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Due to the complexity and dangerousness of drying process, the fault detection of temperature sensor is very difficult and dangerous
in actual working practice and the detection effectiveness is not satisfying. For this problem, in this paper, based on the idea of
information fusion and the requirements of D-S evidence method, a D-S evidence fusion structure with two layers was introduced
to detect the temperature sensor fault in drying process. The first layer was data layer to establish the basic belief assignment function
of evidence which could be realized by BP Neural Network. The second layer was decision layer to detect and locate the sensor fault
which could be realized by D-S evidence fusion method. According to the numerical simulation results, the working conditions of
sensors could be described effectively and accurately by this method, so that it could be used to detect and locate the sensor fault.

1. Introduction

Information fusion is a useful technique to integrate het-
erogeneous data from different information sources. By
increasing comprehensiveness while decreasing uncertainty
of information, information fusion can be used to improve
the quality of decision using the redundancy and com-
plementariness of different information sources. As one of
the most important methods in information fusion, the
Dempster-Shafer evidence theory (D-S theory) [1, 2], which is
an improvement of the Bayesian theory, has been widely used
in information systems [3-11]. A significant improvement of
the D-S approach over traditional probabilistic approach is
that it allows for the allocation of a probability mass to sets
or intervals and can handle both stochastic uncertainty and
subjective uncertainty. The D-S evidence theory is a flexible
and powerful mathematical tool for handling uncertain,
incomplete, and imprecise information for at least the fol-
lowing three reasons. Firstly, by representing the imprecision
and uncertainty of a body of knowledge via the notion
of evidence, belief can be committed to a singleton or a
compound set. Secondly, the evidence combination rule of

the D-S evidence theory can provide an interesting operator
to integrate multiple information acquired from different data
sources. Finally, the decision on optimal hypothesis choice
can be made in a rational and flexible manner.

In drying industry process, the supervision on working
conditions of sensors is very important and difficult, and
its role is to detect, locate, and isolate the fault sensor as
quickly and accurately as possible. But, due to the complexity
of sensor and the uncertainty of working environment,
the monitoring data is usually uncertain, incomplete, or
imprecise, which leads to the reduction of accuracy rate.
Therefore, in this paper, a two-layer information fusion
structure based on BP Neural Network and D-S evidence
fusion method was presented for the supervision on working
conditions of sensor in drying industry process. Firstly,
according to the monitoring data obtained from different
sensor sources, BP Neural Network was used to establish
the basic belief assignment function of evidence for every
single sensor source. Then, the D-S evidence combination
rule was used to fuse those evidences. Finally, according to
the fusion result, the working conditions of sensor could be
described effectively and accurately. In this fusion process,
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on the one hand, the BP Neural Network could provide the
ability of self-learning, self-adaptation, and fault tolerance; on
the other hand, the D-S evidence method could express and
handle the uncertain, incomplete, and imprecise information.
Therefore, this method could further improve the accuracy
and robustness of sensor monitoring system, which was
proved by the numerical simulation results.

2. Preliminaries

2.1. Dempster-Shafer Evidence Theory. The mathematical ba-
sis of evidence theory, which was introduced by Dempster [1]
and extended by Shafer [2], pays attention to the question of
belief in the proposition systems. “Belief” in a proposition is
not the same as the “chance” of the proposition being true.
When forming propositions, evidence can be considered as
a similar way, and the Dempster-Shafer (D-S) theory pays
attention to “evidence;” “weights of evidence;” and “belief
in evidence” Obviously, the belief structure in the evidence
theory conforms with the Bayesian Probability Model [2], and
thus the evidence theory can be viewed as a generalization
and improvement of the classic probability theory. Because
of its ability in dealing with uncertainty and imprecision
problems, the D-S theory can be widely used in many fields
[3-11]. Formally, the evidence theory concerns with the
following preliminary notations.

Framework of Discernment. Firstly, evidence theory supposes
a set of hypotheses 0 as the framework of discernment, which
can be defined as follows:

OZ{HI)HZ;--'yHN}; (1)

where the set 0 is composed of N exclusive and exhaustive
hypotheses. In this paper, it represents the temperature
sensors. Assume the power set P(0) is composed of the 2N
propositions of 0 as follows:

2 = {0, {H,},{H,},.... {Hy}, {H, UH,}, o)
{HiUHs},...,{H, UH,--- UHy}},

where @ denotes the empty set. Then, the subset containing
only one element is called singleton.

Mass Functions, Focal Elements, and Kernel Elements. When
the framework of discernment is determined, the mass
function m can be defined as a mapping of the power set P(6)
to a number between 0 and 1, which is shown as follows:

m:P(0) — [0,1], )
and it also satisfies the following conditions:
Z m(A) =1,
AcP(6) (4)
m(0) = 0.

The mass function m is also called the basic probability
assignment (BPA) function, and m(A) represents the propor-
tion of all relevant and available evidences that supports the
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claim that a particular element of 0 belongs to the set A but
not to a particular subset of A. Any subset A of P(0) satisfying
that m(A) > 0 is called a focal element,and C = | J,,,4) 49 A is
called a kernel element of mass function  in 0.

Belief and Plausibility Functions. The belief function Bel is
defined as

Bel(A) = ) m(B). 5)

BCA

The plausibility function Pl is defined as

PI(A)= ) m(B), (6)
BNA#0
PI(A) = 1 - Bel (A) P1(0) = 0. (7)

The belief function Bel(A) measures the total amount of
probability that must be distributed among the elements of
A. It reflects inevitability and signifies the total degree of
belief of A, which constitutes a lower limit function on the
probability of A. On the other hand, the plausibility function
PI(A) measures the maximal amount of probability that can
be distributed among the elements of A, which describes the
total belief degree related to A and constitutes an upper limit
function on the probability of A. The relationship between
Bel(A) and PI(A) is shown in Figurel, and the interval
[Bel(A), P1(A)]is named as belief interval.

Rule of Evidence Combination. Suppose m,; and m, are
two mass functions formed based on the information from
two different information sources in the same frame of
discernment 6 and that Dempster’s rule of combination (also
called orthogonal sum), noted by m = m, ®@m,, is the first one
within the framework of evidence theory which can combine
two BPA m, and m, to yield a new BPA:

Y.Bnc-aty (B) -m, (C)
1-k ’

k=) m (B)-m,(C),

BNC=0

m(A) =
(8)

where k represents a basic probability mass associated with
conflicts among the sources of evidence. Here, k can be
determined by summing the products of mass functions of all
pairwise sets without intersection and it is often interpreted
as a measure of conflict between the data sources. The larger
the value of k is, the more conflicting the sources are and the
less informative their combination is.

2.2. BP Neural Network Theory. The BP Neural Network
[12, 13] is one of the most important and popular techniques
in the field of Neural Network, and it is also a kind of
supervised learning neural networks, the principle behind
which involves using the steepest gradient descent method
to get any small approximation. A general model of the BP is
shown in Figure 2.

In Figure 2, there are three layers in BP Neural Network
(BPNN): input layer, hidden layer, and output layer. Two
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FIGURE 1: Schematic diagram of Bel(A) and PI(A).
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FIGURE 2: Structure of the BP Neural Network.

nodes of each pair of adjacent layers are directly connected, to
form a link. Each link has a weighted value representing the
correlation between two nodes. Assuming there are n input
neurons, then the weighted values can be updated using a
training process described by the following equations in two
steps.

(1) Hidden Layer Stage. The outputs of all neurons in the
hidden layer can be calculated as follows:

netj = ) V.X;

ii%i j=L2,...,m,

s

1]
o

©)
y;=fu(net)) j=12,...,m,

where v;; are the weights of neurons, net; is the activation
value of the jth node, y; is the output of the hidden layer,
and fy; is called as the activation function of a node, which is
usually a sigmoid function described as follows:

1

= funes) = e ey

(10)

(2) Output Layer Stage. The outputs of all neurons in the
output layer can be calculated as follows:

Output = fo <ijkyj> , (11)

j=0

where w;; are the weights value of output and f is the acti-
vation function, which is usually a line function. All weights
are initially assigned with random values and modified by the
delta rule according to the data of learning samples.

3. The Fault Detection Model Based on
D-S Evidence Theory

3.1. Detection Model of Sensor Fault. As discussed above,
the D-S evidence theory has a strong ability to deal with
uncertain, incomplete, and imprecise information. However,
there is no general method to calculate BPA in D-S evidence
theory. Therefore, in this paper, a structure of three layers is
proposed to detect, locate, and isolate the fault sensor, which
is shown in Figure 3.

The first layer is data layer, which is used to gather and
acquire data. Here, it is supposed that there are N sensors for
supervising the drying industry process.

The next two layers are very important, so they are
described in detail in the following parts.

3.2. Description of Data Layer. The second layer is data-
fusion layer, which is also called data preprocessing. In this
part, BP Neural Network is used to get BPA of evidence,
because it has many advantages such as robustness for
uncertain model, strong matching for nonlinear model, short
training period, high accuracy of values, and easily-adjusted
network. The data-fusion layer is a two-input and one-
output process. Two-input is the supervising data provided
by sensors i and j, and one-output is m; = ({OK;, OK}}),
abbreviated as m;; = (OK), which means “the sensors i and
j are working well” If the number of sensors is N, and the
output number of BP Neural Network is Ci,.

3.3. Description of Decision Layer. 'The third layer has actually
united different frameworks of discernment. The inputs
are the outputs of the first layer, and the prior knowl-
edge acquired from different sensors is used to calculate
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FIGURE 3: Detection model of sensor fault.

the evidence on the different frameworks of discernment.
However, according to the requirements of evidence the-
ory, the combination rule is true only under the unified
frameworks of discernment. Therefore, in the second layer,
the different frameworks of discernment must be united.
As well known, it is possible to combine the two evidences
within the different frameworks of discernment 6 and ¢',
because they are compatible. In order to combine and
merge these evidences, the relationships between 6 and 6’
must be defined. There are two operations, refinement and
coarsening [14-16], which can express the correspondences
in the form of compatibility rules. In this paper, the BPAs
defined on different framework of discernment are united
into a common framework of discernment by the refinement
operation, and the BPA of each sensor defined on its own
framework of discernment is calculated by the coarsening
operation. In fact, a refinement operation unifies compatible
elements of 6’ to an element of §, and a coarsening operation
is the antagonist relation.

A basic probability assignment of sensor S; is defined
on the set 6; = {OK;,KO,}, where OK; means “sensor i is
working well” and KO; means “sensor j is faulty” Meantime,
this framework of discernment is defined as 6;;, which is the
Cartesian product of 6; and 6:

6; = ({OKi, OKj} , {OKi,KO].} , {Ko,.,OKj} , {Ko,.,Koj}).

(12)
Therefore, m;; is defined on the set of 6;;:
my | 27 — [0,1],
m; ({0K, OK;}) =d (V,,V;).
m;; ({OK;,, KO} u {KO,, 0K} U {KO;,KO,})
=1-d(VaVy),
(13)

where d(Vi,Vj) represents a normalized distance between

sensor data V; and V;. Of course, the function d, such

as residual generation methods or multivariate statistical
methods, can also be used.

Supposing Ry is the refinement operation from 6;; to 6,
and 0, is the Cartesian product of 6;; and 6, then the
combination rule of m;; and m; is intersection operation rule
described as follows:

m;; (A) & my (B) = myj (C)
V (A, B) € (2%79,2%%),
Ce 26,-><9j><9k

m;; (A) @ my (B) = my [Rk (A)NR,; (B)] ,

R (A)NR; (B) = ( U [{A,XH) n ( U [{B,XH).

Xeb, Xe(-)j
(14)

Supposing there are M sensors in practice, then there are
C3, outputs data preprocessed by BPNN. When it is refine-
ment operation, the two different frameworks of discernment
must be compatible. For example, m;; and m;;, can be refined,
but m;; and my; cannot be refined. Therefore, there are in

total C?v[c%w_z /2(M > 3) kinds of combination modes which
cannot be refined.

Supposing §; is the coarsening operation from 6, to 6;
and Nj; and Ny are the kernels of m;; and my, 3(A,B) €
(Njj» Nix), then

Si [R (AN R;(B)] € Py, 5, (D), (15)
where D € 2% and

m (D)=

Be2% Ce2%

m; ({A, B,C}). (16)

Because the combination operation performs all intersec-
tions within focal elements of each refined belief assignment,
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TABLE 1: Fault preprocessing result of BP Neural Network.

my,(A) 1m,4(A) 1y3(A) M34(A)
Fault decision result 0.215 0.219 0.946 0.276
TABLE 2: Fault decision result of D-S evidence fusion.
Combination mode Belief interval of evidence
[Bel, P1] [Bel, PL,] [Bel, PL;] [Bel, Pl,]
my, ®my, [0.306 0.183] [0.278 0.948] [0.352 0.753]
my, ® my, [0.382 0.348] [0.244 0.818] [0.244 0.303]
my, ® My, [0.201 0.156] [0.193 0.947] [0.284 0.788]
my, & m,, [0.397 0.282] [0.910 0.896] [0.215 0.240]
my, ®m,, [0.188 0.258] [0.749 0.828] [0.278 0.232]
My ® My, [0.489 0.427) [0.268 0.872] [0.291 0.920]
"y ® sy, [0.293 0.374] [0.810 0.865] [0.417 0.348]
"y, &y, [0.201 0.338] [0.881 0.948] [0.263 0.361]
"y, ® s, [0.352 0.400] [0.936 0.979] [0.338 0.374]
My & 1y, [0.834 0.750] [0.953 0.848] [0.489 0.427]
my, ®my, [0.865 0.876] [0.809 0.750] [0.415 0.352]
mp, ®m; [0.822 0.920] [0.788 0.850] [0.395 0.343]
Evidence fusion results [0.023 0.041] [1.0001.000] [1.0001.000] [0.067 0.079]

Fault diagnosis results

Sensors 1 and 2 are fault, Sensors 3 and 4 are not working well.

it must guarantee that all possible intersection operations
should have been done. The intersection operations between
evidence sources can be expressed only needing to declare the
reference set of the corresponding belief assignments, so it is
very easy to add new evidence sources (new sensors) without
affecting existing functions.

Now, it is possible to get the belief interval of each
sensor by (5) and (6), which can be described as belief inter-
val [Bel(OK;), PI(OK;)]. And then, the new belief interval
[Bel(OK;), PI(OK))] ., mpine €an be calculated by using (8).
Thus, the working state of every sensor can be known.

4. Numerical Simulation Analysis in
Drying Industry Process

Supposing  there are four temperature sensors
0 = {H,,H,,H;,H,} to supervise the drying process
and the sampling data of every single sensor is the input of
BP Neural Network, then there are C; = 6 outputs, which
are m;, = (OK), my; = (OK), m;, = (OK), m,; = (OK),
m,, = (OK), and m;, = (OK). Because of the limitation of
space, the preprocessing result of BP Neural Network and
part of intermediate result will be given directly in Table 1
without detailed description.

According to the discussion in Sections 3.2 and 3.3, there
are C; = 15 kinds of combination modes, but C;C;_,/2 = 3
kinds of combination modes cannot be refined. Therefore,
there are 15— 3 = 12 kinds of combination modes that can be
refined. Furthermore, according to the method presented in
Section 3.3, each two preprocessing results are firstly operated
by refinement, then the refinement results are operated by
coarsening to get the BPA of each sensor, and finally those

BPAs are fused by using evidence theory combination rule to
get the new intervals [Bel(OK), PI(OK)] shown in Table 2.

According to Table 2, through analyzing every pairwise
combination, it can be concluded that the difference of upper
and lower limits of belief interval [Bel(OK), PI(OK)] is very
significant, which shows the great uncertainty of sensor state.
Therefore, the results of those pairwise combinations cannot
be used to decide the sensor state.

In order to fully exploit the maximum of available
information and reduce the uncertainty of sensor state,
the results of those pairwise combinations should be fur-
ther fused by evidence combination rule. The new interval
[Bel(OK), PI(OK)] is shown as the font of bold italic in
Table 2.

For example, the fusion result of sensor one is [0.026,
0.041]; that is to say, the sum of belief degree of all pieces of
evidence that precisely support the proposition “sensor one is
working well” is 0.026 and precisely support the proposition
“sensor one is fault” is 1 — 0.026 = 0.974, so the fusion
result indicates that “sensor one is fault” Similarly, the sum of
belief degree of the proposition “sensor two is working well”
is 1.0000 and that of the proposition “sensor two is fault” is
1-1.0000 = 0.0000, so the fusion result indicates that “sensor
two is working well” To sum up, sensors one and four are
fault, and sensors two and three are working well.

5. Conclusions

In this paper, a modular and generic framework for multiple
fault detection and isolation of sensors was presented with a
two-layer structure. In data layer, through fully exploiting the
sensor data, the data preprocessing could be realized by BP
Neural Network to overcome the disadvantages caused by the



change of input sensor data and calculate the BPA of evidence.
In decision layer, a modular and generic framework of sensor
network for multiple fault detection was presented, and the
different but compatible frameworks of discernment were
united without affecting the existing relationship, according
to the refinement and coarsening operations. Furthermore,
new evidence (sensor) could be added to the process very
easily and effectively. Therefore, our method had much better
expandability, modularity, and flexibility.

After combining all sensors with combination rule, the
total uncertainty of sensor state was greatly reduced and the
fault sensors could be further exploited by the final fusion
results. Numerical simulation results also proved that our
new method could be used in practice.

However, if the number of sensors is larger and the com-
bination modes are more, there will be a heavy computation
burden. Therefore, this method should be further simplified
and optimized in the further study.
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