312 research outputs found

    Failure mode and effects analysis on the air system of an aero turbofan engine sing the Gaussian model and evidence theory

    Get PDF
    Failure mode and effects analysis (FMEA) is a proactive risk management approach. Risk management under uncertainty with the FMEA method has attracted a lot of attention. The Dempster–Shafer (D-S) evidence theory is a popular approximate reasoning theory for addressing uncertain information and it can be adopted in FMEA for uncertain information processing because of its flexibility and superiority in coping with uncertain and subjective assessments. The assessments coming from FMEA experts may include highly conflicting evidence for information fusion in the framework of D-S evidence theory. Therefore, in this paper, we propose an improved FMEA method based on the Gaussian model and D-S evidence theory to handle the subjective assessments of FMEA experts and apply it to deal with FMEA in the air system of an aero turbofan engine. First, we define three kinds of generalized scaling by Gaussian distribution characteristics to deal with potential highly conflicting evidence in the assessments. Then, we fuse expert assessments with the Dempster combination rule. Finally, we obtain the risk priority number to rank the risk level of the FMEA items. The experimental results show that the method is effective and reasonable in dealing with risk analysis in the air system of an aero turbofan engine

    New Failure Mode and Effects Analysis based on D Numbers Downscaling Method

    Get PDF
    Failure mode and effects analysis (FMEA) is extensively applied to process potential faults in systems, designs, and products. Nevertheless, traditional FMEA, classical risk priority number (RPN), acquired by multiplying the ratings of occurrence, detection, and severity, risk assessment, is not effective to process the uncertainty in FMEA. Many methods have been proposed to solve the issue but deficiencies exist, such as huge computing quality and the mutual exclusivity of propositions. In fact, because of the subjectivity of experts, the boundary of two adjacent evaluation ratings is fuzzy so that the propositions are not mutually exclusive. To address the issues, in this paper, a new method to evaluate risk in FMEA based on D numbers and evidential downscaling method, named as D numbers downscaling method, is proposed. In the proposed method, D numbers based on the data are constructed to process uncertain information and aggregate the assessments of risk factors, for they permit propositions to be not exclusive mutually. Evidential downscaling method decreases the number of ratings from 10 to 3, and the frame of discernment from 2^{10} to 2^3 , which greatly reduce the computational complexity. Besides, a numerical example is illustrated to validate the high efficiency and feasibility of the proposed method

    Application of D-S Evidence Fusion Method in the Fault Detection of Temperature Sensor

    Get PDF
    Due to the complexity and dangerousness of drying process, the fault detection of temperature sensor is very difficult and dangerous in actual working practice and the detection effectiveness is not satisfying. For this problem, in this paper, based on the idea of information fusion and the requirements of D-S evidence method, a D-S evidence fusion structure with two layers was introduced to detect the temperature sensor fault in drying process. The first layer was data layer to establish the basic belief assignment function of evidence which could be realized by BP Neural Network. The second layer was decision layer to detect and locate the sensor fault which could be realized by D-S evidence fusion method. According to the numerical simulation results, the working conditions of sensors could be described effectively and accurately by this method, so that it could be used to detect and locate the sensor fault

    Use of fuzzy risk assessment in FMEA of offshore engineering systems

    Get PDF
    This paper proposes a novel framework for analysing and synthesising engineering system risks on the basis of a generic Fuzzy Evidential Reasoning (FER) approach. The approach is developed to simplify the inference process and overcome the problems of traditional fuzzy rule based methods in risk analysis and decision making. The framework, together with the FER approach has been applied to model the safety of an offshore engineering system. The benchmarking between the new model and a well-established Rule based Inference Methodology using the Evidential Reasoning (RIMER) is conducted to demonstrate its reliability and unique characteristics. It will facilitate subjective risk assessment in different engineering systems where historical failure data is not available in their safety practice

    A Modified TOPSIS Method Based on D

    Get PDF
    Multicriteria decision-making (MCDM) is an important branch of operations research which composes multiple-criteria to make decision. TOPSIS is an effective method in handling MCDM problem, while there still exist some shortcomings about it. Upon facing the MCDM problem, various types of uncertainty are inevitable such as incompleteness, fuzziness, and imprecision result from the powerlessness of human beings subjective judgment. However, the TOPSIS method cannot adequately deal with these types of uncertainties. In this paper, a D-TOPSIS method is proposed for MCDM problem based on a new effective and feasible representation of uncertain information, called D numbers. The D-TOPSIS method is an extension of the classical TOPSIS method. Within the proposed method, D numbers theory denotes the decision matrix given by experts considering the interrelation of multicriteria. An application about human resources selection, which essentially is a multicriteria decision-making problem, is conducted to demonstrate the effectiveness of the proposed D-TOPSIS method

    An evaluation for sustainable mobility extended by D numbers

    Get PDF
    How to evaluate the impact of transport measures on city sustainability effectively is still an open issue, and it can be abstracted as one of the multiple criteria decision making problems. In this paper, a new method based on D numbers is proposed to evaluate the sustainable mobility of city. D number is a new mathematical tool to represent and deal uncertain information. The property of integration of D numbers is employed to fusion information. A numerical example of carsharing demonstrates the effectiveness of the proposed method

    Fuzzy evidence theory and Bayesian networks for process systems risk analysis

    Get PDF
    YesQuantitative risk assessment (QRA) approaches systematically evaluate the likelihood, impacts, and risk of adverse events. QRA using fault tree analysis (FTA) is based on the assumptions that failure events have crisp probabilities and they are statistically independent. The crisp probabilities of the events are often absent, which leads to data uncertainty. However, the independence assumption leads to model uncertainty. Experts’ knowledge can be utilized to obtain unknown failure data; however, this process itself is subject to different issues such as imprecision, incompleteness, and lack of consensus. For this reason, to minimize the overall uncertainty in QRA, in addition to addressing the uncertainties in the knowledge, it is equally important to combine the opinions of multiple experts and update prior beliefs based on new evidence. In this article, a novel methodology is proposed for QRA by combining fuzzy set theory and evidence theory with Bayesian networks to describe the uncertainties, aggregate experts’ opinions, and update prior probabilities when new evidences become available. Additionally, sensitivity analysis is performed to identify the most critical events in the FTA. The effectiveness of the proposed approach has been demonstrated via application to a practical system.The research of Sohag Kabir was partly funded by the DEIS project (Grant Agreement 732242)

    Reacting to Risk with Real Options: Valuation of Managerial Flexibility in IT Projects.

    Get PDF
    Since flexibility is a critical success factor in relation to the management and design of IT investments, and understanding flexibility is a difficult issue, it is important to explore how firms build flexibility into their IT investment decisions. This dissertation investigates how managerial flexibility, as a response to risks, impacts IT project valuation. The dissertation attempts to answer this question by conducting three separate studies using a real options perspective. Firstly, we explore whether managerial flexibility in IT investment decisions is recognized in practice by conducting exploratory case study research. Secondly, we investigate how managerial flexibility in IT projects can be valued. We develop a theoretical decision-making model which deals with both financial and non-financial IT project valuation criteria and apply the model in a case study. Thirdly, we take a qualitative perspective on the management of managerial flexibility in relation to IT project risk. We empirically test the effects of specific risks on the valuation of real options in IT project decisions in an experimental setting. The primary contribution of this dissertation is to provide evidence that managers differentially assess the relative value of different types of options when controlling IT project risks. The relative value that IT professionals place on various real options is both driven by both the intrinsic real options value and by risk factors associated with an IT project. Their assessment generally follows real options-based risk management reasoning.

    Advanced uncertainty modelling for container port risk analysis.

    Get PDF
    Globalization has led to a rapid increase of container movements in seaports. Risks in seaports need to be appropriately addressed to ensure economic wealth, operational efficiency, and personnel safety. As a result, the safety performance of a Container Terminal Operational System (CTOS) plays a growing role in improving the efficiency of international trade. This paper proposes a novel method to facilitate the application of Failure Mode and Effects Analysis (FMEA) in assessing the safety performance of CTOS. The new approach is developed through incorporating a Fuzzy Rule-Based Bayesian Network (FRBN) with Evidential Reasoning (ER) in a complementary manner. The former provides a realistic and flexible method to describe input failure information for risk estimates of individual hazardous events (HEs) at the bottom level of a risk analysis hierarchy. The latter is used to aggregate HEs safety estimates collectively, allowing dynamic risk-based decision support in CTOS from a systematic perspective. The novel feature of the proposed method, compared to those in traditional port risk analysis lies in a dynamic model capable of dealing with continually changing operational conditions in ports. More importantly, a new sensitivity analysis method is developed and carried out to rank the HEs by taking into account their specific risk estimations (locally) and their Risk Influence (RI) to a port's safety system (globally). Due to its generality, the new approach can be tailored for a wide range of applications in different safety and reliability engineering and management systems, particularly when real time risk ranking is required to measure, predict, and improve the associated system safety performance
    • 

    corecore