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Moores University, Liverpool, UK. 

 

ABSTRACT 

Globalization has led to a rapid increase of container movements in seaports. Risks in 

seaports need to be appropriately addressed to ensure economic wealth, operational 

efficiency, and personnel safety. As a result, the safety performance of a Container 

Terminal Operational System (CTOS) plays a growing role in improving the efficiency of 

international trade. This paper proposes a novel method to facilitate the application of 

Failure Mode and Effects Analysis (FMEA) in assessing the safety performance of CTOS. 

The new approach is developed through incorporating a Fuzzy Rule-Based Bayesian 

Network (FRBN) with Evidential Reasoning (ER) in a complementary manner. The former 

provides a realistic and flexible method to describe input failure information for risk 

estimates of individual hazardous events (HEs) at the bottom level of a risk analysis 

hierarchy. The latter is used to aggregate HEs safety estimates collectively, allowing 

dynamic risk-based decision support in CTOS from a systematic perspective. The novel 

feature of the proposed method, compared to those in traditional port risk analysis lies in a 

dynamic model capable of dealing with continually changing operational conditions in 

ports. More importantly, a new sensitivity analysis method is developed and carried out to 

rank the HEs by taking into account their specific risk estimations (locally) and their Risk 

Influence (RI) to a port’s safety system (globally). Due to its generality, the new approach 

can be tailored for a wide range of applications in different safety and reliability 

engineering and management systems, particularly when real time risk ranking is required 

to measure, predict, and improve the associated system safety performance. 

 

Key words: FMEA, Port safety, Maritime risk, Maritime safety, Maritime Transport, 

Sensitivity analysis 

 

1 Introduction 

Maritime infrastructure such as container terminals presents safety critical and costly 

engineering systems that enable economic activities through the transfer of goods and 
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services between national and international destinations. Given their significance in 

ensuring prosperity of the world economy, container terminals face a variety of operational 

and environmental uncertainties that make them vulnerable to hazards (Mansouri et al., 

2009). The seaports with safe and reliable operations are of great significance for the 

protection of human life and health, the environment, and the economy. Any inappropriate 

operation could lead to a profound negative impact on service quality, productivity cost, 

and lifestyle. Therefore, system safety evaluation including the early detection of hazards 

is critical in avoiding performance degradation and damage to human life or machinery. 

Furthermore, the effect of accidents and/or disasters that jeopardise terminal operations can 

be reduced/eliminated, if a robust risk forecasting mechanism is developed and effectively 

enforced. In practice, engineering systems are at large repairable and their safety measures 

change with time and by considering these changes as a time series process, the growth or 

deterioration of such systems can be evaluated and improved (Hu et al., 2010). The 

necessity and importance of evaluating the system safety lies in that decision makers are 

generally interested in estimating future occurrence of system failures for resource 

planning, inventory management, development of realistic policies for age replacement and 

logistics support.  

 

The international Maritime Organization (IMO) has an aim of enhancing maritime 

operation safety, including protection of life, health, marine environment, and property. 

As a result, the Formal Safety Assessment (FSA) has been approved in 2002 and since 

then, used as a rational and systematic process for assessing the risks associated with 

shipping activities and for evaluating the associated costs and benefits. Furthermore, the 

World Economic Forum (2014) has also emphasized the need towards a structured 

evaluation of risks on critical maritime systems in order to ensure the safety, security, and 

resilience of their operations. A robust risk management system can not only monitor the 

performance of system safe and reliability performance, but also offer valuable 

information for the decision makers to take the correction actions in order to improve the 

quality and reduce the cost of their systems (Hu et al., 2010).  

 

Most of the current modelling schemes in Failure Mode and Effects Analysis (FMEA) 

were developed using linear or nonlinear multiple regression which is comparatively 

reliable. However, in many circumstances they may not perform well in terms of accuracy 

or speed, and suffer from a number of drawbacks such as lack of suitable models, 

exceptional assumption used in analysis due to the lack of applicable safety related 

data/records and a high level of uncertainty involved in the available failure data (Sii et al., 
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2001). The incapability of traditional FMEA in addressing uncertainty in data in particular 

contexts has stimulated the development of new methods based on uncertainty treatment 

theories such as fuzzy logic, evidential reasoning (ER), grey theory, Monte Carlo 

simulation, Bayesian network (BN), Markov model, and artificial neural network (Yang 

et al., 2008). Safety evaluation and risk analysis involving Multiple Attribute Decision-

Making Analysis (MADM) have also been developed by a large community of researchers.  

 

Many decision problems in engineering and management systems involve multiple 

attributes of both a quantitative and qualitative nature with uncertain or missing 

information that causes complexity in multiple attribute assessment (Yang and Xu, 2002a). 

Researchers have paid increasing attention to the use of MADM models in a wide variety 

of practical applications relating to choice assessment, evaluation and selection. Examples 

of such applications include urban and community planning; resource allocation; supplier 

evaluation; employee/organization evaluation; marketing strategies; credit analysis; and 

engineering design evaluations including safety management (Eom, 1989; Eom and Lee, 

1990; Eom et al., 1998). More specifically, MADM has been applied in functional 

assessment for disability index and the ergonomics consultation (Jen and Min, 1994), the 

restoration planning for power distribution systems (Chen, 2005), evaluation of the 

suitability of manufacturing technology (Chuu, 2009), expert’s systems (Beynon et al., 

2001), and motorcycle evaluation (Yang and Xu, 2002b). In recent years, different risk 

analysis models involving MADM have been proposed to evaluate and predict system 

safety and reliability. Examples of such models include, a marine system safety 

assessments approach (Wang et al., 1995; 1996), a belief function model (Srivastava and 

Liu, 2003), a model for strategic research and development project assessments (Liu et al., 

2008) and a nonlinear programming model (Zhou et al., 2010). Thus, MADM has been 

increasingly used in safety management and risk analysis.  

 

This paper aims to develop a novel method to facilitate the application of the FMEA 

approach in port safety analysis through incorporating MADM approaches (i.e. ER with 

FRBN) to prioritise each HE’s safety level individually in a container terminal and then to 

aggregate them collectively to evaluate the safety performance of CTOS as an entity and 

quantify the HE’s safety impact to the system accordingly. The True Risk Influence (TRI) 

for each HE is assessed taking into account their specific local risk estimations and their 

RI to a port’s safety system is then prioritised accordingly to facilitate the subjective safety 

based decision-making modelling for container terminal safety. The novelty of this paper, 

compared to the relevant studies in the literature, primarily lies in that a) it for the very 
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first time incorporates risk impact of components to the whole system into risk 

quantification of ports; b) it combines various uncertainty models, such as fuzzy Bayesian 

for HEs’ risk estimate and ER for risk synthesis from components to system levels, in a 

systemic way and c) it newly uses a “max and min” DoB (degree of belief) allocation 

approach to measure the risk reduction of a port system due to the best and worst safety 

performance of the investigated HE so as to test the sensitivity of the model and to 

prioritise hazards from both their own risk as well as their impacts on the system safety. 

From a theoretical perspective, the proposed hybrid method can be tailored for risk 

prioritisation of any large engineering system of similar features (i.e. a hierarchical risk 

structure).   

 

To achieve the aim, this paper is organized as follows. A brief review of applying FRBN 

and ER in FMEA particularly concerning their applications in port risk analysis is carried 

out in Section 2. Section 3 describes the novel modified FMEA framework capable of 

integrating different weights of risk parameters into ER and the aggregation process. A 

real case study regarding CTOS safety performance evaluation is investigated to 

demonstrate the feasibility of the new methodology in Section 4. Section 5 concludes the 

paper. Consequently, this study contributes to facilitating FMEA applications for 

enhancing container terminals risk management in a situation where uncertainty in 

historical failure data is high and traditional probabilistic risk analysis methods relying on 

complete data are not applicable. 

 

2 Literature review 

Safe operation of any modern technological system is a fundamental attribute to ensure its 

reliability. This research focuses on assessing the operational safety of container terminals 

through evaluating the probability of the system’s failure. Since the safety of container 

terminals is affected by multiple factors such as their capacity, workforce, machinery, 

management, and geographical location, task, conducting an effective risk management 

system is challenging and rational decision analysis is essential to properly represent and 

use uncertain information in the aforementioned factors to enhance container terminal safe 

operations.   

 

Seaports risk management is playing an increasingly important role in ensuring port 

service resilience in the context of supply chain systems. As a result, it is attracting much 

attention from different operational, organizational and economic perspectives (Legato 
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and Monaco, 2004; Garrick et al., 2004; Fabiano et al. 2010; Mokhtari et al., 2011; Madni 

and Jackson, 2009). However, compared to shipping risk analysis (Hanninen, 2014; Banda 

et al., 2015; Wu et al., 2015 ), studies on seaport risk and safety management are scarce in 

the literature. Pallis et al. (2010) indicated, reviewing 395 port related journal papers 

published between 1997 and 2008, that risk analysis persistently occupied a backseat role 

within port research being overwhelmed by other aspects involving efficiency analysis, 

port competition, geographical analysis and spatial evolution, port policy and governance 

(Yang et al., 2014). 

 

FMEA is one of the most widely applied hazard identification and risk analysis methods 

due to its visibility and easiness (Braglia et al., 2003). The method has incorporated 

advanced uncertainty modelling techniques such as fuzzy sets, grey theory, BN and ER to 

facilitate its practical applications in maritime and offshore engineering safety (Sii et al., 

2001), system reliability and failure mode analysis (Braglia et al., 2003), engineering 

system safety (Liu et al., 2005) and maritime port security (Yang et al., 2009). 

 

The traditional FMEA method has three fundamental attributes (namely failure occurrence 

likelihood (L), consequence severity (C), and probability of failures being undetected (P)) 

that are employed to assess the safety level of a failure (Wang et al., 1996). Among the 

quantitative development of FMEA, a FRBN approach using Bayesian Network 

mechanism to conduct fuzzy rule based (FRB) risk inference in order to achieve sensitive 

failure priority values based on domain expert knowledge, has been proposed and applied 

by Yang et al., (2008) and Alyami et al. (2014).  

 

In Alyami et al., (2014), a risk-based decision tool for effective seaport HEs risk evaluation 

was developed. The development was to use the rational distribution structure on Degree 

of Belief (DoB) to model the rule base between the four risk parameters and risk evaluation 

of the identified HEs in a container port operational system.  

 

The following steps were required for developing a FMEA criticality in safety evaluation 

of container terminals (Alyami et al., 2014): 

 

1. Establish a FRB with a belief structure in FMEA. 

2. Identify HEs (failure modes) in container terminals. 

3. Prioritise the HEs with rational distribution of DoBs in FRB. 

4. Validation by using sensitivity analysis techniques. 
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In this study, the risk analysis was only constrained for HEs that are located at the bottom 

level of a hierarchy of port safety system. It has not well addressed the risk and safety 

analysis from a systematic perspective, revealing a significant research gap to fulfil.  

 

ER shows a potential in synthesising evaluations in a hierarchy. A careful literature review 

has disclosed that there are many ER applications in risk areas, among which several 

leading publications incorporating FMEA and ER methods include Wang et al., (1995; 

1996), Yang and Sen, (1996), Yang, (2001), Yang et al., (2010), and Yang et al., (2009). 

Some other typical studies have made a useful contribution towards the applications of ER 

for representing and managing uncertainty (Yen, 1990; Dekorvin and Shipley, 1993; 

Sönmez et al., 2001; Yang et al., 2004; Zhang et al., 2005; XU et al., 2006a; XU et al., 

2006b and Riahi et al., 2012). ER, developed particularly for MADM problems with both 

qualitative and quantitative criteria under uncertainty, utilises an individual’s knowledge, 

expertise, and experience in the forms of belief functions (Riahi, 2010). Therefore, it, 

together with other uncertainty modelling methods such as BNs and/or fuzzy logic, has 

shown superiority in tackling the diversity and uncertainty of the subjective information 

in general and effectively handling linguistic evaluations for risk analysis in particular. 

 

Chin et al. (2009) used a group-based ER approach to develop a risk priority model that 

included the assessment of risk factors using belief structures. Thereafter, the overall belief 

structures were converted into expected risk scores and then ranked them using a mini-

max approach in which ER was used to model the diversity and uncertainty of the 

assessment information. Deng et al. (2011) introduced a fuzzy evidential reasoning-based 

approach for risk analysis. The proposed method could efficiently deal with linguistic 

evaluations of experts and uncertain data or information. The similarity measures between 

linguistic evaluation and a predefined fuzzy scale were used to derive basic probability 

assignments. The system risk score was obtained using the Dempster rule of combination 

based on the risk values calculated for each component of the system. Hu, et al. (2010) 

proposed a reliability prediction model based on the ER to forecast reliability in 

turbocharger engine systems. The proposed method allowed the identification of the 

appropriate internal representation between basic attributes associated with the system 

prediction outputs to define the relationships between past historical data and the 

corresponding targets, and then future output values can be predicted if new inputs became 

available. 
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In respect to the above literature review, the major benefits of using the ER approach are 

listed as follows (Yang and Xu, 2002a; Riahi, 2010): 

 It is capable of handling incompleteness, uncertainty, and vagueness in data as well 

as complete and precise data in MADM problems. 

 It has the ability to provide users with flexibility by allowing them to express their 

judgements both subjectively and quantitatively. 

 It is capable of accommodating or representing the uncertainty and risk inherent in 

decision analysis for multiple factor analysis. 

 It has the ability to offer a rational methodology to aggregate the data assessed 

based on its hierarchical evaluation process. 

 

The ER approach in this paper is used for aggregating risk estimations of all the HEs based 

on a DoB decision matrix and the evidence combination rule of D-S theory. It uses a 

distributed modelling framework, in which the risk estimation of each HE is accessed 

using a set of collectively exhaustive and mutually exclusive assessment grades obtained 

from a FRBN method (Alyami et al., 2014).  

 

The proposed methodology for modelling CTOS using the integrated FRBN and ER 

approaches can not only model the diversity and uncertainty of the assessment information 

in complex FMEA, but also incorporate the relative safety importance of HEs into the 

determination of risk priority values in a precise and logic way by conducting the 

sensitivity analysis. More importantly, by incorporating ER with the FRBN analysis, the 

risk level of each HE can be investigated from both local (i.e. its own risk level) and global 

(i.e. its risk influence to the system safety) perspectives. 

3 Methodology for modelling container terminal operational systems 

The first part of evaluating the safety performance of CTOS is to prioritize HEs 

individually in a container terminal using an FRBN approach. It provides a realistic and 

flexible way of describing input failure information with easy update of Risk Estimation 

(RE) and facilitates risk evaluation of HEs individually. The second part is to aggregate 

the HEs’ REs collectively by using the ER approach and then quantify the HEs for risk-

based decision support of CTOS as an entity (i.e. as a system). More importantly, a new 

sensitivity analysis method is developed to analyse the importance of each HE in terms of 

its contribution to the safety of the whole port operational system. Having carefully 

analysed the RE of each HE locally in port system safety using FRBN in Alyami et al., 
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2014, this work focuses more on the application of ER for risk aggregation and sensitivity 

analysis for evaluating the risk contribution of each HE globally. 

3.1 Risk assessment for collective HEs using ER approach 

The steps for incorporating ER in FMEA in this study are described in a stepwise manner 

as follows: 

 

I. Develop a hierarchical structure to describe the CTOS safety performance. 

II. Use the ER algorithm to synthesise the risk result of each HE for the safety 

estimate of the whole system.  

III. Evaluate the risk impact of each HE on the system by using sensitivity 

analysis. 
 

I. Develop the hierarchical structure  
 

The HEs investigated in this study are those identified through the combination of surveys, 

field investigation, and literature search. In Alyami et al., 2014, 24 HEs at the bottom level 

were identified, while in this paper, the hierarchy showing their positions and relations is 

the focus. It is presented in Figure 1. The HEs identified in the hierarchical structure are 

those associated with container terminal operations including cargo handling equipment 

and transport facilities while other risk aspects such as managerial, policy implications, 

environmental and political issues are to be addressed in future work. During the 

investigation, it was found that the risk attributes used to evaluate environmental HEs such 

as sea level rise, flooding, and storm surge are different with those relating to operations. 

For instance, a key risk attribute used to estimate environmental HEs is timeframe, which 

is less relevant in this study. It is noteworthy that the main contribution of this research is 

to apply the FRBN model for safety estimation of a container operational system and the 

risk impact analysis of each HE on the whole system.  
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Figure 1. Hierarchy for the risk factors during terminal operations  

(Authors) 

 

II. System safety estimate by synthesising the risk result of all HEs using ER method 

The REs of all the HEs can be presented in both linguistic variables with DoB and 

numerical values based on utility values, as the output of applying the FRBN model in 

Alyami et al., (2014).  The result expressed by linguistics variables will be used as the 

input values in ER for calculating the RE of CTOS.   

 

The ER scheme adapted and applied in this study was first generated from Dempster (1967) 

that was subsequently developed by Shafer (1976) to form Dempster–Shafer (D–S) theory. 

The combination of D-S theory and fuzzy rule bases is an appropriate way to solve MADM 

problems that include fuzzy information from multiple sources. One direction is to extend 

D-S theory to include the feature of fuzzy set theory so that its capability can be enhanced 

to process both crisp and fuzzy information.  

 

In D-S’s rule of combination, suppose subsets B and C defined on a common space 𝜃 are 

associated with confidence estimates 𝑚1 and 𝑚2 respectively that were obtained from two 

independent sources. The orthogonal sum of 𝑚1 and 𝑚2 is defined as follows: 

(𝑚1 ⊕ 𝑚2)(𝐴) =
∑ 𝑚1𝐵∩𝐶=𝐴 (𝐵)×𝑚2(𝐶)

1−∑ 𝑚1𝐵∩𝐶=∅ (𝐵)×(𝑚2)(𝐶)
                                                             (1) 

 

The ER algorithm based on the D-S theory has been developed, improved, and modified 

towards a more rational way by a large community of researchers in continuously 

researching and practicing processes (Yang and Xu, 2002b).  
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The algorithm can be analysed and explained as follows. Let two subsets "𝑆1" and "𝑆2" 

present the REs (based on the three safety expressions “High”, “Medium” and “Low”) of 

HE1 and HE2 and S be the synthesised RE of the two subsets.   Then"𝑆", "𝑆1" and "𝑆2" 

can separately be expressed by: 

 

𝑆 = [(𝐷𝑜𝐵𝑠 , 𝐿𝑜𝑤), (𝐷𝑜𝐵𝑠 , 𝑀𝑒𝑑𝑖𝑢𝑚), (𝐷𝑜𝐵𝑠 , 𝐻𝑖𝑔ℎ)]                                        (2) 

𝑆1 = [(𝐷𝑜𝐵𝑠1
 , 𝐿𝑜𝑤), (𝐷𝑜𝐵𝑠1

 , 𝑀𝑒𝑑𝑖𝑢𝑚), (𝐷𝑜𝐵𝑠1
 , 𝐻𝑖𝑔ℎ)]                                      (3) 

𝑆2 = [(𝐷𝑜𝐵𝑠2
 , 𝐿𝑜𝑤), (𝐷𝑜𝐵𝑠2

 , 𝑀𝑒𝑑𝑖𝑢𝑚), (𝐷𝑜𝐵𝑠2
 , 𝐻𝑖𝑔ℎ)]                                      (4) 

 

where " 𝐿𝑜𝑤 ", " 𝑀𝑒𝑑𝑖𝑢𝑚 ", " 𝐻𝑖𝑔ℎ " are assessed with their corresponding DoB. 

 

Suppose the normalised relative weights of subsets 1 and 2 in the safety evaluation process 

are given as 𝑤1 and 𝑤2 where (𝑤1  + 𝑤2  = 1) . Alyami et al., (2014) considered the 

equally important weight assigned to all HEs identified at the same level in the hierarchy 

(i.e. Figure 1). 

 

Suppose 𝑀1
𝑚and 𝑀2

𝑚(𝑚 = 1,2 … 3) are individual degrees to which the subsets "𝑆1" and 

"𝑆2"support the hypothesis that the safety evaluation is confirmed to the three safety 

expressions. Then, 𝑀1
𝑚 and 𝑀2

𝑚 can be obtained as follows (Riahi et al., 2012): 

 

𝑀1
𝑚 = 𝑤1𝛽1

𝑚                                                                                                                        (5) 

 

𝑀2
𝑚 = 𝑤2𝛽2

𝑚                                                                                                                        (6) 

 

where (𝑚 = 1,2, … 3). Therefore,  

 

𝑀1
1 = 𝑤1𝛽1

1                                   𝑀2
1 = 𝑤2𝛽2

1                                                                  (7) 

 

𝑀1
2 = 𝑤1𝛽1

2                                  𝑀2
2 = 𝑤2𝛽2 

2                                                                   (8) 

 

𝑀1
3 = 𝑤1𝛽1

3                              𝑀2
3   = 𝑤2𝛽2

3                                                                            (9) 

 

Suppose 𝐻1 and 𝐻2 are the individual remaining belief values unassigned for 

𝑀1
𝑚 and 𝑀2

𝑚(𝑚 = 1,2, … 3). Then, 𝐻1 and 𝐻2can be expressed as follows (Yang and Xu, 

2002; Riahi et al., 2012) 
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𝐻1 = �̅�1 + �̃�1                                                                                                                       (10) 

𝐻2 = �̅�2 + �̃�2                                                                                                                      (11) 

 

where 𝐻𝑛
̅̅ ̅̅ (𝑛 = 1 𝑜𝑟 2)representing the degree to which the other subset can play a role in 

the assessment and 𝐻�̃�(𝑛 = 1 𝑜𝑟 2) caused by the possible incompleteness in the subsets 

"𝑆1"and "𝑆2", can be described as follows respectively (Riahi et al., 2012).  

 

�̅�1 = 1 −  𝑤1 = 𝑤2                                                                                                               (12) 

�̅�2 = 1 −  𝑤2 = 𝑤1                                                                                                               (13) 

 

�̃�1 = 𝑤1(1 − ∑ 𝛽1
𝑚3

𝑚=1 ) = 𝑤1[1 − (𝛽1
1 + 𝛽1

2 + 𝛽1
3)]                                            (14) 

 

�̃�2 = 𝑤2(1 − ∑ 𝛽2
𝑚3

𝑚=1 ) = 𝑤2[1 − (𝛽2
1 + 𝛽2

2 + 𝛽2
3)]                                                  (15) 

 

Suppose 𝛽𝑚′
(𝑚 = 1,2 … 3)  represents the non-normalised degree to which the safety 

evaluation is confirmed to the three safety expressions as a result of the synthesis of the 

judgments produced by subsets 1 and 2. Suppose 𝐻𝑈′  represents the non-normalised 

remaining belief unassigned after the commitment of belief to the three safety expressions 

because of the synthesis of the judgments produced by subsets 1 and 2.  

 

 

The ER algorithm can be stated as follows (Yang and Xu, 2002; Riahi et al., 2012): 

 

𝛽𝑚′
= 𝐾(𝑀1

𝑚𝑀2
𝑚 + 𝑀1

𝑚𝐻2 + 𝐻1𝑀2
𝑚)                                                                             (16) 

 

�̅�𝑈′ = 𝐾(�̅�1�̅�2)                                                                                                                    (17) 

 

�̃�𝑈′ = 𝐾(�̃�1�̃�2 + �̃�1�̅�2 + �̅�1�̃�2)                                                                                    (18) 

 

𝐾 = [1 − ∑ ∑ 𝑀1
𝑇3

𝑅=1
𝑅≠𝑇

3
𝑇=1 𝑀2

𝑅]
−1

                                                                                      (19) 

 

After the above aggregation, the combined degrees of belief are generated by 

assigning  �̅�𝑈′  back to the three safety expressions using the following normalization 

process (Riahi et al., 2012): 
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𝛽𝑚 = 𝛽𝑚′
1 −  �̅�𝑈′⁄ (𝑚 = 1,2, 3)                                                                                   (20) 

 

𝐻𝑈 = �̃�𝑈′ 1 − �̅�𝑈′⁄                                                                                                            (21) 

 

where 𝐻𝑈 is the unassigned DoB representing the extent of incompleteness in the overall 

assessment. 

 

The above gives the process of combining two subsets representing the REs of two HEs. 

If three HEs are required to be combined, the result obtained from the combination of any 

two sets can be further synthesized with the third one using the above algorithm. In a 

similar way, multiple HEs in the bottom level of a hierarchy (i.e. components or 

subsystems) can also be combined (Riahi et al., 2012). 

 

The synthesised result will be presented in a form of linguistic terms with their associated 

DoBs for all HEs levels in the CTOS from the bottom level to the highest-level criterion. 

Therefore, in order to evaluate the CTOS safety improvement, the synthesised result is 

converted into a single crisp value for CTOS final risk score (i.e. highest-level criterion) 

and can be further used with the sensitivity analysis to verify the safety importance of each 

HE from a systematic perspective. The utility value can be calculated by a utility-based 

technique as follows:  

 

∑
3

1

)(



h

RhURhpRI                                                                                                   (22) 

where, p(Rh) is the DoB of each grade of “Low”, “Medium” and “High” in RE. Rh= 

(1,2,3) and UR1 = 1, UR2 = 50 and UR3 = 100 

 

III. Sensitivity analysis to quantify the impact of HEs on the system 

Sensitivity analysis is required to evaluate the HE’s risk impact by obtaining the risk 

magnitude of each HE on the entire system through sensitivity tests. The sensitivity tests 

carried out in this study have been developed to quantify the risk impact of each HE on the 

system.  

 

The new sensitivity analysis approach is required to evaluate the risk impact of each HE 

on the system safety and rank them accordingly by taking into account their specific risk 

estimate (locally) and their RI to a port’s safety system (globally) simultaneously. Given 
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the diversity of the original DoB assignment in each HE, a new sensitivity analysis 

approach containing three steps is proposed. First, it is to increase the DoBs associated 

with the linguistic term “High” to 100% and obtain the High Risk Inference (HRI). 

Secondly, it is to increase the DoBs associated with the linguistic term “Low” to 100% to 

obtain the Low Risk Inference (LRI). Lastly, the average between HRI and HLI (i.e. risk 

inference values) will show the True Risk Influence (TRI) of each HE on the entire system 

and can be calculated as follows:  

 

𝑇𝑅𝐼 =
HRI + LRI

2
                                                                                            (23) 

 

In addition, the proposed methodology is validated through sensitivity tests. The sensitivity 

analysis refers to analysing how sensitive the result would be (i.e. outputs) to minor change 

in the inputs. The change may be variation of the parameters of the model or may be 

changes of the DoB assigned to the linguistic variables used to describe the parameters 

(Yang, et al., 2009). All HEs’ REs assigned to the CTOS in this study were obtained from 

applying FRBN in Alyami et al., (2014). Different DoBs are assigned, as the input 

variation, to the linguistic variables used to describe the four risk parameters of the HEs, 

namely Probability of HE/ Likelihood (L), Consequences Probability (D), Consequences/ 

Severity (C) and Impact of a HE to the resilience of port operational systems (I). If the 

methodology is sound and its inference reasoning is logical, then the sensitivity analysis 

must at least pursue the following two axioms. 

 

Axiom 1: The variation of increasing or decreasing the DoB associated with the linguistic 

variable “High” of a risk parameter of a selected HE will certainly result in the effect of 

relative increment/decrement on the RI of the model output (i.e. Goal). 

 

Axiom 2: The total influence magnitudes of the variations associated with x (evidence) 

will be always greater than the one from the set of x-y (y ∈ x) (sub-evidence) given a 

variation follows the one defined in Axiom 1. 

 

The reason behind the selection of the above axioms is to use the sensitivity tests to 

partially validate the reliability of the developed approach. It is noteworthy that it is 

possible to define other axioms for further research. 

 

 The synthesis of the Res of all HEs using ER can be achieved through the Intelligent 

Decision System software (IDS) package (Yang and Xu, 2012). The IDS selection is 
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attributable to its accessibility to other industries and academia. In addition, it has not only 

a user-friendly interface but also additional functions on knowledge management, report 

generation and data presentation.  

4 A real case study on CTOS  

A large regional hub container port in the Middle East was selected to conduct a real case 

study to demonstrate the feasibility of the proposed ER method. The first part is to locally 

evaluate the RE of each HE and prioritise it accordingly by applying the FRBN introduced 

in Alyami et al., (2014). As a result, the outputs for the 24 HEs are obtained in terms of 

REs as shown in Table 1.  

 

Table 1. Risk ranking index values of hazardous events (HEs) (Alyami et al., 2014) 

HE # HEs 

Risk Estimation  

Low Medium High 

1.  
Collision between a Terminal Tractor (TT) 

and a trailer 

8.5 25 66.5 

2.  
Collision between a Rubber-Tired Gantry 

crane (RTG) and a trailer. 

17.75 25.25 57 

3.  Collision between a TT and an RTG. 19.56 18.12 62.32 

4.  
Collision between the quay crane and the 

ship. 

13.25 13.25 73.5 

5.  Collision between two quay cranes. 18.75 8.5 72.75 

6.  Crane break down due to human error. 23.5 5.5 71 

7.  
Moving the crane without raising the 

boom of the gantry crane. 

24.75 9.75 65.5 

8.  
Leakage/ emission of dangerous goods 

from a container. 

41 11.25 47.75 

9.  
Ignition sources from equipment near 

dangerous goods premises. 

35 27.5 37.5 

10.  
Person falls from height due to being too 

near to unprotected edges. 

25.5 22.75 51.75 

11.  

Person falls from height due to non-

provision / maintenance of safe access 

between adjacent cargo bays. 

19 21 60 

12.  Working on surfaces that are not even. 23 18.5 58.5 
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13.  
Person slips, trips and falls whilst working 

on surfaces with presence of leaking cargo. 

22 11.25 66.75 

14.  
Person slips, trips and falls whilst working 

on surfaces with presence of water/ ice. 

25 15.25 59.75 

15.  
Person slips, and falls whilst working on 

surfaces with presence of oils. 

23.25 8.5 68.25 

16.  Person struck by falling object/s. 28.5 22.5 49 

17.  
Person handling dangerous goods in 

container that has not been declared. 

43.5 12.5 44 

18.  Person struck by quay crane. 44.5 7.75 47.75 

19.  Person struck by a TT. 45.24 16 38.75 

20.  Person struck by a RTG. 43.5 15.75 40.75 

21.  Person struck by trucks. 38.5 22 39.5 

22.  
Person crushed against a fixed object and 

ship / terminal structure. 

41 16.25 42.75 

23.  
Person crushed against a fixed object and 

stacked. 

37.75 23.25 39 

24.  Person crushed by closing the twin lift 

container spreaders. 

53 16.25 30.75 

 

The HEs associated with container terminal operations may vary, depending on the unique 

safety characteristics of individual container terminals. For the investigated container 

terminal, the FRBN deliveries the results for each HE RE locally as shown in Table 1. 

Consequently, using the utility calculation in Alyami et al., (2014), HE4 is the most 

significant event followed by HE5, HE6, HE15, and HE1, respectively. 

 

Once the REs for individual HEs have been obtained, the second part is commencing by 

synthesising the REs of all HEs in the hierarchical structure to evaluate their RI to a port’s 

safety system globally. It can be achieved by using the ER algorithm (i.e. Eqs. (1-21)) and 

the associated software package IDS. As a result, the RI for the investigated CTOS is 

described as 60.37 High, 10.56 Medium, 28.89 Low, as shown in Figure 2, and the utility 

value is calculated using Eq. (22) as 0.6569.  

 

Next step is to quantify the most significant HEs that influence the risk to a port’s safety 

system globally by verifying the safety importance of each HE from a systematic 

perspective using the sensitivity analysis methods in Section 3.  
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Figure 2. Risk Index of container terminal operation’s system 

(IDS) software 

 

In this step the new sensitivity analysis approach through changing the DoBs of the risk 

parameters of each HE allows us to measure the TRI of each HE risk inference on the 

container operational system and rank them accordingly. For instance, to evaluate the TRI 

of HE1, the DoB belonging to the linguistic variable “High” is increased to 100% which 

leads to the increase of the utility value of the goal from 0.6569 to 0.662 (i.e. HRI of 

0.0051= 0.662-0.6569). Then, the DoB belonging to the linguistic variable “Low” is 

increased to 100% which results in the goal utility value decreases from 0.6569 to 0.636 

(i.e. LRI of 0.0209). Next, Eq. (23) is used to calculate the TRI value of HE1 as 

0.013 (=
 0.0051+ 0.0209

2
) . Similarly, the TRI values for the 24 HEs are obtained and 

presented in Table 2. 

 

Table 2: TRI for HEs on the CTOS 

 

HE# 

                    Utility Value 

 

HEs 

100%  

HIGH 

100%  

LOW 

High 

Risk 

Inference 

Low 

 Risk 

Inference 

TRI  

1  Collision between a Terminal 

Tractor (TT) and a trailer 
0.662 0.636 0.0051 0.0209 0.013 

2  Collision between a rubber-

tired gantry crane (RTG) and a 

trailer. 

0.6641 0.6389 0.0072 0.018 0.0126 

3  Collision between a Terminal 

Tractor (TT) and a rubber-tired 

gantry crane (RTG). 

0.6636 0.6383 0.0067 0.0186 0.01265 

4  Collision between the quay 

crane and the ship. 
0.6617 0.6356 0.0048 0.0213 0.01305 

5  Collision between two quay 

cranes. 
0.6623 0.6366 0.0054 0.0203 0.01285 

6  Crane break down due to 

human error. 
0.6857 0.5599 0.0288 0.097 0.0629 
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7  Moving the crane without 

raising the boom (lifting arm) 

of the gantry crane. 

0.689 0.5647 0.0321 0.0922 0.06215 

8  Leakage/ emission of 

dangerous goods from a 

container. 

0.7381 0.5492 0.0812 0.1077 0.09445 

9  Ignition sources from 

equipment near dangerous 

goods premises. 

0.7427 0.5535 0.0858 0.1034 0.0946 

10  Person falls from height due to 

being too near to unprotected 

edges. 

0.6759 0.6187 0.019 0.0382 0.0286 

11  Person falls from height due to 

non-provision / maintenance of 

safe access between adjacent 

cargo bays. 

0.6728 0.6142 0.0159 0.0427 0.0293 

12  Working on surfaces that are 

not even. 
0.6729 0.6154 0.016 0.0415 0.02875 

13  Person slips, trips and falls 

whilst working on surfaces 

with presence of leaking cargo. 

0.662 0.6409 0.0051 0.016 0.01055 

14  Person slips, trips and falls 

whilst working on surfaces 

with presence of water / ice. 

0.6629 0.6422 0.006 0.0147 0.01035 

15  Person slips, trips and falls 

whilst working on surfaces 

with presence of oils. 

0.662 0.6409 0.0051 0.016 0.01055 

16  Person struck by falling 

object/s. 
0.695 0.5948 0.0381 0.0621 0.0501 

17  Person handling dangerous 

goods in containers that have 

not been declared. 

0.7032 0.6057 0.0463 0.0512 0.04875 

18  Person struck by quay crane. 0.6858 0.6257 0.0289 0.0312 0.03005 

19  Person struck by TT.  0.6888 0.6288 0.0319 0.0281 0.03 

20  Person struck by RTG. 0.6877 0.6277 0.0308 0.0292 0.03 

21  Person struck by trucks. 0.6868 0.6266 0.0299 0.0303 0.0301 

22  Person crushed against a fixed 

object and ship/terminal 

structure. 

0.6959 0.6168 0.039 0.0401 0.03955 

23  Person crushed against a fixed 

object and stacked containers. 
0.6963 0.6172 0.0394 0.0397 0.03955 

24  Peron crushed by closing the 

twin lift container spreaders. 
0.7045 0.6261 0.0476 0.0308 0.0392 

 

 

Accordingly, based on the results obtained in Table 2 the HEs can be prioritized in terms 

of their risk impact on CTOS as shown in Figure 3 and the most important events are 

identified as follows. 
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HE.9 Ignition sources from equipment near dangerous goods premises. 

HE.8 Leakage/emission of dangerous goods from a container. 

HE.6 Crane break down due to human error. 

HE.7 Moving the crane without raising the Boom (lifting arm) of the gantry crane. 

HE.16 Person struck by falling object/s. 

HE.17 Person handling dangerous goods in containers that have not been declared. 

 

 

 

 

 
Figure 3. The most important HEs for CTOS 
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In Figure 3, the risk magnitude of each HE based on their associated TRIs (i.e. the average 

of HRIs and LRIs).  

 

In addition, another type of sensitivity tests in the reminder of this section has been carried 

out to validate the developed approach by investigating the RI magnitudes of the minor 

variation given to the DoB of the four risk parameters of HEs. The logicality and soundness 

of the results delivered in the proposed model are verified by the two axioms introduced 

in section 3.  

The HE of the most importance in terms of risk impact on CTOS (i.e. “HE.9 Ignition 

sources from equipment near dangerous goods premises”) is selected for the tests. The 

DoB associated with the linguistic term “High” and “Low” of the risk parameter “L” is 

increased and decreased by 10%, respectively. Its impact is that the safety level of the 

CTOS increases from 0.6569 to 0.6619. It is in a harmony with Axiom 1.  

 

If the same DoB change (i.e. 10% increment in “High” and 10% decrement in “Low”) is 

applied to the other risk parameters such as “D” and “C”, the combined impact of such 

changes on “D” and “L” is reflected by the observation that the CTOS’s RI increases from 

0.6619 to 0.665. The sensitivity tests continue in the same manner. When the risk 

parameter “C” is combined with “L” and “D”, its impact to the CTOS’ RI further increases 

from 0.665 to 0.6699. When “I” is combined with “L”, “D” and “C”, the RI further 

increases from 0.6699 to 0.6747 as described in Table. 4. The similar sensitivity analysis 

was carried out to test “HE.8”, and “HE.6”, The obtained results are shown in Table. 4. 

 

Table. 3: The DoB variation of the HEs 
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HE 

Prior Probability 

 +10% “High”  

Probability of 

HE/ Likelihood 

L 

Consequences 

Probability 

D 

Consequences/ 

Severity 

C 

Impact of a HE to 

the resilience of port 

operational systems 

I 

H M L H M L H M L H M L 

HE9. Ignition 

sources from 

equipment near 

dangerous goods 

premises 

Original 0.24 0.28 0.48 0.74 0.24 0.02 0.20 0.27 0.53 0.32 0.31 0.37 

L 0.34 0.28 0.38 0.74 0.24 0.02 0.20 0.27 0.53 0.32 0.31 0.37 

L & D 0.34 0.28 0.38 0.84 0.16 0 0.20 0.27 0.53 0.32 0.31 0.37 

L & D & C 0.34 0.28 0.38 0.84 0.16 0 0.30 0.13 0.43 0.32 0.31 0.37 

L & D & C & I 0.34 0.28 0.38 0.84 0.16 0 0.30 0.13 0.43 0.42 0.31 0.27 

HE8. Leakage/ 

emission of 

dangerous goods 

from a container 

Original 0.14 0.24 0.62 0.91 0.06 0.03 0.02 0.04 0.094 0.84 0.11 0.05 

L 0.24 0.24 0.52 0.91 0.06 0.03 0.02 0.04 0.094 0.84 0.11 0.05 

L & D 0.24 0.24 0.52 1 0 0 0.02 0.04 0.094 0.84 0.11 0.05 

L & D & C 0.24 0.24 0.52 1 0 0 0.12 0.04 0.84 0.84 0.11 0.05 

L & D & C & I 0.24 0.24 0.52 1 0 0 0.12 0.04 0.84 0.94 0.11 0.05 

HE6. A Crane 

breaks down due 

to human error. 

Original 0.82 0.15 0.03 0.05 0.04 0.91 0.82 0.14 0.04 0.93 0.06 0.01 

L 0.92 0.08 0 0.05 0.04 0.91 0.82 0.14 0.04 0.93 0.06 0.01 

L & D 0.92 0.08 0 0.15 0.04 0.81 0.82 0.14 0.04 0.93 0.06 0.01 

L & D & C 0.92 0.08 0 0.15 0.04 0.81 0.92 0.08 0 0.93 0.06 0.01 

L & D & C & I 0.92 0.08 0 0.15 0.04 0.81 0.92 0.08 0 1 0 0 

 

 

The combined variation given to the DoB associated with the linguistic term “High” (i.e. 

10% increment) for the risk parameters of “HE.9”, “HE.8”, and “HE.6” has resulted in 125 

RI values for CTOS as shown in Table. 4.  

 

Table. 4: RI for CTOS and the variation on the HE risk parameters prior probabilities 

HE # HE6 8HE  9HE  ICTOS RI 

1.  0 0 0 0.6569 

2.  0 0 L 0.6619 

3.  0 0 LD 0.665 

4.  0 0 LDC 0.6699 

5.  0 0 LDCI 0.6747 

6.  0 L 0 0.6616 

7.  0 L L 0.6665 

8.  0 L LD 0.6696 

9.  0 L LDC 0.6744 

10.  0 L LDCI 0.6792 

11.  0 LD 0 0.6645 

12.  0 LD L 0.6694 

13.  0 LD LD 0.6725 

14.  0 LD LDC 0.6773 

15.  0 LD LDCI 0.682 
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HE # HE6 8HE  9HE  ICTOS RI 

16.  0 LDC 0 0.6692 

17.  0 LDC L 0.6740 

18.  0 LDC LD 0.677 

19.  0 LDC LDC 0.6818 

20.  0 LDC LDCI 0.6864 

21.  0 LDCI 0 0.6727 

22.  0 LDCI L 0.6775 

23.  0 LDCI LD 0.6805 

24.  0 LDCI LDC 0.6852 

25.  0 LDCI LDCI 0.6898 

26.  L 0 0 0.6588 

27.  L 0 L 0.6638 

28.  L 0 LD 0.6669 

29.  L 0 LDC 0.6717 

30.  L 0 LDCI 0.6765 

31.  L L 0 0.6635 

32.  L L L 0.6684 

33.  L L LD 0.6715 

34.  L L LDC 0.6763 

35.  L L LDCI 0.681 

36.  L LD 0 0.6664 

37.  L LD L 0.6713 

38.  L LD LD 0.6744 

39.  L LD LDC 0.6791 

40.  L LD LDCI 0.6838 

41.  L LDC 0 0.671 

42.  L LDC L 0.6758 

43.  L LDC LD 0.6789 

44.  L LDC LDC 0.6836 

45.  L LDC LDCI 0.6882 

46.  L LDCI 0 0.6745 

47.  L LDCI L 0.6793 

48.  L LDCI LD 0.6823 

49.  L LDCI LDC 0.687 

50.  L LDCI LDCI 0.6916 

51.  LD 0 0 0.6617 

52.  LD 0 L 0.6666 

53.  LD 0 LD 0.6697 

54.  LD 0 LDC 0.6745 

55.  LD 0 LDCI 0.6793 

56.  LD L 0 0.6663 

57.  LD L L 0.6712 

58.  LD L LD 0.6743 

59.  LD L LDC 0.679 

60.  LD L LDCI 0.6837 

61.  LD LD 0 0.6692 

62.  LD LD L 0.6714 

63.  LD LD LD 0.6771 

64.  LD LD LDC 0.6819 

65.  LD LD LDCI 0.6865 

66.  LD LDC 0 0.6738 
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HE # HE6 8HE  9HE  ICTOS RI 

67.  LD LDC L 0.6786 

68.  LD LDC LD 0.6816 

69.  LD LDC LDC 0.6863 

70.  LD LDC LDCI 0.6909 

71.  LD LDCI 0 0.6773 

72.  LD LDCI L 0.6821 

73.  LD LDCI LD 0.6851 

74.  LD LDCI LDC 0.6897 

75.  LD LDCI LDCI 0.6943 

76.  LDC 0 0 0.6625 

77.  LDC 0 L 0.6674 

78.  LDC 0 LD 0.6705 

79.  LDC 0 LDC 0.6753 

80.  LDC 0 LDCI 0.6801 

81.  LDC L 0 0.6671 

82.  LDC L L 0.672 

83.  LDC L LD 0.6751 

84.  LDC L LDC 0.6798 

85.  LDC L LDCI 0.6845 

86.  LDC LD 0 0.67 

87.  LDC LD L 0.6749 

88.  LDC LD LD 0.6779 

89.  LDC LD LDC 0.6827 

90.  LDC LD LDCI 0.6873 

91.  LDC LDC 0 0.6746 

92.  LDC LDC L 0.6794 

93.  LDC LDC LD 0.6824 

94.  LDC LDC LDC 0.6871 

95.  LDC LDC LDCI 0.6917 

96.  LDC LDCI 0 0.6781 

97.  LDC LDCI L 0.6829 

98.  LDC LDCI LD 0.6858 

99.  LDC LDCI LDC 0.6905 

100.  LDC LDCI LDCI 0.695 

101.  LDCI 0 0 0.6637 

102.  LDCI 0 L 0.6687 

103.  LDCI 0 LD 0.6717 

104.  LDCI 0 LDC 0.6765 

105.  LDCI 0 LDCI 0.6813 

106.  LDCI L 0 0.6684 

107.  LDCI L L 0.6733 

108.  LDCI L LD 0.6763 

109.  LDCI L LDC 0.6811 

110.  LDCI L LDCI 0.6858 

111.  LDCI LD 0 0.6713 

112.  LDCI LD L 0.6761 

113.  LDCI LD LD 0.6792 

114.  LDCI LD LDC 0.6839 

115.  LDCI LD LDCI 0.6886 

116.  LDCI LDC 0 0.6759 

117.  LDCI LDC L 0.6806 
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HE # HE6 8HE  9HE  ICTOS RI 

118.  LDCI LDC LD 0.6836 

119.  LDCI LDC LDC 0.6883 

120.  LDCI LDC LDCI 0.6929 

121.  LDCI LDCI 0 0.6793 

122.  LDCI LDCI L 0.6814 

123.  LDCI LDCI LD 0.6871 

124.  LDCI LDCI LDC 0.6917 

125.  LDCI LDCI LDCI 0.6962 
 

 

The first row in Table 4 shows the neutral RI for CTOS with the rest of the table showing 

the updated RI by given variation to the DoB associated with linguistic variable “High” 

for “HE.9”, “HE.8”, and “HE.6” risk parameters locally and globally. Comparing any 

updated RI with the neutral RI it can be concluded that the model is validated to be in line 

with Axiom 1. 

 

According to Axiom 2, if the model reflects the logical reasoning then the RI for CTOS 

associated with x (evidence) should be always greater than the one from x-y (y ∈ x) (sub-

evidence). The neutral RI for CTOS is chosen as the sub-evidence to investigate the 

accuracy of the model. All other RIs that affected by the variation (i.e. increment) given 

to the DoB associated with linguistic variable “High” for “HE.9”, “HE.8”, and “HE.6” can 

be identified as the evidence. Comparing the evidence and sub-evidence (i.e. the values in 

the first five rows in Table 4 are gradually increasing), it can be concluded that the model 

is validated to be in line with Axiom 2. 

 

5 Conclusion 

System safety analysis often requires the use of domain experts’ knowledge when risk 

records are incomplete. The FRBN rationalises the DoB distribution of FRB by employing 

the same set of linguistic grades in both IF and THEN parts and applying them to evaluate 

HEs of a container terminal. It simplifies the communication between risk input and output 

based on DoBs and facilitates its implementation in CTOS in practice. The FRBN is 

integrated with the ER approach that has the ability of providing a powerful tool for 

aggregation calculations to synthesise the identified HEs for CTOS risk ranking. The 

FRBN technique is used to assess each HE locally while the ER approach is employed to 

take into account the risk impact of each HE to the safety of the investigated port system 

when evaluating their TRI globally. As a result, the integration of FRBN and ER provides 

an effective tool to incorporate subjective judgements for characterizing a criticality 



24 

analysis on prioritising failures in FMEA under uncertainty as well as the functional 

nonlinear relationship between outputs and inputs in the hierarchical evaluation process. 

 

The HEs investigated in this study are examined through a new sensitivity analysis. The 

variations of TRI of the whole system due to the reallocation of DoB of any investigated 

HE to a level of 100% “High” (Max) and of 100% “Low” (Min) are averaged to calculate 

the aggregated effect of each HE to the safety performance of the whole system. The case 

study results confirm that the proposed method is capable of presenting sensitive and 

flexible risk results in real situations by simplifying the description of failure information, 

improving both the accuracy and visibility of FMEA, and providing a powerful risk 

evaluation tool for port safety management. Consequently, the ER technique determines 

the analysis of risk impact of each HE on the whole system. From a real case study on a 

large container terminal, the most significant HEs are evaluated as shown below. 

HE.9 Ignition sources from equipment near dangerous goods premises 

HE.8 Leakage/ emission of dangerous goods from a container 

HE.6 Crane break down due to human error 

HE.7 Moving the crane without raising the Boom (lifting arm) of the gantry crane 

HE.16 Person struck by falling object/s 

HE.17 Person handling dangerous goods in containers that have not been declared 

 

In addition, the proposed method highlights its potential in facilitating risk analysis of 

system design and operations in a wide context when being appropriately tailored to study 

other seaports.  However, seaports and maritime terminals (i.e. infrastructure) are facing 

risk challenges from various perspectives including economic, operational, technical and 

environmental ones. This study mainly focused on the operational aspects including 

technical and personal factors, leaving the other risk aspects such as managerial, policy 

implication, natural and political issues to be addressed in future work. Moreover, high 

quality representative computational modelling tools are required, not only to provide a 

user friendly solution in the risk evaluation process that helps to predict the risk magnitude, 

explain the real safety performance, and develop a continuous risk management strategy 

for complex systems, but also to simplify the complex risk inference processes involved 

in the two steps in the developed methods. Artificial Neural Networks (ANNs) seem to be 

a promising solution to addressing this research problem. Furthermore, a risk control 

option model can be developed to eliminate and/or mitigate the HEs in CTOS and to 

enhance the system operational efficiency. 
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