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Abstract

This thesis is an investigation into the design and implementation of modular, expandable
control software. Control software for mobile robots generally has three common objectives:
navigate the robot through its environment, avoid unforeseen obstacles, and perform some
task such as exploration, mapping, or data acquisition. Navigating through a real world
environment while avoiding obstacles has proven to be a very difficult problem.

The thesis describes the design and implementation of the control software for a Basic
UXO Gatherer (BUG) mobile robot. The design attempts to solve the problems associated
with control software development by using a modularized, layered structure. The results
of the BUG control software are examined to illustrate the strengths and weaknesses of this
type of control architecture.
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Chapter 1

Introduction

This thesis is a case study in the development of control software for mobile robots. The
contents of the thesis examine the design and implementation of the control software written
for the BUG robotic vehicle.

The BUG vehicle and its software were designed and built at the Intelligent Unmanned
Vehicle Center (IUVC) of C.S. Draper Laboratory. For more information about the IUVC,
see Appendix A.

1.1 Goal of Thesis

The IUVC has produced control software for many different mobile robots. In the past,
almost none of the software written has been reused on the next generation of robot. The
control software for each robot performs essentially the same functions, so it should be
possible to use the same software, with some modifications, for every robot.

Previous control software designs have not been successful in this respect because control
software is often design with a particular application or mission in mind. The control
software is developed with its purpose in mind and can be very difficult to adapt to other
control software problems.

The goal of this thesis is to develop working control software which has the ability to
adapt to changing hardware and different missions. The control software should be able
to provide all the functionality necessary for the robot to accomplish its mission without
sacrificing flexibility and modularity.

This will primarily be accomplished by designing software which is extremely modular
and divided into strict sections. The power of the control software to perform many missions
will be preserved by organizing the modules into a layered control structure based on Brooks'
subsumption control architecture[3]. Unlike subsumption architectures, the control software
will remain task-based in order to allow the robot to accomplish specific missions.

This design will be used as a case study to illustrate some of the approaches to solving
the problems associated with control software design.

1.2 The EOD Project

This project was funded by Draper Laboratory to support Explosive Ordnance Disposal
(EOD). The mission of this vehicle is to aid in the disposal of small unexploded ordnance
(UXO).



The UXO our vehicle will handle are the small submunitions used by weapons such
as grenade launchers and cluster bombs (Figure 1-1). After a conflict, the surrounding
landscape is likely to be littered with unexploded submunitions.

1.2.1 The UXO Dilemma

The current method used by the military to clear UXO is a slow, expensive process which
exposes personnel and equipment to considerable risk. Areas suspected of containing UXO
are partitioned into sectors with their corners delimited by flags. In each sector, a four- to
eight-man sweep team (Figure 1-2) visually scans the area for UXO. This manual sweep of
the area is the safest part of the UXO clearing operation since removing or detonating the
UXO involves actually handling the UXO.

Once the UXO in an area have been located, most branches of the military use explosive
charges to detonate each of the UXO in place. The U.S. Marines may pick up the UXO
and carry them to a central location for later detonation. This procedure is much less
expensive than detonating the UXO in place, but is also far more dangerous. An unexploded
submunition can detonate even if handled with extreme care.

1.2.2 Autonomous Agents

A potential solution to this problem is to have UXO disposal done by inexpensive au-
tonomous robots. If one or more autonomous vehicles are able to clear an area of UXO at
a reasonable rate, they would be a feasible alternative to using teams of EOD personnel.

The BUG project is a research effort to see how effective autonomous vehicles can be at
locating and disposing of UXO.

1.3 Basic UXO Gatherer

The autonomous vehicle is referred to as a Basic UXO Gatherer (BUG). The goal for the
project is to build a BUG which is small, inexpensive, and effective at its mission. Simply
stated, the mission is to clear an area of UXO as quickly as possible.

Our strategy for accomplishing the mission is illustrated in the series of figures beginning
on page 16. Figure 1-3 is an overhead view of a typical UXO site. The BUG is entering the
area from the lower left corner. EOD personnel have spotted UXO at A and B. The BUG
will attempt to retrieve UXOs A and B and deposit them at dump site X. All other objects
on the map represent rocks, trees, or other obstacles.

A key element of our strategy is to establish "roads" on the map. Roads are areas
which are believed to be free of obstacles. It should be safe for the BUG to traverse these
areas at high speeds, allowing the BUG to accomplish its mission much more quickly [9].
In Figure 1-4, a number of roads have been designated by thick line segments.

The BUG will try to retrieve UXO A first. It can get halfway there using a nearby road,
but it will have to make it the rest of the way through obstacle-filled territory (Figure 1-5).
The BUG needs to maneuver its way through these obstacles in order to reach the UXO
site.

Once the BUG reaches site A, it will have to perform an area search to determine the
exact location of the UXO (Figure 1-6). While performing the search, the BUG may need to
avoid additional obstacles. When the UXO is found, the BUG must pick it up and prepare
to head for dump site X.



Figure 1-1: A Sample Submunition

ARMING RIBSBO nches



Figure 1-3: A Typical UXO Area
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Figure 1-7: BUG Navigates to Dump Site

In Figure 1-7, the BUG has acquired the UXO and is making its way toward site X.
Once again, the BUG will need to watch out for obstacles whenever it isn't on a road. After
the BUG deposits the UXO at the dump site, it will repeat the whole process with UXO B.

In order to accomplish this mission, the BUG must be able to overcome all of the
difficulties described above. The BUG was divided into three major components, each with
its own set of associated design problems: mechanical, electrical, and software. The IUVC
created three teams dedicated to the development and testing of the major components
and two prototype BUGs were constructed. The prototypes, named EOD-1 and EOD-2,
are pictured in Figure 1-8.

1.3.1 Mechanical Component

The BUG is required to perform its UXO disposal mission in a variety of terrains and
environments, so the mechanical component of the vehicle must be well designed. The
biggest design challenges are the development of a chassis which can conquer most terrain
and the development of a system for picking up and carrying UXO.

Both BUG prototypes have been equipped with a six-wheeled, flexible chassis. This
design allows the vehicle to overcome very large obstacles without difficulty. It is also
capable of much higher speeds than tracked vehicle designs.

The BUG will pick up and carry UXO in a special grappler mechanism mounted on the
front of the vehicle. The grappler is constructed of a large shovel for holding UXO and
a movable rake for sweeping UXO into the mechanism. For more information about the
mechanical hardware, see Section B.1 in the Appendix.

1.3.2 Electrical Component

Most of the electrical hardware is concerned with providing the vehicle with electrical power
and sensors with which it can navigate and detect obstacles. For this purpose, the BUG
is equipped with power regulation boards, rate gyroscopes, ultrasonic rangefinders, and a



Figure 1-8: EOD-1 & EOD-2

metal detector. More information about the electrical hardware is contained in Section B.2.
Another vital piece of electrical hardware included on vehicle is an embedded processor.

This processor will control all of the electrical hardware and will make vital decisions about
navigation and obstacle avoidance. As the series of illustrations above show, the vehicle
needs to be able to make these decisions to accomplish its mission.

1.3.3 Software Component

The software component of the vehicle is further divided into two separate systems (Figure 1-
9). The control station will be located off the vehicle and will direct the BUG's mission
under the supervision of a human operator. The control station will communicate the
mission directives to the control software running on the BUG's embedded processor. The
control software will then attempt to perform its mission autonomously.

This thesis is concerned with the design, development, and testing of the control software
for the BUG vehicle. The control software needs to perform the mission described above,
but should achieve the overall goal for the thesis as well. The thesis goal is a control software
architecture which is flexible and reusable.

Figure 1-9: BUG Software Components
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1.4 Thesis Road Map

The remainder of the thesis is divided into five chapters, which describe the control soft-
ware problem, the BUG software design, the BUG software implementation, results, and
conclusion.

Chapter 2 - The Control Software Problem This chapter is a discussion of how con-
trol software is usually designed and describes what issues are currently control soft-
ware research problems.

Chapter 3 - BUG Software Design This chapter includes a list of goals for the control
software and describes what design elements will allow the control software to meet
those goals.

Chapter 4 - BUG Software Implementation This chapter shows how the design pre-
sented in chapter 3 was developed into a full implementation.

Chapter 5 - Results This chapter examines the software's operation and how well it
performed in a series of tests outlined by the the Navy EOD division.

Chapter 6 - Conclusion This chapter summarizes the contents of the thesis and briefly
describes which topics related to the BUG control software have the potential for
further research.



Chapter 2

The Control Software Problem

Designing control software for mobile robots can be a difficult task. This chapter addresses
the problems associated with control software design. The sections are:

* a description of the properties of control software for mobile robots

* a review of popular control software architectures

2.1 Mobile Robot Control Software

Mobile robot control software is the program which translates the operator's abstract com-
mands into specific commands to the robot's hardware. Without control software, a mobile
robot is a teleoperated tool at best. It is the control software which gives the robot its
intelligence, however limited that intelligence may be.

Typically, the control software runs on an embedded processor which actually resides
on the robot. This is because the software needs to be in close communication with the
hardware of the robot. The hardware performs only at the direction of the control software,
so it isn't efficient for the software to control the robot from a distance.

2.1.1 Responsibilities of Control Software

Control software always has many responsibilities related to the operation of the robot. On a
mobile robot, the software will have to direct the vehicle's speed and heading. Autonomous
mobile robots will probably have sensors on board for the purposes of determining the
robot's location, detecting obstacles, and collecting any data vital to the robot's mission.
The control software must operate these sensors and handle the data they provide properly.

The robot is likely to be operating under the supervision of some kind of control station.
The control station may wish to send the robot new orders or it may just want to receive
any data the robot collects. If a control station is present, the control software needs to be
able to communicate with it effectively.

However the robot receives its orders, the control software needs to interpret its orders
and carry them out. This is a mobile robot, so the orders will probably involve moving the
robot to a new location. To accomplish this task, the control software needs to determine
where it is currently located relative to its destination and go there without becoming lost
or stuck.

The task of locating the robot relative to some other location and going there without
getting lost is referred to here as navigation. Keeping the robot from getting stuck is called



obstacle avoidance because obstacles like rocks and bushes are usually responsible for this
problem.

2.1.2 Control Software Design

The design of mobile robot control software has become a somewhat hot topic over the
last few years as experts argue over which architectures and software designs are the most
successful. The different architectures and designs which have been proposed over the years
are supposed to help solve the harder problems of control software design.

Some of the software's responsibilities, like controlling the robot's hardware and gath-
ering sensor data, don't present much of a problem to developers regardless of which ar-
chitecture they use. Navigation and obstacle avoidance, on the other hand, can become
frustratingly difficult tasks to perform.

Navigation is a difficult problem because most mobile robots lack a fool-proof method
for determining their exact position. Inertial sensors and drag wheels can help the robot
determine how it has moved relative to its last position, but the robot's new location will
only be an estimation. Some attempts have been made to develop control software which
navigates using external objects in the environment, but this kind of navigation is difficult
for a computer to perform. The control software needs to be able to recognize an object
which it has seen before and must not become confused if an object in its environment
moves. All these problems remain largely unsolved despite continued research into robot
navigation.

Obstacle avoidance is not necessarily as difficult as navigation, depending on the robot's
environment. For example, obstacle avoidance is easy when the robot just has to dodge
a small rock (Figure 2-1), but it can become much more difficult when the environment
is filled with complex obstacles (Figure 2-2). In Figure 2-1, obstacle avoidance can be as
simple as always turning left when sensors detect a rock. In Figure 2-2, the control software
has to treat its environment like a life-size maze.

2.2 Control Software Architectures

Researchers and developers have produced many different software designs which make
navigation and obstacle avoidance easier. In general, popular control software designs can be
divided into one of three types: symbolic, subsumption, or hybrid. Symbolic architectures
are the traditional method for dealing with control software problems. Subsumption and
hybrid architectures are more recent approaches.

2.2.1 Traditional Symbolic Architecture

The symbolic architecture is the traditional choice for mobile robot control software. One
of the earliest successes of the symbolic architecture was the software for Shakey the robot
[4].

Shakey's software was based on a language of symbols. Different symbols represented
rooms, hallways, and obstacles. Shakey was able to assign every object in its environment a
unique symbol based upon its characteristics. A map was built out of these symbols which
showed the relationships between all the objects.

The advantage of this approach to control software design is that Shakey was able to
make logical conclusions based on the objects around it. Shakey could identify a room
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Level 7 reason about behavior of objects

Level 6 plan changes to the world

Level 5 identify objects

Level 4 monitor changes

Level 3 build maps

Level 2 explore

Level 1 wander

Level 0 avoid objects

Figure 2-3: Levels of Competence

just by examining the objects inside. Furthermore, Shakey could tell when one object was
moved because the rest of the objects were still in the correct location. Using its map,
Shakey could describe where a particular object was and how one would get there.

Unfortunately, Shakey was only able to identify objects around it because of severe
limitations placed on its environment. All walls were white and the floor had black stripes
around the edges so that Shakey could easily identify all of the boundaries. All other objects
were painted with different colors so that Shakey could identify them and how they were
positioned. Shakey was able to accomplish quite a bit in its simple environment, but it
would have been lost in the real world.

2.2.2 Subsumption Architecture

The subsumption architecture was developed in the mid-1980's as an alternative approach to
control software design. Traditional symbolic approaches had placed mobile robots with very
complex behaviors in very simple environments. Rodney Brooks noticed that evolutionary
theory could suggest that complex behaviors in a complex environment are easier to attain
once simple behaviors are established in a complex environment.

Thus was born a control architecture based upon simple building blocks which cooperate
to form robust low-level behaviors. The behaviors are called robust because they handle real-
world environments more reliably than some complex symbolic architectures. By adding
more and more building blocks, one can create more and more complex behaviors, thus
establishing levels of competence (Figure 2-3). Some scientists believe that by building up
levels of competence, one will reach human-level intelligence [4].

Unfortunately, it is unclear how difficult it is to construct a subsumption architecture
with a high level of competence. The control structure already begins to look very complex
at Level 2 (Figure 2-4). So far, implementing the next level of behaviors has proved too
difficult.

Subsumption architectures do have the advantages of being fast and robust, but one
can argue that almost any architecture could demonstrate these qualities at the low level
of intelligence which subsumption architectures have so far achieved. The element of the
subsumption design which I find appealing is the layered control structure (Figure 2-5). In
this structure behaviors build upon one another by allowing simple behaviors to operate
with occasional interference from the high-level behaviors. This can be a flexible control
structure because behaviors can be added to the stack without necessarily destroying the
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old behaviors already in operation.
For a more detailed discussion of the advantages and disadvantages of a layered control

architecture, see "Keeping Layered Control Simple" by James Bellingham [2].

2.2.3 SSS Hybrid Architecture

The popularity of symbolic and subsumption architectures led Connell to develop a hy-
brid architecture called SSS (Symbolic, Subsumption, and Servo). The SSS architecture
combined symbolic control software with a subsumption architecture in the hopes that the
hybrid system would benefit from the advantages of both architectures (Figure 2-6).

Complex, task-oriented behaviors were implemented in the symbolic portion of the con-
trol architecture. The symbolic portion would issue its commands to the vehicle via the
subsumption layer. The subsumption layer, in cooperation with the servo hardware, con-
trolled the behavior of the vehicle, avoiding obstacles if necessary [6].

I don't feel that the SSS hybrid took advantage of the real strengths of the subsumption
architecture: flexibility and expandability. A properly designed symbolic architecture can
do obstacle avoidance even better than current subsumption designs [11]; there is no need
to include a subsumption layer for that purpose. A better hybrid of the symbolic and
subsumption architectures is one which is symbolic in nature, but mimics the layered control
structure.

2.3 Summary

The control software for a mobile robot has many functions, but navigation and obstacle
avoidance are generally the most difficult to implement. Popular control software architec-
tures can be divided into two types: symbolic and subsumption.

Symbolic architectures are most suited to solving the navigation problem, because they
are able to build maps of the environment. Symbolic architectures are also better for im-
plementing task-oriented behavior. However, many symbolic architectures are very limited
by the environment in which they can operate.

Subsumption architectures are less complex and can accomplish some low-level naviga-
tion and obstacle avoidance behaviors. The big strength of the subsumption design is that
it can operate in a more complex environment.

A successful control software design might be one which is symbolic in nature, but
incorporates the layered control structure used in subsumption architectures. This design
could prove to be powerful, flexible, and expandable.



Figure 2-5: Layered Control Structure

Figure 2-6: SSS Hybrid Architecture [6]
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Chapter 3

BUG Software Design

This chapter presents the design of the BUG control software. The main sections of this
chapter are:

* an overview of the total software system

* a specification of goals for the design

* a description of past designs which were considered

* the final elements of the control software design

The control software design must be capable of accomplishing the mission described in
Section 1.2, in addition to meeting to thesis goals stated in Section 1.1. Specifically, the
software must be flexible and expandable enough to adapt to new robots and missions.

3.1 Overall Software System Design

In order to understand the control software's mission, one must look at its role in the
overall software system. The control software must regularly interact with the rest of the
software and its role in relationship to the other software significantly affects how it must
be designed.

The total software system can be viewed as four distinct pieces: user interface, control
station, control software, and hardware drivers. These pieces interact to form the vehicle
control system. Figure 3-1 is an illustration of how these four parts make up the whole.

c: Control
4- Software

0 z Drivers/Hard

Figure 3-1: BUG Software System
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This division of the software system into four pieces illustrates the role of each part of
the software in completing the vehicle's mission. The sections which follow describe each
piece's role in more detail.

3.1.1 User Interface

The Graphical User Interface (GUI) forms the link between the operator and the control
station. The interface does not necessarily need to be graphical, but a GUI helps the
operator visualize the vehicle's environment and makes the control station easier to operate.

3.1.2 Control Station

The control station operates behind the GUI in order to link the operator with the vehicle
itself. Under the supervision and direction of the operator, the control station performs
most of the high-level mission planning. When the control station has a task it would like
the vehicle to perform, it communicates its desires to the vehicle via a radio link. The
control station receives sensor data from the vehicle through this link and uses it to keep
the operator updated with the vehicle's progress.

3.1.3 Control Software

The control software is responsible for taking the high-level directives issued by the control
station and executing them on the vehicle. To accomplish this, the control software com-
municates with the hardware drivers to control the vehicle. The control software can also
pass some of the sensor data it receives from the drivers to the control station.

3.1.4 Drivers

The hardware drivers make up the interface between the higher-level software and the
vehicle's hardware. The drivers respond to commands from the control software to activate
or deactivate hardware, control motors, and take sensor readings.

The drivers could be considered a part of the control software, but they are presented
here as a separate system component in order to illustrate their role in the total software
system. The control software component described above is designed to be hardware inde-
pendent. The drivers must be hardware dependent in order to provide an interface between
the software and the vehicle.

3.2 Goals for the Software

The first design consideration was to determine what characteristics are desirable in the
control software. The characteristics are used as basic criteria which the design should
meet. These characteristics can be divided into two categories: those required in order that
the vehicle can perform its mission and those which are desirable for other reasons.

3.2.1 Mission-Required Characteristics

Mission-required characteristics directly support the vehicle's mission. The mission can be
summarized as:



Find Position on Global Map

Navigate Roads at High Speeds

Communication With Sensor Data
Control Station New OrdersNew Orders

Semi-autonomous

Performs Complex Tasks

Table 3.1: Mission-Required Characteristics

* Proceed to the UXO area using "roads" which have been identified as being free of
obstacles.

* Navigate to the general location of a UXO.

* Search the location for UXO.

* If a UXO is found, retrieve it using the vehicle's grappler mechanism.

* Proceed to a UXO dump site using obstacle-free "roads."

To accomplish this mission, the vehicle must be able to locate itself on the global map
and navigate the "roads" at high speeds in order to perform its mission efficiently. The
vehicle should be in close communication with the control station so that it can transmit
sensor data and receive new orders. Finally, the control software must be able to perform
complex tasks and should also be semi-autonomous, allowing a single person to oversee
multiple vehicles.

3.2.2 Additional Desired Characteristics

There are a number of additional characteristics which are highly desirable in autonomous
robot control software. A number of these arise from a desire for software which is easy to
write and test. The remainder are the characteristics of software that adapts to changes in
the hardware and has potential for expansion.

Making software design easy to implement and test is not easy, but there are a few
elements of a design which can make a big difference. The software will be written by more

Ease of Writing Separation into ModulesAnd TestingAnd Testing Coding Standards

Expandability New Sensors

New Behaviors

New Tasks

Potential for Increased Complexity

Table 3.2: Desirable Characteristics



than one person, so coding standards can help make the integration of the portions written
by different people easier. The software should also be separated into modules based on
function. This provides natural divisions when writing the code and allows modules to be
tested independently.

The control software could conceivably be expanded upon in three ways. One could
want to add new sensors to the vehicle, new behaviors to the control software, or new tasks
that the vehicle must perform. The addition of any of these items should be supported by
the software's design and as easy to perform as possible.

3.3 Control Software Examples

Two previous control software designs were examined during the process of designing the
BUG control software. The control software for the MITy-2 microrover [11] was examined
because of the similarities between the MITy-2 microrover and the EOD vehicle. Subsump-
tion control architectures were also examined because they claim to be more expandable
than some other control software architectures.

By looking at these other designs, we hoped to determine which features were desirable
and which features were undesirable. We wanted to take all the lessons learned from these
two software architectures and apply them toward the BUG software design.

3.3.1 MITy-2 Architecture

The MITy-2 microrover was built for extraterrestrial exploration, but its mission was very
similar to the UXO mission [12]. MITy-2 would navigate a preset course and use on-board
hardware to perform a variety of tasks including manipulating rocks and taking scientific
data.

The control software for MITy-2 consisted of a handful of tasks operating concurrently on
the microrover's processor. These tasks handled such things as navigation, path following,
and obstacle detection. The control software was very successful, but it was extremely
difficult to understand or modify. The different sections of the software were not clearly
divided into modules and those modules which did exist were not designed in a consistent
manner.

From the MITy-2 control architecture, we learned that the software needs to be easier
to read, more modular and consistent. This is reflected in the desirable characteristics
(Table 3.2) chosen for the control software.

3.3.2 Subsumption Architecture

The subsumption control architecture was designed for autonomous mobile robots operat-
ing in a dynamic environment. An overview of the subsumption architecture is given in
Section 2.2.2. This architecture was considered because in some ways it is easier to expand
and adapt to mission changes than other control software architectures.

The main problem with the subsumption architecture is that it is difficult to implement
any complex task-based behaviors. The BUG control software should have the potential
for expansion and addition of new behaviors exhibited by the subsumption architecture
without suffering the lack of complex behaviors.

The design feature that gives a subsumption architecture expandability is its organi-
zation into layers of competence. Each layer builds upon the previous layers to produce



a more complex behavior. Unfortunately, the subsumption design forces layers to interact
with each other in a very limited fashion. Each layer is also built out of very primitive elec-
tronics, which makes it difficult to implement a complex behavior. A more flexible software
implementation of this layered approach could allow layers to cooperate and would avoid
the limitations of simplistic building blocks.

In order to achieve this goal, the BUG control software will be designed to imitate the
layers of competency found in subsumption architectures without being restricted to the
limitations of a true subsumption approach.

3.4 Control Software Design

This section specifies the elements of the control software design. This design attempts to
take advantage of the strengths of the MITy-2 and subsumption architectures while avoiding
the limitations of those designs. It will also include both the necessary and the desirable
characteristics described in Section 3.2.

3.4.1 Task Orientation

The control software's entire purpose is centered around carrying out the orders of the
operator and the control station. Therefore, the control software needs to be primarily
task oriented. This is opposed to the typical subsumption architecture, which is primarily
behavior oriented.

For the purposes of this design, a task is a single set of actions which the vehicle must
perform. A task would be to navigate to a certain location or to search a given area for UXO.
The vehicle's overall mission of clearing UXO is made up of many independent tasks which
are determined by the control station. The control software is focused on completing these
tasks because successful completion of the individual tasks implies successful completion of
the overall mission.

3.4.2 Object-oriented Structure

One of the desired characteristics for the control software is that it be modular. In order
to make this separation into modules consistent, the individual modules should be object-
oriented in nature. This means that each module only communicates with the rest of the
software through a set of publicly available functions. Other modules are not allowed access
to the procedures and data contained in an object-oriented module without using the public
functions.

The disadvantage of having object-oriented modules is that the modules must be slightly
more complex. However, the advantages are that the modules are more self-contained, easier
to test individually, and less susceptible to failure due to problems in other modules.

3.4.3 Event-based Architecture

One of the dangers of a flexible and expandable software design is that it may become very
difficult to keep track of how the modules need to communicate with each other. When a
new module is added to the software or a new task begins operating, it needs to be able to
add itself to the communication network.



Our solution to this problem is the use of events and callbacks. Any module can create
events which pertain to the function of that module. For example, the module which
detects obstacles may wish to create an event which is linked to the detection of an obstacle.
Callbacks are the function calls triggered by the occurrence of an event. Other modules can
request that they be given a callback when a particular event occurs.

When a module or task wishes to receive data from a certain part of the control software,
it can register for a callback with the associated event. As soon as that event occurs, all
the callback functions for the event are called. This gives all the modules an opportunity
to react to any event which occurs.

I -

Figure 3-2: Multiple Event Callbacks

Figure 3-2 illustrates the flexibility of an event-based architecture. In this example, the
event is the detection of an obstacle. Whenever this event occurs, two callback functions are
called. One callback maneuvers the vehicle so that it avoids the obstacle. Another callback
modifies the future path of the vehicle so that it will be sure to avoid the obstacle in the
future. If other functions wish to be called when the event occurs, they can also register
for a callback.

Control Station Module A Module B
Acknowledges Finished - Can Begin
Transmission Transmitting Transmitting

Figure 3-3: Cascading Events

Figure 3-3 shows how callbacks can be used to cascade multiple events. When the control
station acknowledges the transmission of a communications packet, an event is triggered.
Module A is notified via a callback that this event occurred. Since Module A has no more

packets to transmit, it triggers its own event. Module B was waiting for this event to occur,
so it had registered a callback with Module A's event. Now that Module A is done, Module
B can begin transmitting.

The flexibility of having multiple callbacks for events and the power of using callbacks
to cascade multiple events make an event-based architecture a valuable part of the software
design.

3.4.4 Scheduler

The control software has multiple operations and behaviors which it is conducting at any
given time. These behaviors include updating the vehicle's position on the global map,



New
Position

Position

Figure 3-4: Dead Reckoning Navigation

operating sensors, and communicating with the control station. The software should be
able to conduct these operations concurrently so that the vehicle does not have to stop
moving to communicate with the control station or operate its sensors.

The control software needs to be able to run on many different computer systems, so
there is not one single multitasking system which can be used. Instead, the software will
use a scheduler to allow the different modules and behaviors to cooperatively multitask.

The scheduler gives other modules the ability to request periodic and delayed callbacks.
These callbacks are similar to event callbacks because the modules can give up control of
the vehicle and expect to be called back when the time is right. Instead of activating the
callbacks when some event occurs, the scheduler waits for a specified amount of time to
pass.

A periodic callback causes control to be returned to a module every time a specified
period of time passes. Periodic callbacks are used when a module needs to periodically
perform some function.

A delayed callback only returns control to the requesting module once, but the scheduler
guarantees that a specified amount of time will pass before the callback occurs. This callback
is typically used when a module wants to regain control later to observe the outcome of a
single action.

Using these two types of callbacks, the scheduler enables the multiple modules to operate
many behaviors concurrently. Because the scheduler only provides cooperative multitasking,
the modules need to give up control of the vehicle as quickly as possible so that other modules
can take control.

3.4.5 Navigation Strategy

The navigation behavior of the vehicle uses the sensors on the vehicle to determine where
the vehicle is, which way it is moving, and how fast it is going. The control software needs
a navigation behavior operating on the vehicle so that it can operate semi-autonomously.

The BUG control software will use a dead reckoning navigation strategy. The navigation
behavior uses the vehicle's sensors to determine how far the vehicle has gone lately and how
much it has turned. This information can be used to estimate the direction the vehicle is
pointing and its current position on the global map.

Figure 3-4 shows how this strategy operates. Given the previous position of the vehicle,



Figure 3-5: Data Flow Diagram

the amount it has turned, and how far it has gone, the current position of the vehicle
can be calculated. By repeatedly performing this calculation, the track of the vehicle can
be plotted across the map. This strategy is not particularly accurate, for many reasons.
Dead reckoning navigation works best if the vehicle does not move large distances between
position calculations. Sensor errors such as wheel slippage and gyroscope drift also lead to
navigation error.

There are more accurate forms of navigation, but this strategy was chosen because it is
fast and requires very little sensor information in order to perform. The computer on-board
the vehicle has limited computing power and cannot afford to spend large amounts of its
time navigating.

3.4.6 Hazards and Mapping

The BUG vehicle is very susceptible to large rocks, thick shrubs, and other obstacles to its
progress. These obstacles and other dangers like cliffs are collectively referred to as hazards.
Many of the sensors on the vehicle are there to detect hazards. The ultrasonic rangefinders
try to detect large obstacles while they are still at a distance and the bumper detects any
collisions with objects not detected by the rangefinders.

The BUG software will react to hazards in two ways. It will attempt to avoid any hazard
it detects by steering around the hazard. At the same time, it will put the location of the
hazard on a map so that it can be taken into considering when planning future paths.

The control software will only handle the immediate reaction of the vehicle to the hazard.
Mapping will be done by the control station since this operation can require more compu-
tational and storage resources than the vehicle can provide. When the control station plans
future paths for the vehicle, it can take the map data it has gathered into account.

3.4.7 Inter-module Data Flow

The flow of data in the control software will be similar in appearance to the data flow for
subsumption architectures. Sensor data from the hardware is supplied to all of the simple
behaviors, such as navigation and hazard detection. More complex behaviors like path



planning and task control build upon the simple behaviors and combine to produce the
final commands to the vehicle. Figure 3-5 shows how the data flow might look.

This design isn't exactly like a subsumption architecture and it isn't supposed to be.
The design only tries to use the ideas of separating every behavior and having complex
behaviors build on the simple behaviors.

3.4.8 Layer Strategy

In order to insure that there is a clear separation between modules and that simple behaviors
are operating without the aid of more complex behaviors, the design will incorporate a layer
strategy. This strategy involves ordering modules from highest to lowest and is similar to,
but not the same as, layers in subsumption architectures.

Every module will be given its own layer which is a higher level than some layers and a
lower level than the other layers. A module is only allowed to call functions in its own layer
or a lower layer. If simple behaviors are placed in lower layers than complex behaviors,
the layer strategy guarantees that the lower-level behaviors will not be dependent on the
higher-levels.

Unfortunately, this means that low-level modules cannot call high-level modules directly.
Events allow low-level modules to communicate with the higher levels if upper modules
register for callbacks with lower modules. The strict layer strategy can be frustrating at
times, but it helps keeps the design in the spirit of the subsumption architecture.

3.4.9 Expandability

The control software may need to be expanded in three key areas: navigation, behaviors, and
tasks. Expanding or modifying these areas needs to be as quick and easy as possible. The
design described thus far provides this quality. The way this is accomplished is described
below.

Complex Navigation

The navigation strategy described in Section 3.4.5 is one of the simplest strategies avail-
able. It may become desirable to use a more complex navigation strategy. More intelligent
strategies are available which use sensor data about the surrounding environment to track
the vehicle's position relative to nearby landmarks. This form of navigation is similar to
the way humans usually navigate. We rarely are aware of the exact latitude and longitude
of our location; instead, we look at our nearby objects to guess at our location.

The control software design does not directly support complex navigation strategies,
but the overall design of the software system allows these strategies to be implemented.
Figure 3-1 shows that the control software is in communication with the control station,
allowing the two to share data. When it is convenient, the control software can transmit
recent sensor data to the control station. If the control station is able to determine an
accurate position for the vehicle, it can notify the control software.

This kind of cooperation between the control software and control station allows the
vehicle to continue to operate semi-autonomously while the control station uses its extra
computational resources to perform complex navigation calculations.
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Figure 3-6: Normal vs. Simulated Operation

Additional Behaviors

The software design above only provides the basic behaviors which a mobile robot would
need to perform its mission. As the mission changes, it may become necessary to add
behaviors to the control software.

The object-oriented nature of the modules makes it easy to add another module to the
software. The only difficulty arises when integrating the new module with the rest of the
software. The strict layer strategy keeps module dependencies simple and can make the
integration process much less difficult.

New Tasks

This design does not actually specify what tasks it will perform. Instead, it creates a task-
oriented framework of behaviors which allows any task to accomplish its mission, provided
the necessary tasks are in place.

This attitude makes all the tasks the same in the eyes of the control software. The
differences between two tasks only lie in the ways they manipulate the behaviors provided
by the rest of the software. If all the necessary behaviors are integrated into the software,
adding a new task is just as easy as adding the first task. If there is a behavior missing, it
can be implemented fairly easily as described above.

3.4.10 Simulation

The final consideration for the design is simulation. The importance of this element of the
design becomes evident when the testing and debugging of the software is attempted.

Figure 3-6 shows how a simulated vehicle and environment can be easily incorporated
into the design. Normally, the hardware driver portion of the software system is running
on the vehicle and interfaces directly with the real world. For simulated operation, the



drivers can be run on a desktop computer and will communicate with a simulated vehicle.
The simulated vehicle will operate in a simulated environment. Through the simulation,
the driver portion of the software will interface with a simulated environment as if it were
operating normally.

This method of simulation is very useful because the main part of the software system
is able to operate without knowing whether it is dealing with the real world or a simulated
environment.

3.5 Summary

This chapter presented the design for the BUG control software. The mission of the software
was first considered and then the goals for the software were set. The successes and failures
of other control architectures were examined so that their strengths could be duplicated
without including their weaknesses.

The entire software system can be viewed in four parts, with two of the parts running
on a desktop computer and two of the parts running on the vehicle. The main goal for the
software design is to allow the software to be powerful, expandable, and easy to write and
test. The MITy-2 and subsumption control architectures showed some ways in which that
goal could be achieved.

The design for the software still leaves some room for minor changes during implemen-
tation. The implementation of the BUG software is presented in Chapter 4.





Chapter 4

BUG Software Implementation

This chapter covers the actual implementation of the BUG control software. It is included
for use in understanding and modifying the software. The sections cover:

* standards and guidelines used in writing the code

* descriptions of the modules which comprise the software

* ways in which the modules interact

* an overview of what happens during the control software's operation

* expansion of the control software

The control software was implemented in accordance with the design presented in Chap-
ter 3. There are many ways in which the design could be implemented, but we looked for
an implementation which is simple and clear.

4.1 Standards and Representations

A major step in the creation of simple, clear control software was to specify standards
to which all code must adhere. These standards make the software more portable, more
consistent, and more easily understood.

4.1.1 Coding Standards

Programmers often disagree about what standards make code easy to read, but a set of
guidelines was chosen to make the control software consistent. These guidelines are:

* Prefix all public functions and global variables with <filename>_ and prototype them
in <filename>.h.

* Prefix all private functions and global variables with _<filename>_.

* Postfix all typedefs with _t, structures with _s, and values with _in_<unit>.

* Put braces on new lines.

* Keep lines shorter than 80 characters.
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Figure 4-1: Orientation of Axes and Starting Position of Vehicle

* Use spaces to indent. Do not use tabs.

* Use spaces around operators and put one space after commas.

* Make compiler macro names all caps.

* Use the portable variable types defined in the Basic module.

These guidelines are designed to make the code consistently easy to read on any com-
puter. Some guidelines, such as the use of the portable variable types defined in the Basic
module, make the software portable between different computer architectures. This is nec-
essary since the software is regularly run on both 32-bit Intel processors and 8-bit Zylog
processors.

4.1.2 Internal Representations

It is also important to standardize the internal representation of the physical world. Many
parts of the control software interface with the physical world and must communicate with
each other. It is much simpler for all of the software to represent the real world in the same
fashion instead of trying to convert between multiple representations.

In the case of the BUG control software, the locations of objects in the real world are
represented by coordinates on a grid. Different portions of the control software should use
the same orientation of axes and origin in order to simplify the integration of the software.

Axes

Position in the world is represented using a three-dimensional cartesian coordinate system.
The z-axis points "down" instead of "up" so that angles increase in a clockwise direction.
This arrangement of axes is illustrated in Figure 4-1. It is intended to make the coordinate
system consistent with compass-style directions and headings.

Initial Position and Orientation

The vehicle is assumed to start at (0, 0, 0) pointing in the x-axis direction. This assumption
is made to simplify the control software initialization process. If the vehicle started at a
different location or in a different orientation, the control station must update the control
software with the correct information.



4.2 Module Descriptions

The control software is separated into multiple modules. Each module is a self-contained
set of functions and variables. Modules communicate with each other using calls to public
functions. In this way, the modules are object-oriented in nature and can take advantage
of the benefits outlined in Section 3.4.2.

The list of all the modules is presented in Figure 4-2 with the modules organized into
layers. Each layer consists of a single module. The highest-level layers are at the top of the
diagram and the lowest-level layers are at the bottom. The layer strategy is explained in
Section 3.4.8.

The following sections describe each of the modules. After an introduction to the purpose
of the module, the reason for its location in the layer ordering is given. These sections do
not fully explain the implementation of the control software, because it is not necessary to
understand exactly how the code was written in order to understand the general features
of the implementation. However, the following sections should provide a good foundation
for future study of the actual code.

4.2.1 Basic

This module provides the low-level functions and definitions common to all the other mod-
ules. This includes more portable data type definitions and functions for manipulating
points and vectors in the coordinate space.

Basic is the lowest level module because it is not dependent on any other modules. All
modules use Basic to some extent.

4.2.2 Event

The Event module allows the creation and use of events. Most of the control software is
event-driven as described in Section 3.4.3. Modules can use the functions in Event to create
events and register callbacks with the events of other modules. Whenever an event occurs,
all functions registered as callbacks for that event are called.

Event is next in the layer ordering because it provides the events and event-handling
that the control software requires. This module also occupies a lower layer because its
contents are not very specific to the BUG software. The events implemented here could be
integrated into any program.

4.2.3 Sched

The Sched module implements the scheduler. (See Section 3.4.4.) Periodic and delayed
callbacks may be requested using the public functions of this module. The scheduler will
attempt to activate periodic callbacks before their period elapses. The scheduler guarantees
that it will activate delayed callbacks after their delay time has expired.

Sched, like Event, provides very basic functions upon which the rest of the software is
built. I consider Sched slightly more specific to the BUG software than Event, so Sched
occupies a higher layer position.



Figure 4-2: Software Modules in Layer Order
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4.2.4 Sim

This module is a simulation of the BUG hardware which can be used to debug the control
software. When the software is compiled for use in simulation, calls to the functions in
Sim replace any commands to the vehicle's hardware. The Sim module keeps track of the
simulated vehicle's speed, location, and surrounding physical environment. This allows Sim
to simulate the vehicle's sensors as well. The rest of the control software can operate without
knowing whether its environment is real or simulated.

Sim is a fairly low-level module, but it needs periodic callbacks in order to update the
vehicle's simulated environment. This functionality is provided by Sched, so Sim resides
directly above it.

4.2.5 Driver

The Driver module provides the interface between the control software and the vehicle. If
the control software is running in a simulated environment, Driver calls functions in the
Sim module. If the control software is running on the vehicle in a real environment, Driver
sends commands to the vehicle's hardware.

During normal operation, Driver does not require the presence of any of the other
modules, but Driver operates differently in a simulated environment. In this case, Driver
needs access to Sim. In the layer diagram, Driver is shown enveloping Sim in order to
indicate that no modules other than Driver should command the Sim module.

4.2.6 Comm

This module opens communications with the control station and allows other modules to
send and receive data. Data is transferred using a simple packet protocol. Two types
of packets may be used: reliable and unreliable. Reliable packets are periodically resent
until a packet acknowledging the transfer is received. This guarantees that the packet will
eventually arrive at its destination. Unreliable packets are sent once and then forgotten.
Unreliable packets should be used when possible to reduce the load on the Comm module.

Comm builds upon the functionality of Event and Sched to accomplish its task. It is
placed next in the layer order since almost all the remaining modules communicate with
the control station in some fashion.

4.2.7 Nay

This module keeps track of the current position of the vehicle. The position is updated
using dead-reckoning navigation. This method of navigation is described in Section 3.4.5.

The Nay module uses Driver and Comm to navigate and update the control station with
the vehicle's current position and speed. Nay comes before the rest of the modules because
the position it calculates is vital state information used by the rest of the software.

4.2.8 Hazard

The Hazard module uses the vehicle's sensors to locate obstacles to the vehicle's movement
and other hazards. When a hazard is detected, the other modules are notified and the
location of the hazard is sent to the control station.

The vehicle's sensors tend to locate hazards relative to the position of the vehicle, so
Hazard uses the position information provided by Nay to determine the coordinates of the



hazards it detects. This requires that Hazard occupy a higher position than Nay in the
layer ordering.

4.2.9 Uxo

The Uxo module handles the operations specific to the BUG mission. These operations
are the detection of UXO and the manipulation of the grappler hardware. The grappler
hardware can be commanded to one of three positions: fully stowed above the front platform,
extended above the ground to allow use of the metal detector, and fully extended so that
the shovel touches the ground. The rake can also be extended or retracted. When a UXO
is detected, other modules are notified via an event.

The detection of UXO is handled by Uxo in the same way detection of hazards is handled
by Hazard, so Uxo must also have a higher layer position than Nay. Uxo does not necessarily
have to be above Hazard, but I view the management of UXO as a higher-level function
than the management of basic obstacles and hazards.

4.2.10 Path

This module maneuvers the vehicle along a given path using the position and heading
provided by the Nay module. The types of paths available are:

follow segment The vehicle navigates to a given location by attempting to stay on or near
a line segment.

follow point The vehicle navigates to a given location using whatever means necessary.

follow vector The vehicle drives in a specified direction for a specified distance.

follow arc The vehicle maintains a specified rate of turn for a specified distance.

Path is one of the highest-level modules in the control software. Most tasks executed by
the vehicle involve following a series of paths and some manipulations of the grappler. In
order to accomplish its high-level functions, Path is given a high position in the layer order.

4.2.11 Task

This module manages the task stack. The task stack is a "last-in first-out" style queue for
uncompleted tasks. The task on top of the stack is the current task and will execute unless
task operation has been suspended. When the current task completes, it "pops" off the
stack and the next task becomes active. Tasks can be manually pushed and popped from
the control station.

Task is the highest layer because the tasks it manages must have access to functionality
provided by the rest of the control software. The modules which actually contain the
individual tasks are the only portions of the software which could be considered higher-level
than Task.

4.3 Module Interaction

The simple layer ordering keeps module dependencies straightforward, but the diagram of
data paths between modules is slightly more complex. Figure 4-3 shows how all the modules
communicate.



Comm

' Incoming Data

SOutgoing Data I
i ....... . . . . .

Uxo

-- From-Low-Layer Hardware- UXO Detect DTask ,
ToaHigh Layer

Task Manager rppler ont Driver
iSim----------- --------------

Operating Hazard

Task"[ '[Hazard Detect ,'

Path ' Nay

, Path Planner - Navigation

Key General Use
Modules

Data Passed
From Low Layer Sched
To High Layer

Command Sent Event

From High Layer
To Low Layer ' Basic

Figure 4-3: Inter-module Data Paths



The Comm and Uxo modules are split into two sections to further clarify the purpose
of communications between modules. The arrows indicate the direction that data flows
between two modules. A dark arrow indicates that the data is flowing from a higher-level
module to a lower-level module. Lighter arrows indicate that the data is flowing from a
lower-level module to a higher-level. Since lower layers aren't actually aware of the presence
of higher layers, the data flow is accomplished through the use of event callbacks registered
by the higher layers.

The diagram shows how the currently operating task has the most control over the
operation of the vehicle. The supporting modules provide tools for the operating task
and communicate with a limited number of other modules. All of the supporting modules
communicate with Driver in order to operate the vehicle's hardware.

The "general use modules" depicted in the lower right-hand corner are used by all the
other modules. These three modules provide the foundation upon which the rest of the
control software is built.

4.4 Control Software Operation

The diagram picturing module interaction may appear to be extremely complex, but the
operation of the integrated software system is actually fairly simple. Each module either
implements a set of tools for use by other modules or a behavior which affects the operation
of the vehicle. The currently running task acts as the director for the system. It initiates
the behaviors of the vehicle necessary to complete the task and modifies or interferes with
the operation of behaviors if necessary.

This is where the BUG control software is similar to the subsumption style of au-
tonomous robot control. Low-level modules like Nay and Hazard implement behaviors
which operate whenever the vehicle is running. These behaviors seem to be oblivious to
the presence of the rest of the control software and provide the foundation for the more
complex behaviors. Path is a higher-level behavior which uses that foundation to maneuver
the robot from point to point. The tasks themselves are the highest-level behaviors which
attempt to achieve a preset goal.

One interesting feature of the BUG control software in comparison to subsumption style
control is that the behaviors implemented by individual tasks do not all operate simultane-
ously. The task stack can be viewed as a list of the vehicle's goals. To accomplish each of
the goals, the Task module starts a separate task.

To further clarify the operation of the integrated control software, the follow sections
present walk-throughs of two typical tasks. The first task, waypoint, navigates the vehi-
cle along a specified series of path segments. The second task, pickup, uses the grappler
mechanism to attempt to retrieve a UXO.

4.4.1 Waypoint Task

When the waypoint task begins, it is given a series of points along the path it should follow.
Thanks to the powerful behaviors provided by the Path module, the waypoint task has very
little work to do. Its mission is accomplished in the following steps:

1. The waypoint task initiates a follow segment Path behavior beginning at the vehicle's
current position and ending at the next point in the series. The follow segment
behavior is given a function to call when the vehicle reaches its destination.



2. The follow segment behavior sends commands to Driver which send the vehicle on
its way. It also requests a periodic callback from Sched. Using this callback, the
behavior monitors the navigation information provided by Nay and makes changes to
the vehicle's course as necessary.

3. When the vehicle reaches its destination, the waypoint task is notified via the callback
it supplied to Path in Step 1. If there are still more points that the task needs to
follow, Steps 1 through 3 are repeated. Otherwise, the waypoint task has completed.

4. The waypoint task notifies the Task module that it is done. The task manager can
now pop the waypoint task from the stack and start the next task.

By using the behaviors provided by the rest of the control software, the waypoint task
reduces its job to supervision and direction instead of the actual operation of the vehicle.

4.4.2 Pickup Task

The pickup task has a more complex mission than simply following a series of paths. This
task needs to manipulate the grappler to retrieve a nearby UXO. However, the control
software provides enough built-in behaviors to make this task easy to write.

It is assumed that the UXO was just located using the metal detector and is directly in
front of the vehicle. The pickup task performs these steps:

1. Initiate a path-following behavior which backs the vehicle up one foot.

2. Instruct the Uxo module to lower the shovel and extend the rake.

3. Have Path move the vehicle forward one foot.

4. Instruct Uxo to retract the rake. Hopefully the UXO has been raked into the grappler's
shovel.

5. Instruct Uxo to bring the shovel into its stowed position.

The pickup task combines the path-following and grappler-manipulation behaviors pro-
vided by the control software to attempt to retrieve the UXO. Like the waypoint task, this
task is simplified by the use of the functions provided by the underlying layers.

4.5 Expanding the Control Software

One of the main objectives of the design of the the control software is the simple addition of
new tasks and behaviors. This section demonstrates how one should approach their creation
and integration into the existing software.

4.5.1 New Tasks

New tasks are usually the easiest additions to make to the control software. Not all tasks
are as simple as the two tasks outlined above, but they do have several elements in common:



* Every task needs a start function which is registered with the task manager when
the task initializes. The start function does whatever is necessary to put the task
in motion. This might include registering callbacks for significant events like UXO
detection or communications from the control station. Usually this function will also
request a periodic or delayed callback so that the task can monitor its progress or
perform additional functions at a later time.

* Each task should also have an end function registered with the task manager. This
function is called when the task is popped from the task stack. Whether the task
successfully completed or was aborted prematurely by the control station, the end
function should remove all callbacks registered by the task.

* Every task also includes an init function which initializes the module. Usually, this
only involves registering the task with the task manager.

Different tasks will probably have different paths they want the vehicle to execute and
varying commands for the grappler hardware, but individual tasks truly become unique
when they register for different event callbacks. Tasks can use these callbacks to respond
dynamically to the vehicle's environment.

For example, a task which searches for UXO would probably have a search pattern
which the vehicle should navigate. In the event that an obstacle is detected by the vehicle's
sensors, the search task may want to modify the search pattern instead of simply allowing
the vehicle to avoid the obstacle.

Once all the functions for the new task are completed, addition of the task to the control
software is easy. The init function for the task is inserted into the list of other init functions
called when the control software initializes. The new task can then be pushed onto the task
stack just like any other task.

4.5.2 New Behaviors

The addition of new behaviors is more complex than the addition of tasks, but it is still
done in a modular manner. Each module performs its function by commanding lower-level
modules and accepting commands from higher-level modules.

New modules should try to build upon the functions already provided by other modules,
if possible. The addition of a new behavior may also involve the creation of multiple new
modules which build upon each other to accomplish the desired result. Following these
guidelines helps to keep the control software flexible and powerful.

The new module's location in the layer hierarchy should be selected based on which
layers it relies upon to function and which layers will need to be at a higher level in order
to use it.

4.6 Summary

This chapter has described how the BUG software design was implemented. The implemen-
tation is based upon the design from Chapter 3. The main goals for the implementation
were to make it easy to write and maintain. The standards and guidelines set forth help
the software attain these goals.

The other main thrust for the software was to make it very modular and expandable.
The division of the software into object-like modules and the organization of the modules



into a layered hierarchy keeps the software modular and easy to maintain. The modules
implement individual behaviors which build upon each other. This idea is borrowed from
subsumption control architectures and gives the software powerful expandability.

This implementation was coded in ANSI C and successfully ran on the BUG vehicle.
Details about the performance of the software are in Chapter 5.





Chapter 5

Results

Once the software implementation presented in Chapter 4 was written and tested, a series
of tasks were created for the UXO retrieval mission. Data were taken on the vehicle's
performance while executing these tasks at a series of demonstrations and tests. The sections
of this chapter are:

* a list of all tasks implemented for the BUG and how their objectives were achieved

* data showing how the software actually runs

* results from demonstrations and tests which show how the vehicle performed

The information presented in this chapter will show that the control software meets its
design goals, stated in Section 3.2. Section 5.1 also shows the range of tasks which were
quickly implemented using the foundation provided by the control software.

5.1 Implemented Tasks

A series of tasks were implemented for the control software. When executed under the
direction of the control station, these tasks allow the BUG to accomplish its mission. The
tasks created for this mission are described in Table 5.1.

Typically, the control station will instruct the vehicle to perform its mission using the
following series of tasks:

1. Execute waypoint to reach the general location of a UXO.

2. Execute search to find the exact location of the UXO.

3. Use pickup to acquire the UXO.

4. Follow another waypoint task to the dropoff site.

5. Use dropoff to deposit the UXO at the site.

6. Return to base or go back to Step 1.

As Table 5.1 indicates, each task was created using the high-level behaviors provided by
the control software. Most tasks which mobile robots in our lab perform can be constructed
from the behaviors provided.



Task Name I1 Purpose Parameters Behaviors Used
Segment Navigate path segment Start and end of segment Path
Follow Nav
Waypoint Navigate connected series Number of waypoints Path
Follow of path segments Location of waypoints Nay
Search Search designated area Location of area Path

for UXO Search grid type Uxo
Nav

Pickup Acquire UXO None Path
Uxo
Nav

Dropoff Deposit UXO None Path
Uxo
Nav

Remote Allows direct control None Nav
Control by operator

Table 5.1: Tasks Implemented for BUG Control Software

If a new behavior is necessary for a task to accomplish its objective, the behavior will
have to be added to the control software as described in Sections 3.4.9 and 4.5.2. In fact,
the Uxo module was added to the control software using these methods in order to create
the pickup and dropof tasks. This achievement is discussed in Section 6.2.1.

5.2 Software Operation

This section describes the actual operation of the control software. Section 5.2.1 includes
data on processor usage statistics. Section 5.2.2 is a detailed illustration of exactly how the
different modules cooperate to form the full, working control software.

5.2.1 Processor Usage

As described in Chapters 3 and 4, the control software is constructed of many modules which
operate concurrently to control the vehicle. Table 5.2 shows approximately how much time
each of the major modules spend in control of the processor.

Support modules like Basic, Event, and Task require a negligible amount of attention
by the CPU. This is because the functions in these modules are small and are called fairly
infrequently.

The majority of the processor cycles are consumed by the Driver module. Driver per-
forms all the low-level operation of the hardware and must be called frequently. In addition,
communicating with the hardware involves a lot of very slow I/O. This means that Driver
uses a full 56% of the processor's time regardless of what other modules are doing.

Most of the other modules only require a small slice of the processor's time. The Comm
module retains control during the processor's idle time in case the control station begins
sending large amounts of data to the vehicle. When a task begins running, Path begins
using more computing time for its planning algorithms. This results in less idle time for
Comm.



Module CPU Used CPU Used
While Idle During Task

Basic * *
Event * *
Sched 1% 1%
Driver 56% 56%
Comm 31% 28%
Nav 3% 3%
Hazard 4% 4%
Uxo 2% 2%
Path 2% 6%
Task * *

* Indicates Negligible Time in Module

Table 5.2: Percentage of Processor Time Used By Modules

This self-adjusting distribution of processor time demonstrates one of the advantages of
concurrent multitasking. Rather than relying on a preemptive kernel to allocate time, each
module is allowed to use as much time as necessary to perform its function.

5.2.2 Control Software Walkthrough

Because each module is object-oriented in nature and may be operating concurrently with
other modules, the operation of the entire control software system can be viewed as a
cooperative effort between the many modules.

Figure 5-1 is a detailed walkthrough of a typical execution of the control software. This
example shows the beginning and end of the waypoint task's life cycle. As time passes from
left to right, the graph indicates how control of the vehicle is passed from module to module.

On the far left, Comm is activated by a periodic callback and receives a command from
the control station. The incoming communication indicates that the vehicle should follow
a series of waypoints using the waypoint task. The figure shows how the control software
reacts to this event.

The break in the graph indicates that much time passes before the waypoint task com-
pletes. During this period, the various modules use periodic callbacks to perform their
functions. In particular, Path uses a periodic callback to monitor the vehicle's progress
toward its next waypoint. Whenever a path completes, the waypoint task initiates a new
path toward the next waypoint.

Finally, the vehicle reaches the last waypoint. The second half of Figure 5-1 shows how
the control software responds. Since the waypoint task has accomplished its objective, it is
popped from the task stack. The BUG is now ready to execute the next task.

5.3 Software Performance

The performance of the control software was tested on two occasions. The first tests were
performed in early November, 1996. The final series of tests were performed at a demon-
stration later in November, 1996.
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5.3.1 Initial Tests (Nov '96)

The initial tests performed on the BUG were a series of straight-line tests (Figure 5-2). The
BUG was instructed to move forward a specified distance and stop as close as possible to its
destination. These tests were performed to determine the accuracy of the control software's
navigation behavior. The test was repeated at different speeds and for different distances.
The results of these tests are charted in Figure 5-3.

In general, the vehicle performed better at slower speeds. This is because the dead
reckoning navigation produced errors of the type discussed in Section 3.4.5.

5.3.2 Final Tests (Nov '96)

The graphs in Figure 5-4 show the results of the final tests performed in mid-November.
Now that the vehicle had demonstrated its ability to follow a line segment, we decided it
was ready to follow a series of waypoints. The two paths the vehicle followed were a five
point turn and a trapezoidal circuit of a large area.

The graph on the left shows the result of a five point turn in an enclosed area. The
vehicle is alternating between moving forward and backward to perform this turn. The
vehicle performed very well on this test and completed the path accurately (within one foot
error) for three trials. The vehicle was not able to follow its commanded path exactly, but
it remained within an acceptable margin at all times.

The graph to the right displays an attempt at following a trapezoidal path which did
a circuit of a large area. In this case, the vehicle was less successful. As the navigation
algorithm accumulated error, the vehicle drifted farther and farther from its desired track.
This is another example of the limitations of dead reckoning navigation.

5.4 Summary

This chapter presented the results from the BUG control software. The implementation
from Chapter 4 was written and tested and a set of tasks were created for the UXO disposal
mission.

Data from the operation of the control software shows that the majority of the processor
time is used by the Driver module. The other modules cooperatively share the remaining
time, with Comm using most of the idle time.

The control software was also subjected to two series of tests to judge its performance.
The results of the tests show that the control software functioned well, but a faster processor
may help increase the accuracy of the navigation behavior. The success of the software with
regard to the thesis goals stated in Section 1.1 is discussed in Chapter 6.
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Chapter 6

Conclusion

This chapter forms the summary and conclusion for the thesis. The sections include:

* a summary of the contents of the thesis

* conclusions regarding the objectives of the thesis

* a discussion of opportunities for future research

The objective for the thesis was to illustrate the difficulties of control software design
by presenting the design process of the BUG control software as a case study.

6.1 Summary of Thesis

The objective for this thesis was to create control software which is flexible and modular
enough to be reusable. Most control software performs essentially the same functions:
navigation, reactions, and task completion. Therefore, it is very desirable to have a control
software system which can be used for many different mobile robots.

Designing the control software to be flexible is essential if the software is to adapt
to different mobile robots and their missions. Dividing the software into clearly defined
modules helps make the software more flexible and allows small portions of the software to
be completely changed without having to redesign the entire software system.

6.1.1 Goals for Software

The control software designed for this thesis controls a mobile robot with a specific mission:
the retrieval and disposal of UXO. In order to accomplish this mission, the software design
had to meet a number of predefined goals (Section 3.2). Mission-specific goals included:
navigation of the vehicle, communication with the control station, and completion of tasks.
Additionally, the software was required to be easy to test and expandable.

These goals for the BUG software design are stricter than the goals for the thesis,
because the BUG software needs to meet its mission requirements. However, the software
goals include the thesis goal as part of their requirements.

6.1.2 Software Design

The BUG control software design is described in detail in Chapter 3. The main elements
of the design are:



* Task Orientation

* Object-oriented Structure

* Event-based Architecture

* Multi-Tasking Scheduler

* Dead Reckoning Navigation Strategy

* Local Hazard Detection and Remote Mapping

* Subsumption-Style Data Flow

* Layer Strategy

These design elements were further expanded and formed into a software implementation
described in Chapter 4. The implementation demonstrated that it is a functioning control
software during a series of basic tests. (See Section 5.3.)

6.2 Conclusion

The design for the BUG control software has demonstrated how the problems associated
with control software development can be solved. Typically, the biggest problems in the
area of mobile robot control software have been navigation and obstacle avoidance. From
a more practical standpoint, I feel that flexibility and reusability of control software can be
just as important as brilliant navigation or robust obstacle avoidance.

Reusable control software can be achieved by separating the hardware specific code from
the higher-level control code. Unfortunately, flexibility isn't as clear an issue. Flexible and
powerful control code needs to be able to incorporate powerful navigation and obstacle
avoidance strategies.

During the design and testing of the BUG control software, we found that the layered
module architecture was sufficient to provide the desired amount of flexibility and reusabil-
ity. The flexibility and reusability of the software has not fully been put to the test, but
the software has already demonstrated these qualities during our continued development of
the BUG.

6.2.1 Flexibility

The BUG control software was designed to be flexible and expandable. The ease with
which all of the tasks were created reflects these qualities, but the software was able to fully
demonstrate this quality when the Uxo module was added to the system.

Software developers at the IUVC were creating the pickup and dropoff tasks when they
discovered that the control software lacked a collection of behaviors necessary for the op-
eration of the grappler. Using the techniques described in Section 4.5.2, the Uxo module
was created. The details of the design of Uxo are in Section 4.2.9. This module provides
grappler manipulation behaviors which allow high-level tasks to operate the grappler in
cooperation with the other behaviors of the vehicle.

The IUVC found the addition of Uxo to be a painless process. This case demonstrates
the power and flexibility of the modular, layered architecture.



6.2.2 Reusability

The potential for the BUG control software to be reused for other mobile robots is based
in the software's modular and object-oriented design. We have not had the opportunity to
move the control software to another platform yet, but the IUVC is already planning to
adapt the software for use on the next generation of BUG.

The control software will easily adapt to changes in the hardware on the vehicle because
the hardware-dependent portions of the software are isolated in the Driver module. Once
a new Driver module is produced which is compatible with the new hardware, the control
software will be ready to interface with the vehicle.

If any of the behaviors of the BUG software need to be altered for the new vehicle, the
changes will be restricted to those modules which implement the behaviors. If a module
needs to be radically altered, the changes may begin to affect parts of the software. In
this case, the strict order of module dependencies defined by the layer ordering will help to
soften the blow.

6.2.3 Complex Missions

The flexibility and reusability of the software allows it to demonstrate a variety of behaviors
on many platforms, but it is also important to examine the ability of the software to handle
complex tasks and missions. The BUG control software's ability to accomplish this based
in its task manager and its interaction with the control station.

The task manager manages the list of tasks which the software should execute. The
tasks themselves are started and halted by the task manager, but they can command it
as well. Individual tasks can affect the operation of the BUG outside their own scope by
manipulating the task manager. This limited interaction between tasks executed by the
vehicle can be used to perform more complex missions.

The control station can also aid in the execution of complex missions by manipulating
the task manager remotely. The control station has the advantages of increased processing
power, more data storage, and a human supervisor. These advantages can be used to aid
the BUG in the performance of its mission.

6.3 Future Research

The highest priority for future research is to write and test obstacle avoidance behaviors for
the vehicle. The software is designed to allow flexible obstacle avoidance behaviors similar
to those exhibited by subsumption architectures, but the addition of these behaviors could
require additional research into the software design.

Due to the limitations of some of our hardware, we were not able to write the control
software in an object-oriented language. Developing this design in a language like C++
would enable the construction of truly object-oriented modules. These modules would have
the advantage of a better defined interface with other modules as well as the power and
flexibility of inheritance. By taking advantage of these properties, the control software could
become even more like a subsumption architecture. Exactly how this would be accomplished
would need to be determined, but a C++ implementation of this design could make addition
of new behaviors like obstacle avoidance much easier.





Appendix A

Background of the IUVC

The Intelligent Unmanned Vehicle Center (IUVC) was first established in 1990 as the Plan-
etary Rover Baseline Experiment (PROBE) laboratory. The IUVC represents a cooperation
between the C.S. Draper Laboratory and area universities (MIT, Tufts, Boston University,
and Northeastern University) to actively foster research and design of intelligent systems
including small robotic technologies.

Since the inception of the PROBE lab in 1990, the IUVC has developed a strong back-
ground in autonomous robotics and intelligent systems. The IUVC's proficiencies are in the
following specialty areas:

* Smart Sensor Technology

* Sensor Fusion

* Teleoperated Robots

* Autonomous Microrovers

* Autonomous Helicopters

* Vorticity-Controlled Undersea Propulsion

These proficiencies have been gained primarily during the development of the MITy
series and the Companion system. The IUVC has gained additional skills through the
development of other platforms such as the Small Autonomous Aerial Vehicle and Vorticity
Controlled Unmanned Underwater Vehicle.

A.1 The MITy Series

The purpose of the MITy project was to develop a small, autonomous robot (dubbed a
"microrover") which would be capable of performing scientific missions in extraterrestrial
environments. Some potential deployment areas included Earth's moon and the surface of
Mars.

MITy microrovers needed to be able to withstand the rigors of space flight and the
extreme environments of other planets and moons. In order to perform its mission, a MITy
microrover needed to be able to navigate rocky terrain without losing track of its position.
These qualities made the MITy series a good starting point for the design of the Basic UXO
Gatherer.
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A.1.1 MITy-1

MITy-1 was the initial prototype of the MITy series. The purpose of MITy-1 was to establish
that it was possible to build a small, mobile robot capable of limited autonomous operation.
MITy-1 was a success, but its capabilities were very limited [7].

A.1.2 MITy-2

MITy-2 (Figure A-1) built upon the success of its older sibling. This second prototype was
fully autonomous and was capable of accomplishing a wide variety of missions [12].

MITy-2 was so capable that it was considered as a solution to the UXO collection
problem. Unfortunately, MITy-2 was too slow to provide a viable alternative to sweep
teams made up of EOD personnel. The BUGs were designed to be similar to MITy-2, but
they were given more powerful motors and a sturdier frame.

A.1.3 MITy-3

MITy-3 was the third experimental prototype in the MITy series. This rover incorporated
changes to the mechanical design which improved upon the design of MITy-2. MITy-3 was
not as capable as MITy-2, so it was not used as a foundation for the BUG design. However,
the lessons learned from MITy-3 were used during the development of the mechanical and
electrical components of the BUG.

A.2 Companion

The Companion mobile robot is an autonomous command and control platform designed
to supervise the operation of other autonomous vehicles during a mission. Companion is
equipped with multiple processors, a laser rangefinder, and a variety of other sensors.

The purpose of Companion is to provide a mobile station with enough computational
power to control and coordinate the operation of multiple autonomous vehicles. This would
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Figure A-3: SAAV

allow groups of autonomous agents to operate in concert with minimal human supervision
[5] [13].

A.3 Other Achievements

The IUVC has recently incorporated two new autonomous technologies into its family.

A.3.1 Small Autonomous Aerial Vehicle

The Draper Small Autonomous Aerial Vehicle (DSAAV) is currently the most advanced
small autonomous helicopter in the nation. The DSAAV is only a few feet in diameter, but
it is still capable of taking off, hovering, navigating, and landing under autonomous control
[14].

A.3.2 Vorticity Controlled Unmanned Underwater Vehicle

The Vorticity Controlled Unmanned Underwater Vehicle (VCUUV) is a research effort into
an underwater propulsion system which mimics the swimming action of a tuna. Tuna are
some of the most efficient swimmers in the ocean, and the VCUUV project hopes to achieve
that efficiency with a man-made underwater vehicle [1].



Appendix B

EOD-1 and EOD-2 Hardware

EOD-1 and EOD-2 are prototypes for the Basic UXO Gatherer. This appendix describes
the hardware that makes up these vehicles. The hardware is separated into mechanical and
electrical sections.

B.1 Mechanical Overview

Figure B-1 shows the most recent hardware configuration for EOD-2. The vehicle is
equipped with a six-wheel drive flexible frame, front and rear Ackerman steering mech-
anisms, a modular chassis, and a grappler mechanism for UXO retrieval.

For parallel development purposes, the IUVC has constructed a secondary prototype
called EOD-1. EOD-1 shares the same basic mechanical architecture with EOD-2, but
lacks a complete sensor suite and grappler mechanism. Table B.1 presents a contrast and
comparison of the various components present on each vehicle.

B.1.1 Flexible Frame and Modular Chassis

The vehicle's flexible frame provides a high degree of maneuverability, enabling the rover
to traverse rocks, curbs, and uneven terrain (Figure B-2). The frame is constructed of
three individual platforms connected by flexible metal rods. The front platform carries the
grappler mechanism, a metal detector, sonar rangefinders, and a bumper. The middle plat-
form houses the onboard microprocessor, video camera and transmitter, wireless modem,
and additional control hardware. The rear platform contains power regulation circuitry
and batteries. (See figure B-5 on page 74 for a detailed schematic diagram of the three
platforms.)

The highly modular chassis design allows the operator to swap platform sections with
other BUGs. This could become necessary, given the potential for vehicular damage in the
mission zone.

B.1.2 Drive Train

Six-wheel drive propulsion also contributes to exceptional maneuverability, producing vehi-
cle speeds up to 6 feet per second. Each aluminum wheel hub, fitted with a knobby rubber
tire, is powered by a small (9.8 oz) 12V DC motor with an integrated planetary gearhead
and optical encoder. The optical encoders provide feedback used for motor control feedback
and autonomous navigation purposes.



Figure B-i: The EOD-2 Basic UXO Gatherer

Figure B-2: EOD-2 Demonstrates Its Flexible Chassis



Component/Capability EOD-1 EOD-2
six-wheeled, three-
platform mechanical 0 0
architecture

six drive wheel motors
with integrated encoders
grappler mechanism for
retrieval of UXO
12 MHz Z-World Little
Giant Microprocessor
with 512KB SRAM and 0 0
PIO96 Expansion Board

Systron-Donner micro-
mechanical gyroscope

Video camera
and transmitter

Front bump sensors 0

Local Positioning Systerr *

Polaroid sonar ranging
module array

Proxim wireless modem * 0

Metal detector 0

Table B.1: Components of EOD-1 and EOD-2



Figure B-3: Ackerman Steering System

B.1.3 Steering System

At the heart of the Ackerman steering system are two 24V DC motors, also equipped
with integrated planetary gearheads and optical encoders. The gearhead output shafts
are coupled to doubly threaded worm gears which are mounted in aluminum gear boxes
(Figure B-3) near the front and read of the BUG. The worm gears mate with worm wheel
inside the gear boxes, providing an overall steering ratio of 30:1.

The mechanical linkages providing the Ackerman steering, combined with both front
and rear "crab" steering, yield a tight turning radius.

B.1.4 Grappler Mechanism

The grappler mechanism (Figures B-1 and B-4), positioned on the front platform, serves a
dual purpose. It is used to both detect and acquire UXO during performance of the vehicle's
mission.

The grappler detects potential UXO using a metal detector embedded in its base. The
BUG extends the grappler and activates the metal detector when it is searching for UXO.
Upon detection of a UXO, the grappler mechanism is used to scoop up the UXO for transport
to the ordnance disposal area.

The grappler is driven by two 24V DC motors equipped with integrated gearheads
and optical encoders. These encoders provide feedback to the control system and allows
autonomous operation of the grappler. One of the 24V motors is used to actuate the
scoop/shovel linkage, while the other is used to drive the rake. The rake is used to sweep
UXO into the scoop/shovel during the acquisition process.

Vehicle Dim. (in) Weight Top Speed

EOD-1 29 x 17 x 8 26 lbs. 6 ft/s
EOD-2 29 x 17 x 16 36 lbs. 6 ft/s

Table B.2: Physical Characteristics of EOD-2



Figure B-4: The Grappler Mechanism

B.2 Electrical Overview

Figure B-5 presents a schematic diagram of the basic electrical hardware layout of the BUG
electrical system. Sensors and various electrical hardware are distributed among the three
chassis platforms, as discussed in section B.1.1.

B.2.1 Sonar Rangefinders

Located at the front of the rover are three Polaroid ultrasonic ranging modules. The ranging
modules work by emitting a series of sound pulses and measuring the time elapsed until the
echo returns to the transducer. The time measured can then be multiplied by the speed of
sound at ambient conditions to calculate the round-trip distance to the nearest object.

The operation of the ranging module and the calculations for measuring the distance to
the nearest object are handled locally by a Basic Stamp. This frees the main processor to
perform other tasks while waiting for an echo to reach the ranging module.

B.2.2 Bumper

Also located at the front of the rover is a bump sensor. The bump sensor is a small plate
spring mounted in front of two electrical switches such the depressing the plate causes the
switches to close. The bumper signal is resistor-tied high and the switch is tied to ground
such that when the switch is depressed, the signal is pulled low.

B.2.3 Motor Encoders

Attached to each motor shaft is a rotary optical encoder. The encoders serve to measure
the rotation of the motor shafts. The signal from each encoder is decoded by an HCTL
2016 quadrature decoder which tracks the angular position of the motor shaft with a 16-bit
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counter. Position can be determined by multiplying the angular rotation of the drive motors
by the wheel radius.

Encoders are also used on the steering and grappler motors to determine steering angle
and grappler location, respectively. When the BUG first activates, the steering position
can be initialized using a pair of photodiode sensors. The position of the grappler can
be initialized using two microswitches which are depressed when the grappler reaches its
"stowed" position.

B.2.4 Gyro

A micro-mechanical angular rate sensor is used to track changes in heading. A rate gyro
offers much higher bandwidth than a magnetic compass and is not affected by abnormalities
in magnetic fields.

The rate gyro outputs an analog voltage proportional to the rate of rotation. This
analog voltage is low-pass filtered to anti-alias the signal and digitized into a 12-bit digital
signal. The digital signal is then locally integrated using a PIC16C84 microcontroller. The
integrated signal is scaled and passed to the main processor as the relative heading of the
vehicle.

Integrating the signal on a dedicated microcontroller frees the main processor from
having to commit its resources to constantly processing the gyro signal.

B.2.5 Onboard Microprocessor

The BUG's main processor is provided by a Z-World Little Giant embedded controller
board. The Little Giant is based on a 12 MHz Z180 microprocessor. The Z180 is supported
by 512 KB of SRAM, 16 digital I/O lines, 2 serial ports, an 8-channel A/D converter, and
a 12-bit D/A converter. The Little Giant is programmed using Z-World's variant of the C
programming language called Dynamic C.
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