306 research outputs found

    Agricultural Production System Based On IOT

    Get PDF
    Internet of things (IoT) is not a single word, but it has gathered billions of devices in the same lane. The Internet of things has given the lives of things. Machines have a sense now like a human. It works remotely as the program has been settled inside the chip. The system has become so smart and reliable. The Internet of things has brought out changes in most of the sectors of humankind. Meanwhile, agriculture is the main strength of a country. The more the production of agricultural products increased, the world will be more completeness from food shortage. The production of agriculture can be increased when the IoT system can be entirely implemented in the agricultural sector. Most of the approaches for IoT based agriculture have been reviewed in this paper. Related to IoT based agriculture, most of the architecture and methodology have been interpreted and have been critically analyzed based on previous related work of the researchers. This paper will be able to provide a complete idea with the architecture and methodology in the field of IoT based agriculture. Moreover, the challenges for agricultural IoT are discussed with the methods provided by the researche

    Agricultural Production System Based On IOT

    Get PDF
    Internet of things (IoT) is not a single word, but it has gathered billions of devices in the same lane. The Internet of things has given the lives of things. Machines have a sense now like a human. It works remotely as the program has been settled inside the chip. The system has become so smart and reliable. The Internet of things has brought out changes in most of the sectors of humankind. Meanwhile, agriculture is the main strength of a country. The more the production of agricultural products increased, the world will be more completeness from food shortage. The production of agriculture can be increased when the IoT system can be entirely implemented in the agricultural sector. Most of the approaches for IoT based agriculture have been reviewed in this paper. Related to IoT based agriculture, most of the architecture and methodology have been interpreted and have been critically analyzed based on previous related work of the researchers. This paper will be able to provide a complete idea with the architecture and methodology in the field of IoT based agriculture. Moreover, the challenges for agricultural IoT are discussed with the methods provided by the researche

    Exploring Wireless Sensor Network Technology In Sustainable Okra Garden: A Comparative Analysis Of Okra Grown In Different Fertilizer Treatments

    Get PDF
    The goal of this project was to explore commercial agricultural and irrigation sensor kits and to discern if the commercial wireless sensor network (WSN) is a viable tool for providing accurate real-time farm data at the nexus of food energy and water. The smart garden consists of two different varieties of Abelmoschus esculentus (okra) planted in raised beds, each grown under two different fertilizer treatments. Soil watermark sensors were programed to evaluate soil moisture and dictate irrigation events up to four times a day, while soil temperature and photosynthetic solar radiation sensors also recorded data every six hours. Solar panels harvested energy to power water pump and sensors. The objectives of the experiments were to evaluate and compare plant and soil parameters of the two okra varieties grown under two different fertilizer treatments. The plant parameters evaluated and compared were basal diameter, plant height, fruit production, and fruit size. Soil parameters measured were soil moisture, soil temperature, and soil nitrate concentration. The commercial sensors were evaluated on efficiency, accuracy, ease of use and overall practicality. Clemson spineless produced larger okra plants with the highest plant parameter values, followed by Emerald okra. However, they both averaged nearly the same yield and length of okra fruit. Nature’s Care fertilizer leached more in beds containing Clemson spineless, while Garden-tone leached more in beds containing Emerald okra. When the WSN is installed properly, the system’s great performance undoubtedly aides the farmer by providing real time field data. However, a properly installed apparatus does not promise a stable system. There are numerous challenges and limitations of which can diminish the performance quality of the WSN, those being battery power, data transmission, and data storage. Data storage is also an issue depending on the amount of data collected, rate of data collection, and size of storage unit. These issues can hinder the decision making for precision farmers

    Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar

    Get PDF
    Greenhouse farming is essential in increasing domestic crop production in countries with limited resources and a harsh climate like Qatar. Smart greenhouse development is even more important to overcome these limitations and achieve high levels of food security. While the main aim of greenhouses is to offer an appropriate environment for high-yield production while protecting crops from adverse climate conditions, smart greenhouses provide precise regulation and control of the microclimate variables by utilizing the latest control techniques, advanced metering and communication infrastructures, and smart management systems thus providing the optimal environment for crop development. However, due to the development of information technology, greenhouses are undergoing a big transformation. In fact, the new generation of greenhouses has gone from simple constructions to sophisticated factories that drive agricultural production at the minimum possible cost. The main objective of this paper is to present a comprehensive understanding framework of the actual greenhouse development in Qatar, so as to be able to support the transition to sustainable precision agriculture. Qatar’s greenhouse market is a dynamic sector, and it is expected to mark double-digit growth by 2025. Thus, this study may offer effective supporting information to decision and policy makers, professionals, and end-users in introducing new technologies and taking advantage of monitoring techniques, artificial intelligence, and communication infrastructure in the agriculture sector by adopting smart greenhouses, consequently enhancing the Food-Energy-Water Nexus resilience and sustainable development. Furthermore, an analysis of the actual agriculture situation in Qatar is provided by examining its potential development regarding the existing drivers and barriers. Finally, the study presents the policy measures already implemented in Qatar and analyses the future development of the local greenhouse sector in terms of sustainability and resource-saving perspective and its penetration into Qatar’s economy.Open Access funding provided by the Qatar National Library. The authors are grateful to Qatar National Research Fund (QNRF) for funding and supporting the M-NEX Project (Grant No. BFSUGI01-1120-170005) in Qatar. The M-NEX is a project of the Collaborative Research Area Belmont Forum (Grant No. 11314551)

    The digitization of agricultural industry – a systematic literature review on agriculture 4.0

    Get PDF
    Agriculture is considered one of the most important sectors that play a strategic role in ensuring food security. However, with the increasing world's population, agri-food demands are growing — posing the need to switch from traditional agricultural methods to smart agriculture practices, also known as agriculture 4.0. To fully benefit from the potential of agriculture 4.0, it is significant to understand and address the problems and challenges associated with it. This study, therefore, aims to contribute to the development of agriculture 4.0 by investigating the emerging trends of digital technologies in the agricultural industry. For this purpose, a systematic literature review based on Protocol of Preferred Reporting Items for Systematic Reviews and Meta-Analyses is conducted to analyse the scientific literature related to crop farming published in the last decade. After applying the protocol, 148 papers were selected and the extent of digital technologies adoption in agriculture was examined in the context of service type, technology readiness level, and farm type. The results have shown that digital technologies such as autonomous robotic systems, internet of things, and machine learning are significantly explored and open-air farms are frequently considered in research studies (69%), contrary to indoor farms (31%). Moreover, it is observed that most use cases are still in the prototypical phase. Finally, potential roadblocks to the digitization of the agriculture sector were identified and classified at technical and socio-economic levels. This comprehensive review results in providing useful information on the current status of digital technologies in agriculture along with prospective future opportunities

    Automated smart hydroponics system using internet of things

    Get PDF
    This paper presents a design and implementation of an automated smart hydroponics system using internet of things. The challenges to be solved with this system are the increasing food demand in the world, the need of market of new sustainable method of farming using the Internet of Things. The design was implemented using NodeMcu, Node Red, MQTT and sensors that were chosen during component selection based on required parameters and sending it to the cloud to monitor and be processed. Investigation on previous works done and a review of Internet of Things and Hydroponic systems were done. First the prototype was constructed, programmed and tested, as well as sensors data between two different environments were taken and monitored on cloud-based web page with mobile application. Moreover, a bot has been introduced to control the supply chain and for notification purposes. The system improved its performance and allows it to successfully achieve the aim of the entire system implemented. There are some limitations which can be improved as future work such as including data science with the usage of the artificial intelligence to further improve the crops and get better outcome. Lastly to design end user platform to ease user interaction by using attractive design with no technical configuration involved

    An ontology model to represent aquaponics 4.0 system’s knowledge

    Get PDF
    Aquaponics, one of the vertical farming methods, is a combination of aquaculture and hydroponics. To enhance the production capabilities of the aquaponics system and maximize crop yield on a commercial level, integration of Industry 4.0 technologies is needed. Industry 4.0 is a strategic initiative characterized by the fusion of emerging technologies such as big data and analytics, internet of things, robotics, cloud computing, and artificial intelligence. The realization of aquaponics 4.0, however, requires an efficient flow and integration of data due to the presence of complex biological processes. A key challenge in this essence is to deal with the semantic heterogeneity of multiple data resources. An ontology that is regarded as one of the normative tools solves the semantic interoperation problem by describing, extracting, and sharing the domains’ knowledge. In the field of agriculture, several ontologies are developed for the soil-based farming methods, but so far, no attempt has been made to represent the knowledge of the aquaponics 4.0 system in the form of an ontology model. Therefore, this study proposes a unified ontology model, AquaONT, to represent and store the essential knowledge of an aquaponics 4.0 system. This ontology provides a mechanism for sharing and reusing the aquaponics 4.0 system’s knowledge to solve the semantic interoperation problem. AquaONT is built from indoor vertical farming terminologies and is validated and implemented by considering experimental test cases related to environmental parameters, design configuration, and product quality. The proposed ontology model will help vertical farm practitioners with more transparent decision-making regarding crop production, product quality, and facility layout of the aquaponics farm. For future work, a decision support system will be developed using this ontology model and artificial intelligence techniques for autonomous data-driven decisions

    Photovoltaics and Electrification in Agriculture

    Get PDF
    Integration of photovoltaics and electrification in agriculture. Works on the integration of photovoltaics in agriculture, as well as electrification and microgrids in agriculture. In addition, some works on sustainability in agriculture are added

    Site-specific irrigation: Improvement of application map and a dynamic steering of modified centre pivot irrigation system

    Get PDF
    Einleitung: Ein Management Konzept für nachhaltige und effiziente Nutzunglandwirtschaftlicher Maßnahmen ist bekannt als teilflächenspezifische Landwirtschaft (PA – Precision Agriculture). Wird das teilflächenspezifische Konzept im Bewässerungsmanagement eingesetzt, wird es teilflächenspezifische Bewässerung genannt (PI – Precision Irrigation). Bei der teilflächenspezifische Bewässerung kann die Bewässerung zwischen den Bereichen eines Feldes auf Grund der Variabilität der Bodeneigenschaften oder dem Anbau von verschiedenen Pflanzen auf dem selben Feld variieren. Die räumliche Veränderung der nutzbaren Feldkapazität als Primärfaktor bedingt die räumliche Veränderung der Bewässerungshöhe und der Bewässerungsfrequenz. Die Bewässerungssysteme verteilen das Wasser bis heute gleichmäßig, so dass die Flächen teilweise überbewässert oder unterbewässert sind. Bezogen auf dieses Problem ist die teilflächenspezifische Beregnung geeignet, das Wasser an der richtigen Stelle zum richtigen Zeitpunkt unter Benutzung des richtigen Bewässerungssystems auszubringen. Folglich sind die Schlüsselziele dieser Arbeit: a) die Abgrenzung von Beregnungsmanagementzonen (IMZs – Irrigation Management Zones) unter Nutzung von sensorbasierten Messungen der elektrischen Leitfähigkeit (ECa – depth-weighted apparent soil electrical conductivity) des Bodens mit EM38 und VERIS 3100, b) die Entwicklung und Evaluierung einer teilflächenspezifischen mobilen Tropfbewässerung und c) Auswertung von drahtlosen  Bodenfeuchtesensoren (EnviroSCAN) und der klimatischen Wasserbilanz (AMBAVModell) zur Bestimmung der Bodenfeuchte bzw. der Bewässerungshöhe.Material und Methoden: EC25-Daten (ECa bei 25° C) wurden unter Verwendung von EM38 und VERIS 3100 Geräten bei Feldkapazität auf einem 16,6 ha großen Feldstück der FAL, Braunschweig, Deutschland, gemessen. Die ECa Daten wurden im Sekundenintervall mit zwei bis drei Metern Messabstand und in Reihenabständen von etwa vier bis sechs Metern gemessen. Zur Erstellung der EC25- und Bodenfeuchte Karten wurde die Software ArcView genutzt, nachdem die Messdaten mit Hilfe des sphärischen Kriging-Verfahren interpoliert wurden. 29 Kalibrierungspunkten wurden mit Hilfe von DGPS lokalisiert, um die beste sensorbasierte Methode zur Abgrenzung der Beregnungsmanagementzonen zu bestimmen. Bodenproben wurden in 0 - 60 cm Tiefe entnommen. Der zweite Bogen der Kreisberegnungsmaschinen wurde für die teilflächenspezifische mobile Tropfbewässerung umgerüstet. Eine kontrollierte Wassermenge konnte, durch Installierung einer Pulstechnik mit Magnetventilen (SV – Solenoid Valve), einem Computer gesteuerten Programm (PLC – Programable Logic Control) und Auswechseln der Düsen durch Siplast Tropfrohre ausgebracht werden. Ein Teil des Feldversuches wurde durch EnviroSCAN Bodenfeuchtesensoren gesteuert und der andere Teil wurde durch das AMBAV-Modell gesteuert, um die Beregnungshöhe zu bestimmen. Die hydraulische Genauigkeit der Siplast Tropfrohre wurde im Labor bei unterschiedlichen Wasserdrücken von 50, 100, 150 und 200 kPa untersucht.Ergebnisse und Diskussion: Die Untersuchung zeigt, dass EC25-Daten von verschiedenen gewerblichen Sensoren auf Grund der unterschiedlichen Gewichtung der Tiefe quantitativ unterschiedlich sind. Das höchste Bestimmtheitsmaß wurde zwischen EM38_h und EM38_v (R2 = 0,55) gefunden. In dieser Arbeit wurde ein gutes Bestimmtheitsmaß zwischen nFK und den VERIS 3100 Werten gefunden. Eine Kalibrierungsgleichung zur Abschätzung der nFK von VERIS 3100-sh zeigte eine hohe Ähnlichkeit zu den nFK Daten auf und hatte das höchste Bestimmtheitsmaß (R2 = 0,77). Die Bestimmtheitsmaße zu EM38-v- und EM38-h-Daten waren niedrig und anscheinend nicht ausreichend, um die räumliche Variabilität der nFK reflektieren zu können. Ein Grund kann die größere Messtiefe von EM38 sein. Sechs Beregnungsmanagementzonen (IMZ1: 99 bis 105, IMZ2: 105 bis 116, IMZ3: 116 bis 127, IMZ4: 127 bis 138, IMZ5: 138 bis 149 und IMZ6: 149 bis 152 mm/60 cm) wurden als optimale Anzahl an Beregnungsmanagementzonen auf dem Versuchsfeld, basierend auf den fuzzy-k-Mittelwerten (Boydell and McBratney, 1999) der zufälligen Einteilung, erkannt. Es wurde gefolgert, dass unter konventioneller Beregnung IMZ1 und IMZ2 überbewässert und IMZ4, IMZ5 und IMZ6 unterbewässert wurden. Das entwickelte Konzept der Pulsbewässerung hat sich als eine zuverlässige Technik bewährt. Die Wasserapplikationsmenge war direkt proportional zur Öffnungsdauer des Ventils, und das System war in der Lage, die Wassermenge entsprechend des Bewässerungspulses zu variieren. Weiterhin war es in der Lage, 15 Reihen mit jeweils 15 Düsen zu steuern. Es gab keine offenkundigen Probleme mit dem gepulsten Wasserabgabesystem in den durchgeführten Feldversuchen. Die Kreisberegnungsmaschinengeschwindigkeit und Pulstechnik zur Bereitstellung verschiedener Wassermengen hatten einen geringen nachteiligen Einfluss auf die Gleichmäßigkeit der Beregnungshöhe. Die Gleichmäßigkeitskoeffizienten wurden durch sinkende Pulszeiten und steigende Kreisberegnungsmaschinengeschwindigkeiten gesenkt. Die Kontrolleinheit war wie erwartet in der Lage die Bodenfeuchtedaten mittels Fernmesstechnik von dem EnviroSCAN Sensor zum zentralen Modem zu senden. Obwohl der EnviroSCANBodenfeuchtigkeitssensor empfindlich und kompliziert zu benutzen und zu kalibrieren ist, wurden die Bodenfeuchtigkeitsdaten fast störungsfrei von der Kontrolleinheit empfangen, gespeichert und zum Mobiltelefon gesendet. Für die Übertragung auf den PC wurde die Software „Kurznachricht Pro 2.2“ genutzt. Anschließend wurde die differenzierte Bewässerungshöhe kalkuliert. Die Ergebnisse zeigen, dass die EnviroSCAN-Sensoren in der Lage sind, den Verlauf der Bodenfeuchte während der Wachstumsperiode erfolgreich zu verfolgen. Weniger gut arbeitet der Sensor, um die Feuchtigkeitsverhältnisse auf sandigen Böden (unter 40 cm Tiefe), trotz bodenspezifischer Kalibrierung zu bestimmen. Während dessen hat sich das AMBAV-Modell als eine Alternative zum kostenintensiven EnviroSCAN erwiesen, das in der Lage ist, die Bodenfeuchtigkeit in der Wurzelzone der Graspflanzen als eine preiswerte und verlässliche Methode zu simulieren. Das Tropfbewässerungssystem sollte auf verlässlichen Testergebnissen und nicht auf Herstellerangaben beruhen. Die Laborexperimente zeigten, dass der Einfluß des Betriebsdrucks auf den Durchfluss am Siplast Tropfer hoch signifikant war und der Tropferdurchfluß stark vom Betriebsdruck abhing. Die CV-Werte wurden auf dem ISO-Standard basierend als gut eingestuft. Aus den Laborexperimenten wurde herausgefunden, dass der in-line Siplast Tropfer eine hohe Ausbringungsgleichmäßigkeit und einen geringen Variationskoeffizienten aufweist. Das Rohrmaterial des Siplast Tropfer ist hart und unflexibel. Es sollte nach weiteren Produkten gesucht werden, die flexibler sind und somit die Kulturen schonen. Die ökonomische Analyse dieser Arbeit zeigt, dass der Kapitalbedarf pro Hektar unter teilflächenspezifische mobile Tropfbewässerung um etwa 338 € und 250 € höher liegt als bei entsprechender Tropfbewässerung in Deutschland und im Iran. Die jährlichen Fixkosten sind geringer, als bei der Tropfbewässerung (111 und 128 [€/(ha x Jahr)] in Deutschland oder im Iran). Obwohl die teilflächenspezifische mobile Tropfbewässerung teurer ist als die Beregnung mit Kreisberegnungsmaschinen, verursacht sie weniger Wasser- und Energiekosten als die Kreisberegnungsmaschinen und hat das Potenzial den Ertrag qualitativ und quantitativ, sowie den landwirtschaftlichen Gewinn zu steigern. Die Ergebnisse zeigen, als wichtige Folge des Verfahrens, dass die teilflächenspezifische mobile Tropfbewässerung nicht notwendiger Weise eine wassersparende Technologie ist, aber es kann den Wasserbedarf optimieren. Der Energiebedarf kann um 70 % und der Wasserbedarf kann um 25 % durch die teilflächenspezifische mobile Tropfbewässerung gegenüber der Kreisberegnungsmaschine gesenkt werden. Die Modellbetrachtungen zeigten, dass durch die teilflächenspezifische mobile Tropfbewässerung im Vergleich mit der konventionellen Kreisberegnungsmaschine bei Salat, Zuckerrübe,  Kartoffel und Erdbeere etwa 575, 378, 462 und 588 kWh Energie pro Hektar gespart werden können.Schlussfolgerung: Die sensorbasierte Messung der elektrischen Leitfähigkeit bei Feldkapazität von nicht salzigen Böden ist eine preiswerte, schnelle und das Bodengefüge nicht zerstörende Alternative, um die Beregnungsmanagementzone räumlich abzugrenzen und ist den Methoden der Bodenprobenahme und Luftbildauswertung vorzuziehen. Feldstudien mit größeren Bewässerungssystemen und Felder mit verschiedenen Bodentypen, Topographie oder Pflanzenbeständen sind weiterhin zu untersuchen, um die Genauigkeit des Bewässerungskonzeptes zu validieren. Vor dem Hintergrund, dass teilflächenspezifische Bewässerung in den Anfängen steckt und eine weitere Verbreitung dieser Technologie zu erwarten ist, könnten die zusätzlichen Kosten für industrielle Ausrüstungsteile gesenkt werden. Beträchtliche Forschung und Entwicklung ist noch nötig, um die möglichen Vorteile der teilflächenspezifischen Beregnung und der Flüssigdüngung besser zu realisieren, um ein positives ökonomisches Ergebnis für den Erzeuger zu sichern.Introduction: A management concept for sustainable utilization and the efficient use of agricultural inputs is known as “Precision Agriculture” (PA). The PA concept, when applied to irrigation management is known as Precision Irrigation (PI). In PI, the need for irrigation may differ between zones of a particular field due to the spatial variation of soil properties or the cropping of different plants on the same field. Spatial variation of total available water content (TAWC) as a primary factor causes spatial variation of irrigation depth and frequency within fields. While moving irrigation systems apply water at constant rates, some areas of the field may receive too much water and others not enough. In this regard, precision irrigation (PI) is capable of applying water in the right place in the right amount at the right time using the right irrigation system. Therefore the key objectives of the present study were a) Delineation of irrigation management zones (IMZs) using sensor-based soil electrical conductivity (ECa) measurement with the aid of EM38 and VERIS 3100, b) Developing and evaluating a precision mobile drip irrigation (PMDI) and c) Evaluating wireless EnviroSCAN sensors and AMBAV-models to measure the soil moisture content.Materials and methods: EC25 data (ECa in 25° C) were collected using EM38 and VERIS 3100 at field capacity on a 16.6 ha non-saline field in the FAL, Braunschweig, Germany. ECa data were obtained in 1-s intervals corresponding to a 2 to 3 m data spacing on transects spaced approximately 4 to 6 m apart. An ArcView (ESRI) software program was used to create the EC25 and TAWC maps after the readings were interpolated using a spherical kriging model. 29 calibration points taken at a depth of 0 - 60 cm depth were located using DGPS based on the ECa spatial variability pattern and with the objective of covering the whole range of ECa values present to determine the best sensor-based method to monitor TAWC. The second span of the centre pivot irrigation machine (CP) was modified to PMDI and controlled for variable-rate water application with a pulsing technique by installing solenoid valves (SV), programmable logic control (PLC) and using a Siplast drop tube instead of sprinklers. One quarter of the study field was controlled by the EnviroSCAN soil moisture sensor and another quarter was controlled by the AMBAV-model to determine irrigation depth. In addition, the hydraulic performance of the Siplast drop tube was evaluated in the laboratory by collecting discharge rates at different pressure of 50, 100, 150 and 200 kPa.Results and discussion: This study showed that, while qualitatively similar, EC25 data obtained with different commercial sensors were quantitatively different because of different depth-weighted response functions. The highest coefficients of determination (R2) were generally found between EM38_h and EM38_v (R2 = 0.55). In this study, a better value of R2 between TAWC and the VERIS 3100 readings was found. The R2 value from VERIS 3100-sh data for TAWC estimation was maximally (0.77) and matched the TAWC data quite well, whereas R2 values to EM38-h and EM38-v data were low and apparently could not adequately reflect the spatial variability of the TAWC due to the higher influence of the EM38 on deeper layers. Six IMZs (IMZ1: 99 to 105, IMZ2: 105 to 116, IMZ3: 116 to 127, IMZ4: 127 to 138, IMZ5: 138 to 149 and IMZ6: 149 to 152 mm/60 cm) were identified based on fuzzy-k-means unsupervised classification as an optimum number of IMZs within the study field. It was concluded that under conventional uniform irrigation, IMZ1 and IMZ2 were over-irrigated, whereas IMZ4, IMZ5 and IMZ6 were under-irrigated. The developed concept of pulse irrigation was a feasible and a viable technique. Water application was directly proportional to the fraction of time the valve was opened as the system was capable of controlling fifteen banks of fifteen nozzles. There were no apparent problems with the pulsing water delivery system where the field tests were conducted. CP speed and the pulsing technique used to deliver variable amounts of irrigation had little adverse effect on system uniformity and the nozzle flow rate. Uniformity coefficients were reduced by decreasing the pulsing level and increasing CP speed. The control unit was able to monitor wireless soil moisture sensors via radio telemetry and communication from the EnviroSCAN sensors to the central ISM modem, which worked as expected. Although the EnviroSCAN soil moisture sensor was found to be delicate and intricate to use and calibrate, soil moisture data were easily sent from the control unit and received by the mobile phone and then transferred to an Excel table on a computer using easy and suitable “Kurznachricht Pro 2.2” software to calculate irrigation depth. The results suggest that EnviroSCAN sensors are able to follow the general trends successfully as soil water content measured by sampling changed during the growing season, but are not a reliable sensor to repeat moisture conditions on sandy soils (at greater depths than 40 cm ) despite its soil-specific calibration. Meanwhile, an AMBAV model as a cheap and reliable alternative instead of the expensive EnviroSCAN sensor was capable of determining and simulating soil moisture in the root zone of grass crops. Drip irrigation design should be based on reliable data sets, but not on data supplied by the manufacturer. The laboratory experiments showed that the effect of operating pressure on the discharge of Siplast emitters was highly significant and the emitter discharge was strongly influenced by the operating pressure, while some deviation from the design flow rate claimed by the manufacturer occurred. CV values were classified as good, on the basis of the ISO standard. Based on the laboratory experiments, it was found that the in-line Siplast emitter has high emission uniformity and a low coefficient of variation. In spite of high emission uniformity and a low coefficient of variation of the Siplast drop tube, it must consist of hard and inflexible material. To have a shorter drip tube installed on CP, using an in-line drop tube lateral with higher emitter discharge at low operation pressure and less emitter distance is proposed. The economic analysis of this study showed that although capital requirement per hectare under PMDI is about € 338 and € 250 more than for drip irrigation in Germany and Iran, respectively, it causes perceptibly less annual fixed cost than drip irrigation (111 and 128 [€/(ha x year)] cheaper than drip irrigation in Germany and Iran, respectively). Although PMDI causes more annual fixed expenses than CP irrigation, it has less total irrigation cost per hectare and year than CP and drip irrigation and has the potential benefit to increase yield quantity, quality and farming benefit. The results showed as an important policy implication that PMDI is not necessarily a water saving technology and it does not necessarily involve a reduction in total water use, but that it can optimize water consumption. Given a reduction of energy and water consumption of 70 % and 25 %, respectively, achieved by the PMDI as compared with the CP, results showed that about 575, 378, 462 and 588 kWh energy per hectare can be saved by PMDI in comparison with the conventional CP irrigation of lettuce, sugar beet, potato and strawberry.Conclusion: Sensor-based ECa measurement at F.C. in non-saline soil can be used as a cheap, rapid and non-destructive alternative to delineate IMZ instead of using soil sampling and aerial photography methods. Field studies using larger irrigation systems and fields with different soil types, topographic or crop characteristics are recommended to validate the precision irrigation concept and to realize and ensure a positive net economic return to the producer. With due attention to the success of PI in the early stages and developments in industrial technology in the coming years, the extra costs of industrial accessories could be minimised
    corecore