.

4.2 The Proposed Scheme

Our new signature representation scheme is based on the observations and tradeoffs stated

before. The proposed scheme results in significantly less number of qualified signatures for

second level of filtering and, hence, results in significantly improved system performance.

Also, our signature representation is entirely based on the idea of recursive decomposition

and quadtrees and, hence, does not incur any additional computational or storage overhead.

Our signature representation scheme is based on the important observation that in most

of the images, the coordinate locations of feature points are mostly coarse. This is due

to the fact that usually the feature points occur at locations where there is a sharp inten-

sity or illumination change. This occurs around the object boundaries whereas most of the
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Figure 4.1: Distribution of feature points in a typical image

images in real applications contain only few objects. Even if an image contains a lot of

objects, compared to the pixel resolution of the image, the number of feature points and,

hence, the number and placement of these points are still coarse. Therefore, during recur-

sive decomposition, if we only consider the information available to us in the first level of

decomposition, we may not gain much useful information and if the two images have some

degree of similarity, they may yield the same signatures. This concept is illustrated in Fig-

ure 4.1 where the coordinate locations of the feature points are denoted by dots appearing

in an oval shape in the center of the image. Here we can see that a number of quadrants

at different levels of decomposition are empty, i.e., they do not contain any feature point.

To be more precise, before level 3, the feature points are all concentrated only in one quad-

rant at each level of decomposition. In this figure, shaded areas indicate quadrants with no

feature points.

From this observation, we can intuitively assume that the quadrants with no feature
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points should not be involved in subsequent computations. Later we formally prove that

discarding these empty quadrants does not result in loss of relevant information and hence,

cannot generate any new false negative during the quadtree matching process. Based on

these observations, the new signature representation scheme [32] is given as follows:

• As before, a signature S of a quadtree T of an image is a 32-bit number. However, in

new scheme, the signature S consists of four 8-bit disjoint fields Si, 1≤ i≤ 4. Each of

these fields corresponds to one of the four quadrants in the recursive decomposition.

• if height(T ) = 1, then S = 0.

• if height(T ) = 2, then Si = % of total number of feature points belonging to the

quadrant i.

• if height(T ) > 2, for 1 ≤ i ≤ 4 let the subtree of T determined by the nodes having

coordinate sequence i be called Ti. Also, each Si is further divided into four equal

size disjoint fields (i.e. 2 bits each) S(i, j), 1≤ j ≤ 4 such that each field corresponds

to one of the four quadrants in the recursive decomposition of Ti. Then for each Ti:

1. if height(Ti) = 1, then Si = 0.

2. if height(Ti) = 2, then S(i, j) = % of total number of feature points belonging to

the quadrant corresponding to j.

3. if height(Ti) > 2:

– If at least two of the four immediate descendants of Ti have occupancy

greater than 0, then S(i, j) = % of total number of feature points belonging

to the quadrant corresponding to j.
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– In all other cases, Ti = T(i, j), such that root(T(i, j)) = only immediate de-

scendant of root(Ti) with non-zero occupancy. Go to step 1.

In simple words, the representation implies that we can keep on recursively subdividing

each of the quadrants until we get at least two sub-quadrants, each containing at least one

feature point in it. This will allow us to discard most of the empty quadrants. Figure 4.2

shows the application of this method for the top right quadrant of Figure 4.1. Here we can

observe that at level 3, there are three sub-quadrants with non-zero occupancy. Therefore,

we stop at level 3 and build the signature accordingly.

In this scheme, we need to represent % of total number of feature points with the help

of only two bits. This is achieved by representing the % value(p) with the help of 4 ranges:

• p < 25%

• 25%≤ p < 50%

• 50%≤ p < 75%

• p > 75%

Although this may generalize the information to some extent but the flexibility in the

generated signatures out weights this generalization. Further, the generated signatures pro-

vide significant improvement in the overall system performance as can be observed from

the experimental results.

It should be noted that since this is the first stage of filtering, if any image that can be

matched with the query image in the second stage is left out in the signature matching phase,

it will become a false negative. In our signature representation, whenever we traverse a level

down in the quadtree to find nodes with non-zero occupancy, we discard empty nodes. If
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(a)

Stop at this level

(b)

Figure 4.2: New signature representation method (a) A sample recursively divided image
and (b) its corresponding quadtree
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we can prove that even after discarding these nodes, the tree distance still remains the same

as before (or less), we can guarantee that our signature representation scheme will not result

in any new false negative. The proof here is given only for one of the four subtrees after

first level of decomposition but others are similar. Before first level of decomposition, the

signature is trivial and does not result in any new false negative.

Theorem 4.1. If there exists two trees T and U such that no node of T or U has more than

one immediate descendant with non-zero occupancy up to level m and level n respectively,

then d(T,U) ≥ d(Tp,Uq), where Tp and Uq are two subtrees such that root(Tp) = only

descendant of root(T ) with non-zero occupancy at level m and root(Uq) = only descendant

of root(U) with non-zero occupancy at level n.

Proof. Without loss of generality, we can assume that height(T ) > 1 and height(U) > 1.

Case 1: m = n. From Definition 3.7, Case 6 we have that:

d(T,U) = max

(
4

∑
j=1

m j

M
d(Tj,U j),

4

∑
j=1

n j

N
d(Tj,U j)

)

where Tj and U j are the subtree of T and U determined by the nodes having coordi-

nate sequence j respectively. occupancy(root(T )) = M and occupancy(root(U)) = N.

For 1≤ j ≤ 4, occupancy(root(Tj)) = m j and occupancy (root(U j)) = n j.

Now, let Ta and Ub are two subtrees such that:

root(Ta) = only immediate descendant of root(T ) with non-zero occupancy and

root(Ub) = only immediate descendant of root(U) with non-zero occupancy.

then:

• occupancy(root(Tj)) = M when j = a
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• occupancy(root(Tj)) = 0 otherwise

Similarly:

• occupancy(root(U j)) = N when j = b

• occupancy(root(U j)) = 0 otherwise

Hence,

d(T,U)

= max

(
∑4

j=1
m j
M d(Tj,U j),∑4

j=1
n j
N d(Tj,U j)

)

= max

(
M
M d(Ta,Ua), N

N d(Tb,Ub)

)

= max

(
d(Ta,Ua),d(Tb,Ub)

)

• if a = b, then we have d(T,U) = d(Ta,Ub)

• if a 6= b,then for d(Ta,Ua) we have occupancy (root(Ua)) = 0.

Also, height(Ua) = 1 and height(Ta) > 1, and from Definition 3.7, Case 3 we

have:

d(Ta,Ua) = 1.

Similarly, d(Tb,Ub)=1.

Therefore, in this case d(T,U) = 1≥ d(Ta,Ub)

⇒ d(T,U)≥ d(Ta,Ub)

Similarly d(Ta,Ub)≥ d(Tc,Ud), where Tc and Ud are two subtrees such that:

root(Tc) = only immediate descendant of root(Ta) with non-zero occupancy.

root(Ud) = only immediate descendant of root(Ub) with non-zero occupancy.

∴ d(T,U)≥ d(Ta,Ub)≥ d(Tc,Ud)≥ . . .≥ d(Tp,Uq)⇒ d(T,U)≥ d(Tp,Uq).
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Case 2: m 6= n. This Case is similar to Case 1 above. Let us assume that Tm and Un are two

subtrees such that:

root(Tm) = last descendant of root(T ) having only one immediate descendant with

nonzero occupancy and root(Un) = last descendant of root(U) having only one im-

mediate descendant with nonzero occupancy.

By Case 1 it has already been proven that d(T,U) ≥ d(Tm,Un). Now, let Ta and Ub

are two subtrees such that:

root(Ta) = only immediate descendant of root(Tm) with non-zero occupancy and

root(Ub) = only immediate descendant of root(Un) with non-zero occupancy.

Then we exactly have Case 1 from which rest of the proof follows.

∴ d(T,U)≥ d(Tp,Uq).

This theorem is very important for us since it ensures that our signature representation

will not result in any new false negative. It is important to note that even if theoretically

one may find a representation scheme to generate a unique signature for each database

image but in reality, the cost of finding such a representation may not be worth it and may

significantly degrade overall system performance. Even though this scheme generates non-

unique signatures, it is quite simple and does not incur any additional overhead. All of the

quadtree information required here is already available for use in second level of filtering.
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4.3 Tolerance Factor

Another important aspect of signature representation is the Tolerance Factor (Definition

4.1). Tolerance Factor is essential to accommodate the concept of similarity between a

database and the query image [1] and effects the number of matched images retrieved.

Therefore, it is obvious that it has an immediate effect on the number of retrieved signa-

tures. The higher the value of the Tolerance Factor, the higher the number of retrieved

signatures and possibly higher number of matched images. In our representation, the mod-

ified definition of Tolerance Factor is given as:

Definition 4.1. The Tolerance Factor (TF) is an addition of ±x to the % values of S(i, j),

1 ≤ i, j ≤ 4 for each Si of a database image signature S for similarity-based search and

retrievals by providing a range-search capability [1].

TF = 0 is a special case and provides an exact match. The value of x in TF depends on

application and extent of similarity. This allows us to test a range of image signatures for a

possible match against a given query image signature Sq, computed without any tolerance.

In the second stage of filtering, only those images are taken into consideration for which the

binary AND operation between the query image signature Sq and database image signature

S results in the query image signature Sq i.e. Sq∩S→ Sq.

As an example, suppose we have assigned the following 2 bit binary codes to the 4

ranges:

• p < 25%→ 00

• 25%≤ p < 50%→ 01

• 50%≤ p < 75%→ 10
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• p≥ 75%→ 11

Now, let us assume S(1,1) is 43% and accordingly the assigned binary code is 01. Let

us also assume that the value of x for calculating TF is 10. Then we have two range values

and consequent binary codes for S(1,1):

• S′(1,1) = S(1,1)− x = 33→ 01

• S′′(1,1) = S(1,1) + x = 53→ 10

Our final representation of S(1,1) is computed by taking binary representations of the

three values and performing a binary OR operation. In other words:

S(1,1) → S(1,1)∪S′(1,1)∪S′′(1,1)

⇒ S(1,1) → 01∪01∪10

⇒ S(1,1) → 11.

Similarly, lets assume S(1,2) → 00, S(1,3) → 01 and S(1,4) → 10. Then, by concatenating

these binary codes we find S1:

S1 → S(1,1)|S(1,2)|S(1,3)|S(1,4)

⇒ S1 → 11 | 00 | 01 | 10

⇒ S1 → 11000110.

Similarly, lets assume S2 → 00111000, S3 → 00101001 and S4 → 00111100. Finally,

by concatenating these codes, we find the 32-bit signature S for a database image:
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S→ S1|S2|S3|S4

⇒ S→ 11000110 00111000 00101001 00111100.

Now, suppose our query image signature is Sq→ 10000110 00101000 00100001 00110100.

Then, by performing a binary AND operation between S and Sq, we find:

11000110 00111000 00101001 00111100
∩

10000110 00101000 00100001 00110100
10000110 00101000 00100001 00110100

which is equal to the query image signature Sq. Hence, this database image will be

accepted for the second stage.

4.4 Experimental Results

To verify the presented concepts, we conducted a series of experiments on three separate

image databases with each database concentrating on different aspects of the system (aver-

age computational time, effect of changing threshold value etc.).

4.4.1 Databases and Experimental Setup

The first of these databases is the popular Olivetti-Oracle Research Lab (ORL) face database

[64]. The ORL face database consists of 400 frontal face images; images of 40 individuals

with 10 variations of each in terms of pose, illumination, facial expression (open/closed

eyes, smiling/not smiling) and facial details (glasses/no glasses). The second database

is a binary shape database. It consists of binary images of closed shapes of different ob-
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Figure 4.3: Spatially similar images from the binary shape database

jects collected from [33]. We randomly selected 2000 different shape objects. In order

to demonstrate geometrical variance independence, we generated five geometric variants

of each original image. As a result the database contains 12000 images with exactly six

instances of each image. The above mentioned two databases vary from each other consid-

erably in terms of their complexity and the number of images. The images from the ORL

face database are generally more complex in terms of illumination and intensity variation

than the images from the binary shape database. As a result, it is more difficult to produce

consistent symbolic images from the facial images. On the other hand, the binary shape

database has significantly higher number of images. These two databases are used to com-

pare the performance of the proposed system to the existing system since the main purpose

of our proposed system is to reduce the number of matched signatures in the first stage and

consequently the overall CPU time.

The third image database, called spatial database is a small database and consists of

binary images of spatially similar objects collected from [33]. Images of only 20 objects

are collected such that each object has 5 spatially similar images, making it a database of

only 100 total images. The experiments on this database are conducted mainly to observe

the effect of changing the value of distance threshold γ, as described in Section 3.2.2.

Figure 4.3 shows the spatially similar images of an apple from this database. Some

important characteristics of the image databases used are summarized in Table 4.1.



CHAPTER 4. PROPOSED SIGNATURE WITH EXPERIMENTS 48

For the first two databases, each image is used as a query image and compared against

all other database images. Recorded results are the the average results (number of retrieved

images, computational time, etc.) over all instances of execution. For the spatial database,

we randomly selected one of the five spatially similar images of each object as a query

image and the results are averaged for all of the 20 objects.

Each of the corner point detection methods described in Section 3.1 has a key control

parameter. We adjusted this parameter to a suitable value for each of the three methods by

visually observing the output for few randomly selected representative images from each

database.

The experiments are repeated for a range of T F values. To match the T F of both

systems for comparisons, we chose T F ∈ {0.0,0.1,0.2} for the existing system whereas

for the proposed system, we chose T F ∈ {0,5,10}. An interval of 5 in the proposed system

is considered to be equivalent to an interval of 0.1 in the existing system and is a reasonable

choice for the proposed system as 0 ≤ S(i, j) < 100 for all S(i, j). The distance threshold

value γ is fixed at 0.5 to discard unqualified images for the first two databases. For the

spatial database, it is varied from 0 to 1 with a step size of 0.2.

Characteristic ORL Face Database Binary Shape Database Spatial Database
Number of Total Images 400 12000 100
Number of Original Images 400 2000 100
Rotational Variants Per Image 0 2 0
Scale Variants Per Image 0 2 0
Translation Variants Per Image 0 1 0
Minimum Image Size (pixels) 92 X 112 52 X 50 75 X 42
Maximum Image Size (pixels) 92 X 112 609 X 492 124 X 158

Table 4.1: Summary of characteristics of image databases
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4.4.2 Results and Analysis

All of the experimental results are collected using same hardware configuration for both the

existing and the proposed system for all experiments − a personal computer with an Intel

CoreTM2 Quad processor running at a speed of 2.33GHZ and containing 6 GB of RAM

whereas the developed application is in Java.

Figures (4.4-4.9) show the results of comparison of average number of retrieved and

matched signatures for the first two databases using the three corner detection methods. In

these figures, the label “Tree” indicates the entire tree matching or the nth approximation.

From these figures, we can observe that for all cases, the proposed signature representation

scheme results in considerably fewer number of matched signatures. As a result, the overall

performance of the system is improved, which is evident from the CPU time comparisons

presented in Figure 4.10. The solid lines in Figure 4.10 represent CPU times for the existing

method while the dashed/dotted lines represent CPU times for the proposed method.

In binary shape database, there are exactly six known instances of each image. Ideally

for T F = 0.0, only six signature should match with the query image signatures and, as

a result, we should retrieve only six images. However, it is important to note that since

image signatures are not unique, the system may retrieve more than six matching signatures.

However, as can be observed from Figures (4.7-4.9), the new method results in significantly

reduced number of matched signatures, making it nearly optimal when T F = 0.0.

Also, for the ORL face database although all of the 10 images for a particular individual

have similar shapes, they may not be spatially similar to one another. The concept of spatial

similarity in this domain translates to pose rather than shape as one might expect. As a

result, our system is not expected to retrieve all of the 10 images of a particular individual

but may retrieve images that have similar pose, even if they belong to different individual.
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Figure 4.4: Comparison of results for the ORL face database using SUSAN
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Figure 4.5: Comparison of results for the ORL face database using Harris
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Figure 4.6: Comparison of results for the ORL face database using Wedge
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Figure 4.7: Comparison of results for the binary shape database using SUSAN
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Figure 4.8: Comparison of results for the binary shape database using Harris
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Figure 4.9: Comparison of results for the binary shape database using Wedge
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Figure 4.10: Comparison of CPU times
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(a) (Query) (b) (c) (d) (e) (f)

Figure 4.11: Example query and output images from the ORL face database

This is evident from Figure 4.11 where we show a query image and the retrieved images

(Harris detector, T F = 0.0, γ = 0.5, nth approximation). Here we can observe that only 3

of the 10 images for the individual in query image are retrieved by the system along with

3 apparently unexpected images of different individuals. However, if we observe these

images with corner points marked more closely (using Harris detector), it may become

obvious that even though the shapes in those images are different, their symbolic image

representations are spatially similar.

We have also observed general behavior of the system with respect to variations in T F

and approximation. For smaller approximations, lesser depths of quadtrees are compared

against potential candidate images as determined by the signature matching process. When

approximation is 0, only the root level is considered and as a result almost all of the signa-

tures are successfully matched in the second stage. Also, the number of retrieved signatures

increases along with an increase in T F . These results are in accordance with the general

concept of the overall system.

If we compare results of the three corner detection methods, we can see that in general,

Harris detector results in higher number of retrieved signatures in the first stage. As Harris
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Database Name ORL Face Database Binary Shape Database
Detection Method Min. Depth Max. Depth Feature Points Min. Depth Max. Depth Feature Points
SUSAN 7 8 36-108 4 11 5-191
Harris 6 7 43-82 5 9 10-202
Wedge 6 8 33-100 4 10 4-164

Table 4.2: Summary of characteristics of feature images

detector is based on image derivatives, it is expected to be more “consistent” across the

images in a database when there is no noise. This is specially true for the ORL face database

where the intensity characteristics of the images are different from each other. Since the

Harris detector behaves consistently, the output symbolic images are spatially more similar

to each other than those for the SUSAN or the Wedge detector. As a result we have higher

number of retrieved signatures. This can be both good or bad since there is no ground

rule and the ultimate choice of corner detector depends entirely on the image database

and expectation of the user. Table 4.2 provides the comparison of some feature image

characteristics for the three corner detection methods on the ORL face database and the

binary shape database.

Figure 4.12 shows the result of changing the distance threshold value for all three tol-

erance factors for the spatial database. Results presented here are only for Harris detector.

As mentioned before, a threshold corresponding to a measured distance of 0.0 is a special

case in which an exact match between the query image and the database images is sought.

On the other hand, a distance of 1.0 does not filter anything in the second phase of indexing

process and will accept all of the retrieved images that have passed the signature filtering

phase. We also see from Figure 4.12 that for T F = 0, the proposed system retrieves only 3.5

signatures on average, where there are actually 4 spatially similar images in the database

against a given query image. This is because even if the images are spatially similar, T F = 0

is very restrictive and allows searches only for exact signature match. As a result, it does

not retrieve the expected images. Indeed, the combination of different T F and γ values
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Figure 4.12: Effect of changing distance threshold on the spatial database

gives the system a wider range of customization. For this database, T F = 5 and γ = 0.6

seems like a reasonable choice, as it results in the expected 4 matched images for a query

image (marked by a small square in Figure 4.12). For a real application where the expected

output is not known, the parameters can be tuned manually or by incorporating some kind

of relevance feedback from the user.

4.5 Summary

This chapter describes the primary contribution of the thesis, the new signature represen-

tation scheme. The representation method and the motivation behind the algorithm is dis-

cussed in detail. It is also formally proved that the new signature representation does not

result in any new false negative. Experimental results on three different databases with

varying control parameters is presented. From the results, we see that the new signature
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representation indeed generates fewer number of matched signatures and consequently, im-

proved CPU time compared to the existing scheme. Comparison and analysis of the results

for the three different corner detection methods, namely, SUSAN, Harris and the Wedge

detector have also been presented.



Chapter 5

Conclusions and Future Works

In this thesis, we have presented a new signature representation method for a two-level

spatial similarity-based image retrieval system using quadtrees. The key contributions of

the thesis can be summarized as follows:

• The new signature representation scheme presented in this thesis results in signifi-

cantly fewer number of matched signature in the first level of filtering compared to

the existing scheme, and hence, improves the overall system performance consider-

ably.

• It is mathematically proven that the new signature representation scheme does not

carry any risk of generating new false negatives, which is a condition that every CBIR

system must satisfy.

• As the system is heavily dependent on the output of the underlying corner detection

method, extensive comparison of results for three different corner detection methods,

namely, SUSAN, Harris and the Wedge detector is also presented.

61
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The system presented here is highly customizable in terms of output by using combi-

nation of different values for the tolerance factor and the distance threshold. Hence, the

system can be improved significantly by incorporating relevance feedback. User feedback,

in turn, may allow the system to optimally auto-tune the parameters. Besides user feed-

back, the work may be extended to incorporate other image features such as image color

and texture, so that the best match against a query can be determined.
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