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Abstract: Failure mode and effects analysis (FMEA) is a proactive risk management approach. Risk
management under uncertainty with the FMEA method has attracted a lot of attention. The Dempster–
Shafer (D-S) evidence theory is a popular approximate reasoning theory for addressing uncertain
information and it can be adopted in FMEA for uncertain information processing because of its
flexibility and superiority in coping with uncertain and subjective assessments. The assessments
coming from FMEA experts may include highly conflicting evidence for information fusion in the
framework of D-S evidence theory. Therefore, in this paper, we propose an improved FMEA method
based on the Gaussian model and D-S evidence theory to handle the subjective assessments of FMEA
experts and apply it to deal with FMEA in the air system of an aero turbofan engine. First, we define
three kinds of generalized scaling by Gaussian distribution characteristics to deal with potential
highly conflicting evidence in the assessments. Then, we fuse expert assessments with the Dempster
combination rule. Finally, we obtain the risk priority number to rank the risk level of the FMEA
items. The experimental results show that the method is effective and reasonable in dealing with risk
analysis in the air system of an aero turbofan engine.

Keywords: Dempster–Shafer evidence theory; failure mode and effects analysis; Gaussian model;
risk management; aero turbofan engine

1. Introduction

Risk analysis and management under uncertainty is an important issue in many prac-
tical applications such as aircraft components [1,2], motors [3], and so on [4]. Failure mode
and effects analysis (FMEA) is an useful method to predict risks and make preventions
in advance. It obtains the risk priority number (RPN) value of each FMEA item and then
uses the RPN to rank and manage potentially uncertain risk items [5,6]. FMEA is widely
used in various fields to deal with risk prediction and management [7,8]. For example,
Zhang et al. [9] combined the FMEA method and fault tree analysis (FTA) to analyse
the ignition source fail-safe feature and the improved method was applied to an aircraft
fuel tank system with effective experimental results. Ahn et al. [10] used the fuzzy-based
FMEA model for a hybrid molten carbonate fuel cell and gas turbine system for marine
propulsion. Liu et al. [11] presented an improved FMEA method for a shipboard integrated
electric propulsion system, combining both the fuzzy logical method and DEMATEL theory.
In [12], a new integrated fuzzy smart FMEA framework, combining the fuzzy set theory,
analytical hierarchy process (AHP), and data envelopment analysis (DEA) was proposed
in a processing risk analysis of an aircraft landing systems, where these three algorithms
were used to handle uncertainty and enhance the reliability of the risk assessment. The
data-driven FMEA method was proposed for maintenance planning in the aviation in-
dustry [13]. Qin et al. [14] applied the FMEA method for risk evaluation of a steam valve
system by combining interval type-2 fuzzy sets with an evidential reasoning approach.
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Nicolin et al. [15] used the FMEA method for a military nose landing gear project to en-
hances the quality, reliability and safety of the project. FMEA has also been successfully
deployed to determine the risk that causes failures of the pneumatic systems of a computer
numerical control milling machine [16] and analyse the risk of the electronic circuit by
calculating the severity, probability and detection rating [17]. In this work, we apply an
improved FMEA method to the air system of an aero turbofan engine.

Many works have applied considerable methods to improve the FMEA theory in
different systems’ risk analysis and management for more effective risk analysis and
management [18,19]. Thus, many hybrid FMEA methods have been proposed that combine
the advantages of different theories and methods. Yazdi et al. [20] proposed a conventional
and fuzzy-based FMEA method sensitive to each input including language variables and
the weigh of specialists. The new method effectively addressed some flaws of the classical
FMEA model. Fan et al. [21] proposed an improved risk priority number model of FMEA by
using best–worst approaches based on D numbers. In [22], a new FMEA model integrating
linguistic Z-numbers and projection was proposed, which proved to be practical and flexible
when used in an aircraft landing system. Bhattacharjee et al. [23] improved the FMEA
model by using interval number-based logistic regression theory. Li et al. [24] proposed an
AHP-FMEA to analyse the failure reasons of floating offshore wind turbines including main
components, critical systems, failure modes, and so on. Gholizadeh et al. [25] proposed an
improved FMEA model to evaluate the risk level of a plane wing by combining the genetic
algorithm and fuzzy sets theory. The FMEA method is effective in analysing, identifying,
and addressing failure modes that may harm a system’s performance during the design and
production stages. By utilizing FMEA, we can enhance a system’s performance. However,
conventional FMEA has been criticized by some researchers as it possesses some drawbacks
that cannot be ignored [26]. FMEA is a human-made evaluation method which heavily
depends on experts’ subjective opinions and experience. Eliminating the subjective and
fuzziness of human-made evaluations is a significant challenge that needs to be addressed.
In this work, we choose the Dempster–Shafer evidence theory to handle this issue.

The Dempster–Shafer (D-S) evidence theory is a widely used uncertainty reasoning
theory [27–31]. It is an effective tool for knowledge reasoning and decision making under
uncertain environments, often used to deal with uncertain information in classification [32–34],
clustering [35–37], group decision making [38,39], and so on [40–43]. Nũnez et al. [44]
introduce a model for implication rules based on the Dempster–Shafer evidence theory and
conditional fusion equation, capable of capturing the uncertainty involved in the data and
in the knowledge models as well. Liu et al. [45] suggested a method of fusing models based
on evidence theory applied to degradation modelling and data analysis. The effectiveness
of this model has been demonstrated through various application scenarios.In [46], D-S
evidence theory was adopted to the reliability optimization design. Hui et al. [47] used a
support vector machines model based on evidence theory to resolve conflicting results from
each model, increasing the classification accuracy in multi-bearing fault diagnosis. In [48],
D-S evidence theory was adopted to a new approach to validate an engineering heat transfer
system model when faced with epistemic uncertainties. The results show the method has
advantages over traditional methods. Zhang et al. [49] suggested a new D-S evidence
theory-based weighted data fusion approach and tested it on randomly generated datasets
and vehicle classification datasets, showing the method to be effective. Lin et al. [50]
improved the Dempster combination rule based on the Euclidean distance and applied it
to a multi-sensor fault diagnosis modelling of a complex system. Yu et al. [51] proposed a
new data fusion method based on event-driven and D-S evidence theory, acquiring high-
accuracy fusion results with low control energy overhead. In [52], the authors developed a
water quality forecasting model that utilizes a recurrent neural network and an enhanced
evidence theory. Zhang et al. [53] proposed an epistemic uncertainty analysis approach
based on D-S evidence theory, transforming the standard uncertainty analysis problem
into a duo of probabilistic uncertainty analysis problems. An D-S evidence theory-based
empirical measure of uncertainty with exponential function form that can overcome some
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limitations of some previous methods was proposed in [54]. Mao et al. [55] applied an
uncertainty algorithm grounded in fuzzy theory, rough set theory, and D-S evidence theory
to handle a multi-index uncertainty issue in an electric power system.

D-S evidence theory was also combined with the FMEA method because of its ability to
deal with subjective and uncertain assessments. Certa et al. [56] adopted the D-S evidence
theory in the failure mode, effects and criticality analysis (FMECA), allowing experts to
express interval-valued judgments under an uncertain environment. Wang et al. [57]
suggested an advanced FMEA methodology based on Dempster–Shafer evidence theory by
integrating an evidential network to enhance the risk evaluation process. The D-S evidence
theory was used in the FMECA of a ballast water system onboard a tanker ship in [58].
Measures in the D-S evidence theory can also model the uncertainty in FMEA experts [59].
However, the scores for the same FMEA item from different FMEA experts may be different
and conflicting. In this case, it may lead to the deviation of fusion results from reality when
different bodies of evidence are combined with conflict scores from different FMEA experts.
Therefore, managing potentially conflicting assessments is a problem if we want to apply
D-S evidence theory to FMEA. In this paper, we choose the Dempster–Shafer evidence
theory to handle experts’ subjective evaluations. Furthermore, the Gaussian model is used
to pre-process potentially conflicting evaluations made by experts.

The rest of this paper is organized as follows. In Section 2, the preliminaries are
introduced. The proposed FMEA method based on the Gaussian model and D-S evidence
theory is introduced in Section 3. In Section 4, the application process and experimental
results are analysed and discussed. The conclusion is in Section 5.

2. Preliminaries
2.1. Dempster–Shafer Evidence Theory

Preliminaries of the Dempster–Shafer evidence theory [60,61] are briefly introduced in
this section.

Definition 1. Frame of discernment
Let us suppose Θ = {θl = 1, 2, 3 . . . L} is a complete mutually exclusive set composed of all

possible outcomes which can be recognized. Then the set is called the frame of discernment.

Definition 2. Basic belief assignment (BBA)
The basic belief assignment is a function from the power set of Θ to [0,1] which satisfies the

following conditions:
m(∅) = 0, ∑

A⊆Θ
m(A) = 1 (1)

Definition 3. Dempster combination rule
Let us suppose that there are two evidences E1 and E2 under the frame of discernment Θ and

m1 and m2 are their basic belief assignments. Then the Dempster combination rule is defined as the
following formula:

m(C) =


∑A

⋂
B=C,∀A,B⊆Θ

m1(A)m2(B)
1−K A

⋂
B 6= ∅

0 A
⋂

B = ∅
(2)

where K is defined as:

K = ∑
A

⋂
B=∅,∀A,B⊆Θ

m1(A)m2(B), K < 1. (3)

2.2. Risk Priority Number in FMEA

The risk priority number (RPN) is an important component of FMEA for risk eval-
uation and ranking [62,63]. It is the basis for the risk assessment of a system. The value



Entropy 2023, 25, 757 4 of 15

of the RPN is the product of three risk factors, namely, S (severity), O (occurrence), and
D (detection). S refers to the severity of the failure impact. O refers to the frequency of
occurrence of the cause of failure and D refers to the degree of detection of the cause of
failure. The risk level for S, O and D is generally divided into 10 from 1–10. The greater the
severity, the higher the level. Take the risk factor O as an example (Table 1) [64], the higher
the level, the more frequent the occurrence.

RPN = S×O× D (4)

Table 1. Ranking level of risk factor O.

Frequent the Occurrence Risk Level

Exceedingly high 10
Definitely high 9

Very high 8
High 7

Moderate high 6
Moderate low 5

Low 4
Very low 3

Definitely low 2
Exceeding ly low 1

2.3. Gaussian Distribution

Gaussian distribution [65], also known as normal distribution, is a continuous proba-
bility distribution density function that is bell shaped, low at both ends, and high in the
middle. Its formula is:

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 (5)

where µ refers to the expected value, σ refers to the standard deviation, and σ2 refers to
the variance.

3. Improved FMEA Method Based on the Gaussian Model and Evidence Theory

In this section, we introduce the improved FMEA method based on the Gaussian model
and evidence theory. First, we simply the frame of discernment to reduce computations.
Furthermore, we construct BBA on the basis of the Gaussian model, introduced below. Then
we fuse the BBA function by using the modified Dempster combination rule. Furthermore,
we finally obtain the modified mean value risk priority number (MVRPN) to rank the
FMEA items. We introduce the Gaussian model and modified Dempster combination rule.
After this, we describe the calculation steps in detail.

The detailed calculation steps of the improved FMEA are proposed in Figure 1 and
demonstrated as follows.

Step 1 The frame of discernment is defined for risk analysis in failure mode and effects
analysis (FMEA).
The frame of discernment is defined for uncertain information modelling with
the basic belief assignment as the first step of applying D-S evidence theory. For
FMEA, each risk factor includes 10 levels in the risk assessment and the risk levels
are defined in the frame of discernment.
Suppose that there are L experts (E1, E2. . . ,El) and N failure modes in FMEA.
Then, the frame of discernment is as follows: θn

i = {1, 2, 3, . . . , 9, 10}, i =
S, O, D, n = 1, 2, 3, 4, 5 . . . N. We simplified the frame of discernment as: θn

i =
(minX|X⊆θn

i
, minX|X⊆θn

i
+ 1, . . . , maxX|X⊆θn

i
), where minX|X⊆θn

i
and maxX|X⊆θn

i
refer to the minimum and maximum values of the assessments made by L experts
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on the ith risk factors (S, O, D) of the Nth failure modes, respectively. With the
simplified frame of discernment, we can avoid useless calculations.

Step 2 Basic belief assignment (BBA) functions of FMEA items are built based on the
Gaussian model.
It can be seen from the above that the risk level is usually divided into 10 levels
ranging from 1 to 10.
If an expert is greatly influenced by other experts (strong correlation), it means
that they are less confident in their own evaluation and willing to follow other
evaluations. The higher the degree of correlation, the higher the corresponding
degree of generalization. Therefore, by generalizing the evaluation opinions,
the opinions of experts cannot be completely opposed. Furthermore, the problem
of highly conflicting evidence fusion can be solved.
Combined with the characteristics of the Gaussian distribution, we can define three
kinds of correlation situations, namely, weak, moderate and strong correlation. The
corresponding values of the Gaussian distribution are shown in Table 2.
From Equation (2) we can obtain a mapping m from 2θ to [0, 1], which satisfies
the following condition:

m(∅) = 0, ∑
X⊆θn

i

m(X) = 1 (6)

Figure 1. A flow chart of the improved FMEA method based on the Gaussian model and evidence
theory.

Table 2. Gaussian distribution parameters in three correlations.

Related Situation Standard Deviation Variance Generalized Scaling

Strong Correlation σ = 1.2 σ2 = 1.44 7
Moderate Correlation σ = 1 σ2 = 1 5

Weak Correlation σ = 0.5 σ2 = 0.25 3
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Step 3 Fusion of BBAs from different FMEA experts based on the modified Dempster
combination rule.
The belief degree of each FMEA expert is different in a risk assessment, so the
weight of each expert’s assessment in data fusion should be modelled.
wij is a weight factor representing the relative weight on the importance of the
jth expert to the ith risk factor (0 ≤ wij ≤ 1). Based on the classical Dempster
combination rule, we multiply the calculated result by wij to make the fusion
result be more reasonable. The new BBA function is recorded as m̄n

ij(∗).

m̄n
ij(C) = wij ×mn

ij(C), C ⊆ θn
i , C 6= θn

i (7)

m̄n
ij(θ

n
i ) = 1− ∑

B⊆θn
i

wij ×mn
ij(B), B 6= θn

i (8)

where i = O, S, D, n = 1, 2, 3, . . . , N, N refers to the number of FMEA items, and
wij refers to the weight of the jth expert for the ith risk factor. Using these defini-
tions and modifications on the classical combination rule, we obtain a modified
Dempster combination rule for the fusion of BBAs from different FMEA experts:

mn
i,jl(C) = (mn

i,j
⊕

mn
i,l)(C) =

∑A
⋂

B=C,A.B⊆θn
i
(wij ×mn

i,j(A)× wil ×mn
i,l(B))

1− K
(9)

K = ∑
A

⋂
B=∅,A,B⊆θn

i

(wij ×mn
i,j(A)× wil ×mn

i,l(B)) (10)

With Equations (9) and (10), the assessments of two experts can be fused. For all
L FMEA experts (E1, E2. . . ,El), the fusion formula is as follows:

mn
i = mn

i1
⊕

mn
i2
⊕

mn
i3
⊕

. . .
⊕

mn
iL. (11)

In this paper, we default to using equal weights, that is: wij = 1.
Step 4 The mean value risk priority number (MVRPN) is calculated to rank all the

FMEA items.
After information fusion of FMEA expert assessments, we calculate the RPN.
However, the evaluation of each risk factor is represented by a belief function, so
we need the mean value of the RPN (MVRPN) to compare the overall risk of each
failure mode.

Assume that the RPN level corresponding to the ith failure mode is RPN1
i , RPN2

i ,
. . . , RPNm

i with respect to the belief degrees of different FMEA experts (P(RPN1
i ),

. . . , P(RPNm
i )) defined as:

P(RPN1
i ) = mn

i,jl (12)

where i = S, O, D, m = 1, 2, 3 . . . N, RPNm
i ⊆ θn

i and the mn
i,jl is defined in

Equation (9).
Then,

MVRPNi = ∑ RPNm
i × P(RPNm

i ). (13)

Therefore, the ultimate RPN according to Equation (4) can be obtained:

RPN = MVRPNS ×MVRPNO ×MVRPND. (14)

Step 5 The FMEA items are ranked based on the MVRPN for risk analysis and prevention
action in engineering.
In practical engineering, such as the air system of an aero turbofan engine, after
ranking results of all the FMEA items, the limited resources should be used to
take actions to prevent the risk of FMEA items with higher MVRPN values. In
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this way, the risk level can be decreased to an acceptable level and quality can be
guaranteed.

This is the FMEA analysis based on the Gaussian model and evidence theory. In the
next section, we apply the proposed method to the FMEA analysis in the gas path of an
aviation turbofan engine.

4. Application in the Air System of an Aero Turbofan Engine

In this section, we apply the proposed method to the FMEA analysis of the gas path in
the air system of an aviation turbofan engine. The experimental results are compared and
discussed under different scenarios.

4.1. Background of the Aero Turbofan Engine

The experiment is an application of the proposed FMEA method in the air system of an
aero turbofan engine [66,67]. The aero-engine studied in this work is a dual-rotor separate
exhaust civil turbofan aero-engine without an afterburner. The aero engine includes fans,
low- and high-pressure compressors, a combustion chamber, high- and low-pressure
turbine nozzles and some other components. The proposed FMEA method is applied to
the air system of an aero turbofan engine. The function–structure level of this engine air
system is shown in Figure 2. Then we collect the main failure modes of the components for
the air system, as shown in Table 3. After this, the FMEA experts assessments are used to
produce a criticality analysis table based on the RPN, shown in the Supplementary Material
Table S1: Assessment data for Table 3.

Table 3. The main failure modes of the components of the air system.

Component Failure Modes Component Failure Modes

Rotor blade

deformation, flexural,
corrosion, rustiness,

Scaling, creep, scuff, crack, fracture,
wear, slide rail block falling

Turbine nozzle
deformation, flexural,
corrosion, rustiness,

Scaling, creep, scuff, crack, fracture,
wear, slide rail block falling

Disc
crack, fracture, burst,

surge, Stall, Flutter, deformation,
buckling, over-speed

Diffuser blow-by, crush, Indentation

Axle abnormal sound, wear,
bending, fracture

Fuel nozzles Carbon Deposition, corrosion,
Ablation, blockage

Stator blades
deformation, flexural,
corrosion, rustiness,

Scaling, creep, scuff, crack
fracture, wear,

slide rail block falling

Flame tube
Ablation, crack, deformation
burn crack, burned-through,
over-temperature, smoking,

falling block

Nozzle crack, blockage,
exhaust temperature overrun
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Figure 2. Function–structure level of the engine air system.

4.2. Experiment

The full data used for the experimental analysis in this paper are adopted from [66,67]
and shown in the Supplementary Material Tables S1–S3. In [20], the authors took the
professional position, job experience, education level and age as evaluation criteria to
obtain the weight of each expert. While Mehri Mangeli et al. [68] adopted logarithmic
fuzzy preference programming to determine the weight of each FMEA risk factor. In order
to more directly observe the difference in results caused by the different expert’s mutual
correlation in the Gaussian model, we assume that the weights of the different experts are
the same. Taking the risk assessment of FMEA ID 101 as an example, we briefly describe
the whole calculation process with the proposed method.

After simplifying the framework of discernment for the FMEA analysis, we build the
new BBA function. Assume that three experts are weakly related and the weight of each
expert’s assessment is the same. Then, the new BBA functions are calculated as follows:

Expert 1 (E1): m1
O1(3) = 0.1, m1

O1(4) = 0.8, m1
O1(5) = 0.1

Expert 2 (E2): m1
O2(2) = 0.1, m1

O2(3) = 0.8, m1
O2(4) = 0.1

Expert 3 (E3): m1
O3(2) = 0.1, m1

O3(3) = 0.8, m1
O3(4) = 0.1

Then, we first fuse the BBA functions of Expert 1 (E1) and Expert 2 (E2) (The order has
no effect on the final result) :

K = ∑A
⋂

B=∅,A,B⊆θ1
O
(m̄1

O,1(A)× m̄1
O,2(B)) = 0.84

m1
O,12(2) = (m̄1

O,1(A)
⊕

m̄1
O,2(B)) =

∑A
⋂

B=2,A.B⊆θ1
O
(m1

O,1(A)×m1
O,2(B))

1−K = 0

m1
O,12(3) = (m̄1

O,1(A)
⊕

m̄1
O,2(B)) =

∑A
⋂

B=3,A.B⊆θ1
O
(m1

O,1(A)×m1
O,2(B))

1−K = 0.5

m1
O,12(4) = (m̄1

O,1(A)
⊕

m̄1
O,2(B)) =

∑A
⋂

B=4,A.B⊆θ1
O
(m1

O,1(A)×m1
O,2(B))

1−K = 0.5

m1
O,12(5) = (m̄1

O,1(A)
⊕

m̄1
O,2(B)) =

∑A
⋂

B=5,A.B⊆θ1
O
(m1

O,1(A)×m1
O,2(B))

1−K = 0
After this we fuse the BBA function of Expert 3 and the fusion result of the BBA

functions from Expert 1 and Expert 2.
K=∑A

⋂
B=∅,A,B⊆θ1

O
(m̄1

O,12(A)× m̄1
O,3(B)) = 0.55
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m1
O,123(2) = (m̄1

O,12(A)
⊕

m̄1
O,3(B)) =

∑A
⋂

B=2,A.B⊆θ1
O
(m1

O,12(A)×m1
O,3(B))

1−K = 0

m1
O,123(3) = (m̄1

O,12(A)
⊕

m̄1
O,3(B)) =

∑A
⋂

B=3,A.B⊆θ1
O
(m1

O,12(A)×m1
O,3(B))

1−K = 8
9

m1
O,123(4) = (m̄1

O,12(A)
⊕

m̄1
O,3(B)) =

∑A
⋂

B=4,A.B⊆θ1
O
(m1

O,12(A)×m1
O,3(B))

1−K = 1
9

Then, using Equations (12) and (13), we obtain:
RPN1

O = 2, P(RPN1
O) = 0

RPN2
O = 3, P(RPN2

O) =
8
9

RPN3
O = 4, P(RPN3

O) =
1
9

MVRPNO = ∑3
m=1 RPNm

O × P(RPNm
O ) = 0 + 3× 8

9 + 4× 1
9 = 3.111

Similarly, we calculate the value of other two risk factors: MVRPNS = 6.899,
MVRPND = 2.

According to Equation (14), we obtain the final fused RPN value: RPN=MVRPNS ×
MVRPNO × MVRPND = 42.86.

This is the calculation process of obtaining the RPN value under weak correlation
condition through FMEA analysis based on the Gaussian model and evidence theory.
Table 4 shows the result of part of the S, O and D fusion data calculated with the proposed
method (the full data is tabulated in the Supplementary Material Table S2: Full data of
Table 4). Among them, the probability level of failure occurrence with FMEA ID No.
803 adopts a moderate correlation for the fusion because the data cannot be fused under
weak correlation conditions. However, no significant influence is identified on the overall
experimental data analysis. After completing the FMEA analysis under weak correlation
conditions, FMEA analysis under medium correlation conditions was continued, as shown
in Table 5 (the full data is tabulated in the Supplementary Material Table S3: Full data of
Table 5).

Table 4. Calculated data and compared results under weak correlation conditions.

Key Comp.
Failure Mode O S D New

RPN Old RPN RPN
Difference

ID Description Fused
Value

Fused
Value

Fused
Value The Weights Are the Same

Rotor blade

101 deformation 3.111 6.889 2.000 42.863 44.7 −1.837
102 crack 2.000 8.111 4.000 64.888 66.7 −1.812
103 fracture 1.000 9.111 3.000 27.333 28.0 −0.667
104 corrosion 1.889 6.111 3.111 35.912 35.2 0.712
105 wear 1.111 3.111 2.000 6.913 9.3 −2.387
106 flexural 2.000 6.000 5.000 60.000 60.0 0.000
107 slide block fall 1.000 7.000 3.000 21.000 21.0 0.000
108 scuff 3.000 5.111 1.000 15.333 16.0 −0.667
109 rustiness 1.889 6.111 3.889 44.893 38.7 6.193
110 scaling 2.000 6.111 3.889 47.531 28.1 19.431
111 creep 3.111 6.889 2.111 45.242 51.9 −6.658

Disc

201 crack 1.889 8.111 3.889 59.586 50.9 8.686
202 fracture 1.000 9.000 3.000 27.000 27.0 0.000
203 burst 1.889 8.889 2.111 35.446 33.7 1.746
204 surge 2.889 8.111 1.111 26.034 29.6 −3.566
205 Stall 3.111 2.111 1.111 7.296 10.0 −2.704
206 flutter 2.889 6.889 1.111 22.111 23.7 −1.589
207 deformation 3.111 6.889 2.000 42.863 44.7 −1.837
208 buckling 1.111 6.000 5.111 34.070 46.0 −11.930
209 overspeed 3.111 2.889 1.111 9.985 13.0 −3.015

axle

301 abnormal sound 4.000 3.889 1.111 17.283 18.3 −1.017
302 wear 1.111 3.111 2.000 6.913 9.3 −2.387
303 bending 1.889 5.889 4.111 45.732 41.3 4.432
304 fracture 1.000 9.111 3.000 27.333 28.0 −0.667
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Table 5. Calculated data and compared results under moderate correlation conditions.

Key Comp.
Failure Mode O S D New

RPN Old RPN RPN
Difference

ID Description Fused
Value

Fused
Value

Fused
Value The Weights Are the Same

Rotor blade

101 deformation 3.336 6.664 2.000 44.462 44.7 −0.238
102 crack 2.000 8.336 4.000 66.688 66.7 −0.012
103 fracture 1.000 9.321 3.000 27.963 28.0 −0.037
104 corrosion 1.679 6.336 3.336 35.489 35.2 0.289
105 wear 1.400 3.336 2.000 9.341 9.3 0.041
106 flexural 2.000 6.000 5.000 60.000 60.0 0.000
107 slide block fall 1.000 7.000 3.000 21.000 21.0 0.000
108 scuff 3.000 5.336 1.000 16.008 16.0 0.008
109 rustiness 1.679 6.336 3.664 38.978 38.7 0.278
110 scaling 1.716 6.336 3.664 39.837 28.1 11.737
111 creep 3.336 6.664 2.336 51.932 51.9 0.032

Disc

201 crack 1.679 8.336 3.664 51.282 50.9 0.382
202 fracture 1.000 9.000 3.000 27.000 27.0 0.000
203 burst 1.679 8.664 2.336 33.981 33.7 0.281
204 surge 2.664 8.336 1.400 31.090 29.6 1.490
205 Stall 3.336 2.336 1.400 10.910 10.0 0.910
206 flutter 2.664 6.664 1.400 24.854 23.7 1.154
207 deformation 3.336 6.664 2.000 44.462 44.7 −0.238
208 buckling 1.400 6.000 5.336 44.822 46.0 −1.178
209 overspeed 3.336 2.664 1.400 12.442 13.0 −0.558

axle

301 abnormal sound 4.000 3.664 1.400 20.518 18.3 2.218
302 wear 1.400 3.336 2.000 9.341 9.3 0.041
303 bending 1.679 5.664 4.336 41.235 41.3 −0.065
304 fracture 1.000 9.321 3.000 27.963 28.0 −0.037

4.3. Result and Discussion

After calculating the RPN value under weak and moderate correlation conditions,
we compare the calculation results with the original data. The original data is obtained
by taking the arithmetic average of the RPN values of different experts. Under weak
correlation conditions, compared with the RPN value calculated by the average value
algorithm, 63.08% of the data difference is 0–5, 29.23% of the data difference is 5–10 and
7.69% of the data difference is above 10. It can be seen that there is a gap between the data
obtained under the weak correlation conditions and the data calculated by the average
value method. Under moderate correlation conditions, compared with the RPN value
calculated by the average value algorithm, 69.23% of the data difference is 0–1, 29.23% of
the data difference is 1–5 and 1.54% of the data difference is above 5. It can be seen that the
two parts of the data are basically consistent with each other.

From the perspective of ranking the failure modes, we can see from Figure 3 that
there is little gap between the rank under the weak correlation conditions and the original
data. The rank under moderate correlation conditions is consistent with the original data
rank. From the perspective of RPN values, Figures 4 and 5 show the comparison of the
calculated RPN values with the old RPN values under weak and moderate correlation,
respectively. There is a small difference between the new RPN values calculated under
the weak correlation conditions and the old RPN values, while the new RPN values
calculated under the medium correlation conditions are closely fitted with the old RPN
values. These results are consistent with each other in most cases, showing the availability
and effectiveness of the proposed method.
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Figure 3. Comparison of the ranking of failure modes.

Figure 4. Comparison of the RPN values under weak correlation conditions and the old RPN.
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Figure 5. Comparison of the RPN values under moderate correlation conditions and the old RPN.

There are different assessments from different FMEA experts and the risk level may
be conflicting for information fusion. The traditional method is to take the average expert
evaluation value as the final evaluation result. The proposed method does not take into
account whether the degree of influence between experts is large or small. We only choose
a neutral condition. We combine the characteristics of the Gaussian model to determine
weak, moderate or strong correlations in FMEA assessments. Under weak correlation
conditions, FMEA experts determine the risk assessment value at a certain value more
accurately with a small degree of influence among the experts themselves. Therefore, there
will be a differences between the RPN value calculated by the average value method and
the results calculated by the proposed method. However, the assessment data will be
more convincing because the correlation degree among the experts is considered. While
under moderate correlation conditions, the degree of correlation is well-situated. There is a
smaller gap between the proportion of expert assessment values and the proportion of their
peripheral values, explaining that the influence among experts under moderate correlation
conditions is higher than under weak correlation conditions. Under this condition, the RPN
values are similar to those calculated by the average value method. Above all, FMEA
is a subjective assessment method. We use the Gaussian method to model different risk
levels from different experts for the fusion of FMEA assessments, especially when there is
conflicting assessments on an FMEA item.

5. Conclusions

FMEA is a quantitative and qualitative method for risk assessment which is widely
used and the RPN is a useful measure of evaluating failure modes in a system. In this
paper, an improved FMEA method based on the Gaussian model in the evidence theory
framework was proposed for risk analysis of the air system of an aero turbofan engine.
Firstly, we simplify the frame of discernment for risk analysis to simplify the calculation
of RPN values. Then, based on the Gaussian model, we deal with the problem that
the Dempster combination rule cannot handle conflicting evidence of different scores
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from different experts. Meanwhile, the modified Dempster combination rule was used to
fuse FMEA expert assessments. Finally, the RPN values were calculated to rank FMEA
items. The Gaussian model effectively describes the degree of mutual influence between
experts when making risk assessments. The weak, moderate or strong correlation in the
Gaussian model refers to the low, moderate or high degree of mutual influence between
experts, respectively. The results obtained under different conditions of risk analysis have
different fitting degrees with the original data, consistent with previous research results.
The proposed method is flexible in dealing with RPN calculations under different expert
correlation conditions. The final experimental results show that the proposed method is
convincing for risk analysis in the air system of an aero turbofan engine.

The limitations and possible following work of this study are as follows. (1) The
weight of each risk factor is not taken into consideration. (2) The weight of each FMEA
expert is assumed to be equal. (3) Other risk factor apart from O, S and D may be needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
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