515 research outputs found

    FPGA implementation of an image recognition system based on tiny neural networks and on-line reconfiguration

    Get PDF
    Neural networks are widely used in pattern recognition, security applications and robot control. We propose a hardware architecture system; using Tiny Neural Networks (TNN) specialized in image recognition. The generic TNN architecture allows expandability by means of mapping several Basic units (layers) and dynamic reconfiguration; depending on the application specific demands. One of the most important features of Tiny Neural Networks (TNN) is their learning ability. Weight modification and architecture reconfiguration can be carried out at run time. Our system performs shape identification by the interpretation of their singularities. This is achieved by interconnecting several specialized TNN. The results of several tests, in different conditions are reported in the paper. The system detects accurately a test shape in almost all the experiments performed. The paper also contains a detailed description of the system architecture and the processing steps. In order to validate the research, the system has been implemented and was configured as a perceptron network with backpropagation learning and applied to the recognition of shapes. Simulation results show that this architecture has significant performance benefits

    Reconfigurable hardware architecture of a shape recognition system based on specialized tiny neural networks with online training.

    Get PDF
    Neural networks are widely used in pattern recognition, security applications, and robot control. We propose a hardware architecture system using tiny neural networks (TNNs)specialized in image recognition. The generic TNN architecture allows for expandability by means of mapping several basic units(layers) and dynamic reconfiguration, depending on the application specific demands. One of the most important features of TNNs is their learning ability. Weight modification and architecture reconfiguration can be carried out at run-time. Our system performs objects identification by the interpretation of characteristics elements of their shapes. This is achieved by interconnecting several specialized TNNs. The results of several tests in different conditions are reported in this paper. The system accurately detects a test shape in most of the experiments performed. This paper also contains a detailed description of the system architecture and the processing steps. In order to validate the research, the system has been implemented and configured as a perceptron network with back-propagation learning, choosing as reference application the recognition of shapes. Simulation results show that this architecture has significant performance benefits

    Quality life cycle of object oriented software development in extreme programming

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2008Includes bibliographical references (leaves: 53)Text in English; Abstract: Turkish and Englishviii, 53 leavesAlthough there are many teams using Extreme Programming, many people still think that applying its values, principles and practices will cause catastrophic results.However extreme programming is not only compatible with today.s software standards, technologies and most importantly with the changes at every phase of software development but also improves the quality of software. In my thesis I analyze its values, principles, and practices and how they increase the quality comparing to old software development methodologies

    A modular expandable design for mobile robot control software

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (77-78).by Ely C. Wilson.M.Eng

    Modeling 4.0: Conceptual Modeling in a Digital Era

    Get PDF
    Digitization provides entirely new affordances for our economies and societies. This leads to previously unseen design opportunities and complexities as systems and their boundaries are re-defined, creating a demand for appropriate methods to support design that caters to these new demands. Conceptual modeling is an established means for this, but it needs to be advanced to adequately depict the requirements of digitization. However, unlike the actual deployment of digital technologies in various industries, the domain of conceptual modeling itself has not yet undergone a comprehensive renewal in light of digitization. Therefore, inspired by the notion of Industry 4.0, an overarching concept for digital manufacturing, in this commentary paper, we propose Modeling 4.0 as the notion for conceptual modeling mechanisms in a digital environment. In total, 12 mechanisms of conceptual modeling are distinguished, providing ample guidance for academics and professionals interested in ensuring that modeling techniques and methods continue to fit contemporary and emerging requirements

    Quantum Information Science

    Get PDF
    Quantum computing is implicated as a next-generation solution to supplement traditional von Neumann architectures in an era of post-Moores law computing. As classical computational infrastructure becomes more limited, quantum platforms offer expandability in terms of scale, energy-consumption, and native three-dimensional problem modeling. Quantum information science is a multidisciplinary field drawing from physics, mathematics, computer science, and photonics. Quantum systems are expressed with the properties of superposition and entanglement, evolved indirectly with operators (ladder operators, master equations, neural operators, and quantum walks), and transmitted (via quantum teleportation) with entanglement generation, operator size manipulation, and error correction protocols. This paper discusses emerging applications in quantum cryptography, quantum machine learning, quantum finance, quantum neuroscience, quantum networks, and quantum error correction

    Integration of traditional imaging, expert systems, and neural network techniques for enhanced recognition of handwritten information

    Get PDF
    Includes bibliographical references (p. 33-37).Research supported by the I.F.S.R.C. at M.I.T.Amar Gupta, John Riordan, Evelyn Roman
    • …
    corecore