841 research outputs found

    Assessing avionics-based GNSS integrity augmentation performance in UAS mission- and safety-critical tasks

    Get PDF
    The integration of Global Navigation Satellite System (GNSS) integrity augmentation functionalities in Unmanned Aerial Systems (UAS) has the potential to provide an integrity-augmented Sense-and-Avoid (SAA) solution suitable for cooperative and non-cooperative scenarios. In this paper, we evaluate the opportunities offered by this integration, proposing a novel approach that maximizes the synergies between Avionics Based Integrity Augmentation (ABIA) and UAS cooperative/non-cooperative SAA architectures. When the specified collision risk thresholds are exceeded, an avoidance manoeuvre is performed by implementing a heading-based differential geometry or pseudospectral optimization to generate a set of optimal trajectory solutions free of mid-air conflicts. The optimal trajectory is selected using a cost function with minimum time constraints and fuel penalty criteria weighted for separation distance. The optimal avoidance trajectory also considers the constraints imposed by the ABIA in terms of UAS platform dynamics and GNSS satellite elevation angles (plus jamming avoidance when applicable), thus preventing degradation or loss of navigation data during the Track, Decision and Avoidance (TDA) process. The performance of this Integrity-Augmented SAA (IAS) architecture was evaluated by simulation case studies involving cooperative and non-cooperative platforms. Simulation results demonstrate that the proposed IAS architecture is capable of performing high-integrity conflict detection and resolution when GNSS is used as the primary source of navigation data

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    A Review of the Family of Artificial Fish Swarm Algorithms: Recent Advances and Applications

    Full text link
    The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming, following and random behaviors. Owing to a number of salient properties, which include flexibility, fast convergence, and insensitivity to the initial parameter settings, the family of AFSA has emerged as an effective Swarm Intelligence (SI) methodology that has been widely applied to solve real-world optimization problems. Since its introduction in 2002, many improved and hybrid AFSA models have been developed to tackle continuous, binary, and combinatorial optimization problems. This paper aims to present a concise review of the family of AFSA, encompassing the original ASFA and its improvements, continuous, binary, discrete, and hybrid models, as well as the associated applications. A comprehensive survey on the AFSA from its introduction to 2012 can be found in [1]. As such, we focus on a total of {\color{blue}123} articles published in high-quality journals since 2013. We also discuss possible AFSA enhancements and highlight future research directions for the family of AFSA-based models.Comment: 37 pages, 3 figure

    Aerial base station placement in temporary-event scenarios

    Get PDF
    Die Anforderungen an den Netzdatenverkehr sind in den letzten Jahren dramatisch gestiegen, was ein großes Interesse an der Entwicklung neuartiger Lösungen zur Erhöhung der Netzkapazität in Mobilfunknetzen erzeugt hat. Besonderes Augenmerk wurde auf das Problem der Kapazitätsverbesserung bei temporären Veranstaltungen gelegt, bei denen das Umfeld im Wesentlichen dynamisch ist. Um der Dynamik der sich verändernden Umgebung gerecht zu werden und die Bodeninfrastruktur durch zusätzliche Kapazität zu unterstützen, wurde der Einsatz von Luftbasisstationen vorgeschlagen. Die Luftbasisstationen können in der Nähe des Nutzers platziert werden und aufgrund der im Vergleich zur Bodeninfrastruktur höheren Lage die Vorteile der Sichtlinienkommunikation nutzen. Dies reduziert den Pfadverlust und ermöglicht eine höhere Kanalkapazität. Das Optimierungsproblem der Maximierung der Netzkapazität durch die richtige Platzierung von Luftbasisstationen bildet einen Schwerpunkt der Arbeit. Es ist notwendig, das Optimierungsproblem rechtzeitig zu lösen, um auf Veränderungen in der dynamischen Funkumgebung zu reagieren. Die optimale Platzierung von Luftbasisstationen stellt jedoch ein NP-schweres Problem dar, wodurch die Lösung nicht trivial ist. Daher besteht ein Bedarf an schnellen und skalierbaren Optimierungsalgorithmen. Als Erstes wird ein neuartiger Hybrid-Algorithmus (Projected Clustering) vorgeschlagen, der mehrere Lösungen auf der Grundlage der schnellen entfernungsbasierten Kapazitätsapproximierung berechnet und sie auf dem genauen SINR-basierten Kapazitätsmodell bewertet. Dabei werden suboptimale Lösungen vermieden. Als Zweites wird ein neuartiges verteiltes, selbstorganisiertes Framework (AIDA) vorgeschlagen, welches nur lokales Wissen verwendet, den Netzwerkmehraufwand verringert und die Anforderungen an die Kommunikation zwischen Luftbasisstationen lockert. Bei der Formulierung des Platzierungsproblems konnte festgestellt werden, dass Unsicherheiten in Bezug auf die Modellierung der Luft-Bodensignalausbreitung bestehen. Da dieser Aspekt im Rahmen der Analyse eine wichtige Rolle spielt, erfolgte eine Validierung moderner Luft-Bodensignalausbreitungsmodelle, indem reale Messungen gesammelt und das genaueste Modell für die Simulationen ausgewählt wurden.As the traffic demands have grown dramatically in recent years, so has the interest in developing novel solutions that increase the network capacity in cellular networks. The problem of capacity improvement is even more complex when applied to a dynamic environment during a disaster or temporary event. The use of aerial base stations has received much attention in the last ten years as the solution to cope with the dynamics of the changing environment and to supplement the ground infrastructure with extra capacity. Due to higher elevations and possibility to place aerial base stations in close proximity to the user, path loss is significantly smaller in comparison to the ground infrastructure, which in turn enables high data capacity. We are studying the optimization problem of maximizing network capacity by proper placement of aerial base stations. To handle the changes in the dynamic radio environment, it is necessary to promptly solve the optimization problem. However, we show that the optimal placement of aerial base stations is the NP-hard problem and its solution is non-trivial, and thus, there is a need for fast and scalable optimization algorithms. This dissertation investigates how to solve the placement problem efficiently and to support the dynamics of temporary events. First, we propose a novel hybrid algorithm (Projected Clustering), which calculates multiple solutions based on the fast distance-based capacity approximation and evaluates them on the accurate SINR-based capacity model, avoiding sub-optimal solutions. Second, we propose a novel distributed, self-organized framework (AIDA), which conducts a decision-making process using only local knowledge, decreasing the network overhead and relaxing the requirements for communication between aerial base stations. During the formulation of the placement problem, we found that there is still considerable uncertainty with regard to air-to-ground propagation modeling. Since this aspect plays an important role in our analysis, we validated state-of-the-art air-to-ground propagation models by collecting real measurements and chose the most accurate model for the simulations

    Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics

    Get PDF
    For spacecraft conducting on-orbit operations, changes to the structure of the spacecraft are not uncommon. These planned or unanticipated changes in inertia properties couple with the spacecraft\u27s attitude dynamics and typically require estimation. For systems with time-varying inertia parameters, multiple model adaptive estimation (MMAE) routines can be utilized for parameter and state estimates. MMAE algorithms involve constructing a bank of recursive estimators, each assuming a different hypothesis for the systems dynamics. This research has three distinct, but related, contributions to satellite attitude dynamics and estimation. In the first part of this research, MMAE routines employing parallel banks of unscented attitude filters are applied to analytical models of spacecraft with time-varying mass moments of inertia (MOI), with the objective of estimating the MOI and classifying the spacecraft\u27s behavior. New adaptive estimation techniques were either modified or developed that can detect discontinuities in MOI up to 98 of the time in the specific problem scenario.Second, heuristic optimization techniques and numerical methods are applied to Wahba\u27s single-frame attitude estimation problem,decreasing computation time by an average of nearly 67 . Finally, this research poses MOI estimation as an ODE parameter identification problem, achieving successful numerical estimates through shooting methods and exploiting the polhodes of rigid body motion with results, on average, to be within 1 to 5 of the true MOI values

    Design and Development of an Automated Mobile Manipulator for Industrial Applications

    Get PDF
    This thesis presents the modeling, control and coordination of an automated mobile manipulator. A mobile manipulator in this investigation consists of a robotic manipulator and a mobile platform resulting in a hybrid mechanism that includes a mobile platform for locomotion and a manipulator arm for manipulation. The structural complexity of a mobile manipulator is the main challenging issue because it includes several problems like adapting a manipulator and a redundancy mobile platform at non-holonomic constraints. The objective of the thesis is to fabricate an automated mobile manipulator and develop control algorithms that effectively coordinate the arm manipulation and mobility of mobile platform. The research work starts with deriving the motion equations of mobile manipulators. The derivation introduced here makes use of motion equations of robot manipulators and mobile platforms separately, and then integrated them as one entity. The kinematic analysis is performed in two ways namely forward & inverse kinematics. The motion analysis is performed for various WMPs such as, Omnidirectional WMP, Differential three WMP, Three wheeled omni-steer WMP, Tricycle WMP and Two steer WMP. From the obtained motion analysis results, Differential three WMP is chosen as the mobile platform for the developed mobile manipulator. Later motion analysis is carried out for 4-axis articulated arm. Danvit-Hartenberg representation is implemented to perform forward kinematic analysis. Because of this representation, one can easily understand the kinematic equation for a robotic arm. From the obtained arm equation, Inverse kinematic model for the 4-axis robotic manipulator is developed. Motion planning of an intelligent mobile robot is one of the most vital issues in the field of robotics, which includes the generation of optimal collision free trajectories within its work space and finally reaches its target position. For solving this problem, two evolutionary algorithms namely Particle Swarm Optimization (PSO) and Artificial Immune System (AIS) are introduced to move the mobile platform in intelligent manner. The developed algorithms are effective in avoiding obstacles, trap situations and generating optimal paths within its unknown environments. Once the robot reaches its goal (within the work space of the manipulator), the manipulator will generate its trajectories according to task assigned by the user. Simulation analyses are performed using MATLAB-2010 in order to validate the feasibility of the developed methodologies in various unknown environments. Additionally, experiments are carried out on an automated mobile manipulator. ATmega16 Microcontrollers are used to enable the entire robot system movement in desired trajectories by means of robot interface application program. The control program is developed in robot software (Keil) to control the mobile manipulator servomotors via a serial connection through a personal computer. To support the proposed control algorithms both simulation and experimental results are presented. Moreover, validation of the developed methodologies has been made with the ER-400 mobile platform

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field
    corecore