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Abstract

Clustering is an important technique to deal with large scale data which are ex-

plosively created in internet. Most data are high-dimensional with a lot of noise,

which brings great challenges to retrieval, classification and understanding. No

current existing approach is “optimal” for large scale data. For example, DB-

SCAN requires O(n2) time, Fast-DBSCAN only works well in 2 dimensions, and

ρ-Approximate DBSCAN runs in O(n) expected time which needs dimension D

to be a relative small constant for the linear running time to hold. However, we

prove theoretically and experimentally that ρ-Approximate DBSCAN degener-

ates to an O(n2) algorithm in very high dimension such that 2D >> n. In this

paper, we propose a novel local neighborhood searching technique, and apply

it to improve DBSCAN, named as NQ-DBSCAN, such that a large number

of unnecessary distance computations can be effectively reduced. Theoretical

analysis and experimental results show that NQ-DBSCAN averagely runs in

O(n ∗ log(n)) with the help of indexing technique, and the best case is O(n) if
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proper parameters are used, which makes it suitable for many realtime data.
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1. Introduction

Nowadays, large collections of data are explosively created in different fields,

and most of these data are high dimensional with a lot of noise, e.g Web Texts

and Web videos, some of them have more than 10,000 dimensions, which brings

great challenges to retrieval, classification and understanding. Many researches

are launched in this area to deal with this kind of data [1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13].

Data clustering is one of the most important and popular data analysis

techniques to understand data. It refers to the process of grouping objects into

meaningful subclasses (clusters) so that members of a cluster are as similar as10

possible whereas members of different clusters differ as much as possible [14, 15,

16]. Numerous clustering algorithms have been used in many areas such as image

processing [17, 18, 19], geophysics [20, 21], customer and marketing analysis [22,

23], crime detection [24], medicine [25, 26] and agriculture [27]. Innovative

clustering methods [28, 29, 30] and parallel implementation frameworks [31, 32]

have been proposed.

Clustering algorithms can be roughly categorized into partition, hierarchical,

grid-based and density-based approaches etc. Density-based clustering approach

is one of the most popular paradigms, and the most famous algorithm of this

kind is DBSCAN [33] which is designed to discover clusters of arbitrary shape20

with a fixed scanning radius ε (eps) and a density threshold MinPts. DBSCAN

has a large amount of extensions, e.g. [34, 35, 36, 37], and has been widely ap-

plied in many applications, such as astronomy [38], neuroscience [39]. However,

DBSCAN has some drawbacks as follows.

(1) It renders almost useless when subject to high-dimensional data due to

the so-called “Curse of dimensionality”.
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(2) The running time for DBSCAN is heavily dominated by finding neighbors

or obtaining density for each data point. Without indexing, the complexity of

DBSCAN would always be O(n2) regardless of the parameters ε and MinPts.

If a tree-based spatial index is used, the ε-neighborhood are expected to be30

small compared to the size of the whole data space, the average complexity is

reduced to O(n ∗ log(n)) [33]. However, for dimension d > 3 the DBSCAN

problem require Ω(N4/3) time to solve, unless very significant breakthroughs

could made in theoretical computer science [40].

Many researchers have proposed various techniques in attempts to improve

the performance of clustering algorithm on high-dimensional data. For example,

Wang and Deng developed a serial of important work on soft subspace clustering

and fuzzy clustering for high dimensional data [41, 42, 43, 44], which overcome

the drawbacks of utilizing only one distance function in most of existing clus-

tering algorithms, and adaptively learn the distance functions suitable for data40

sets during the clustering process.

Grid-based technique and approximation techniques are also popular, such

as Fast-DBSCAN [45] and others [46, 47]. Grid-based techniques, e.g. [48, 49,

50, 51], divide the data space by grids, perform clustering in each cell locally

and merge the results thereby saving runtime. Gunawan [45] proposed a Fast-

DBSCAN based on drawing a 2-dimensional grid. The algorithm imposes an

arbitrary grid T on the data space R2, where each cell of T has side length
√
ε/2. If a non-empty cell c contains at least MinPts points, then all those

points in the cell must be core points, because the maximum distance within

the cell is ε. This algorithm theoretically runs in O(n∗ log(n)) time in the worst50

case. However it is only applied in 2-dimensional data space.

Inspired by Fast-DBSCAN, Gan and Tao [40] proposed a novel algorithm

named ρ-approximate DBSCAN, which has a computation time that scales only

linearly in n. The improvement of this method from Gunawan [45] lies in its

new tree structure, i.e. quadtree-like hierarchical grid, as well as the sacrifice of

small accuracy. Because the cell number in the quadtree-like hierarchical grid T

will increase explosively with dimension D, therefore ρ-approximate only saves
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those non-empty cells. However, it needs dimension D to be a relative small

constant for the linear running time to hold, and actually it still runs in O(n2)

in high dimension, as the following theorem shows.60

Theorem 1. ρ-approximate DBSCAN degenerates to an O(n2) algorithm if

2D � n.

Proof. Let X be the maximum radius for DBSCAN to correctly cluster data

set P , and dimension D be large enough such that 2D � n, which implies there

are much more cells than n in the grid. Set ε = X, for each cell there is at most

one point contained if D is large enough, because the side length of each cell is

X√
D

and limD→∞ X√
D

= 0.

In the case of 2D � n, ρ-approximate DBSCAN answers any approximate

range count query in O(1) expected time (see Lemma 5 in [40]). But here,

since each non-empty cell contains at most one point, then there are about n70

nonempty cells are saved. Thus the query time for each cell to find neighbors

is O(n), not O(1) any more, and hence ρ-approximate DBSCAN runs in O(n2)

expected time.

Therefore, most existing current clustering algorithms are not suitable for

many realtime applications, due to the “curse of dimensionality”. The main

reason lies in great number of unnecessary distance calculations, which can be

greatly reduced by neighbor searching technique, such as Product quantization

for nearest neighbor search [52], LSH (Locality-Sensitive Hashing) [53], FLANN

[54].

In this paper, we propose a new clustering approach, named NQ-DBSCAN,80

by using local neighbor query technique and quadtree-like hierarchical grid to

reduce great number of unnecessary distance computations. Theoretical analysis

and experimental results show that the proposed algorithm NQ-DBSCAN can

averagely run in O(n∗log(n)) expected time with the help of indexing technique,

and the best case is O(n) if proper parameters are used, which makes it suitable

for many realtime data.
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Because ρ-Approximate DBSCAN is the most important improvement of

DBSCAN currently, we only focus on DBSCAN, ρ-Approximate DBSCAN and

NQ-DBSCAN in this paper. There are some advantages of NQ-DBSCAN to

ρ-Approximate DBSCAN as below.90

(1) NQ-DBSCAN is an exact algorithm that may return the same result as

DBSCAN if the parameters are same. While ρ-Approximate DBSCAN is an

approximate algorithm.

(2) The best complexity of NQ-DBSCAN can be O(n), and the average

complexity of NQ-DBSCAN is proved to be O(nlog(n)) provided the parameters

are properly chosen. While ρ-Approximate DBSCAN runs only in O(n2) in high

dimension.

(3) NQ-DBSCAN is suitable for clustering data with a lot of noise.

The rest of this paper is organized as follow: Section 2 introduces the basic

concepts; Section 3 presents the details of the proposed clustering algorithm;100

Section 4 demonstrates the experimental results of the proposed algorithms on

various data sets, and Section 5 gives the conclusion and our future works.

2. The Basic Concepts of DBSCAN and Preliminary Notation

2.1. Basic Concepts

Density-based clustering algorithms have the ability to find out the clusters

of different shapes and sizes. DBSCAN, a pioneer density-based clustering al-

gorithms, is one of the most important and popular clustering algorithms in

scientific literature1. DBSCAN accepts two parameters: ε (Eps) and MinPts,

where ε is scanning radius and MinPts is the minimal number of neighbor points

for a core point. Some concepts and terms to explain the DBSCAN algorithm110

can be defined as follows [33].

Definition 1. The ε-neighborhood of a point p, denoted by Nε(p), is defined

by Nε(p)={q|q ∈ P, dp,q ≤ ε}, where P is a set of points and dp,q is a distance

1https://en.wikipedia.org/wiki/DBSCAN
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function e.g. Euclidian distance, between p and q.

Definition 2. A point p is a core point if | Nε(p) |≥ MinPts.

Definition 3. A point p is directly density-reachable from a point q with

respect to ε and MinPts if p ∈ Nε(q) and q is a core point.

Definition 4. A point p is a border point if p is directly density-reachable

from a core point q and | Nε(p) |< MinPts.

Definition 5. A point p is density-reachable from a point q with respect to120

ε and MinPts if there is a chain of points p1,p2,...,pn, with p1 = q and pn = p

such that pi+1 is directly density-reachable from pi.

Definition 6. A point p is density-connected to a point q with respect to ε

and MinPts if there is a point o such that both p and q are density-reachable

from o.

Definition 7. Let p be a set of points. A cluster C with respect to ε and

MinPts is a non-empty subset of p satisfying the following conditions:

1. ∀ p, q: if p ∈ C and q is dendity-reachable from p with respect to ε and

MinPts, then q ∈ C (Maximality).

2. ∀ p, q ∈ C: p is density-connected to q with respect to ε and MinPts130

(Connectivity).

Definition 8. A point p is a noise if it is neither a core point nor a border

point. This implies that noise does not belong to any clusters.

2.2. Algorithm

First, DBSCAN selects a point p randomly and retrieves all points in its

ε-neighborhood. If the density of p is larger than MinPts − 1, i.e. |Nε(p)| ≥
MinPts|, p will be marked as a new cluster. Then this cluster is expanded by

retrieving all points that are density-reachable from p as Algorithm 2 shows, and

then these points are merged into the same cluster. Repeat this process until no

cluster found. If the density of p is less than MinPts, p will be marked as a noise.140
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Also, p might be assigned into other cluster provided p is a density-reachable

point from a core point q. The key of DBSCAN is shown in Algorithm 1 and

Algorithm 2. The function RangeQuery(p,ε) returns all neighbors within the

ε-neighborhood of p.

Algorithm 1 DBSCAN(P,ε,MinPts) [45]
Initialize cluster id C = 0

for each unclassified point p ∈ P do

Nε(p)=RangeQuery(p,ε)

if |Nε(p)| ≥MinPts then

Set p’s cluster id to C

ExpandCluster(p,Nε(p),C,ε,MinPts)

C ← C + 1

else

Label p as noise

end if

end for

It is not surprising since the running time for DBSCAN is heavily dominated

by the running time of the RangeQuery(p,ε) which must be performed for each

point. Obviously, without any indexing support, the complexity of DBSCAN

would always be O(n2) regardless of the parameters ε and MinPts.

3. The proposed Algorithm: NQ-DBSCAN

3.1. Basic Concepts150

We propose a new algorithm to improve DBSCAN by filtering a large number

of unnecessary density computations, which is based on the following idea.

Point p and point q should have similar neighbors, provided p and q are

close; given a certain ε, the closer they are, the more similar their neighbors are.

As Fig. 1 shows, we can see that points p and q in Fig. 1 (a) have more same

neighbors than that they have in Fig. 1 (b). Formally, we have some theorems

which are important for validating the correctness of our clustering algorithm,

as follows.

7
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Algorithm 2 ExpandCluster(p,neighborPts,C,ε,MinPts)[45]
Input:

p: current search point;

neighborP ts: density-reachable points from p;

C: current cluster id;

ε: the maximum distance;

MinPts: the minimum points to form a cluster;

Output:

drP ts (density-reachable points from p);

1: drP ts← neighborP ts

2: for each point q ∈ drP ts do

3: if q is unclassified then

4: Nε(p)=RangeQuery(p,ε)

5: if |Nε(p)| ≥MinPts then

6: drPts=drPts∪ Nε(p)

7: end if

8: end if

9: if q does not belong to any cluster then

10: q’s cluster id= C

11: end if

12: end for

(a) (b)

Figure 1: p and q in (a) have more same neighbors than that case in (b), because p and q in

(a) are closer.

8
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Firstly, we make some notations. Let p ∈ P , dp,(1) ≤ dp,(2) ≤ ... ≤ dp,(N) be

an ordered distance sequence of point p to all point. We also use p(i) to denote160

the ith closest point from p. For example, there are 5 points a, b, c, d and p, if

dp,a < dp,b < dp,c < dp,d, then p(1) = a, p(2) = b, p(3) = c, p(4) = d.

Theorem 2. (1) If dp,(MinPts) ≤ ε, then p is a core point. (2) p is a non-core

point if dp,(i) > ε, where 1 ≤ i ≤MinPts.

Proof. (1) ∵ dp,(MinPts) ≤ ε, which means dp,(1) ≤ dp,(2) ≤ ... ≤ dp,(MinPts) ≤ ε,
∴ |Nε(p)| ≥MinPts, thus p is a core point.

(2) ∵ 1 ≤ i ≤ MinPts and dp,(i) > ε, ∴ ε < dp,(i) ≤ dp,(MinPts), thus

|Nε(p)| < MinPts, i.e p is a non-core point.

170

Theorem 3. Let p ∈ P , if |N2ε(p)| < MinPts, then ∀q ∈ Nε(p) is non-core

point.

Proof. ∵ Nε(q) ⊆ N2ε(p) and |N2ε(p)| < MinPts, ∴ we have |Nε(q)| < |N2ε(p)| <
MinPts, then ∀q ∈ Nε(p) is non-core point.

This theorem tells us a fact that if |N2ε(p)| < MinPts, then all points within

the ε-neighborhood of p are non-core points.

Theorem 4. Let p ∈ P , and dp,(MinPts)=l, if l > ε then ∀ o ∈ O, o is a

non-core point, where O = {o|do,p < l − ε}.

Proof. ∵ dp,(MinPts) = l ∴ | Nl(p) |= MinPts. ∵ do,p < l − ε ∴ do,p + ε < l

then Nε(o) ⊂ Nl(p), thus we have |Nε(o)| < |Nl(p)| = MinPts. ∴ ∀o ∈ O is180

non-core point.

As Fig. 2 shows, l > ε, the total number of points within the outer black

circle is less than MinPts, and do,p < l− ε, according to Theorem 4, all points

in Nl−ε(p) are non-core points, as the red points within red circle show.

Theorem 5. Let p, q,m ∈ P . If dp,m < ε− dp,q, then m ∈ Nε(q).

9
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l − ε

ε

l

ε

Figure 2: p is a non-core point, according to Theorem 4, all points in Nl−ε(p) are non-core

points, as the red points show.

Proof. ∵ dp,m < ε−dp,q, ∴ dp,q+dp,m < ε, then according to Triangle Inequality,

we have dq,m < dp,q + dp,m, thus dq,m < ε, therefore m ∈ Nε(q).

In Fig. 3, ∀ m1 contained in blue circle, m1 satisfies dp,m1
< ε − dp,q,

according to Theorem 5, m1 ∈ Nε(q). Thus blue points are all contained in

Nε(q).190

Theorem 6. Let p, q,m ∈ P , if dp,m > ε+ dp,q, then m /∈ Nε(q) .

Proof. ∵ dp,m > ε + dp,q, ∴ dp,m − dp,q > ε. Then according to Triangle

Inequality, we have dq,m>dp,m − dp,q, thus dq,m > ε. ∴ point m /∈ Nε(q).

In Fig. 3, ∀ m2 outside the red circle, we have dp,m2
> ε + dp,q, according

to Theorem 6, m2 /∈ Nε(q). Thus the black points are all not included in Nε(q).

Theorem 7. Let p, q ∈ P , and N2ε(p) is already obtained, in order to get

Nε(q), the searching range is p(L), p(L+1), ..., p(U−1), p(U), where L, U satisfy

dp,p(L−1)
< ε− dp,q < dp,p(L)

and dp,p(U)
< ε+ dp,q < dp,p(U+1)

.

Proof. ∵ dp,p(L−1)
< ε− dp,q, then according to Theorem 5, p(1), p(2), ..., p(L−1)

are contained in Nε(q). ∵ ε+dp,q < dp,p(U+1)
, and then according to Theorem 6,200

10
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Figure 3: Illustration of Theorem 5, Theorem 6 and Theorem 7. All points in Nε−dp,q (p)

(blue points) are in Nε(q), and black points are all outside the ε-neighborhood of q, only red

points are uncertain.

we have p(U+1), p(U+2), ..., p(N) are not contained inNε(q). ∴ p(L), p(L+1), ..., p(U−1), p(U)

is the searching range for obtaining Nε(q).

According to Theorem 7, in Fig. 3 the remaining uncertain points (p(L), ..., p(U))

are those red points, which locate in the annular region between blue circle and

red circle.

Comprehensively, according to Theorem 5, 6 and 7, in order to obtain Nε(q),

we only need to search those red points in the annular region. All distance

computations from p to blue and black points are reduced.

3.2. The proposed algorithm

We introduce a new clustering algorithm named NQ-DBSCAN based on the210

theorems mentioned above. Algorithm 3 shows the main procedures of NQ-

DBSCAN. Algorithm 4 illustrates the detail of our improved ExpandCluster

which retrieves all density-reachable neighbors from a core point, and Algo-

rithm 5 presents the implementation of Theorem 7.

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TAlgorithm 3 NQ-DBSCAN (P,ε,MinPts)
Input:

P : a set of unclassified points;

ε: the maximum distance;

MinPts: the minimum points to form a cluster;

Output: cluster id of each point;

1: Initialize cluster id C = 0

2: for each unclassified point p ∈ P do

3: //retrieve all neighbors within 2ε-neighborhood of p

4: N2ε(p)= RangeQuery(p, 2ε)

5: if |N2ε(p)| > MinPts then

6: dists← all distances from p to N2ε(p)

7: [distArr, pLoc] =sort(dists) //distArr saves the sorted dists, while pLoc is a vector

that saves the corresponding points such that dp,pLoc(i) ≤ dp,pLoc(i+1)

8: if distArr[MinPts] ≤ ε then

9: // According to Theorem 2 p is a core point, then we expand it.

10: drPts=ImprovedExpandCluster(p,pLoc,distArr, ε,MinPts)

11: Set the cluster id of all points in drPts as C

12: C ← C + 1

13: else

14: Use binary search algorithm find O = {o|o ∈ pLoc and dp,o < distArr(MinPts)−
ε}, and set all points in O as noise (Theorem 4)

15: end if

16: else

17: Set O = {q|q ∈ Nε(p)} as noise (Theorem 3)

18: end if

19: end for

12
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In Algorithm 3 (NQ-DBSCAN), the main steps are below.

• Select an unclassified point p from P, then use RangeQuery to retrieve

N2ε(p) (line 4), and sort the distances form p to its 2ε-neighbors.

• According to Theorem 2, we can easily judge whether p is core point or

not, as shown in line 8.

• If p is a core point, it will use ImprovedExpandCluster to find all points220

that are density-reachable from p (drP ts), as shown in line 10. All points

in drP ts will be marked as the same cluster id.

• According to Theorem 3 and Theorem 4, we are able to effectively find

non-core points. If | Nε(p) |< MinPts, p is a non-core point and its

neighbors are also highly possible to be non-core point, as line 14 shows.

If | N2ε(p) |< MinPts, then all points in Nε(p) are labeled as noise, as

line 17 shows.

Algorithm 4 (ImprovedExpandCluster) is a new algorithm that retrieves

all density-reachable points, drPts, from point p, which improves Algorithm

2 greatly. The main steps are shown as below.230

• First initialize drP ts = Nε(p) by binary searching from distArr and pLoc.

• Second, select an unclassified point q from pLoc. If dp,q ≤ ε we use

NeighborQuery to effectively get Nε(q), and if q is a core point Nε(q) will

be added to the set drP ts. Repeat this step until all points in pLoc are

handled.

• Third, select a new unclassified point p ∈ drP ts. If p is a core point then

use RangeQuery again to update N2ε(p), pLoc and distArr, and then

repeat the second step, until all points in drP ts are visited.

Algorithm 5 (NeighborQuery) is the implementation of Theorem 7, it uses

binary search algorithm to obtain Nε(q) in N2ε(p) rather than the whole data240

set, as shown in Line 2 - Line 5.

13
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Algorithm 4 ImprovedExpandCluster (p, pLoc, distArr, ε, MinPts)
Input:

p: reference point;

pLoc: saves all points in N2ε(p) such that dp,pLoc(i) ≤ dp,pLoc(i+1) ;

distArr: the sorted distances from p to N2ε(p);

ε: the maximum distance;

MinPts: the minimum points to form a cluster.

Output: drPts: all density-reachable neighbor points from p.

1: binary search drP ts = {o|o ∈ pLoc s.t. dp,o ≤ ε}
2: for each point q saved in pLoc do

3: if q is unclassified then

4: if dp,q ≤ ε then
5: Nε(q)=NeighborQuery (p,q,pLoc,distArr,ε,MinPts)

6: if |Nε(q)| ≥MinPts then

7: drPts=drPts∪ Nε(q)
8: end if

9: end if

10: end if

11: end for

12: p← select an unclassified point o in drPts

13: if p is a core point then

14: N2ε(p) =RangeQuery(p,2*ε)

15: dists← distances from p to all points in N2ε(p)

16: [distArr, pLoc] = sort(dists)

17: go to Line 2

18: end if

14
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Take Fig. 3 for example again, p is a core point, its 2ε-neighbors have al-

ready been retrieved by RangeQuery. ∀q ∈ Nε(p), in order to retrieve Nε(q),

NeighborQuery only checks those red points.

Algorithm 5 NeighborQuery(p,q,pLoc,distArr,ε,MinPts)
Input:

p: reference point;

q: current search point;

pLoc: the points number of neighbor sequence;

distArr: the points distance of neighbor sequence;

ε: the maximum distance;

MinPts: the minimum points to form a cluster;

Output: Nε(q).

1: // determine L and U according to Theorem 5, 6 and 7

2: binary search index L such that distArr(L) > dp,q − ε
3: binary search index U such that distArr(U) < dp,q + ε

4: possibleNeighbor = pLoc(L : U)

5: Nε(q)= pLoc(1 : L)
⋃ {o|o ∈ possibleNeighbor s.t. dq,o < ε}

3.3. Correctness analysis

As shown in Algorithm 4 and 5, based on Theorems 5, 6 and 7 we can see

that if p is a core point Algorithm 4 only retrieve all density-reachable points

from p, which is equivalent to Algorithm 2.

Similarly, based on Theorem 2, 3 and 4, as well as Algorithm 4, NQ-

DBSCAN (Algorithm 3) is also guaranteed to be equivalent to DBSCAN (Al-250

gorithm 1). Thus NQ-DBSCAN meets the requirement of Maximality and

Conectivity defined in Definition 7, as well as Lemma 1 and Lemma 2 in [33]

are also satisfied.

3.4. Complexity analysis

The key processes in NQ-DBSCAN are RangeQuery and NeighborQuery,

and time complexity of NQ-DBSCAN highly depends on them.

The complexity of RangeQuery can be O(log n) with the help of indexing

techniques, such as R*-tree, otherwise is O(n). In this paper, we use quadtree-
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like hierarchical tree grid [40], which works well in many cases, but it still per-

forms not good for very high dimensional data that are sparse. The complexity260

of building this grid is O(n).

The complexity of NeighborQuery is O(log(nei)) by using binary search

method, where nei is the number of p’s neighbors.

Therefore, the whole time complexity of NQ-DBSCAN is O(α ∗ (log(n) +

nei ∗ log(nei)) + β ∗ log(nei)− γ), where α is execution times of RangeQuery, β

is execution times of NeighborQuery, and γ is the total number of filtered points

that are unnecessary to visit (including some non-core points and noise points),

respectively. Obviously, α+ β + γ = n, and then α+ β <= n.

In the case of MinPts is very large such that γ → n, i.e. most points are

identified as non-core points directly, the complexity is O(1). However, it is270

meaningless. The best complexity is O(n), in the case of both α and nei are

small, while β → n. Generally, the average complexity of NQ-DBSCAN is about

O(n∗ log(n)) if ε and MinPts are properly chosen. Of course, without indexing

technique, the average complexity is also O(n2).

4. Experiments

In this section, we conduct experiments to evaluate the performance of NQ-

DBSCAN, and make comparisons with original DBSCAN and ρ-approximate

DBSCAN [40], on synthetic and realtime data sets.

4.1. Algorithms

Algorithms. Our experiments involve four algorithms as follows:280

• DBSCAN: the original DBSCAN algorithm in [33];

• NQ-DBSCAN: the proposed algorithm without using indexing technique;

• “NQ-DBSCAN with indexing”: the proposed algorithm with quadtree-like

hierarchical tree grid indexing;

• Approx: the ρ-approximate DBSCAN algorithm.
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Figure 4: An example of test case which

has 4 hyper-spherical data without noise.

Figure 5: An example of test case which

has 4 hyper-spherical data with noise.

DBSCAN and NQ-DBSCAN were run on a machine equipped with 3.3GHz CPU

and 8 GB memory, the operating system was Windows 10 64-bit and programs

were coded in MATLAB.

Approx were coded in C++, and was run on Linux (Ubuntu 14.04) operating

system with the same hardware configuration.290

4.2. Data sets

We use two kinds of data sets in our experiments, one is synthetic data and

the other is realtime data. All data are normalized such that their domain is

[0, 105] for each dimension.

Synthetic Data sets. Two types of synthetic data sets are used in our

experiments as below.

(1) Gaussian Hyper-sphere

We generate a series of Gaussian hyper-spherical test cases, some test cases

have 20% noise, and the others are noise-free. Each test case includes 4 clusters,

and points of each cluster follows Gaussian distribution with quite different mean300

from the other clusters. Two 3d visual Gaussian Hyper-spherical test cases are

shown in Fig. 4 and Fig. 5, respectively.

(2) Uniform Hyper-cube

We also generate a series of hyper-cubical test cases, some test cases have
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Figure 6: An example of test case which

has 4 hyper-cubical data without noise (3

clusters).

Figure 7: An example of 4 hyper-cubical

data with noise (3 clusters).

20% noise, and the others are noise-free. Each test case includes 4 hypercubes,

and points of each hypercube uniformly distributed. There are two hypercubes

that intersect with each other. Therefore, there are 3 clusters in all test cases

in fact. Two 3d visual Hyper-cubical test cases are shown in Fig. 6 and Fig. 7,

respectively.

The details of these data sets are shown as follows:310

• Spheredata 1: without noise, n=50,000, has 10 test cases with d ranging

from 5 to 50.

• Spheredata 2: with noise, n=100,000, d=10.

• Spheredata 3: with noise, d=5, 10 test cases with n ranging from 20,000

to 200,000.

• Spheredata 4: with noise, d=20, 10 test cases with n ranging from 20,000

to 200,000.

• Spheredata 5: with noise, n=50,000, has 10 test cases with d ranging from

5 to 50.
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• Spheredata 6: with noise, n=100,000, has 10 test cases with d ranging320

from 5 to 50.

• Cubedata 1: without noise, n=50,000, has 10 test cases with d ranging

from 5 to 50.

• Cubedata 2: with noise, d=5, has 10 test cases with n ranging from 10,000

to 100,000.

• Cubedata 3: with noise, d=10, has 10 test cases with n ranging from

10,000 to 100,000.

• Cubedata 4: with noise, n=50,000, has 15 test cases with d ranging from

10 to 150.

Real Data sets. Some real data sets were employed in our experiments as330

follows:

The first, House (household) is a 7 dimensional data set with cardinality

2,075,259, which includes all the attributes of the Household database comes

from the UCI archive 2 except the temporal columns date and time. Points in

the original database with missing coordinates were removed.

The second, ReactionNetwork is KEGG Metabolic Reaction Network (Undi-

rected) Data Set which also comes from UCI. It is a 28-dimensional data set

with cardinality 65,554.

The third, BlogFeedback [55] also comes from the UCI archive. It is a 59-

dimensional data set with cardinality 52,397 obtained by taking the first 59340

numeric attributes and the 60th-280th attributes are omitted, because most

values in the 60th-280th attributes are zero.

The fourth, KDD04 is KDD Cup 2004 data. It is 76-dimensional data set

with cardinality 145,751.

The fifth, MNIST3 is a handwritten digits data set, which includes 70,000

2http://archive.ics.uci.edu/ml
3http://yann.lecun.com/exdb/mnist/
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images with size of 28 × 28 pixel. We pick up 10,000 images and transform

each 28× 28 image matrix into a feature vector with 28× 28 = 784 dimensions.

Therefore, MNIST used in our experiments is a 784-dimensional data set with

cardinality 10,000.

The sixth, PAM (PAMPA2), which comes from UCI, is a 4-dimensional data350

set with cardinality 3,850,505.

The last one is MORPH [56] which is the largest publicly available longi-

tudinal face database4, includes 79,897 face photographs with size of 70 × 80

pixel. Also, we pick up 10,000 face photographs of MORPH in our experiments.

We convert the RGB images to gray images, and then transform each gray im-

age matrix into a feature vector with 70 × 80 = 5, 600 dimensions. Therefore,

MORPH used in our experiments is a 5600-dimensional data set with cardinality

10,000.

4.3. Experiment 1: Two Examples

We benchmark NQ-DBSCAN on two test cases, the first one is t4.8k [57],360

which is a 2-dimensional data set with cardinality 8,000, and the other is Ag-

gregation [58], which is a 2-dimensional data set with cardinality 788. The dis-

tribution of two data sets and the clusters obtained by NQ-DBSCAN are shown

in Fig. 8. It illustrates that NQ-DBSCAN has the same ability as DBSCAN to

detect complex shapes.

4.4. Experiment 2: Influence of Noise and Dimensionality

The purpose of this part is to check impaction of noise and dimensionality

on NQ-DBSCAN and Approx.

Firstly, we conduct an experiment on Spheredata 1 and Cubedata 1 which

are noise-free. As shown in Fig. 9 and Fig. 10, we can see that in the case of370

dimension is less than 50, Approx and NQ-DBSCAN performs similarly on both

test cases, and the running time increase linearly with dimension.

4http://www.faceaginggroup.com/morph/
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Figure 8: Two clustering examples of NQ-DBSCAN and DBSCAN on Aggregation and t4.8k.
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Figure 9: The performance of two ap-

proaches on Spheredata 1 with n=50,000.

(MinPts = 100 and ε=10,000)
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Figure 10: The performance of two ap-

proaches on Cubedata 1 with n=50,000.

(MinPts = 100 and ε=2000)

Secondly, we conduct experiments on some test cases with noise and with

higher dimension, i.e., Spheredata 5, Spheredata 6, Cubedata 4 and Cubedata

5.

As Fig. 11, Fig. 12 and Fig. 13 show, we can see that the performance

of Approx on these test cases is far worsen than it was on Spheredata 1 and
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Figure 11: Running time vs. dimension

on Spheredata 5.
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Figure 12: Running time vs. dimension

on Spheredata 6.

Cubedata 1, which means noise has great impaction on Approx. While NQ-

DBSCAN works still stable and much better than Approx. The reason lies in

noise distributes in the entire data space rather than concentrates in several380

small space, then additional cells are needed to save noise, which badly affects

the efficiency of Approx.

We also can see from these experiments, the efficiency of Approx decrease

rapidly with dimension. Because with the increasing of the data dimension,

each cell becomes smaller, and the number of cells rise exponentially, which

finally leads to Approx degenerate to an O(n2) algorithm. While, the running

time of NQ-DBSCAN still increases linearly with dimension, which implies that

NQ-DBSCAN is weakly affected by “curse of dimensionality”.

4.5. Experiment 3: The Effect of ε and MinPts

The purpose of this experiment is to check the effect of ε on the proposed390

algorithm. Spheredata 2 was used in this experiment with cardinality 100,000

and the dimension is 10, MinPts was fixed to 50. Fig. 14 shows the performances

of the 3 approaches. Clearly, both NQ-DBSCAN and Approx are quite better

than DBSCAN.

Fig. 15 presents the execution times of RangeQuery and NeighborQuery,

and Fig. 16 plots the average neighbors found in RangeQuery increasing with
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Figure 13: Running time vs. dimension on

Cubedata 4.
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Figure 14: Running time vs.radius ε on

Spheredata 2.
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Figure 15: The execution times of Range-

Query (α) vs. the execution times of

NeighborQuery (β) with ε increasing on

Spheredata 2 (d = 10, MinPts = 50).
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Figure 16: Average neighbors (nei) in-

creasing with ε on Spheredata 2.

ε. From the two figures, we can see that execution times of RangeQuery α→ n

and n >> nei in the case of ε is very small, and β increases with ε. In the case

of ε ∈ [2000, 4000], both α and nei are small, NQ-DBSCAN performs better

than other cases.400

Table. 1 shows the detail of some results on a subset of Spheredata 3 with

small ε andMinPts. We can see that α >> β when ε = 1, 000, i.e. the execution

times of RangeQuery is far larger than that of NeighborQuery, while α is greatly

reduced when ε = 2, 000 and ε = 3, 000. We also notice that the running time
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Table 1: The performances of NQ-DBSCAN on a sub set of Spheredata 3 with different ε and

MinPts (d=5, n=20,000).

ε MinPts

running

time

(seconds)

range

query

(α)

nei

query

(β)

filtered

points

(γ)

1000

10 7.68 16659 2877 464

30 7.06 17506 0 2494

50 6.70 16099 0 3901

100 5.87 14868 0 5132

2000

10 9.69 6843 13152 5

30 9.40 6810 13173 17

50 9.57 6811 13162 27

100 9.17 6815 13145 40

3000

10 11.57 4850 15128 22

30 11.15 4850 15128 22

50 11.01 4850 15128 22

100 11.08 4850 15128 22
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Table 2: The performances of NQ-DBSCAN on a sub set of Spheredata 3 with large MinPts

(d=5, n=20,000).

ε MinPts

running

time

(seconds)

range

query

(α)

nei

query

(β)

filtered

points

(γ)

2000

200 6.88 14299 649 5052

1000 2.87 6833 0 13167

3000 2.73 6718 0 13282

7000 2.79 6718 0 13282

12000 2.80 6718 0 13282

5000

200 14.51 3858 15862 280

1000 14.06 3858 15862 280

3000 9.87 4655 9025 6320

7000 1.59 3861 0 16139

12000 1.74 3861 0 16139

10000

200 19.91 1433 18531 36

1000 19.79 1433 18531 36

3000 19.95 1433 18531 36

7000 0.61 1386 0 18614

12000 0.60 1386 0 18614

of ε = 1, 000 is smaller than the others, because there are many filtered points.

But its accuracy is not as good as that of ε = 2, 000 and ε = 3, 000.

Table. 2 illustrates more experiments on the same data set. In this experi-

ment, we test the impaction of large MinPts. From the table we can see that

the number of filtered points increase with MinPts, the more filtered points

the fewer the running time, which is consistent with our analysis mentioned in410

Section 3.4. This experiment also implies that NQ-DBSCAN is highly efficient

to find and filter noise, in other words, it is suitable for clustering data with a

lot of noise, such as [59].
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4.6. Experiment 4: Efficiency VS Cardinality

In this subsection, we conduct experiments on Spheredata 3, Spheredata 4,

Cubedata 2 and Cubedata 3, respectively, to compare the efficiencies of NQ-

DBSCAN, “NQ-DBSCAN with indexing” and Approx by changing the cardi-

nalities of these cases.

Because Approx runs linearly in low-dimension, we can see that Approx

outperforms NQ-DBSCAN in Fig. 17 and Fig. 18. However, with dimension420

increasing, things go different. In Fig. 19, we can see that in this 10-dimensional

data set, Approx is still better than NQ-DBSCAN and “NQ-DBSCAN with

indexing”, but their performances are closer than that in 5 dimension. And

then, Fig. 20 shows that the performance of Approx is inferior to both NQ-

DBSCAN and “NQ-DBSCAN with indexing” in the 20-dimensional data set

(Spheredata 4).

All experiments above obtain correct results as we expected, i.e. in Fig. 17

and Fig. 19, we obtain 4 hyper-spherical clusters, and in Fig. 18 and Fig. 20,

we get 3 clusters which include 4 hyper-cubes.

We also can see that “NQ-DBSCAN with indexing” seems to be an O(n)430

algorithm, because proper ε and MinPts are used such that α and nei are both

small and β → n, which is consistent with the theoretical analysis mentioned

above.

4.7. Experiment 5: Experiments on Realtime Applications

In order to test the performance of NQ-DBSCAN and “NQ-DBSCAN with

indexing” in realtime applications, we benchmark it on six test cases with differ-

ent dimensions, i.e. Household (7 dim), ReactionNetwork (28 dim) , BlogFeed-

back (59 dim), KDD04 (76 dim), MNIST (784 dim) and MORPH (5,600 dim),

and compare them with ρ-Approximate DBSCAN. In the following experiments,

MinPts are all fixed to 100.440

Fig. 21 and Fig. 22 show that Approx runs linearly in Household (7 dim)

and ReactionNetwork (28 dim), and its performance is better than the proposed
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Figure 17: Running time vs. cardinal-

ity on Spheredata 3 (5 dim, ε=2,000 and

MinPts=100).
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Figure 18: Running time vs. cardinal-

ity n on Cubedata 2 (5 dim, ε=2000 and

MinPts=100).
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Figure 19: Running time vs. cardinality

n on Cubedata 3 (10 dim, ε=2000 and

MinPts=100).
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Figure 20: Running time vs. cardinality

on Spheredata 4. (20 dim, ε=2,000 and

MinPts=100)

algorithm (One reason that the proposed algorithm runs slower in ReactionNet-

work is the code efficiency in Matlab is not as good as C++).

While the comparisons in Fig. 23 and Fig. 24 present that Approx runs in

O(n2), which is clearly inferior to “NQ-DBSCAN with indexing” on BlogFeed-

back (59-dim) and KDD04 (76 dim), respectively.

Clearly, we can see that the higher the dimension, the more advantages the

proposed algorithm to Approx, and the four figures above prove that “NQ-

DBSCAN with indexing” runs in O(n ∗ log(n)).450
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Figure 21: Running time VS Cardinality

on HouseHold (7 dim) with ε = 1, 000 .

1 2 3 4 5 6 7

x 10
4

0

50

100

150

200

250

300

tim
e(

se
c)

n

 

 

NQ−DBSCAN with indexing
NQ−DBSCAN
Approx

Figure 22: Running time VS Cardi-

nality on ReactionNetwork (28 dim) with

ε = 1, 000 .
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Figure 23: Running time VS Cardinality

on BlogFeedback (59 dim) with ε = 1, 000.
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Figure 24: Running time VS Cardinality

on KDD04 (76 dim) with ε = 1, 000.

The following two experiments are conducted on MNIST and MORPH are

that very high-dimensional and sparse, the quadtree-like hierarchical tree grid

fails to work. Thus, we only compare NQ-DBSCAN and Approx by changing

different ε. We can see NQ-DBSCAN outperforms Approx as Fig. 25 and Fig.

26 illustrate. The reason lies in the grid technique is useless in high dimension as

mentioned in Theorem 1. While NQ-DBSCAN seems free from dimensionality,

which makes it more suitable for clustering realtime data than Approx.
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Figure 25: The performance of two ap-

proaches on MNIST (784 dim).
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Figure 26: The performance of two ap-

proaches on MORPH (5,600 dim).

4.8. The robust of algorithm

According to Huber[60], a robust procedure can be characterized by the

following: 1) it should have a reasonably good efficiency (accuracy) at the as-460

sumed model; 2) small deviations from the model assumptions should impair

the performance only by a small amount; and 3) larger deviations from the

model assumptions should not cause a catastrophe.

In order to test the accuracy of the proposed algorithm and ρ-approximate

DBSCAN, we conduct some experiments based on an assumption that the clus-

tering labels obtained by DBSCAN is the standard correct result, and evaluate

the precision of two approaches as following, which is also used in our previous

works[61, 62].

Firstly, we use the original DBSCAN to cluster a data set, and return cluster

labels L1 = {A1, A2, ..., Ak}. Secondly, run NQ-DBSCAN and ρ-approximate470

DBSCAN on the same data set, and obtain L2 = {B1, B2, ..., Bm} and L3 =

{C1, C2, ..., Cp}, respectively.

As we know, the clustering results got by a clustering algorithm may have

different labels from that got by the other algorithm, e.g. cluster ‘A1’ obtained

by one approach may be the same as cluster ‘B2’ of the other. Therefore, we

have to match labels first, then use the matched labels to calculate Precision.

In our experiments, we use Kuhn-Munkras[63] to maximum match two cluster
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Table 3: The precision of NQ-DBSCAN on three data sets. All accuracies are calculated by

comparing to the result of original DBSCAN. The parameters of NQ-DBSCAN and DBSCAN

are given in the formation as [ε, MinPts].

data set BLOG [2000,30] HOUSE [500,30] PAM [500,30]

Approx 94.54% 99.67% 99.78%

NQ-DBSCAN 99.97% 99.6% 100%

labels, which has been used in our previous works [61, 62].

For example, if a data set has 3 clusters labeled as ‘A1’, ‘A2’ and ‘A3’

obtained by DBSCAN, and our method finds 4 clusters with labels ‘B1’, ‘B2’,480

‘B3’ and ‘B4’ on the same data set. Suppose there are 3 matched pairs found

by Kuhn-Munkres algorithm: (‘A1’,‘B2’), (‘A2’, ‘B1’) and (‘A3’, ‘B4’). If p is

labeled as ‘A1’ by DBSCAN and clustered as ‘B2’ by our approach, respectively,

we consider this prediction as correct. If p is labeled as ‘A1’ by DBSCAN and

clustered as ‘B1’ by our approach it is wrong. Similar to other cases.

As presented in Table. 3, the precisions truly speak of that our approach

nearly achieves the same results as DBSCAN, the petty difference is caused by

the visiting order is different from that of original DBSCAN, because DBSCAN

is non-determinative. While ρ-approximate DBSCAN is little inferior to NQ-

DBSCAN.490

In order to evaluate the performance of NQ-DBSCAN on data sets with

deviations, we select 10% data points from BLOG, HOUSE and PAM , re-

spectively, and then shift these points randomly in each dimension by adding a

random value η, where η = offset∗random(), and offset is predefined. As Ta-

ble. 4 demonstrates, the accuracies of both NQ-DBSCAN and ρ-Approximate

DBSCAN are similarly affected by the deviations of data set, but it is accept-

able.

4.9. Comprehensive Analysis

From all experiments above, we can see that Approx runs linearly in low

dimension. However, with the increasing of dimension Approx degenerates to500

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: The precision of NQ-DBSCAN on three data sets with deviations. All accuracies are

calculated by comparing to the result of original DBSCAN. The parameters of NQ-DBSCAN

are given in the formation as [ε, MinPts].

offset BLOG [2000,30] HOUSE[500,30] PAM[500,30]

NQ-DBSCAN

100 99.92% 99.31% 99.78%

200 99.66% 99.73% 99.77%

300 90.29% 89.93% 99.74%

400 90.29% 89.93% 98.76%

500 90.29% 89.93% 93.63%

Approx

100 94.49% 99.65% 99.78%

200 94.30% 99.38% 99.77%

300 92.77% 89.79% 99.68%

400 85.92% 89.79% 98.98%

500 85.92% 89.79% 93.68%

be an O(n2) algorithm. While “NQ-DBSCAN with indexing” averagely runs in

O(n) or O(n ∗ log(n)) in many cases.

In very large high dimension NQ-DBSCAN still outperforms Approx without

indexing technique. The reason lies in the grid techniques used in Approx is

useless in high dimension, while the neighbor searching technique used in NQ-

DBSCAN is almost not affected by the dimensionality.

In the case of data sets having a lot of noise, NQ-DBSCAN works much

better, because noise has side effects on Approx. The underlying cause is that

noise always distributes in the whole data space rather than concentrates in some

small regions, which results in many cells are needed to save noise, and then510

leads to the efficiency of ρ-approximate rapidly decline. Due to the capability

of effectively finding non-core points (Theorem 3 and 4), NQ-DBSCAN can run

in O(n) expected time.

In addition, NQ-DBSCAN is an exact algorithm, which is also an important

advantage to the approximate algorithm ρ-Approximate DBSCAN.
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5. Conclusion

Today, large collections of data are explosively created in different fields,

and most of these data are high dimensional with a lot of noise, which bring

great challenging to clustering. DBSCAN is a creative and elegant technique

for density-based clustering. However, it is rendered almost useless for high-520

dimensional data, due to the “curse of dimensionality”, which limits its applica-

bility in many realtime applications. ρ-approximate DBSCAN [40] is an efficient

approach designed to replace DBSCAN for big data. By using quadtree-like hier-

archical grid and small sacrifice in accuracy, ρ-approximate has a computational

time that scales only linearly in n. However, it declines to an O(n2) algorithm

in high dimension because the grid technique is also useless in high dimension.

Also, we find the efficiency of ρ-approximate is greatly reduced when dealing

with high dimensional data that has much noise, because the grid technique is

useless in high dimension and noise needs additional cells to save.

In this paper, we propose a clustering algorithm, named NQ-DBSCAN which530

may return the exact result as DBSCAN, to improve DBSCAN, by using neigh-

bor searching technique and indexing technique to filter great number of un-

necessary density computations. The underlying idea is: point p and point q

should have similar neighbors, provided p and q are close to each other; given a

certain ε, the closer they are, the more similar their neighbors are.

Our experiments have shown that the proposed method outperforms ρ-

approximate in high dimension, also it performs better in data sets with a lot

of noise. Although, the worse complexity of NQ-DBSCAN is still O(n2), but its

average complexity is about O(n ∗ log(n)) with the help of indexing technique,

and the best case is O(n) if proper parameters (ε and MinPts) are used.540

The indexing technique we used is quadtree-like hierarchical tree grid, but it

fails to work in some sparse and very high-dimensional data. Therefore, in future

work, we will try to improve quadtree-like hierarchical tree grid, by combining

the merits of other techniques, such as product quantization for nearest neighbor

search [52], LSH (Locality-Sensitive Hashing) [53], FLANN [54] etc.
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