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Preface

        Even in the 21st century, water is still used for irrigation in order to produce food and 

feedstuff. Given a share of ca. 70 %, agriculture is the largest water consumer worldwide and will 

have to remain it in order to guarantee at least the supply of food. Therefore, it is always necessary 

to draw attention to careful and efficient water use in agriculture and to show potential 

improvements like in this study. 

        Based on prior studies on irrigation techniques at the Institute of Production Engineering and 

Building Research, the present dissertation discusses the very current topic of site-specific 

irrigation. The results gained in this study provide scientifically secured decision criteria, which 

allow the homogeneity of the soil as well as its different moisture to be taken into account and 

enable an application map for differentiated irrigation depths to be developed based on these 

criteria. At the same time, a technical solution is presented which allows precise, site-specific 

irrigation with a centre-pivot machine to be realized. The water and energy savings provided by 

this technique (while the level of production remains the same or is increased) are evaluated, and 

the costs are compared. 

        The author, who had a scholarship as a doctoral student at the Institute of Production 

Engineering and Building Research of the Federal Agricultural Research Centre for Agriculture in 

Braunschweig (FAL), made a contribution towards a more objective discussion about the use of 

site-specific irrigation and described future-oriented solution approaches.

Braunschweig, March 2008

Prof. Dr. agr. habil. Franz-Josef Bockisch                           Dr. rer. hort. Heinz Sourell 
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 Introduction                                                                                                                                                            1                              

1 INTRODUCTION 

          World population is expected to grow from 5.8 billion people in 1997 to 7.5 billion people 

in 2020 (Brown, 1995). An ever increasing population, resource shortages and degradation of the 

ecological environment have added ever greater pressure on countries. Based on some estimates 

(UN 1997), annual irrigation water use will have to increase about 30 percent above the present 

level for annual crop production to double and to meet global food requirements by 2025. The 

present-day challenges with regard to food, water and energy security are immense. Historically, 

a desire to improve production efficiency and farm income has stimulated interest in innovative 

technologies. Advances in technology, as well as other factors such as farm policy have 

contributed to increases in the size of individual farmsteads and fields within a farmstead. With 

this larger scale of operation, the potential for the individual to effectively manage variability by 

means of observation and experience has declined precipitously. In addition, as individual farm 

fields grew in size, within-field variability generally increased as well. In the past centuries, the 

very small size of fields and their delineation by natural boundaries, such as water courses and 

varying soil types, may have enabled farmers to vary treatments manually. However, with the 

enlargement of fields, intensive production and mechanization in the latter half of the last 

century, it was not possible to take account of within-field spatial variability without a significant 

development in technology. However, in some developing countries (such as Iran) and in 

countries that need to stabilize yields, because of inadequate and/or uneven rainfall distribution 

such as Germany, special efforts in agriculture will be needed to optimise inputs and to save 

resources.

1.1 Background 

           A management concept for the sustainable utilization and efficient use of agricultural 

inputs is known as “Precision Farming” or “Precision Agriculture” (PA). PA is only a few years 

old and started to receive great interest as a new experimental tool since 1990. Under PA, 

agronomic practices are varied within a field to match locally and temporally varying conditions. 

PA (or more appropriately site-specific crop management) has been proposed as a means of 

managing the spatial variability of edaphic (like soil fertility, soil texture and total available water 

content), anthropogenic, topographical, biological and meteorological factors that influence crop 

yield with the aim of increasing profitability, increasing crop productivity, sustaining the soil-
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plant environment, optimizing inputs and/or minimizing detrimental environmental impacts. In 

other words, PA will allow several geographic units which are currently being managed as a 

single entity (a field) to be addressed as individual decision-making units. PA is the idea of doing 

the right thing at the right place at the right time. This idea is as old as agriculture, but during the 

mechanization of agriculture in the 20th century there was strong economic pressure to treat large 

fields using uniform agronomic practices. PA is a management strategy that has three 

components: capture of data at an appropriate scale, interpretation and analysis of that data and 

implementation of a management response at an appropriate scale and time. Each particular 

manageable factor has its own scale of variability.  

      The development of fast and less costly methods is, therefore, of great interest and one of the 

most promising new methods and techniques. It is dependent on the measurement of a 

representative property, which depends on and correlates with other soil properties, such as the 

sensor-based measurement of depth-weighted apparent soil electrical conductivity (ECa). Soil 

ECa can be used to indirectly estimate soil properties if the contributions of the other soil 

properties affecting the ECa measurement are known or can be estimated. Examples of this direct 

calibration approach include the estimation of the total available water content of the soil (Waine 

et al., 2000; Al-Karadsheh et al., 2002).  

          The PA concept, when applied to irrigation water management based on within-field 

variation of water requirement, requires looking at those conditions which could vary locally and 

which could influence the water management strategy  known as “precision irrigation” (PI). A PI 

system would have the ability to apply the right amount of water directly where it is needed, 

therefore saving water by preventing excessive water runoff and leaching. Current commercially 

available centre pivot (CP), linear-move and another sprinkler irrigation systems are normally 

capable and managed to apply relatively uniform, controlled amounts of water and injected 

chemicals along the system lateral for efficient crop production. Thus, over- and/or deficit- 

irrigation in some portions of the field will be unavoidable due to soil variability. However,  

water or chemical application depth is determined and controlled by the modified sprinkler 

irrigation systems, pressure, nozzle size, spacing and system travel speed. Modernized irrigation 

systems with advanced technology have been developed in industrialized countries in the past 50 

years (Sourell and Sommer, 2002; Maohua 2001; Faci et al., 2001). In the 20th century, great 

progress in water diversion technology in dry areas has been made. The development of irrigation 

technology in the last half of the twentieth century was due to the development of lightweight 

aluminium pipes, the development of sprinkler technology and the development of trickle 
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irrigation in the 1970s. Self-propelled commercial travelling irrigation systems, such as CP and 

moving laterals, are particularly suitable for site-specific approaches because of their current 

level of automation and large area coverage with the aid of a single pipe lateral. Such irrigators 

equipped with control systems allow variable application depths to be realized in the direction of 

travel by adjusting system speeds. In most of the travelling irrigation systems in-use, such as 

booms, big guns, and CPs, irrigation depth can vary only in the direction of travel, but it remains 

uniform along the pipeline. Solenoid valves are available on the irrigation market, but they need a 

computer control system and software to control their operation (Al-Karadsheh et al., 2002; 

Fridgen et al., 2000a, b, c; King et al., 1999).  Similarly, some fields contain areas that are not 

cropped and could benefit from the ability to apply varying amounts of irrigation water. In 

addition, PI systems provide an outstanding platform for the installation of sensors for the real 

time monitoring of plant and soil conditions which would interact with a control system for 

optimal environmental benefits. 

          Irrigation simulation models can simulate the real world and improve irrigation 

performance, by integrating knowledge about soil, climate, crops and management for better 

management irrigation decisions (Clemmens, et al., 1999; Dechmi, 2003; Boken et al., 2004). In 

addition, sound and sustainable agriculture without electronics is inconceivable today, as 

electronic systems are used to reduce farm inputs, protect the environment, secure farm income 

and produce high-quality products. For example, a Binary Unit System (BUS) is mandatory for 

the efficient use of electronics in agriculture in order to guarantee unimpeded data and 

information transfer between agricultural systems from different manufacturers, such as soil 

moisture sensors, tractors, implements and farm computers (Speckmann et al., 1999; 

Auernhammer and Frisch, 1993; Jahns and Speckmann, 1984).  

          Therefore, the next generation of irrigation machines and irrigation scheduling systems 

should be re-defined so that they are able to determine when/how much/ where to irrigate not just 

when/how much (Evans et al., 1996). Considerable research and development is needed to realize 

the potential benefits of site-specific irrigation and to ensure a net economic return to the 

producer. Cost-effective and reliable equipment and control systems need to be developed and 

tested. Techniques for efficient and effective real-time system management need to be developed, 

field tested and validated. Methodologies for predicting the potential environmental and 

economic benefit for a particular site are needed to facilitate the adoption and implementation of 

the technology where appropriate. Rapid and low-cost methods for the delineation of irrigation 

management zones are needed.  
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1.2 Problems and objectives 

 Spatial variation of irrigation on fields is necessary because of changing soil properties 

including fertility, texture, water holding capacity, infiltration rate, topography and the 

cultivation of different plants on the same field. Moreover, different soil conditions lead to the 

development of different root systems as well as changing water tension and evaporation. 

Therefore, the need for irrigation may differ between zones of a particular field. In addition, 

irrigation systems have some disadvantages, such as over-irrigation and deficit irrigation due to 

uniform water application (non site-specific water application), droplet evaporation and drift 

losses (in particular in centre pivot systems), canopy evaporation and runoff. Precision irrigation 

applies the right amount of water at the right place at the right time using the right instrument. 

Therefore it is expected to have the ability to optimize water and energy consumption by 

preventing excessive water runoff and leaching. Precision irrigation is just beginning to be 

explored and still at the developmental stages. More experimental work is needed to determine its 

feasibility and applicability. Interest in site-specific irrigation management has emerged over the 

past decade in response to successful commercialization of other site-specific application 

technologies in irrigated agriculture.

1.2.1 Problems of investigation

          Several requirements must be established to realize precision irrigation. First, water 

requirement variations or irrigation management zones have to be delineated. The area of 

irrigation with the same irrigation depths is derived based on the spatial features of the soil. This 

determines the range of research on control elements.  The simultaneous consideration of plant 

conditions and varying soil properties require a very complex precision irrigation management. 

Thus, only the variation of soil property and in particular the variation of the total available water 

content were considered and the plant conditions over the whole study field were assumed to be 

the same. Second, the system must be capable of applying a range of application depths to the 

small discrete areas. The irrigation application map shows the variation of irrigation water 

requirement and their within-field location. In-field soil variation of the total available water 

content (small scale) is determined using   fast, non-destructive real-time sensor-based electrical 

conductivity measurements. Because of changing soil physical and climatic conditions, every 

irrigation management zone needs different irrigation depths during every irrigation pass.   
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1.2.2 Objectives

         In this study, a commercial centre pivot irrigation machine is modified to perform precision 

mobile drip irrigation (PMDI). Variable water rates are applied by a programmable logic control 

and solenoid valve (pulse concept). Meanwhile, sprinklers are replaced by drop tubes. One 

quarter of a field irrigated by a centre pivot is equipped with soil moisture sensors, while 

irrigation in another quarter is controlled with the aid of a climatic water balance–model in order 

to calculate irrigation water requirements. Therefore, the main objectives of this study are the 

improvement of an irrigation application map and the dynamic control of a modified centre pivot 

irrigation machine. To reach these goals, the following research is carried out: 

1. Description, development, and evaluation of the soil moisture sensor and the climatic water 
    balance -model 

2. Monitoring  the  within-field  variation  of  the  total  available water content and delineation of 
    irrigation management zones using two fast, non-destructive  and  sensor-based  soil  electrical   
    conductivity measurement methods: 
    a) a contact and electrode-based sensor (VERIS 3100, both superficial  and deep readings) and  
    b) a non-contact, EMI-based sensor (Geonics EM38, both  horizontal and vertical orientations) 
        and determination of the best sensor-based method using statistical analysis 

3. Development  and  evaluation of the programmable logic control system for the application of  
    variable-rate irrigation using  precision mobile drip irrigation 

4. Testing of  the programmable  logic  control system at variable-rate irrigation in a centre pivot  
    irrigation machine at  the FAL  

5. Development and evaluation of the performance of wireless sensor communication 

6. Evaluation of the application uniformity achieved at various pulsation rates   

7. Evaluation of the optimization of water and energy consumption as well as an economic  
    analysis of precision mobile drip irrigation 

          The structure of the research strategy for precision irrigation is summarized in Figure 1.1. 

According to this strategy, it is suggested that sensor-based soil electrical conductivity 

measurements could be used as an auxiliary estimate to determine spatial variability in total 

available water content. Even though a variable rate centre pivot irrigation system exists on the 

market, no commercially available, variable-rate centre pivot irrigation system has been 

developed. Furthermore, real-time sensing and on-the-go scheduling methods have yet to be 

integrated into this type of application. This type of technology can be highly profitable for the 

producer.
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Figure 1.1: Structure behind establishing a strategy for precision irrigation
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2 LITERATURE REVIEW 

     In this chapter, the literature is reviewed separately in two different sections: precision 

agriculture and precision irrigation.

2.1 Precision agriculture  

          The management of agricultural production is undergoing a change, both in terms of  

philosophy and technology. In conventional agriculture, decision-making is based on average 

conditions within those fields and uniform fields. Soil fertility was determined by combining soil 

cores into a single sample that was intended to best describe conditions across a field. Field 

scouting for crop conditions was done at a few locations within the field. However, soil is  

spatially heterogeneous, with most chemical and physical soil properties varying significantly 

within just a meter. Spatial soil heterogeneity is one of several factors that cause within-field 

variation in crop yield. Other spatially and/or temporally variable factors influencing within-field 

variation in crop yield include man-related factors, (e.g., irrigation management, compaction due 

to equipment, etc.), biological (e.g., disease, pests, etc.), meteorological (e.g., humidity, rainfall, 

wind, etc.), and topographical (e.g., slope, aspect, etc.) influences. The inability of conventional 

farming to address within-field variations in these factors not only has a detrimental economic 

impact due to reduced yield in certain areas of a field (Godwin et al., 2003), but also  

detrimentally impacts the environment due to over-application of agrochemicals and wastes finite 

resources. Precision Agriculture (PA) is regarded as a revolutionary approach for improved  

resource management for sustainable agricultural development and is a promising technology for 

site-specific management or management according to local conditions in the 21st century 

(Werner and Jarfe, 2002; Domsch, 2001a, b; Sparovek and Schnug, 2001; Heermann et al., 2000; 

Mulla and Schepers, 1997; Schueller, 1992). PA research started in the US, Canada, Australia, 

Germany with Pre-Agro (Werner and Jarfe., 2002) and in western Europe in the mid- to late 

1980s.
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2.1.1 Definition 

PA is only a few years old and started to receive great interest as a new experimental tool 

since the 1990’s. Given this inherent variability, management decisions should be specific to time 

and place rather than rigidly scheduled and uniform. PA has various names to describe the     

concept:  precision farming; spatially prescriptive farming; farming by computer; farming by 

satellite; high-tech sustainable agriculture; soil-specific crop management and site-specific   

farming. A lot of research and commercial development has taken place in PA in recent years. 

PA simply means breaking up a field, grove or other area into small units, then managing each 

unit on an individual basis and applying agricultural inputs (fertilizer, herbicide, water, ...)       

depending on the requirements in every management zone (MZ). Lowenberg-DeBoer and    

Swinton (1997) define site-specific management (SSM) as the “electronic monitoring and control 

applied to data collection, information processing and decision support for the temporal and   

spatial allocation of inputs for crop production. Whole-field management is increasingly viewed 

as inefficient because it results in the over-application of inputs in low-producing areas and    

sub- optimal application in areas with high-production potential. SSM the spatially directed man-

agement of soils, crops and pests based on varying conditions within a field (Larson and Robert, 

1991) provides an alternative to the use of the field as a primary management unit. The impact of 

PA technologies on agricultural production is expected in two areas: profitability for the produc-

ers and ecological and environmental benefits for the public. Increasing water,       fertilizer and 

pesticide costs, coupled with environmental concerns caused by  their use, lead to growing accep-

tance of the SSM concept  as a means of improving economic (Griffith, 1995; Reetz and Fixen, 

1995) and ecological  outcomes in agriculture (Wallace, 1994; Castelnuovo, 1995; Larson et al., 

1997). If soil conditions on the field vary significantly, and the fields are composed of high-yield 

areas and distinct weed patches, the basic requirements for variable rate application are present. 

However, they have proven difficult to measure (Lowenberg-DeBoer, 1996) and  may prove to 

be beneficial for improving profit potential and for reducing the risks (Oriade and Popp, 2000). 

PA allows for  precise and targeted application, the recording of all field treatments at the meter 

scale, tracking from operation to operation and transfer of recorded  information including  the 

harvested   products (Stafford, 2000).  

        Variabilities exerting significant influences on agricultural production can be categorized 

into six groups defined as follows.  (Zhang et. al., 2002):  
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1. Yield variability: Historical and present yield distributions.

2. Field variability: Field topography-elevation, texture, slope, aspect and terrace.

3. Soil variability: Soil fertility, soil physical properties (texture, density, mechanical strength, 

moisture content and electric conductivity), chemical properties of the soil (pH, organic matter, 

salinity and cation exchange capacity (CEC)), the water holding capacity of the soil, hydraulic      

conductivity and soil depth.  

4. Crop variability: Crop density, crop height, crop nutrient stress, crop water stress, leaf-area 

index (LAI), biomass, crop leaf chlorophyll content and crop grain quality.  

5. Variability in anomalous factors: Weed infestation, insect infestation, nematode infestation, 

disease infestation, wind damage and hay damage.  

6. Management variability: Among variability types (fertilizer application, irrigation pattern, 

…), yield variability is often considered the ultimate dependent variable, whereas most other 

variability types are treated as independent variables. Many types of variability are both spatial 

and temporal in nature. Water requirement serves as an example. Spatial water requirement   

patterns may change during the crop-growing season.

2.1.2 Managing variability

Site-specific applications of agricultural inputs can be implemented by dividing a field into 

smaller MZs that are more homogeneous in properties of interest than the field as a whole. An 

MZ is defined as ‘a portion of a field that expresses a homogeneous combination of yield-

limiting factors for which a single rate of a specific crop input is appropriate’ (Doerge, 1998). 

Thus, MZs within a field may be different for different inputs and the delineation of MZs for a 

specific input involves only the factors directly influencing the effectiveness of that input in 

achieving certain goals. An MZ also can be delineated by more than one specific crop input and 

different delineations. In this case, a single rate is applied for each of the specific inputs within a 

zone. The number of distinct MZs within a field is a function of the natural variability within the 
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field, the size of the field and certain management factors. MZs must be analyzed, evaluated and 

adjusted over time. They are not static and will change as the management style and capabilities 

of the farmer change. It may be prudent to combine zones that consistently perform similarly 

over time and to split zones that show more variability than first thought. As equipment with 

different capabilities is used, the zones may have to change and be adjusted. Depending on the 

pressure on the farm manager, the zones may be altered to best suit his or her needs. The       

minimum size of a zone is limited by the ability of the farmer to differentially manage regions 

within a field. If a GPS is involved to control the application or to guide the implement, there 

seems no reason for restrictions due to the shape of the zone. The removal of excessive details in 

within-field variability simplifies the shapes of the zones. Thus, it reduces the equipment       

requirements for Variable Rate Technology (VRT) (Chang et al., 2000; Zhang and Taylor, 2000). 

2.1.3 Engineering innovations 

While agronomists are playing the leading role in PA development, engineers have worked 

diligently to provide technologies needed to implement PA practices. Engineering innovations 

for PA involve the development of controls for remote-sensing technologies and sensors. 

Controls: Engineering innovations of controls are VRT agro-chemical applicators (Bennett 

and Brown, 1999; Swisher et al., 1999), Automatic guidance systems (Goddard, 1997), Robotic 

harvesting systems (Iida et al., 1998; Umeda et al., 1999). 

        Remote sensing: Remote sensing techniques have seen limited use in PA due to the need for 

high spatial resolution images. According to recent literature, remotely sensed images have been 

used to predict nitrogen needs in corn (Scharf and Lory, 2000), to estimate clay concentration of 

surface soil ( Chen et al., 2000), to detect weeds (Biller, 1998; Varner et al., 2000), or to quantify 

hail or wind damage in crops ( Erickson et al., 2000). Satellite remote sensing has held much 

promise for within-field monitoring, but has yet to demonstrate hard evidence for complete     
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success. Problems include timeliness, cloud cover, cost, poor spatial resolution and insufficient 

processing for the production of image data which are useful for crop managers (Deguise and 

McNairn, 2000). 

          Sensors: Yield sensors have been studied by Solie et al. (2000), Schueller et al. (1999), 

Pelletier and Upadhyaya (1999). Over the last decade new information technology, such as the 

Geographical Positioning System (GPS) and the Geographical Information System (GIS), have 

been introduced. These systems have allowed the scale of management to be reduced from the 

farm level to the field level and occasionally to the subfield level (Blackmore and Griepentrog, 

2002). With a single GPS receiver, error is typically within 10 to 15 metres in absolute terms. A 

beacon receiver reduces this range to 1 to 5 metres. Differential Global Positioning System 

(DGPS) receivers, which provide a method of increasing the accuracy of positions derived from 

GPS receivers, enable position accuracy to be improved to less than 1 metre. Dux et al. (1999)  

used a geo-referenced audio recorder with a speech-recognition capability to generate field maps 

during field scouting (field sensors). An infrared thermometer was used to measure canopy   

temperature to control irrigation events (Evans et al., 2000; Michels et al., 2000). An on-line, 

real-time spectrophotometer developed by Anom et al. (2000) was used to map plant water, nu-

trient, disease and salinity stresses. A multispectral radiometer was employed to detect crop salin-

ity stress. A near-ground scanning radiometer mounted on a tractor mapped vegetative-indices          

(Stafford and Bolam, 1998). Sudduth et al. (2000) designed an electromechanical sensor to count 

corn plants. Cotton plant height was measured by Searcy and Beck (2000) using mechanical  

fingers and infrared light beams (crop sensors). 

Rapid methods for scanning large volumes of information, i.e., soil  EC, are used          

extensively in precision agriculture decision making. Sensor-based measurement of depth-

weighted apparent profile soil electrical conductivity (ECa) and resistivity (inverse EC) could 

provide an indirect indicator of important physical and chemical soil properties. Factors that  

influence ECa include soil salinity, clay content and clay mineralogy, soil pore size and          

distribution, soil moisture content and temperature (James et al., 2000; Hendrickx et al., 1992; 

McNeill, 1992). In saline soils, most of the variation in ECa can be related to salt concentration 

(Williams and Baker, 1982) but in non-saline soils, conductivity variations are primarily a    

function of soil texture, moisture content and CEC (Kachanoski et al., 1988). Soil ECa can be 

used to indirectly estimate soil properties if the contributions of the other soil properties affecting 

the ECa measurement are known or can be estimated. In some cases, within-field variation in 
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ECa is due to one predominant soil property, and ECa can be calibrated directly based on that 

dominant factor. In some situations, the contribution of within-field changes in one factor will be 

large enough with respect to variation in the other factors that ECa can be calibrated as a direct 

measurement of that dominant factor. Examples of this direct calibration approach include     

estimating soil salinity in California (Lesch et al., 1995), topsoil depth above a subsoil claypan 

horizon in Missouri (Doolittle et al., 1994; Kitchen et al., 1999; Sudduth et al., 2001), soil water 

content (Sheets and Hendrickx, 1995), clay content (Williams and Hoey, 1987), CEC and      

exchangeable Ca and Mg (McBride et al., 1990) grain yield (Kitchen et al., 1999) and total   

available water content based on ECa measured in field capacity (Waine et al. 2000;                 

Al-Karadsheh et al., 2002). ECa can be measured remotely using electrodes and electromagnetic 

(EM) techniques. There are two types of soil EC sensors currently on the market for fast and non-

destructive ECa measurement. They can be divided into two types based on the method of EC 

measurement: contact or electrode-based soil EC measurement and non-contact or EMI-based 

soil EC measurement.

Electrode-based EC measurement: A resistivity meter involves applying voltage to the 

ground through metal electrodes and measuring the resistance (inverse of conductivity) to the 

flow of the electric current. This type of sensor uses electrodes, usually in the shape of coulters, 

that make contact with the soil to measure the electrical conductivity. In this approach, two to 

three pairs of coulters are mounted on a toolbar, one pair applies electrical current into the soil 

while the other two pair measure the voltage drop between them, resulting in simultaneous EC 

measurements. By enlarging the electrode spacing, deeper layers are imaged. The contact method 

is more popular for precision agriculture applications, because this method makes it easier to 

cover more area and it is less susceptible to outside interference. Several commercial systems are 

available including the VERIS EC Mapping System from the United States (Veris Technologies, 

Salina, Kansas – www.veristech.com) and the Multi-depth Continues Electrical Profiling 

(MuCEP or ARP ) (Dabas et al., 2000). Both systems use rotating metal discs as electrodes. The 

discs either cut several centimetres into the soil (VERIS) or have small probes that push into the 

soil (ARP). There are two commercially available types of VERIS units:  VERIS 3100 and 

VERIS 2000XA. VERIS 3100 provides EC readings from two different depths, 0.30 m (1 foot) 

(VERIS 3100_sh) and 0.91 m (3 feet) (VERIS 3100_dp).  VERIS 2000XA provides ECa    

measurements at only one depth (0.63 or 0.91 m). However, depth is adjustable and normally set 

at 3 feet.  VERIS 2000XA is smaller in size and easier to maneuver on smaller farms. The 
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VERIS unit can be pulled behind a truck through the field at speeds of up to 10 mph and covers 

swaths 6 to 18 m wide, depending on the needed resolution or the amount of soil variability in 

the field. According to the results of this study, however, neither VERIS 2000 nor MuCEP are 

available in Germany.

                Electromagnetic induction (EMI)-based EC measurement: Electromagnetic induction 

does not involve any direct contact with the soil surface. EM38 (manufactured by Geonics    

Limited of Mississauga, Ontario, Canada-www.geonics.com), GEM-300 (www.geoafrica.co.za/

reddog/SSI/GEM300.htm) and CM-138 are three popular models of non-contact sensors that are 

available on the market. The CM-138 Conductivity Meter is designed for fast shallow            

geophysical surveys (maximum effective depth 1.5 m). It has an operating frequency of 14.406 

kHz and can measure apparent conductivity between 0.1-1000 mS/m. Also, GEM-300 is a digital 

and multi-frequency sensor that can operate in a frequency range of 300 Hz at an investigation 

depth of about 6 to 10 m and in a range of up to 24 KHz at an investigation depth of about 1 m. 

EM38 works only at a fixed frequency and has an effective measurement depth of 0.75 m in the 

horizontal dipole mode (EM38_h) or 1.5 m in the vertical dipole mode (EM38_v). The EM-based 

ECa sensor most often used in agriculture is the EM38. Details of the EM-sensing approach are 

given by McNeill (1980a, b and 1992). 

            Each of the commercial ECa sensors has operational advantages and disadvantages. 

EM38 and GEM-300 have one effective measurement depth with fixed frequency, but VERIS 

3100 has two effective measurement depths, and MuCEP has three effective measurement depths 

with fixed frequency. The EM38 and GEM-300 require the user to complete a daily calibration 

procedure before use. Changes in ambient conditions such as air temperature, humidity and   

atmospheric electricity (spherics) can affect the stability of EM38 measurements. Sudduth et al. 

(2001) reported that EM38 output could drift by as much as 3 mS/m and this drift was not      

consistently related to ambient conditions. They suggested that drift compensation be             

accomplished using of a calibration transect or through frequent recalibration of the EM38. This 

lightweight system requires little power and makes it possible to collect data under wet or soft 

soil conditions. In addition, it is possible to collect data after a crop has been planted in 76-cm 

rows up until the time when the crop is 15 to 20 cm tall. In contrast, the VERIS 3100 system  

includes all necessary components and requires no user calibration. Thus, VERIS 3100 requires 

less user setup and configuration before use and has the advantages of a single-vendor system 

when it comes to troubleshooting. The disadvantage of the VERIS 3100 system is that it is     
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usually bulky and can not be used under some small farm and plot conditions.  VERIS 3100 is 

much heavier and requires a tractor or truck to pull it through the field, limiting its use to firmer 

soil conditions and unplanted fields. The newer VERIS 2000XA only has four coulters and one 

measurement terrain vehicle and can collect data between planted 76 cm crop rows. VERIS 

2000XA is not available in Germany. For soil mapping, comparison of EM38 and VERIS 3100 

was carried out  by Dabas et al. (2003). During this field experiment, they found errors in       

positioning, instrumental errors and errors in data processing. The errors in positioning could 

originate from the accuracy of GPS (change in the number of satellites, ambiguities, differential 

signal, interference, multipath) and GPS offset. The errors in instrumentation could result from 

poor calibration of EM38, high contact resistance of VERIS 3100, disturbances coming from the 

near environment (temperature effect both in the air with electronic drift and in the soil, vibra-

tions, presence of scattered metal objects) or influences which are even more complex to detect 

like random errors due to unknown reasons (spikes with EM38 for ex.). Finally, they found some 

problems during data processing, which are related to sampling rate and/or resolution, processing 

delay or latency in some instruments, which means that their output is buffered. This could  

originate from an integration of the data or poor synchronization of data with the GPS position.  
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2.2 Precision irrigation 

         By the year 2025, as much as "two-thirds of the world’s population could be under stress 

conditions and the number of countries facing water stress will increase from 29 today to 34" 

(World Meteorological Organization, 1997). Irrigation is a major player in the demand for water 

and already accounts for between 70-80 % of the total world consumption (Melvyn et al., 1997). 

Rainfed agriculture, covering 83 percent of the world’s farmland, accounts for about 60 percent 

of global food production and irrigated agriculture covers some 17 percent of cultivated land 

(about 270 million ha) and contributes nearly 40 percent of world food production. Although 

irrigation will remain the predominant water consumer  in developing countries, an increase of 30 

percent in irrigation withdrawals to double and meet global food  requirements by 2025 may not 

be    possible if other essential human needs are to be met (Gleick, 1998). The decrease in the 

availability of water for agricultural purposes, coupled with the requirement for higher     

agricultural  productivity in irrigated areas due to population growth and the necessity to feed 

this growing population without enlarging agricultural areas  means that the world has no 

option and water use efficiency has to be improved, especially in arid and semiarid

regions such as Iran. There the ratio of water/area is less than “1”, and consumption per hec-

tare of cultivated area will increase while water becomes scarcer. But how can water be 

saved and food production for a growing world population continue to expand within the 

parameters of likely water availability? There are many technologies for the reduction of water 

consumption. Wastewater can be treated and used for irrigation. This could be a particularly  

important source of water for peri-urban agriculture, which is growing rapidly around many of 

the world’s mega-cities. Water can be delivered much more efficiently to the plants and in ways 

that prevent soil waterlogging and salinization. Changing to new crops requiring less water 

(and/or new improved varieties), together with more efficient crop sequencing and timely plant-

ing, can also achieve significant savings in water use. Irrigation systems have been developed, 

but if the same amount of water is still applied on the entire the field without taking the spatial 

variability of the soil into consideration, some areas may receive too much water and others not 

enough within one field. Excessive water application could contribute to surface water runoff 

and/or leaching of nutrients and chemicals into the groundwater. Inefficient water application 

causes reductions in yield quantity and quality, inefficient use of fertiliser and other inputs and 

lower overall water use efficiency. The challenges lie in the development of criteria and         

appropriate strategies for integrated water, nutrient and pest control programs. On-board and field 
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sensor systems are needed to monitor soil and plant conditions for proper management. Interest 

in site-specific irrigation management has emerged over the past decade in response to the     

successful commercialization of other site-specific application technologies in irrigated          

agriculture. This interest is due partially to the desire to improve water use efficiency and       

partially to the need to implement site-specific water management to complement the site-

specific management of other crop inputs such as nitrogen for groundwater protection. A holistic 

approach to site-specific crop management in irrigated agriculture includes water as one of the 

primary inputs. In this case, the use of PA for irrigation water management/scheduling, which is 

known as PI, will be a good solution to avoid over- and deficit- irrigation because of soil physical 

variability.  

2.2.1 Background 

          Irrigation must vary spatially in fields because of spatial soil variability (texture,           

topography, water-holding capacity and infiltration and drainage rate). Therefore, the need for   

irrigation may differ between different zones of a particular field. The extension of the site-

specific crop management concept to irrigation follows from the fact that excessive and deficient 

water availability greatly impacts on crop yield, quality and economic aspects. Interest in PI is 

due partially to the desire to improve water use efficiency and partially to the need to implement 

site-specific water management to complement the site-specific management of other crop     

inputs. These inputs include nitrogen for groundwater protection and many pesticides that are 

very readily dissolved in water, thus moving through the soil with excess water. Spatial         

variability in available soil water often develops during the irrigation season under the conditions 

of conventional uniform irrigation. This can cause problems in irrigation scheduling for optimum 

crop yield and quality, particularly for shallow-rooted, water-sensitive crops such as potatoes. 

Also, evapotranspiration that has an effect on irrigation requirement is dependent upon   micro-

meteorological conditions and crop growth, both of which vary spatially and temporally. Also, 

water application is influenced by many factors that vary spatially and temporally. For this rea-

son, water supply must  vary spatially in fields. Although soil moisture is near  F.C. after first 

irrigation  across the entire field and within different irrigation zones even though it depends on 

soil water capacity after  first irrigation, the water content is the same only for a very short time, 

and reduced soil moisture will be different within different irrigation zones because of different 
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deep percolation (Sanders et al., 2000;  Jordan et al., 1999), different evaporation rates on the soil 

surface and different root system development. In humid environments where irrigation         

supplements rainfall, the general management strategy is to irrigate enough to supply the crop 

needs until the next rainfall. Thus, it may be desirable to apply more water to an area with low 

TAWC than to an area with high TAWC. In some situations, it may be desirable to apply smaller       

irrigation amounts when resuming irrigation after rain in order to have adequate storage capacity 

for future rainfall. Depending on parameters which have an effect on irrigation water              

requirements on the field, plant type and variety, plant spacing and plant size may vary within 

same field (Torre et al., 2000). Moreover, soil depth sometimes has an impact on the site-specific 

irrigation schedule (Oliveira et al., 2003). In these cases, the irrigation system has to be able to 

irrigate variably. But in commercial agriculture, this is not normal and logical. Moreover,       

infiltration rates on a field may vary from very low to very high due to changes in the soil     

characteristics which control infiltration characteristics (Jordan et al., 1999). Since it is difficult 

to change soil conditions, the same result can be achieved through site-specific application of 

irrigation water. Based on this concept, the field is divided into zones with homogenous         

infiltration characteristics, with each zone being irrigated differently (Ersahin and Karaman, 

2000). In this case, the maximum irrigation application rate must be lower than the infiltration 

rate.   Therefore, the implementation of PI is expected to provide the possibility to optimize and 

reduce (Perry, et al., 2004) water and energy consumption by preventing excessive water runoff 

and leaching. In addition, total yield, marketable yield and gross income are expected to grow as 

compared with conventional uniform irrigation management (King et al., 2006). Moreover, the 

problems which have been described previously will become less severe. Therefore, PI or site-

specific irrigation can not only optimize water consumption during first irrigation, but it can also 

optimize the water consumption during subsequent irrigation (Personal communication, Prof. 

Paschold, Dr. R. G. Evans and Prof. C. Sommer, 2005).  

          PI is still at the development stages. Since it is a relatively new concept in agriculture, its 

realization is no simple task and requires a lot of experimental work to determine its feasibility 

and applicability. Literature on this topic is limited and mostly from 1992 and later.  PI is also 

called Site-specific Irrigation (SSI) or Variable Rate Irrigation (VRI). PI is an exciting aspect of 

site-specific farming that is just beginning to be explored and is still very much a research issue 

(Sourell and Sommer, 2002). Fully integrated packages have not yet been created, much less 

made commercially available. However, assuming the farm economy will recover enough for   

capital investment, the situation may change quickly. PI technology brings with it the promise of   
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increased yields, greater economic return and decreased impact on the environment in spite of 

field variability. PI needs   systems which are able to supply water to plants only when and where 

they need it and in the right quantity. First, however, Irrigation Management Zones (IMZs) must 

be delineated and an Irrigation Application Map (IAM) must be created as the water needs vary 

spatially in many fields (Schmitz and Sourell, 2000; Sanders et al., 2000; Türker, 2001a; Duke et 

al., 1997).

        It is well known that soil properties may vary at a geographic scale much smaller than at the 

commercial agricultural field scale. The primary factor that will influence the need for spatial 

variation of irrigation application is the Total Available Water Content (TAWC) of the soil, 

which depends on irrigation frequency and depth. The amount of water that is held by the soil 

and is available to the plants is dependent on the soil type. TAWC is the total amount of water in 

the plant root zone that is between field capacity (F.C.) and the permanent wilting point (P.W.P.). 

Typical values of the TAWC for a range of soil types are tabulated in Table 2.1.  

        Spatial variability in TAWC is mainly due to spatial soil texture variability that causes   

spatial variation of irrigation requirements. Silt loam holds two and a half times more water than 

fine sand. This is an important consideration when trying to determine irrigation   frequency and 

duration. The concept of TAWC assumes that a soil can hold a certain amount of water that is 

readily used by crops in the root zone (Schmitz and Sourell, 2000). TAWC is more useful for 

management decisions than the volumetric moisture content, since the volumetric moisture con-

tent is defined as the proportion of water in a given volume of soil, whereas TAWC expresses the 

plant’s ability to remove water from the soil. Thus, delineation of IMZ with      different TAWC 

is one of the most important basics tasks during PI implementation (Oliveira et al., 2003).  

Table 2.1:  TAWC of ten soil types (Rhoads et al., 2000)

Soil type Textural characteristics TAWC [cm/m]
0 Sandy clay loam 17 
1 Silty clay loam 15 
2 Clay loam 15 
3 Loam, very fine sandy loam, silt loam with 2 % 

organic matter 17 
4 Loam, very fine sandy loam, silt loam with 3 % 

organic matter 21 
5 Fine sandy loam 15 
6 Sandy loam 12 
7 Loamy sand 9.2 
8 Fine sands 8.3 
9 Silty clay,clay 13.3 
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In order to accomplish this basic goal, Oliveira et al., (2003) delineated   management units for 

site-specific Irrigation. They grouped areas of the field into minimum management units, which 

have the least amount of TAWC variability. This included the development of a merging       

algorithm which allowed adjacent sub-areas with different TAWC values to be recursively   

combined until the whole field was merged into one management unit with area-weighed average 

TAWC.

Strategies for Variable TAWC: The strategic response to variable TAWC depends on the 

irrigation management objectives. For many crops, the irrigation objective may be summarized 

as full irrigation. Each irrigation is designed to refill the root zone. The net application amount 

should equal the amount of water used by the crop since the last irrigation. The irrigation       

frequency is chosen to ensure that the soil never gets "too dry" between irrigations. Field        

locations with lower TAWC will need more frequent irrigation and lower irrigation depth, 

whereas higher TAWC locations need less frequent irrigation and deeper irrigation depth. In  

general, the time between irrigations is determined by how much water can be used by the crop 

before undesirable stress sets in (related to TAWC) and by how fast the crop is using water 

(ETc). Only a portion of the available water is easily used by the crop. The maximum soil water 

deficit is the amount of water stored in the plant’s root zone that is readily available to the plant. 

To prevent plant water stress, an allowable depletion factor is used to calculate manageable   

allowable depletion. Table 2.2 presents the estimated maximum moisture deficiency levels for 

the ten soil types in Table 2.1 at various crop rooting depths. This table shows that  soil moisture 

tension  between irrigations increases more rapidly in coarse soils than in  fine soils. Moreover, 

moisture deficiency is related to the type of crop. Table 2.3 shows the optimum range of soil 

moisture for important crops (Wilamowitz Moellendorff et al., 1985). Non-simultaneous        

irrigation of different portions  of field a with different TAWC seems to be time-consuming and    

uneconomical, while simultaneous variable irrigation of the whole field, including different 

TAWC, seems to be better as shown  by King et al. (2006) for a potato field and by Moore et al. 

(2005) for cotton.    

          However, the amount of water to add back to the soil during each irrigation depends on 

how much time has passed since the last irrigation and how much water the crop has used since 

then. This means that even in variable TAWC fields, irrigations can be effectively managed by 

selecting the irrigation interval appropriate to the those locations with minimum TAWC that will 

provide  an  irrigation   regime   acceptable  for  all  soils  and  by  setting  the  irrigation  amount  
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Table 2.2: Management allowed depletion of soil moisture for ten soils at various soil types,
                 1ft = 0.305 m (Rhoads et al., 2000)  

Soil type 

0 1 2 3 4 5 6 7 8 9 

Root

depth

[ft] Management allowed depletion [cm]

1.5 3.8 3.6 3.6 3.8 4.8 3.6 2.5 2 2 3 

2 5.1 4.6 4.6 5.1 6.4 4.6 3.6 2.8 2.5 4.1 

2.5 6.4 5.6 5.6 6.4 7.9 5.6 4.6 3.6 3 5.1 

3 7.6 6.9 6.9 7.6 9.7 6.9 5.3 4.1 3.8 6.1 

Table 2.3: Optimum range of maintenance soil moisture for important crops (Wilomowitz
                 Moellendorff et al., 1985) 

Crop % TAWC 

Cereals 40-60 

Early Potato 50-75 

Sugar beet, Fodder beet 50-80 

Leguminous plants about 60 

Grass, Clover 60-85 

Corn 50-70 

appropriate to this interval and the crop water use rate. Those areas with higher TAWC will   

receive water a little more frequently and in somewhat smaller amounts than during managed 

irrigation. However, this has no detrimental effects.  They will also remain above the critical 

stress-generating water level. Therefore the strategy for locally variable TAWC involves locally 

variable irrigation applications.
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2.2.2 Irrigation systems with special focus on mobile drip irrigation
          systems

Irrigation is defined as the application of water to a crop to replace the climatic moisture   

deficit over an irrigation interval and has a vital role in increasing crop yields and stabilizing  

production. There are three main classifications for irrigation systems: localized, sprinkler and 

surface irrigation (Figure 2.1). 

Figure 2.1: Irrigation systems (Sourell, 1998) 

         Water management research frequently necessitates varying irrigation water application 

(Fraisse et al., 1995a, b). The use of suitable irrigation systems can save water and energy. The 

amount of water that can be conserved by means of improved irrigation systems and practices 

depends on the ability of a particular type of irrigation system to implement improved           

management. Improved irrigation systems should offer opportunities to conserve water, to reduce 

the risk  of either deficit or over-irrigation and to reduce potential leaching of fertilizers into the 

ground water. In the design and management of irrigation systems, the efficient use of water as 

well as crop production a are now often major goals, but water costs and farm sustainability, as 

well as the potential for the pollution of resources by over-irrigation must also be taken into   

consideration (Burt et al., 1997). Unfortunately, irrigation systems that spatially vary either water 

or nutrient application have still not been perfected and or made commercially available, let alone 

systems changing both inputs simultaneously (Schepers, 1996). The required techniques are at 

the test stage, but individual products, such as electronic roll-up speed control for mobile       

systems, are establishing themselves in practice (Sourell and Sommer, 2002).  CP  and  moving- 

laterals  types of sprinkler irrigation systems are commonly used in new irrigation developments 
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all over the world (Faci et al., 2001) and have the ability to move during the irrigation process. 

Therefore they can cover a large irrigated area with minimum human effort, which leads to an 

extension of row crop and grain production areas. 

        Rolling topography,  soils whose hydrologic properties are hard to manage and fields with 

variable fertility (Schepers; 1996) can make water and nutrient management on such spatially 

variable fields  a nightmare due to difficulties encountered in scheduling under such irrigation 

systems, which make them prime candidates for variable rate water and fertilizer application. 

These systems are often advantageous compared to other irrigation systems. As recognised by the 

American Society of Agricultural Engineers (ASAE), the most important features of a properly 

designed sprinkler irrigation system are that  a) The rate of water application should be less than 

the soil infiltration capacity so that no runoff  or ponding occurs b)  water distribution should be 

reasonably    uniform and c) the amount of water applied during the irrigation event should be 

consistent with  moisture storage capacity within the crop root zone (Bittinger and Longenbaugh, 

1962). This is valid not only for the plot as a whole, but also for the varying parts of the field. 

        High distribution uniformity, precise water applications and operational flexibility in time 

and space are required in irrigation systems.  The depth of water applied by such a sprinkler   

irrigation system is a function of the application rate and lateral travel speed. The application rate 

does not depend on the system speed, but is a function of the operating pressure, nozzle size and 

type and sprinkler spacing along the lateral (Duke et al., 1992a, b; Camp et al., 2000). The           

development in irrigation technology, especially in PE pipes after 1970, helped in the further       

development of mobile-reel irrigation; which allows a greater area to be irrigated using less   

energy, water and labour   (Sourell, 1999). High water distribution uniformity is required to attain 

a satisfactory level of irrigation efficiency (Dechmi et al., 2003). Dukes and Perry (2006) found 

that a variable-rate CP and linear move control system was able to apply water uniformly through 

pneumatically actuated solenoid valves, but the use of electric solenoid valves caused some delay  

during valve opening and closing because of the time required for the valve mechanism to    

function. Al-Kufaishi et al. (2005) reported on the contrasting patterns of two VRT used in     

precision irrigation: pulse width modulation and bi-model sequencing. The results of the different 

distribution uniformity performance variables revealed that the pulse width modulation system 

performed more efficiently than the bi-model sequencing system at all nozzle pressures.  

Also, there is increasing interest among growers in achieving the most efficient use of their 

energy and more efficient use of their water resources (through decreasing wind losses and    

increasing uniformity) that can be usually achieved by increased investments in modern sprinkler 
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systems. Drip irrigation as a capital-intensive irrigation procedure with the ability to conserve 

water and energy did not gain the desired acceptance. Apart from the high capital requirement, 

the high work time requirement for the set up and removal of the drip irrigation system in       

one-year cultures is to be mentioned. However, a combination of CP and moving lateral         

machines which is called mobile drip irrigation (MDI) can create a highly efficient irrigation 

system. 

Mobile Drip Irrigation: Trickle irrigation is gaining in importance in the world, especially 

in areas with limited and expensive water supplies, since it allows limited resources to be more 

fully utilized. Replacing the sprinklers on a CP or linear move machine by using polyethylene 

“PE” tubes with emitters to convey irrigation water directly to the soil surface converts a        

traditional CP or linear move to a MDI. In stationary drip irrigation, closed plastic tubes with 

emitters are used to deliver irrigation water to the plants using low pressure. No water losses due 

to wind drift and spray evaporation occur in sprinkler systems and especially in CP machines. 

The idea of mobile drip irrigation is a combination of the advantages of stationary drip irrigation 

with CP or linear move or boom trailer irrigation machines. The advantages of the stationary drip 

irrigation are its low operating pressure, low water losses and high irrigation efficiency. The  

advantages of the CP machine are its low capital requirements, flexibility and low labour       

requirements. In addition, soil cultivation under CP machines is easy. The operating pressure of 

the drip tubes can be much lower than that of sprinkler systems. The operating pressure at the 

inlet of a traditional CP with sprinklers ranges from 400 to 500 kPa as compared with 175 to 225 

kPa at the inlet of the pivot machine with MDI. Thus, pressure reduction in mobile drip irrigation 

enables energy to be    conserved. 

        The use of drip tubes with a moving irrigation system appears to have been introduced first 

by Rawlins et al. (1979). They mentioned the use of micro-basins and noted that crop response is 

similar to a stationary drip installation with closely spaced emitters. One advantage they        

mentioned was that saline water will not damage the foliage if such a system is used. In trickle 

irrigation systems, no water is lost by wind drift and spray evaporation like in sprinkler systems, 

which depend on the soil to deliver water to the end of the field. Because of these factors, trickle 

irrigation can deliver water to crops at efficiencies above 80 %, whereas surface irrigation usually 

operates at lower efficiencies between 60 and 75 % and is thus potentially able to conserve water 

and energy (Phene et al., 1981). However, the labor  requirements for the annual installation and 
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retrieval of trickle tube laterals and the large capital investment prevent the general adoption of 

trickle irrigation for field row crops. Discontinuous motion resulting from conventional          

mechanical guidance used in travelling sprinkler irrigation systems, which depends on            

mechanical tension to trigger electrical or hydraulic switching of individual tower drives, would 

cause excessive ponding of water in some areas and insufficient water supply in others. This is 

not critical in the case of travelling sprinkler irrigation systems because sprinkler heads cover a 

large enough soil area and provide sufficiently uniform water distribution for practical purposes. 

Sometimes, this practice creates mechanical and structural stress, which can result in structural 

failures and/or damage (Phene et al., 1981). 

         Efforts were made to commercialize the technology as early as 1992 under the name of 

Drag-N-Drip by Sherman Fox of Trickle Irrigation Specialties Co. of Salt Lake City, Utah.  

Newer efforts at commercializing the technology are being made by T-L Irrigation of Hastings, 

Nebraska, (www.tlirr.com) under the trade name of Precision Mobile Drip Irrigation (PMDI), 

which utilizes in-line drip hoses to distribute water directly to the ground. The hoses are spaced at 

0.75 m or 1.5 m between lines being dragged through crops using a CP or linear move irrigation 

system. Many authors have described the MDI, but the classic dripping irrigation materials were 

never used. In some cases, holes in pipes, similarly long hoses with different types of emitters, 

and similarly long hoses with one type of emitters were used in linear and CP machines. In these 

cases, irrigation intensity was very high. At the same time, the classic drip irrigation materials in  

a CP were never used. Therefore, the application of MDI in CP machines will be important. 

         A CP irrigation machine can be adapted to provide the mobility and the water supply for 

such a concept (Chu, 1983). Lamm (2003) installed drip irrigation laterals on CP irrigation to 

implement MDI. Trailing drop tubes were 12 m long in some places. As a result drop tubes    

tangled into the CP sprinkler drive mechanism. This study provided the following results:  a) a 

need to filter water for successful long term use because of clogging problems experienced and b) 

Contend of MDI with evaporation directly from the emitter surface were found.  Evaporation can         

potentially leave chemical precipitation and biological growth on the emission point which can 

start the clogging process earlier and at a faster rate as compared to subsurface drip irrigation 

systems. Also, the limited irrigation capacity of this system caused some uneven drip line      

watering as evidenced by crop colour and height differences. Moreover, sometimes drip lines 

were tangled in the CP sprinkler drive mechanism. Also, Derbala (2003) developed and evaluated 

MDI with a CP machine and compared the total costs of stationary drip, mobile drip and        

traditional CP with sprinklers. He calculated the length of the drip tube about 1 m at the first and 
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16 m at the last tower for 20 mm irrigation depth, 48 hr irrigation time and 7.25 l/h emitter   dis-

charge at 50 kPa and 85 % to 100 % distribution pattern efficiency. The results indicated that the 

total costs of stationary drip irrigation (SDI) were very high and that they were low for the CP 

sprinkler. In the case of MDI, however, the total costs were close to the total costs of a CP   

sprinkler machine. But he did not achieve a complete economic analysis, because he did not   

consider  the total yield of the area irrigated by  each system. 

          One of the primary goals in the design of a trickle irrigation system is to have a hydraulic 

balance to ensure uniform discharge. Emitters or drippers, as the heart of a trickle irrigation    

system, represent the most important element of a trickle irrigation installation with respect to 

uniform water application and high irrigation efficiency. In reality, unit-to-unit emitter discharge 

is variable, as observed by Bralts et al. (1981) and Solomon (1979). With this purpose in mind, it 

is essential that the emitter flow variation and/or the uniformity of the water distribution be 

known, in particular since drip irrigation system efficiency depends on application uniformity 

and a successful uniform drip irrigation system application depends on the physical and hydraulic 

characteristics of the drip tubing (Al-Amound, 1995). 

Accurate emitter manufacturing is necessary in order to achieve a high degree of system 

uniformity. However, the complexity of emitters and their individual components make it      

difficult to maintain precision during production. Changes in production temperature, mold  

damage and nonuniform mixing of raw materials are some of the factors affecting emitter      

homogeneity. Manufactures normally supply discharge curves. However, they seldom publish 

information relating pressure to emitter discharge variability. Ideally, all emitters in the system 

should discharge equal amounts of water, but due to manufacturing  variations, pressure         

differences, emitter plugging, aging, friction head losses throughout the pipe network, emitter 

sensitivity to pressure and irrigation water temperature changes, flow rate differences between 

two supposedly identical emitters exist (Mizyed and Kruse, 1989). 
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2.2.3 Implementing precision irrigation 
To implement precision irrigation, two basic tasks must be accomplished. The delineation of 

IMZs and precision irrigation control. 

2.2.3.1 Delineation of irrigation management zones

Zones in the field that are to be irrigated with differing amounts and frequencies must be 

identified. There are three options to delineate IMZ (different TAWC). 

 2.2.3.1.1 Delineation of irrigation management zones by soil sampling grid 

         A soil sampling grid and laboratory analysis can be established and the soil can be     

evaluated to determine TAWC or soil texture at a site within each grid cell. At each site, the soil 

should be evaluated to a depth equal to the rooting depth of the crop (Oliviera et al., 2003; King 

et al., 2006). These procedures are costly, time-consuming and provide relatively low resolution 

data.

  2.2.3.1.2 Delineation of irrigation management zones by remote sensing (reflectance
                  measurement)

       One option for determining where to dig soil pits in a field is aerial infrared imagery that 

shows different colours which are characteristic of different soil textures (Figure 2.2). The

effects of eroded soil on crop vigor are evident in this photograph. The deep black colour of 

the centre pivot irrigated corn is underlain by Holdrege silt loam soils. Aerial imagery has 

held much promise for within-field monitoring, but has yet to demonstrate hard evidence for 

complete success. Aerial imagery quantifies the reflectance of the soil surface; therefore aerial 

imagery can distinguish between fine sand, loam and clay soils. Once the farmer knows where 

the surface soils change, soil evaluation costs can be reduced by selecting one site per soil zone 

identified by means of aerial imagery.     
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Figure 2.2:  Determining  soil  types  using aerial photos. The  lines show  the border of soil texture 
                    (Rundquist and  Samson, 1988) 

        Dependable relationships are only possible when imagery is acquired over fields with     

uniform tillage conditions and often the response is only strong enough to identify the textural 

class of the soil (Branes and Baker, 2000). Reflectance measurements over tilled fields have 

beenused to develop predictive equations for the fraction of sand, silt and/or clay (that is a good 

index of the TAWC) at the soil surface with varying levels of success (Suliman and Post, 1988;     

Coleman et al., 1993). Barnes and Baker (2000) used multi-spectral airborne (green, red, near 

infrared (NIR) and thermal) and satellite (SPOT and Landsat TM) to derive soil textural class 

maps for 350 ha of a 770 ha research and demonstration farm in Maricopa, Arizona. However, 

using spectral classification procedures on a field-by-field basis, it was possible to map areas of 

one soil textural class with reasonable accuracy. These results are specific to the study area and 

may not apply at other locations due to the numerous factors that can contribute to a soil’s    

spectral response. To minimize the effects of soil properties other than texture (e.g., soil       

moisture, organic matter and minerals other than quartz), Salisbury and D´Aria (1992) used a       

combination of visible, near-infrared (NIR) and thermal-infrared data. Directed sampling       

approaches can also be useful for interpreting bare soil imagery in terms of soil texture. Hong et 

al. (2002) found that airborne hyperspectral images in blue wavelengths were most highly      

correlated with ECa measurements of EM38-v and VERIS 3100-deep (that can be a soil type 

indicator in non-saline soils). However, one must be aware of the fact that just because the      

surface soils are similar does not mean that the sub-soils are the same. Moreover, problems    

include timeliness, cloud cover, ground cover, cost, poor spatial resolution and insufficient   

processing. As a result, this technique does not always provide image data which are useful for 

the crop managers (Deguise and McNairn, 2000). 
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2.2.3.1.3 Delineation of irrigation management zones by means of sensor-based ECa  
               measurement 

        A third method of determining a TAWC map is based on  a fast and non-destructive    

measurement  of the apparent  electrical conductivity of the soil (ECa) with the aid of             

electrode-based and electromagnetic methods (ECa). Factors that influence ECa include soil  

salinity, clay content and clay mineralogy, soil pore size and distribution, soil moisture content 

and temperature (James et al., 2000; Hendrickx et al., 1992; McNeill, 1992; Rhoades et al., 

1981). The soil ECa can be used to indirectly estimate soil properties if the contributions of the 

other soil properties affecting the ECa measurement are known or can be estimated. In some 

cases, the within-field variation in ECa is due to one predominant soil property, and ECa can be 

calibrated directly based on that dominant factor. Generally, studies indicated that for soils with 

low concentrations of dissolved electrolytes the non-invasive electromagnetic induction-based 

and electrode-based measurement of soil electrical conductivity can be used to determine the soil 

water content at the field scale. Previous studies have shown that the controlling factor in some 

areas is clay content (Durlesser, 1999; Cook and Walker, 1992; Triantafilis and Lesch, 2005; 

Hedley et al., 2004; Dalgaard et al., 2001), salinity (Rhoades et al., 1989; Lesch et al., 1995) and 

water content (Kachanoski et al., 1988 and 1990; Sheets and Hendrickx, 1995) and can include 

all three factors in different parts of a study area (Paine et al., 1998; Scanlon et al., 1999). Kach-

anoski et al. (1988) found that spatial variation of the total water content stored in the top 0.5 m 

of a 1.8 ha field near Brantford, Ontario, Canada, was highly correlated to spatial variation of 

bulk soil electrical conductivity measured by electromagnetic induction meters (R2 = 0.96). In 

another study 50 km west of Saskatoon, Saskatchewan, Canada, Kachanoski et al. (1990) found 

that  bulk soil electrical conductivity explained more than 80 % of the variation of water storage 

in the top 1.7 m of a moderately fine-textured and moderately calcareous soil along a 660 m  

transect. Sheets and Hendrickx (1995) conducted a similar study that used 65 neutron probe   

access tubes at 30-m intervals and compared water content measurements with ECa readings 

using an EM31 (manufactured by Geonics Limited of Mississauga, Ontario, Canada-

www.geonics.com) along a 1950 m transect in New Mexico for 16 monthly measurements. The 

lower R2 (0.64) calculated for this study relative to that calculated by Kachanoski et al. (1988, 

1990) was attributed to the deeper penetration of the EM31 meter (4 m) relative to the water con-

tent monitoring (1.50 m) and the distance between the EM measurements and the neutron probe 

access tubes (10 m). Also, the use of electromagnetic induction measurements was evaluated to 

predict the water content in the upper 1.50 m of a prototype engineered barrier soil profile de-
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signed for waste containment by Reedy et al. (2003). They monitored the water content with a 

neutron probe and a Geonics EM38 bulk soil electrical conductivity meter in the upper 1.50 m of 

a barrier soil profile. A simple   linear regression model accurately predicted the average volu-

metric water content of the profile at any location at any time (R2 = 0.80) and the spatially aver-

aged volumetric water content over the entire area at any time (R2 = 0.99). 

        A good correlation between clay content and soil electrical conductivity measurements with 

the aid of  the EM38   method was found by Dalgaard et al. (2001) (R2 = 0.79) in Denmark, by 

Durlesser (1999) (R2 = 0.9) in Germany, by Doolittle et al. (2002) (R2 from 0.63 to 0.90) in the 

USA and by     Hedley et al. (2004) (R2 = 0.72) and Triantafilis and lesch (2005) (R2 = 0.81) in 

Australia. Domsch and Giebel (2004, 2001), Greve et al. (2004), James et al. (2003);                

Al-Karadsheh et al. (2002); Anderson, et al., (2002); Kitchen et al. (2002);  Nehmdahl and Greve 

(2001) and Waine  et al. (2000) used ECa derived by EM38 or VERIS 3100 to generate a soil 

texture map.  

           In non-saline soils and when the field is at field capacity, TAWC will be a dominant factor 

which has an effect on the ECa. Waine et al. (2000) described a methodology which uses EMI for 

TAWC maps based on EM38. They  calculated TAWC and the soil  moisture deficit by         

examining  moisture  release curves for UK soils and  plotting  calibrated  data on                   

texture-moisture  data when the field  was at  field  capacity. They derived a good correlation (R2

= 0.88) between the TAWC against the EMI data for the Gamlingay site. Also, they classified 

ECa between 0-10 mS/m as sandy loam, 10-20 mS/m as clay loam and greater than 20 mS/m as 

clay. An approach for establishing a strategy for precision irrigation was the focus of a study on 

the suitability of EM38 by Al-Karadsheh et al. (2002) at the Federal Agricultural Research    

Centre (FAL, Braunschweig, Germany) and VERIS 3100 by Moore et al. (2005) at Clemson 

University, USA, for TAWC delineation in the field as an indicator or surrogated property for the 

quantification of in-field spatial variability in order to develop more precise variable rate water 

application maps. Al-Karadsheh  (2003) classified the TAWC at different EC-zones in non-saline 

soils, when the field was at field capacity in the upper 60cm on  three different fields as shown in 

Table 2.4. Moreover, Moore et al. (2005) divided the field into different irrigation management 

zones based on soil texture because of a strong correlation between soil EC and soil texture. The 

zones provided each treatment with a different soil texture, which was directly proportional to 

water holding capacity. Also, Delin and Berglund (2005) found a positive correlation (r = 0.54) 

between TAWC and ECa measured with EM38 between at a depth of 30 to 100 cm on a sandy 

field. According  to results of Ristolainen et al. (2004), soil type classification based on  ECa 
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measured with a resistivity fork (Geological Survey of Finland, Puranen et al., 1999) and      

permittivity measured with a percometer (Adek Ltd, Estonia) were based mainly on differences 

in soil water holding capacity. Recently, Brevik et al. (2006) showed that ECa has its greatest 

potential to differentiate between soils when the soils are moist. They mentioned that ECa    

techniques may prove to be a more effective soil-mapping tool in the spring or at other times 

when the soil profile is moist and less effective during dry periods. Therefore, with due attention 

to the possibility of monitoring the within-field variation of the total available water content  

using many available ECa sensors on the market which have different nominal investigation 

depths, it is better to compare the ability of electrode-based and EMI-based ECa sensors to find 

the best ECa sensor-based delineation of irrigation management zones for the creation an       

irrigation application map. 

Table 2.4: TAWC  on  three   fields   in   different  EC-zones   in   the  FAL,  Institute  of  
                  production  engineering and building research  (Al – Karadsheh, 2003)

Field No EC  zones [mS/m]      TAWC [cm/m]

10-14 10.4 
14-18 10.6 

1

18-23 10.7 
10-16 11.6 2
16-22 12.0 
10-13 7.4 3
13-16 7.9 
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2.2.3.2 Precision irrigation control (PIC)

       The irrigation system must be designed and installed such  that it is capable of sending water 

to each of these zones according to  different schedules. The PIC system can be neatly broken 

down into three   areas:  

-  Determination of irrigation depth within each MZ 
              -  Communication and protocols 
              - Controller 

2.2.3.2.1 Determination of the irrigation depth within irrigation management zone

        With due attention to different TAWC between delineated management zones, soil moisture, 

and consequently irrigation depth, will be different before irrigation. Thus, before every         

irrigation, appropriate irrigation depth has to be determined for every management zone.     

Equipment which allows the soil moisture status to be monitored in the various zones may be a 

desirable addition to the installation. Discussing the zoning of the field and the irrigation block 

layout with the irrigation designer should help in determining the number and location of soil 

moisture sensors to be used. There are many options for the quick determination of field-soil 

moisture. For the purpose of this review, it is useful to start with a survey of measurement    

technologies before considering their capacity to measure soil moisture. In this work, the       

assessments were restricted to technologies that have the potential to be used for practical field-

based soil measurement in the coming decade. The development of measuring technologies that 

at present are either very expensive or at a very preliminary stage of development should be 

given great attention. 

a) Capacitance sensors: Capacitance probes like EnviroSCAN: Complete, continuous soil 

moisture monitoring solution; Diviner 2000: Portable soil moisture monitoring for instant infield 

decision-making;  EnviroSMART: Highly integratable soil moisture  monitoring; EasyAG: Easy 

to install and ideal for shallow rooted crops with flexible  connectivity use telemetry (linked to 

mobile telephone systems or radio networks) and are now routinely used in irrigated agriculture 

(e.g. www.sentek.com.au). These systems have obvious applications for dryland systems and the 

main issue is cost. Charlesworth (2000) provides details about costs and operating options for the 

Adcon addIT system. These figures suggest it could be somewhat expensive to instrument a   
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reasonable area. However, a significant fraction of the cost resides with the probes themselves 

rather than the telemetry system.

           b) Electrical conductivity (electromagnetic induction and resistivity The methods rely on 

either electromagnetic induction or resistivity and they can be used to characterise large volumes 

of soil (with depths from less than 1 metre to several hundred metres), although the extent of 

measurement is often not specified with any great precision. The soil ECa can be used to        

indirectly estimate soil properties if the contributions of the other soil properties affecting the 

ECa measurement are known or can be estimated. In some cases, the within-field variation in 

ECa is due to one predominant soil property and ECa can be calibrated directly based on that 

dominant factor. As the results from Kachanoski et al. (1988 and 1990), Sheet and Hendrickx 

(1995) and Reedy et al. (2003), show, the rapid and inexpensive measurement of the apparent  

electrical conductivity of the soil can provide important information on within-field soil moisture 

variability. Recently Brevik and Fenton (2006, 2002) found that SWC was the most important of 

the mentioned factors influencing ECa  in central Iowa.

           c) Ground-penetrating radar: Ground-penetrating radar (GPR) is a subsurface imaging 

technique that uses the reflection of very short pulses of electromagnetic energy from dielectric 

discontinuities in the ground to form an image of the subsurface. This technique is based on the 

same principle as time domain reflectometery (TDR), but does not require direct contact between 

the sensor and the soil. When mounted on a vehicle or trolley close to the soil surface, it has the 

potential of providing rapid, non-disturbing, soil moisture measurements over relatively large 

areas, whereas TDR is better for detailed measurements over small areas. Almost any reasonably 

abrupt variation in material type will produce a reflection of energy and show up as an image. 

Since water has a high dielectric constant (~80) compared to most dry soil materials (~3-10) and 

air (~1), soil water content is important (Huisman et al., 2003). GPR is a valuable technique for 

the measurement of shallow or surface soil water content. The zone of GPR influence is in the 

range of 0.4 to 0.5 m above and below the middle of the antennae depth (Galagedara et al., 2002). 

However, slowly changing water contents are hard to detect with GPR and, in general, water 

profiling is not possible with traditional types of GPR. More rapid changes, such as wetting 

fronts, are easier to detect and this use of GPR is more appropriately applied in irrigated regions. 
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GPR is very material-dependent. Under good conditions, near-optical clarity of images is       

obtainable. However, in poor conditions (e.g. high clay and water contents), GPR may be almost     

useless.  The report of Huisman et al. (2003), suggests that the main use of GPR will be for    

subsoil water content measurement. The high cost and complexity of GPR, coupled with the need 

for some expertise in operation and image processing and interpretation, mean that subsurface 

imaging is likely to be limited to particular investigations of subsurface features where its unique 

imaging capability can be valuable. Although the GPR technology has been developed in the 

same period as the successful TDR methodology and was successfully applied to determine the 

volumetric water content of soils by Schmalholz (2007), there is still a large difference  between 

these methods for soil water content determination (Huisman et al., 2003). Although it has been 

applied successfully to many field situations, GPR has not been widely used because the      

methodology and instrumentation are still only in the research and development phase (Davis and 

Anna, 2002; Rubin, 2003). Although it is mentioned that small, compact and inexpensive GPR 

systems will be available in the near future for routine field studies, this seems to be really     

difficult to accept.

          d) Irrigation simulation models: Irrigation simulation models can simulate the real world 

and improve irrigation performance; thus saving water and increasing farm productivity     

(Clemens, et al, 1999; Dechmi, 2003). Simulation models allow the system operator to run the 

model several times under specified environmental conditions in order to determine the best 

method of controlling or managing the irrigation process. Boken et al. (2004) demonstrate that 

these models are also used to integrate knowledge about soil, climate, crops and management for 

better management irrigation decisions. According to Sadler et al. (2000), the growth models 

developed do not have as one of their objectives the process of describing within-field variation. 

In precision irrigation with many management zones, the model operates many times in order to 

incorporate site specific in soil texture spatial variations. Some option of irrigation models are: 

CROPWAT Irrigation Model (FAO, 1992), EPIC-phase model (Williams et al., 1989), WaSim 

technical manual (Hess, 2000), AMBAV model (Löpmeier, 1994; Braden, 1995), a site-specific 

irrigation decision support model (Reeder 2002), mechanistic agronomic models such as CERES-

MAIZE (Jones and Kiniry, 1986) and CROPSYST (Stockle et al., 1994).   



Literature review                                                                                                                                                                                      34

     e) Reflectance measurement: In recent years, several research efforts have focused on the de-

velopment of remote-sensing techniques to characterize the spatial and temporal variability of 

soil moisture over large regions. Many studies have successfully demonstrated the use of       

infrared, passive and active microwave sensors of different bands for the collection of soil    

moisture information (Capehart and Carlson, 1997; Jackson, 1997; Mancini et al., 1999; Moran 

et al., 1997 and 1998; Milfred and Kiefer, 1976; Janik et al., 1995; Viscarra Rossel and     

McBratney 1998b; Hummel et al., 2001; and Sibusawa et al., 2001, 2003). In aerial photographs, 

which measure the reflectivity or albedo of a surface, areas of higher moisture content appear as 

darker areas, since water lowers the albedo of an object. Because of its all weather, day and night 

characteristics, microwave remote-sensing of soil moisture shows the highest potential for     

operational applications (Lillesand and Kiefer., 1979). The approach is limited to the presence of 

vegetation the presence of clouds, and the time lag between consecutive images with field-scale 

resolution (Christopher et al., 2003) and it is often only sensitive to conditions at the surface. It 

gives only a measure of the moisture content within the first few centimetres of the soil profile 

(nearly 5 to 20 cm depth).  

       Canopy temperature (Tc) measurement by means of infrared thermometers (IRTs) is another 

remote sensing method used to monitor crop water status. Technological advances have      

miniaturized IRTs and reduced power requirements so that inexpensive self-powered units are 

now commercially available. Measurements should be done at or just after solar noon when the 

plant water deficit is maximized. Since plant water status changes over the course of the day, 

measurements of the population must be done within about two hours. Since the assessment of 

plant stress by means of canopy temperature within a breeding population is relative, atmospheric 

conditions during measurements should be relatively stable. Cloudy or windy conditions should 

be avoided. Transient cloudiness which has an immediate effect on leaf temperature is            

particularly difficult. The thermometer should not be unnecessarily exposed to heat, such as by 

letting it lie in the sun. As shown by results, the Tc measured by non-contact IRTs provides an 

efficient method for rapid, non-destructive monitoring of whole plant response to water stress 

(Idso et al., 1981;   Jackson et al., 1981). 
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2.2.3.2.2 Agricultural communication protocols and wireless sensors  

             Future agricultural engineering developments will include automation systems which  

reduce farm inputs, protect the environment, secure farm income, produce high quality  products 

and optimise the efficiency of each process. There is no need to visit the field as data retrieval 

can take place remotely via e-mail, satellite or GSM (Global System for Mobile communications) 

modem, hard-wired serial link or via a low powered radio. Some traditional limitations in      

collecting agricultural data such as soil moisture for irrigation needs includes real-time and time-

liness of data transfer to the appropriate locations or central databases and the protection of data 

from equipment malfunction or battery loss. In this case, Damas et al. (2001) developed and 

tested a distributed, remotely controlled, automatic irrigation system to control a 1500 ha       

irrigated area in Spain. Moreover, wireless sensors were used by Evans and Bergman (2003) in 

linear move and centre pivot irrigation systems to assist irrigation scheduling using combined  

on-site weather data, remotely sensed data and grower preferences. 

        Adopting a standard interface for sensors and actuators allows common hardware and

communication protocols, such as communication interface and control algorithm software, to be 

reused. Among several agricultural serial communication protocols, some can be highlighted 

since they were already applied on agricultural related systems (Guimarães, 2003). Some of these 

protocols are RS232, RS485, CAN Bus (ISO11783 or ISOBUS), SAE J1939, DIN9684 (standard 

for the agricultural BUS system or Landwirtschaftliches BUS system, LBS). These protocols 

were developed to standardise the method and format of data transfer between sensor, actuators,    

control elements, information storage, and display units whether mounted or part of the tractor, or 

any implements which reduce connector and cable clutter and thus also damage to terminals. 

Equipment purchased without this connectivity standard will have an accelerated rate of         

obsolescence.

RS232 and RS485: RS232 is created for a bi-directional data communication between two 

devices, with a maximum network length varying from 150 to 300 meters, depending on the baud 

rate and the applied cabling, but in this study it was used for a less than 4 m distance. Some   

important advantages of the RS232 are its compatibility to most of the existing microprocessors 

and microcontrollers, its very easy implementation and being well known around the world. On 

the other hand, some important disadvantages of the RS232 are the difficulties of network      

expansion and the restrictions regarding the implementation of a DIC (due to the required amount 
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of wiring harness and concerns related to electromagnetic compatibility). The evaluation of all 

characteristics of the RS232 shows that, it does not fulfill all requirements necessary for an    

agricultural protocol although it is well known throughout the world and easy to implement. In 

most higher level protocols, one of the nodes is defined as a master and sends queries or      

commands over the RS485 bus. All other nodes receive these data. Depending of the information 

in the sent data, zero or more nodes on the line respond to the master. In this situation, almost 

100 % of the bandwidth can be used. There is no need for the senders to explicitly turn the 

RS485 driver on or off. RS485 drivers automatically return to their high impedance tri-state 

within a few microseconds after the data has been sent. Therefore no delays between the data 

packets on the RS485 bus are necessary. RS485 is used as the electrical layer for many well 

known interface standards, including profibus and modbus. Advantages of this protocol are its 

simplicity of implementation, less wiring and higher immunity to electrical noise. Regarding its 

disadvantages, the fact can be highlighted that it is not a fully distributed system, according to 

some authors, since is establishes master-slave communication. From an agricultural application 

standpoint, the low efficiency of this network, due to its master-slave concept, makes its usage 

difficult on applications that need fully distributed control. 

CAN Bus ISO 11783: The international CANBus ISO 11783 standard (Controller Area Net-

work, plus a Bus or data path shared by many devices), sometimes called ISOBus, has been 

widely accepted for agricultural applications (Benneweis, 2006). Equipment that is ISOBUS 

compliant promises to communicate seamlessly (i.e., plug and play) with other equipment to 

form systems of machines and implements that can be flexibly configured to meet user needs. 

This standard forms the backbone of the autonomous agricultural machine system. CANBus is a 

complex communication protocol and was originally developed in Germany by Bosch primarily 

for use in automotive applications.

DIN 9684 or LBS: In 1986, under the leadership of the German Agricultural Machinery and 

Tractor Association (LAV) a working group was set up, out of which the ad hoc group ‘BUS 

system’ evolved one year later to standardize a serial BUS for agricultural purposes. Valuable   

contributions from many enterprises and institutions in Germany and other parts of Europe  
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working with this ad hoc group finally resulted in the German standard DIN 9684 (DIN, 1989-

1998). Results, actors and chronology of the work (1986–1993) of the ad hoc group are presented 

in the KTBL-Arbeitspapier 196 (Auernhammer and Frisch, 1993). The standard defines the     

bit-serial data exchange between the vehicle and implement and the data exchange between the 

mobile tractor-implement combination and the farm’s stationary computer. It also defines the            

information exchange between the operator and the technical system, known as the man-machine 

interface. Speckmann and Jahns explained the needs and the goals of a standardized BUS 

(Speckmann and Jahns, 1999). They developed and applied the BUS using the DIN9684-LBS     

protocol.

European installation bus (EIB): EIB is an electrical bus system based on the EN50090 

standard in Europe which was originally used by Siemens since 1987 for the installation and  

interconnection between sensors and actuators in a house. The EIB is a decentralized system. 

Each sensor or actuator has its own microcomputer. Thus, a central controller becomes redundant 

and thus the loss of an individual participant means only the loss of an individual function in the   

system. Advantages of the EIB-Bus are that it is easy to install, reacts very flexibly to changes, 

can be installed at low cost, has an emergency alarm, displays malfunctions if desired, uses    

energy efficiently and is inexpensive. Its disadvantages are relatively high construction costs and 

the complexity of error-finding. 

Wireless technology: A wired system for data transfer from an in-field sensing station to a 

base station is time-consuming and costly to install and maintain. It may not be feasible to get the 

system hard wired for long distances. A wireless data communication system can provide      

dynamic mobility and cost-free relocation. Wireless technology is the process of sending       

information through   invisible waves in the air. It has the obvious advantage of significant     

reduction and simplification in wiring and harness (Sensors Magazine, 2004). Wireless         

technologies have been under rapid development during recent years. Radio frequency          

technology has been widely adopted in consumer’s wireless communication products and      

provided opportunities to deploy wireless signal communication in agricultural systems. In this 

case, various wireless standards have been established. Among them, the standards for IEEE 

802.11b Institute of    Electrical and Electronics Engineers (“WiFi” wireless fidelity, usually refer 

to any type of IEEE 802.11 network) (IEEE, 1999) is a standard for WLAN (Wireless Local Area 
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Network) with 100 to 500 m range, IEEE 802.15.1 (Bluetooth) (IEEE, 2002), IEEE 802.15.4 

(ZigBee) (IEEE, 2003). WLAN is used more widely for measurement and automation            

applications. Spectrum bands of 902~928 MHz, 2.4~2.48 GHz and 5.7~5.85 GHz were allocated 

for license-free spread spectrum devices (Kulkarni, 2005). Table 2.5 compares some wireless 

standards that are suitable for wireless sensor network. All these standards use the                  

instrumentation, scientific and medical (ISM) radio bands, including the sub-GHz bands of 902–

928MHz (US), 868–870 MHz (Europe), 433.05–434.79 MHz (US and Europe) and 314–316 

MHz (Japan) and the GHz bands of 2.400-2.4835 GHz (acceptable worldwide). 8N1 and 

Theimeg serials aeother serial protocols which are developed by their companies and have a 

transferring rang up to 300 m and 4.5 km data. In general, lower frequency provides a longer 

transmission range and stronger capability to penetrate through walls and glass. However, due to 

the fact that radio waves with lower frequencies are more easily absorbed by various materials, 

such as water and trees, and that radio waves with higher frequencies are easier to scatter, the 

effective transmission distance of signals carried by a high frequency radio wave may not      

necessarily be shorter than the transmission distance of a lower frequency carrier which has the 

same power rating. The 2.4 GHz band has a wider bandwidth that allows more channel and    

frequency hopping and allows compact antennas to be used. Hardware requirements for wireless 

sensors include: (1) robust radio technology, (2) a low cost, energy-efficient processor, (3)    

flexible I/O for various sensors, (4) a long-lifetime energy source and (5) a flexible, open source 

development platform (Ning et al., 2006).

Table 2.5: Comparison between some available wireless standards on the market (Source:
                 www.adcon.com, www.theimeg.de and Wang et al., 2006)  
Feature Range [m] Data rate Battery life Complexity

WPAN                        
(Bluetooth-IEEE 
802.15.1)

10 1 Mbps 1 week Very complex

WPAN                        
(ZigBee-IEEE 802.15.4)

70 250 kbps >1day Simple

WLAN                        
(WiFi-IEEE 802.11b)

100 11 Mbps Some hours Complex

8N1 300 2.4 GHz ----- ----- 
WLAN 100-500 5 Mbps – 2 GHz ----- Complex
A723 addIT 1000 430–470 MHz ----- ----- 
Theimeg until 4500 ----- ----- ----- 
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2.2.3.2.3 Irrigation controller 

A controller is an integral part of an irrigation system used to apply water in the necessary     

quantity and at the right time. One of the most important parts for the control of irrigation depth 

can be solenoid valves (SV) as the heart of the irrigation control system which uses electric    

actuators. A SV is an electromechanical valve for use with liquid or gas controlled by running or 

stopping an electrical current through a solenoid, which is a coil of wire, thus changing the state 

of the valve. A solenoid valve has two main parts: the solenoid and the valve. The solenoid    

converts electrical energy into mechanical energy which, in turn, opens or closes the valve     

mechanically. Generally, the actual power transfer to the control element is hydraulic pressure 

activated by the electrical power delivered to the actuator. The flow control element can be in the 

form of a plug, disk,   piston or other similar device allowing for closing or opening of the flow 

path in the control valve. The SV, which is commonly used in irrigation systems, relies on an 

electromagnetic force to move the disk directly or to initiate the piloting action that allows line 

fluid to open or close the valve. Electric control valves can also be closed or opened manually. 

When the coil is energised, the armature is attracted by its magnetic field and the valve is opened 

or closed leaving a passage through the valve orifice. In countries like Germany, where the    

climate is cold and frosty in the winter, the remaining water must be drained from the system at 

the end of the irrigation season. In this case, solenoid valves, which are normally opened without 

any electrical energy (coil is de-energised), are used even though they are expensive. But in 

warm regions like Iran or south Europe it is possible to use cheap solenoid valves which close 

without any actuator during rest position. Some important companies which produce solenoid 

valves are M & M International, UK (www.mmint. co.uk), Buschjost, Germany 

(www.buschjost.de), Parker, USA (www.parker. com), and STC (Sizto Tech Corporation), USA,  

http://stcvalve.com. With due attention to possibility of variable rate irrigation using SV, it was 

used by Kincide (2005), Al-Karadsheh et al. (2002), Camp et al. (1998), Duke et al. (1992), 

Fraisse et al. (1995), King et al. (1999), Evans et al. (1996), Bordovsky, (2000) and Miranda et 

al. (2005) to control irrigation depth.  

         The two methods of VRI are map-based and sensor-based. Map-based VRI requires GPS, 

GIS and software for map production. In sensor-based VRI, some sensors may be connected 

(hard wire or radio linking is possible) to a computer or data logging system to provide real-time 

soil moisture monitoring. A fully automated system would link the soil moisture sensors through 

a computer program to the irrigation pump and block valves. A fully automated system operates 

under the control of a computer program. Most computer programs allow the farmer to choose 
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what triggers will start and stop irrigation cycles. These triggers could be soil moisture readings, 

evapotranspiration readings and/or temperature readings. When one of the start triggers has been 

reached, the computer program sends a signal to the irrigation block needing water and opens the 

block valve and starts the pump. When that irrigation block's stop trigger has been reached, the 

computer program will send a signal to turn off the pump and shut off the block valve. Most 

farmers who have installed automated irrigation systems recommend that the system should 

measure more than just one variable (i.e., soil, plant or environment). Additionally, someone 

must monitor the fields frequently to verify that the computer screen coincides with what is   

actually happening on the field.         

          However, technology for the variation of water application along the mainlines of self-

propelled sprinklers is not commercially available. Several technologies have been developed by     

researchers to variably apply water with self-propelled sprinkler systems. There are four main 

techniques to implement VRI: 

               a)  Changing travel speed of the travelling irrigation system 
               b)  Dynamic VRI in a step-wise manner using either combination of individual sprinklers  
                    at a single location or combinations of manifolds 
               c)  Pulse concept to control single sprinklers 
               d) Variable orifice sprinkler 

          a) Changing travel speed of the travelling irrigation system: Another type of VRI is dynamic 

variable rate application that can be achieved in a step-wise manner using either a combination of 

individual sprinklers at a single location or combinations of manifolds, each with fixed,          

continuous flow rates. Multiple manifolds with sprinklers or nozzles delivering combinations of 

fixed flow rates have been used to achieve VRI on moving irrigation systems (Roth and Gardner, 

1989; Stark et al., 1993; Omary et al., 1997; Camp et al., 1998). Roth and Gardner (1989)    

modified a lateral move irrigation system to test different application depths of water and       

nitrogen. The system consisted of three lines, of which one applied five, different application 

depths to five different   treatments in one experimental block along the irrigation system. The 

second line applied a different arrangement for the same application depths to irrigate different 

blocks. The third line applied uniform depth along the irrigation system. The system did not have 

the possibility of combining application depths to apply different depths in the moving direction. 

Therefore it cannot be used for site-specific management where the different application depths 

depend on the natural field soil layout and not on a specifically designed layout. Stark et al. 
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(1993) reported on the development of a centralized control system for the site-specific          

application of water and chemicals that could be used on linear and CP irrigation systems. This 

system consisted of three conventional sprinklers at each location, each controlled by a          

microprocessor and sized 1/4, 1/4 and 1/2 of full flow, to provide 1/4, 2/4, 3/4 and full irrigation 

rates. A  U.S. patent was awarded to this system for variable rate application of irrigation water 

and chemicals (McCann and Stark, 1993). The above systems developed to control the flow rate 

of one or more individual sprinklers require medium to high (200-400 kPa) water pressure and 

have a wetted radius of several meters (> 4.9 m). A large wetted radius makes it difficult to    

confine water application to small areas without undesired application to adjacent areas. Also, 

unnecessary overlapping can adversely affect application uniformity. In the case of systems with 

low energy precision application (LEPA), water is delivered near the ground surface. This may 

not be effective for the canopy wetting of tall crops. Similarly, a multiple-segment water        

application system was developed and attached to a commercial CP irrigation system to provide 

variable application depths within each segment at a given speed. Each segment was 9.1 m long 

and consisted of three parallel manifolds sized to   provide 1x, 2x and 4x, where x is a minimum 

application depth.  According to Omary et al. (1996), the three manifolds could be operated   

individually or in various combinations to provide eight application rates (0-7x) at any given 

tower velocity. Water flow to each manifold was controlled by a solenoid valve that was        

connected to the control system, and the pressure was regulated. The results show that spatially 

varied water and chemical application was achieved with the same accuracy as that of            

conventional uniform application.  

            c) Pulse concept to control single sprinkler: The third option of VRI is to take advantage of 

the pulse concept to control single sprinklers (Duke et al. 1992; Fraisse et al., 1992 and 1995a, b; 

Giles et al., 1996; King et al., 1996; Sadler et al., 1996; King and Wall, 2001; Sadler et al., 1996; 

Evans et al., 1996; Harting, 1999; Perry et al., 2003; Al-Karadsheh et al., 2002, Moore et al, 

2005). Control systems and solenoid actuated control valves are installed at each power control 

flow.  The control system consisted a PLC linked with a set of control switches that could be 

activated either manually or controlled by the computerized standard control panel. The PLC is 

programmed to apply varying water depths depending on the settings of the control switches.   

Al-Karadsheh et al. (2002) modified the commercial CP irrigation system using solenoid valves 

and controlled it with the aid of programmable logic control (PLC) for  variable-rate water     
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application  to irregularly-shaped areas. The PLC receives the positional information and 

opens/closes the addressed solenoid valves to determine target depth. Results showed that the 

PLC is successful in varying the amount of water throughout the field with some deficiencies. 

             d) Variable orifice sprinkler: The water application rate can be varied by moving a pin 

into the sprinkler orifice to reduce its area (King and Kincaid, 2004; King et al., 1997). As an 

alternative, inserting and removing the pin using a linear actuator provides a time-averaged    

application rate. This method is similar to the pulsing concept but does not completely turn the 

flow off. Maximum flow occurs when the pin is removed. When the pin is inserted, the flow is 

reduced by the ratio of the cross sectional area of the pin to the cross section of the sprinkler   

orifice to a known lower limit.   

       Each of the above methods of providing variable flows has certain disadvantages. In moving 

irrigation systems, application depth remains uniform along the pipeline. Unfortunately, more 

areas requiring similar treatment in the field don’t have the same size and shape as the irrigation 

system control areas. Consequently, new or modified irrigation systems are needed to apply   

water and nutrients to areas of similar variation within the field or irrigation system. The pin  

insertion method, though continuously variable from 40 to 100 %, cannot provide rates below 40 

% of full flow. While this may be acceptable in arid areas, lower application rates (near zero in 

some cases) would be needed for precision water and nutrient management in humid areas.   

Multiple manifolds are more costly and heavier than single manifold systems. The pulsing of 

water to a manifold with multiple sprinklers typically has long cycle times and thus requires a 

large wetted radius to achieve acceptable uniformity for moving irrigation systems.  

          The advantages of pulsing a group of sprinklers is that the application rate can be varied 

continuously rather than in incremental steps like in  the method described previously. The PLC   

technologies did a good job of on-site control, but it was expensive to add remote, real-time   

monitoring and control aspects made possible by wireless sensor networks and the Internet. 

Moreover, most feedback control systems of the pulsing concept have used centralized control, 

with sensors and actuators in the field and the controller in a central building, requiring separate 

wires running to connect individual sensors, devices and actuators to a centrally located         

controller by point-to-point communication using either direct wiring or radio frequency or    

infrared links. Depending upon the distance between individual sensors and actuators to a      

centrally located controller, radio frequency or infrared links could be cheaper than point-to-point 

wiring. This approach is expensive and difficult to maintain in an environment where mechanical 
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damage and lightning are concerns, especially for site-specific irrigation, which may require the 

use of a large network of soil moisture sensors and actuators. Also, lack of flexibility is another   

disadvantage of centralized located controllers, especially for site-specific irrigation control on  

large irrigated fields. Distributed Irrigation Control (DIC) systems, on the other hand, have 

autonomous controllers at discrete locations close to sensors and devices (may be covering    

relatively homogeneous areas in the field). These autonomous controllers have some              

intercommunication, with each specific zone of the field or a group of sensors or valves having 

an interconnected controller, which allows the   system to prioritize irrigation decisions between 

site-specific irrigation management units. The advantages of DIC are reduced wiring and piping 

costs, easier installation and maintenance and lower susceptibility to lightning damage       

(Torre-Neto et al., 2000). However, since additional controller units are required for DIC, this 

type of system is viable for site-specific irrigation only if low-cost controllers and                  

sensing/actuating devices with low-power components (sensors, actuators, etc.) are available. 

Some sort of wireless communication among the controllers is also required in order to optimize 

the hydraulic operation of the   irrigation system.  Studies by Sadler and Camp (2005), Ohyama 

et al. (2005), Coates and Brown (2004) and Rodriguez-de-Miranda (2003) show three major 

needs:

       a)    some sort of wireless communication among the controllers is required in order to     
              optimize the hydraulic operation of the irrigation system  
       b)    in-field variable soil water holding capacities demand remote spatial soil moisture      
              monitoring in specific areas within the field, thus requiring an integrated irrigation  
              control and monitoring system (Evans et al., 2000)  

c) critical research needs to include improved decision support systems as well as   
       monitoring and feedback to irrigation control in real time (Sadler et al., 2005)  
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2.2.4 Critical literature analysis for precision irrigation 

As more research is conducted using the existing technologies and more site-specific    

machines are developed, site-specific irrigation functions and other recommendations will be 

realized. Cost effective and reliable equipment and control systems need to be developed and 

tested. Techniques for efficient and effective real-time system management need to be developed, 

field tested and validated. Methodologies for predicting the potential environmental and         

economic benefit for a particular site are needed to facilitate the adoption and implementation of 

the technology where appropriate. With due attention to available literature for PI, critical            

literature analysis for PI includes: 

a) Validation and realization of potential benefits of PI through considerable field studies with       
different soil types or crop characteristics to insure a positive net economic return and more 
reduction in water and energy consumption 

b) Comparison between different sensor-based soil electrical conductivity measurement to de-
lineate irrigation management zones 

c) Reduction of wiring of solenoid valves or wireless  solenoid valve control 
d) Absence of a pump with variable discharge rate under constant pressure 
e) Effort for the elimination  or reduction of  wind drift and evaporation in sprinkler irrigation 

       Therefore, the development of a remote, real-time monitoring and DIC system for continu-

ous move irrigation systems that would integrate localized wireless sensor networks for the  

monitoring of soil moisture and weather with the control of  individual or group nozzle water 

application rates and  a system design including on-site monitoring and control with wireless 

access to the computer, which enables  water and energy consumption to be reduced, would   

provide  a satisfactory site-specific irrigation system.  
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3 MATERIALS AND METHODS 
          The schedule and strategy of the study investigations are divided into two main sections to 

establish precision irrigation. Firstly the delineation of IMZs based on sensor-based soil EC 

measurements and secondly, remote real-time and site specific DIC and monitoring system by 

means of wireless soil moisture measurement and pulsing techniques to deliver variable irrigation 

depths using programmable logic control.  

3.1 Delineation of irrigation management zones 

 3.1.1 Study field 

         Data were collected on a 16.6 ha grass field at  the Federal Agricultural Research Centre 

(FAL), Institute of Production Engineering and Building Research, Braunschweig, Germany 

(Figures 3.1 and 3.2). It was located between latitudes 52°1752, 80”N - 52°1802,41”N, and 

longitudes 10°2708,39”E-10°27370,27”E, respectively.  The physical and chemical characteristics 

of the soil at the experimental site in Braunschweig are summarised in Table 3.1. By touching, the 

soil type was identified as cambisol predominantly characterized by a loamy sand soil texture in the 

upper 40 cm of the soil profile and more a sandy texture at greater depths in agreement with Al-

Karadsheh (2003) and Derbala (2003). The pH of low status sulphur of the soil at the experimental 

site was found to range from highly acid (4.8) to moderately acid (5.5). The average weather 

conditions in this region are shown in Table 3.2. 

 

         

Study field 
(16.6 ha) 

FAL Figure 3.1:  Overview   of   site   location
                    (Source: google-earth, http://
                     3dearth.googlepages.com)
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Figure 3.2: Soil profile of the field (Source: www.google.de/search?hl=de&q=soil+profile&meta)           

 Table 3.1: Description of the soil parameters at the experimental site in Braunschweig (Salac, 2005)  

Soil parameters Top soil (0-30 cm) Sub soil (30-60 cm)

pH 5.5 4.8 
Organic matter [%] 1.4 0.7 
Clay [%] 6.3 5.4 
Silt [%] 46.7 47.2 
Sand [%] 47 47.5 

Table 3.2: Weather   conditions   during the  measuring  period   in  Braunschweig   (Source:    
                 Deutscher Wetterdienst,  www.dwd.de)

average from 1961 to 1990 2006Feature
May June July August May June July August 

Precipitation [mm] 58 74 58 66 55 52 16 103 
Temperature [° C] 12.7 15.8 17.1 17 13.6 16.9 22.6 16.3 

Potential    
evapotranspiration 

[mm/month] 

 

78 

 

81 

 

84 

 

88 133 152 210 100 
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3.1.2 ECa sensors and response curves 

         The two ECa sensors used in this study were the VERIS Model 3100 sensor (VERIS 

Technologies, Salina, Kansas – www.veristech.com) (Figure 3.3) and the EM38 (manufactured by 

Geonics Limited of Mississauga, Ontario, Canada – www. geonics.com) (Figure 3.4). ECa data 

were collected under field capacity soil moisture conditions determined based on the AMBAV 

climatic water balance model of the German Weather Service (DWD) station. ECa data were 

collected using each of the two operating modes of each of the two sensors.  

        The VERIS 3100 and EM38 readings were taken in 1-s intervals corresponding to a 2 to 3 m 

data spacing on transects spaced approximately 4 to 6 m apart. EM38 and VERIS 3100 measure 

soil conductivity while being pulled through a field (upper photos in Figures 3.3 and 3.4) in a grid 

like pattern. The ECa  measurement  from the  EM38  vertical  dipole   mode  was   averaged   over  

a lateral  area  approximately  equal  to  the measurement depth (McNeill, 1992). The EM38 is a 

lightweight  bar  approximately  1 m  long and includes  calibration  controls and a digital redout of  

 

                                      
      

Figure 3.3: VERIS 3100 coulter-based apparent data        Figure 3.4: EM38 apparent  soil  electrical  con-   
 collection  soil  electrical    conductivity ductivity    system   (Source:  USDA-  
 sensor (Source: USDa-ARS  water  unit, ARS-gallery, Columbia,  MO,  www.   
 Ft.Collins,CO,  www.ars.usda.gov/main ars. usda. gov/mwa/columbia/cswa).   
 /docs.htm?docid =3257).  Upper  photo Upper photo is showing EM38 while  
 is   showing  VERIS  3100  while  being while   being  pulled  through  study
 pulled through study field field 
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ECa in milliSiemens per meter [mS/m]. An analog output port was provided to allow data to be 

recorded on a computer. Data obtained from a Differential Global Position System (DGPS) 

receiver were integrated with the EM38 data to provide the coordinates of each measurement point 

with an accuracy in the range of 1-2 m. The theoretical instrument response to soil conductivity 

varies as a non linear function of depth, as given by Equation 3.1 (McNeill, 1980). 

R = 4Z(4Z +1)em
2 3/2                                                       (3.1) 

Where Rem is the relative response of EM38 and Z the distance from the sensor [mm]. Sensitivity 

in the vertical mode is highest at about 0.4 m below the instrument (Figure 3.4)   and sensitivity in 

the horizontal mode is highest at the instrument (soil surface). The ECa measurement is an 

integrated response to changes in soil conductivity with depth, as weighted by this instrument 

response function (McNeill, 1992). The EM38 has an intercoil spacing of 1.0 m with a nominal 

depth of investigation, defined as the depth to which approximately 70 % of the measured response 

is generated, of 1.50 m when operated in the vertical dipole mode (EM38_h) and 0.75 m when 

operated in the horizontal dipole mode (EM38_v) (Mc-Neill 1980). The vertical dipole mode 

response is less sensitive to near surface material (< ~0.40-m depth) than the horizontal dipole 

response and more sensitive to deeper material. 

       In VERIS 3100 measurements, electrodes were configured to provide both shallow and deep 

readings of ECa. The VERIS 3100 identifies soil variability by means of   resistivity metering, 

which  involves applying a voltage into the ground through metal electrodes and measuring the 

resistance to the flow of the electric current. As the VERIS 3100 is pulled through the field, a pair 

of coulter electrodes transmits an electrical current into the soil, while two other pairs of coulter 

electrodes measure the voltage drop. Soil ECa information was recorded in a data logger along 

with location information. A DGPS transmitted  the location information to the data logger. The 

system georeferences the conductivity measurements using an external DGPS receiver and stores 

the resulting data in a digital form. The VERIS 3100 records data in  1s intervals and data density 

can be modified by the operator through changes in travel speed and/or spacing between 

measurement transects.  VERIS 3100 consisted of six aligned rotating coulters on a tool bar (Figure 

3.3). Coulters 2 and 5 introduce an alternating current into the soil; the other four coulters measure 

voltage drop as the current passes through the soil. The voltage drops and the current are used to 

calculate electrical conductance (i.e., resistance -1) using Ohm's Law. Conductance is multiplied by 

a geometrical factor to obtain conductivity. The geometrical factor is a function of the electrode 

spacing and takes soil depth into account. Because the outside coulters (1 and 6) were spaced 

farther apart than the inside coulters (3 and 4) from the coulters from which the current emanates (2 

and 5), the current passing to the two coulters on the outer side passes through a deeper profile of 
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soil. Also VERIS 3100 consisted of a sender and a receiver (Figure 3.3) so that voltage drops and 

current were used to calculate electrical conductance (i.e., resistance -1) using Ohm's Law. As with 

the EM38, the VERIS 3100 response to soil conductivity varies as a nonlinear function of depth. 

The electrodes of the VERIS 3100 are configured in a Wenner array, an arrangement commonly 

used for geophysical surveys (Milsom, 1996). The theoretical response of the Wenner array is 

given by Equation 3.2 (Roy and Apparao, 1971).  

                                                 (3.2) 

Where Rw is the relative response of the Wenner array, L the distance between the outermost 

electrodes [mm] and z is the distance from the  sensor [m]. For the VERIS 3100 shallow reading, 

the value of L in Equation 3.2 is 0.7 m; for the deep reading it is 2.2 m. The graph of these 

responses shows them to be similar in shape to the response of the EM38, although the two VERIS 

3100 responses reach a maximum nearer the soil surface and then decrease more  rapidly with  

depth (Figure 3.5 and 3.6). Integrating the Equations 3.1 and 3.2 with respect to depth clearly 

shows the different soil volumes examined by the sensors (Figure 3.6). The EM38 was mounted on 

a PVC beam to avoid the strong response of the EM38 to metallic objects within approximately 1 

m. In  this configuration, the EM38 was suspended approximately 30 cm above the ground surface 

during data collection. Therefore, the EM38 curves are situated 30 cm above the ground as shown 

in Figure 3.7 (Personal communication Dr. Domsch, 2007). With the VERIS 3100_sh, VERIS 

3100_dp, EM38_v and EM38_h measurements, 90 % of the response is obtained from the top 0.30 

m, 0.91 m, 5 m and 2.2 m of the soil respectively. By integrating Equation 3.1, it can be shown that 

90 % of the EM38 vertical response is obtained at depths of less than approximately 5 m. The 

response curves of Figures 3.5 and 3.6 are based on equations that assume a homogeneous soil 

volume. Actual weighting functions will vary somewhat due to ECa differences among soil layers, 

with a highly conductive surface layer reducing response depth (Barker, 1989). 

         The soil temperature correction of ECa values is essential (McKenzie et al. 1989), requiring 

the ECa to be standardized to allow a comparison between values monitored at different times. Soil 

temperature was measured using thermistors at different depths based at the DWD which was 

located 400 m south of the study site. Apparent electrical conductivity measurements were 

standardized to 25° C using average correction factors derived from the two equations here under:   

           EC25  = ECa(0.4779+1.3801�EXP(-T/25.654) )           (Anonymous, 1954)                      (3.3) 

           EC25  = ECa(0.44633+1.4056�EXP(-T/26.761) )          (Eijkelkamp, 2003)                      (3.4) 

where EC25 = ECa standardized to 25° C;  and T [°C] = average temperature over a given depth 

interval. The average temperatures in the top 0.45, 1.20, 0.30 and 0.90 m were used to calculate 
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temperature-standardized EM38_h, EM38_v, VERIS 3100_sh and VERIS 3100_dp readings, 

respectively (EM38 was applied about 30 cm as suspended above the ground surface).  

 

 
Figure 3.5: Relative response of ECa sensors as a function of depth. Responses are normalized
                   to yield in a unit area under each curve (McNeill,  1992 and 1980)

                                                           
 

 
Figure 3.6: Cumulative response of ECa sensors as a function of depth (McNeil, 1992 and   
                   1980)              
 
 

 
Figure 3.7: Modified relative response of an EM38 sensor as a function of depth. EM38 was
                   30 cm suspended above the ground (Source:  McNeill,   1992 and 1980)       
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3.1.3 How to create a TAWC map 

          There are different software programs available on the market that can create maps from 

datapoint files such as Surfer (GoldenSoftware, Inc.), ArcView (ESRI) and Global Mapper (Global 

Mapper). An ArcView (ESRI) software program was used to create the ECa and TAWC maps after 

the readings were logged to a laptop data logger and interpolated using a spherical kriging model. 

The word "kriging" is synonymous with "optimal prediction". It is a method of interpolation which 

predicts unknown values based on data observed at known locations. This method uses a variogram 

to express spatial variation and it minimizes the error of predicted values which are estimated using 

the spatial distribution of the predicted values. 

3.1.4 Soil sampling

          Soil sampling was carried out to develop field-specific relationships, calculate the coefficient 

of determination (R2) between ECa data and TAWC and to determine the best sensor-based method 

to monitor TAWC. Twenty-nine monitoring points were located using DGPS (Figure 3.8 a) based 

on the ECa spatial variability pattern and considering the coverage of the whole range of ECa 

values present. At each calibration point, an auger boring or a soil sampling machine (Figure 3.8 

b,c) were used to take soil samples in 30-cm increments to a depth of 60 cm (common irrigation 

depth)  avoiding the fluctuations of the transition zone in between both layers. Air dried samples 

were crushed and sieved through a 2 mm sieve and then the water contents at F.C. and P.W.P. were 

measured three times  using a gravimetric method for P.W.P. and a pressure plate (ceramic) 

method at 1500 kPa for F.C.. In addition, the available data on bulk density at the FAL (�b = 1.42 

[gr/cm3] was used to calculate the volumetric soil water content. 

     

ba c

Figure 3.8: a) Locating the sampling point using DGPS,  b) Soil sampling by machine and c)  
                   Soil sampling by auger
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3.1.5 Determination of the optimum number of irrigation management
           zones   

         The purpose of this study was the determination of the optimal number of TAWC zones 

(IMZs). However, where spatial variation is gradual instead of abrupt, disjoint classes poorly match 

the reality to be described. Therefore an approach with fuzzy classes seems more appropriate. One 

approach to fuzzy classification, is fuzzy-c-means (Bezdek, 1981), or fuzzy-k-means (De Gruijter 

& McBratney, 1988). Ideally, the classification system is designed in such a way that it provides an 

optimal basis for spatial interpolation as well as the prediction of proper ties from class 

memberships. In this case, FuzMe, a PC Windows program, was used to calculate Fuzzy-k-means 

with/without extragrades. Fuzzy-k-means minimises the functional within-class sum square errors. 

It is written in Fortran and compiled using Visual Fortran 6.6 under a PC Windows environment. 

The program needs a "control file" which details the parameters for the fuzzy-k-means algorithm 

and a "data file" containing the data. The program works only on a system running under Windows 

95/ NT or later. The FuzME interface is a Visual Basic program that helps to create the "control 

file" and runs the program.  

        Boydell and McBratney (1999) discuss the use of the fuzziness performance index (FPI) and 

modified partition entropy (MPE) as measures of cluster performance. The optimum number of 

classes is established on the basis of minimising these two measures. The FPI is a measure of the 

degree to which different classes share membership and is limited to values between 0 and 1. As 

FPI approaches 1, membership sharing increases. As the FPI approaches 0, classes become more 

distinct with less membership sharing. At a value of 0, classes are no longer fuzzy, but are 

considered crisp. The MPE is an estimate of the amount of disorganization created by a specified 

number of classes. Like the FPI, it is also limited to values between 0 and 1. As MPE approaches 1, 

disorganization predominates while values approaching 0 indicate excellent organization. 
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3.2 Performance  and  evaluation  of  remote  real-time  and  site- 
      specific distributed irrigation control system  

         The structure of the remote real-time site-specific DIC and monitoring system is shown in 

Figure 3.9. The performance of site-specific irrigation is divided into six parts: 

 

               a)  Soil moisture monitoring methods 
               b)  Irrigation scheduling 
               c)  Field tests related to soil moisture monitoring 
               d)  Irrigation system and its modification 
               e)  Calculation of the number of emitters installed on the drop tubes and length of drop tubes  
               f)   Evaluation of emitter performance (laboratory experiments and field tests) 
 
 
 
 
 
 

 
Figure 3.9:  Structure  of   remote  real-time   site-specific   distributed   irrigation   control
                    and monitoring system
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3.2.1 Soil moisture monitoring methods 

          To determine  irrigation depth within IMZs, a) an “EnviroSCAN” soil moisture sensor 

(www.sentek.com.au) was  used to monitor soil moisture within zones which are located inside the 

sensor-quarter under the 2nd CP segment at angles between 90° to 180°  and b) the AMBAV CWB- 

model was used as an irrigation simulation model to monitor soil moisture within zones which are 

located in another quarter of the field (CWB model-quarter) under the 2nd CP segment at angles 

between 180° to 270°. A schematic overview of the experiment is shown in Figure 3.10.       

 

 

 
Figure 3.10: Schematic overview  of an  irrigation plan containing three artificial IMZs,  
                     sensor-quarter, CWB-quarter and modified CP 
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3.2.1.1 Wireless EnviroSCAN soil moisture sensor 

          Newly developed sensors including the EnviroSCAN capacitance system have the potential 

to estimate the soil moisture content continuously at various depths. Sentek’s inaugural product, 

EnviroSCAN, developed in Australia, is a complete and stand-alone continuously working soil 

water monitoring solution over multiple depths in a crop root zone, which determines  how often 

and how much to irrigate. It works based on the capacitance principle, and utilizes Frequency 

Domain Reflectometry (FDR) to measure soil water (Figure 3.11). In other words, a high frequency 

electrical field, created around each sensor, extends through the access tube into the soil and then it 

measures the change in capacitance of  the soil depending on the moisture level, as there is a large 

difference in the dielectric constant of soil, air and water. The EnviroSCAN measures the change in 

frequency response of the soil's capacitance due to its soil moisture status at each sensor as 

frequently as every minute. The probes have multiple sensors located at multiple depths (with 

flexible depth placement in 10 cm intervals), with each probe accommodating up to 16 sensors. 

Soil water content is determined by the EnviroSCAN capacitance sensor by means of a scaled 

count (Buss, 1993). Counts were recorded for each sensor inside an access tube suspended in the 

air. A second set of counts was recorded for each sensor inside a sealed access tube that had been 

submerged into a container of water. This was done to determine the full scale of counts between 

no water (air) and 100 % water (Buss, 1993). The scaled count for a given sensor can be thought as 

a percentage of full scale where the difference between air count (no water) and the measurement 

count is divided by the full scale of counts for the sensor. 

 

 
 

Figure 3.11: EnviroSCAN probe design (Source: www.sentek.com) 
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          The EnviroSCAN software interpolates the frequency readings from the data logger and 

displays the dynamics of soil water content through time. The following equation described by 

Buss (1993) was used to convert field frequencies into scaled frequencies, SF: 

                                                             (3.5) 

          The default manufacturer’s equation (uncalibrated equation) that converts scaled frequency 

to volumetric water content is: 

                                                                                                                       (3.6) 

where A is 0.1957, B is 0.404 and C is 0.028520 and �v is the soil water content by volume. 

Equation 2 can also be written in terms of volumetric water content as: 

                                                                                                                         (3.7) 

          The calibration equation used in the software of the EnviroSCAN system is deemed 

"universal." It is shipped to the user with a default (uncalibrated) equation. Since the soil types 

determined by sampling the soil around the tubes in order to determine the volumetric water 

content in wet, moist and dry soil show significant variability, there is some evidence that the 

equation is not universal. Meanwhile there is concern about the influence of soil salinity and soil 

temperature on the sensor readings. Thus, if the uncalibrated equations are used to determine the 

amount and time of irrigation for crops, there is a strong likelihood that the underestimation or 

overestimation can seriously impact crop yields. However, EnviroSCAN sensors do not 

automatically produce an accurate estimate of individual soil water content measurements for all 

soils. Therefore a simple soil calibration of these sensors was done to obtain accurate soil water 

content. Leib et al. (2003), Fares et al. (2004) and Jabro et al. (2005) found that site-specific 

calibration of the EnviroSCAN sensor is essential for the most precise soil moisture content 

measurements as well as for the improvement of  the sensor’s accuracy and performance because 

statistical analysis showed  considerable discrepancies between soil water contents estimated by  

site-calibration and uncalibrated equations. 
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        Sensor data transmission: Instrumentation and control standards for the RS232 serial 

communication protocol has been widely applied and is well documented for the integration of 

sensors and actuators. The RS232 serial communication protocol was used for communication 

between EnviroSCAN soil moisture sensors and the ISM-modem, between the central ISM-modem 

and PLC, and also between the Programmable Logic Control (PLC) and the GSM-mobile phone to 

transmit soil moisture data by a cable (Figure 3.12). In this study, the RS232 communication 

protocol was used because of its simplicity and because it is free of charge. Technical specification 

of 12 volts voltage supply and a 9600 bits per second interface baud rate were used for the soil 

moisture sensor.  

        Every ISM-modem had a specific ID number related to every IMZ. Thus, they can not be 

relocated between zones, but the EnviroSCAN soil moisture sensor did not have any ID and could 

be relocated between zones. It had a 12 V and 7.2 Ah battery that all 7.2 Ah was useable. The 

battery was self-recharged by a 24�40.5 cm [972 cm2] solar panel providing up to approximately 

13.7 V (Figure 3.12) with a minimum operation voltage of about 11.2 V. Given the power 

requirements of 70 to 90 mA, the ISM-modem was able to operate about 3 days from March to 

October depending on the weather conditions. 

        The wireless standard used in this study was determined by the major factors of the maximum 

distance between the soil moisture sensor and the control unit [400 m], data rate transfer (bit/sec) 

which depends on the number of soil moisture data readings per day needed for this study, 

compatibility and cost. Based on all factors of our application, a specific 2.4 GHz  band of an 8N1 

 

 
 

                       

ISM-modem 

Battery Solar panel

 
Figure 3.12: Data transmission unit with a solar energy supply 
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wireless serial protocol that is free and capable of transferring soil moisture data up to  300 m range 

was selected for  wireless data communication from the in-field soil moisture sensing stations to a 

central unit. The maximum data transfer rate  of the  8N1 serial over a distance of  a 400 m  is 2400 

bit/sec. An 8N1 serial was used to transfer soil moisture data from an ISM-modem connected to the 

soil moisture sensor to a central ISM-modem placed inside a central control unit (about 3 m from 

pivot point). With due attention to the dimensions of the field under CP, which was 400 m length, a 

transfer capacity of  up to 400 m was needed. In this study, transfer capacity was increased from 

300 m  to 450 by using two specific antennas with  a) an end-fed ½ wave coaxial dipole, model 

242451, 1 m tall  with 2310-2485 MHz frequency and 175 MHz bandwidth from VIMCOM AG, 

(www.vimcom.ch) that was installed on the CP and a near position encoder at a height of 5 m and 

b) a MOBILE MARK model  RMM-UMB, BroadBand US Cellular & EU GSM 3 dBi & 750-1250 

MHz that was installed on ISM-modem boxes. Three ISM-modems were installed within three 

IMZ and located about 40, 60 and 90 m away from the central ISM-modem. Under these 

conditions, soil moisture data were transmitted using a cable and a RS232 communication protocol 

from the EnviroSCAN sensor to an ISM-modem and from the central ISM-modem to a PLC 

installed on a CP irrigation system. Soil moisture readings were transmitted to the PLC every 4 

minutes. Soil moisture data were also automatically transmitted from the PLC to a mobile phone 

via the  GSM-Net (900 MHz) at 00:00 o'clock every day. Whenever there was no automatically 

connection to the soil moisture sensor at 00:00 hours, incorrect data was received on the mobile 

phone as 200.00. In this case, a new SMS from the  mobile phone was sent to PLC. Then moisture 

data were transferred from mobile phone to the computer and exported to an Excel table using  the  

“Kurznachricht Pro 2.2” software (Schmidt, 2003) installed on the office computer. With due 

attention to the fact that soil moisture data on a mobile phone or in an Excel table can not be 

readily accessible and useful to the non-professional farmer. Excel data were used to calculate 

irrigation depth and graphically present its variation by writing a simple Excel program.  Sentek’s 

user-friendly and powerful IrriMAX 6 software is available from the Sentek company, but it costs 

about € 465. 
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3.2.1.2 AMBAV model

The AMBAV CWB_model (Agrarmeteorologisches Modell zur Berechnung der Aktuellen 

Verdunstung) is part of a complex agro-meteorological toolbox of Deutscher Wetterdienst (DWD) 

(www.agrowetter.de) that separately calculates soil moisture, potential and actual 

evapotranspiration, effective precipitation (which is more than 2 mm), interception and the soil 

water balance in the crop-soil-system under different crop covers. It uses the Penman-Monteith 

formula and synoptic data from a DWD weather station located 1.4 km to the south of the study 

site. The model which was used by local meteorological advisory services was designed to produce 

recommendations for irrigation amounts and scheduling for different soil types based on hourly 

weather data from the meteorological station network (Löpmeier, 1994; Braden, 1995). Soil water 

dynamics are simulated using a mechanistic model based on the Richards equation that represents 

the movement of water in unsaturated soils (Richard, 1931). In this model, different soil textures 

with different F.C. and P.W.P. and also different plant phenology data including the beginning of 

the vegetation phase and the sleeping phase are considered. The AMBAV model is validated only 

for a flat field. Thus, this model cannot be used for uneven fields. The model used includes 

physical processes like infiltration from rainfall or irrigation, redistribution in the soil water zone, 

plant water uptake in the form of actual evapotranspiration, and percolation out of the soil 

reservoir. In addition, the model considers the dynamics of the crop root growth model that affect 

plant water uptake and hence the soil water in the unsaturated zone. In the AMBAV model, the 

phenological and morphological development of the plants is considered in the form of:  

 - the partitioning of the radiation absorbed by the plants and the soil surface, 
 - the aerodynamic transport from the soil surface and the plants and  
 - resistance against plant transpiration (bulk stomatal resistance). 
 
        For these purposes, plant height, leaf area index and bulk stomatal resistance are generated 

inside AMBAV model for each crop depending on a certain phenological phase. In this model, the 

calculations of  the water budgets of the different soil layers and the hydrological properties of the 

corresponding soil are parameterized  on the basis of Bodenkundliche Kartieranleitung KA4 (AG 

Boden, 1994).  
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3.2.2 Irrigation scheduling 
 
          Because of different capacities to absorb water between different IMZs, different IMZs will 

reach t minimum Management Allowed Depletion (MAD) of TAWC at different times. Moreover, 

in areas where significant rainfall occurs during the irrigation season, the irrigation strategy may 

have to be adjusted because of the influence of rainfall. The time and the quantity of rainfall is 

uncontrollable. The amount of water stored in the soil from any rainfall event will vary from 

location to location, depending on TAWC. Thus, the amount of "effective precipitation" will vary 

with TAWC since irrigation only needs to supply the difference between crop water needs and 

effective precipitation. These implied locally variable water amounts may be desired. In Germany, 

the influence of rainfall is a significant consideration. Average  monthly rainfall on the field used 

for this study (Federal Agricultural Research Centre, FAL, Braunschweig, Germany) in May, June, 

July and August (irrigation season) is shown in Table 3.2 (P. 46). However irrigation was 

scheduled based on:  

 

a) Maintaining the maximum and minimum  acceptable MAD of  the soil water content  of   
three zones.  Given    no   water   stress  during   the   growing   season   and  20 %   free  

      capacity  to  absorb  probable  rainfall  at  the  study  site  after  irrigation,  the  minimum  
      and maximum MAD are considered  based  on  Tables 2.1 and  2.2. Moreover, minimum  
      and  maximum  considered  MAD for grass  which is planted  on the   study  field  match  
      with those found by Rhoads et al. (2000) and Wilamowitz Moellendorff et al. (1985). 
b)   Limitation of the increase in drop tube length  because the length of the drop tube will  
      grow  as irrigation depth increases.  
c)   Watering the grass root zone up to a depth of 60 cm.  

 
 

Whenever soil moisture measured by sampling indicates the 60 % of TAWC within one of the 

IMZs, irrigation of all in zones was started (Figure 3.13). In this case, it was expected that IMZ 

with minimum TAWC will meet 60 % of its TAWC earlier than others IMZs.  
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3.2.3 Field tests related to soil moisture monitoring 

Field tests related to soil moisture monitoring included a) evaluation and soil-specific 

calibration of the EnviroSCAN sensor, b) field tests of data transmission and power supply of 

EnviroSCAN soil moisture sensor and c) the validation of the AMBAV model.  

3.2.3.1 Evaluation and soil-specific calibration of the EnviroSCAN soil moisture sensor  

          The installation technique is critical to the performance of devices that use the capacitance 

technique. Therefore the equipment and techniques developed by the manufacturers of 

EnviroSCAN that are claimed to eliminate this problem were used.  

          If care is taken in the installation of the access tubes and the sensors are carefully calibrated 

and sealed inside the access tube, these potential problems become insignificant (Paltineanu and 

Starr, 1997). Moreover, the calibration equation used in the software of the EnviroSCAN system is 

deemed "universal". The system is shipped with a default (uncalibrated) equation to the user. Due 

to the large variability in soil types found in samples from the soil  around the tubes, which were 

taken in order to determine the volumetric water content in wet, moist and dry soil, there is some 

evidence that this is not so. In addition, there is concern about the influence of soil salinity and soil 

temperature on the sensor readings. Thus, if the uncalibrated equations are used to determine the 

amount and time of irrigation for crops, there is a strong likelihood that the underestimation or 

overestimation can seriously impact crop yields. However, EnviroSCAN sensors do not 

automatically produce an accurate estimate of individual soil water content measurements for all 

soils. Therefore a simple soil calibration of these sensors is required to obtain accurate soil water 

content. Leib et al. (2003), Fares et al. (2004) and Jabro et al. (2005) found that the site-specific 

calibration of the EnviroSCAN sensor is essential for the most precise soil moisture content 

measurements as well as to improve the sensor’s accuracy and performance, because statistical 

analysis supported considerable discrepancies between soil water contents estimated by the site-

calibration and uncalibrated equations. Meanwhile, the software provided with the EnviroSCAN 

allows the users to enter their own calibration constants/equations. 

           Soil moisture and its variation within IMZs were measured daily by the EnviroSCAN 

sensor, and soil samples were taken during the irrigation season for soil-specific calibration and the 

evaluation of the possibility of using EnviroSCAN sensor as a continuous, multiple depth and 

reliable method. In this study, soil moisture sensors were located at multiple depths of 10, 20, 30, 

50 and 70 cm as shown in the Figure 3.11. The sensors were connected by cable to an ISM-modem, 
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which powers the probes with a solar panel. All sensors in the same access tube shared one 

electronic measuring circuit, located at the top of each tube. Three EnviroSCAN soil moisture 

sensors were placed in three IMZs where the locational coordinates of soil moisture sensors  

(number of solenoid valve, angle) were (8,108 °), (3,127 °) and (13,176 °) as shown in Figure 3.10. 

Care has to be taken during installation as air gaps can dramatically alter the response. The sensor 

installation process and operational procedures were carried out according to the manufacturer`s 

recommendations and instructions (Sentek, 1995; www.sentek.com.au). Soil moisture data at 

different depths were received on a mobile phone by sending an SMS-message to PLC.  

          Field evaluation and soil-specific calibration of EnviroSCAN were done at the study site by 

taking soil samples (as shown in Figure 3.13) and calculating the water contents by mass. Then 

water contents by mass were converted to volumetric values using soil bulk density values 

available at the FAL (�b = 1.42 gr/cm3). Two replications of soil samples were taken at the 

multiple layers of 0 to 10 cm, 10 to 20 cm, 20 to 30 cm, 40 to 50 cm and 60 to 70 cm. The distance 

between the EnviroSCAN access tube and the auger sampling points was between 1 and 2 m. 

Immediately after the soil samples had been e talen, the EnviroSCAN readings were done by 

sending a mobile-SMS to the control unit and receiving a text message from PLC on mobile phone. 

Given the nearly uniform soil texture at depths of 0 to 40 cm and 40 to 70 cm at the study site as 

shown in Figure 3.2, it was decided to find two soil-specific calibration equations for these two 

layers.    

 

 
Figure 3.13: Soil sampling for irrigation scheduling and soil-specific calibration of the  
                     EnviroSCAN soil moisture sensor
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3.2.3.2 The field tests of data transmission and power supply 
 
          Wireless communication was tested for different distances between the data transmission 

unit and the central ISM-modem, such as 100, 200, 300, 350 and 400 m. Given battery voltage 

dissipation, the minimum battery operation voltage needed to start battery recharging and to ensure 

that the the solar panel is large enough for the self-recharge of the batteries, battery voltage was 

measured daily. 

3.2.3.3 Validation of the AMBAV model 

          Obtaining soil moisture information through field practice like soil sampling and using soil 

moisture sensors is time-consumin, difficult and expensive. Also the validation of soil water 

balance models and the evaluation of the quality of the model predictions at field-scale and in the 

active root zone of grass require time-series of in situ measured model outputs. In this case, the 

validation of the AMBAV CWB_model as a cheap and reliable method to measure the soil 

moisture content was evaluated by comparing the soil moisture simulated by the AMBAV model 

with  the moisture of soil samples  (observed data) which were taken during the measuring period. 

In order to validate the model, comparisons were made between the simulated and observed values 

and three statistical tests were performed. These tests are the coefficient of determination (R2), 

Mean Absolute Relative Error (MARE) and prediction efficiency (PE) index. The index MARE is 

computed as: 

                                                       (3.8) 

Where SWCi, observed   and  SWCi, simulated   are the observed and simulated soil water content 

in the active root zone of crops on ith time, i the index of the time that is taken as one time in the 

study and N is the total number of times for which observations are taken. The index PE is 

computed as:  

                                                               (3.9) 

Where SWC observed is the arithmetic mean of the individual observations of SWC in the active 

root zone of the crop.  
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3.2.4 Irrigation system and its modification

        A two-span and commercial centre pivot system with an overhang, located at the FAL 

research field and with a total length of 90 m  was used to irrigate an area of 2.54 ha during 

summer 2006 (Figure 3.10). The irrigation system could be operated in forward or in reverse, with 

and without applying water, which is pumped from an underlying network. The pressure at the 

pivot was regulated to 220 kPa. The first step taken was the modification of this present 

commercial system to a site-specific or Precision Mobile Drip Irrigation (PMDI) system by making 

some modifications. With due attention to the effect of CP speed on the water application rate, 

linear CP speed at end of 2nd span that is appropriate to the CP speed stated in  percent on the CP 

control box was measured to calculate an increase and a decrease in the  water application  rate 

with CP speed.  

        The irrigation system had to be modified so that the desired water level could be applied to 

IMZ (Camp et al., 1998). The basic requirements established for the modified water application 

system are that the system must apply water depths needed to replace crop evapotranspiration, 

while it was being moved, to the management zones with different TAWC, based on data stored in 

a database. The variable-rate application system would be achieved by modifying this commercial 

centre pivot irrigation system equipped with a computer-aided management system.  

       A variable rate MDI system was designed and installed on an existing 38-m 2nd CP span. The 

VRI system used the pulse technique described by Perry et al, (2003) by solenoid valve to apply 

the desired water application rate. Irrigation system modification was divided into six parts as: 

                   -     Programmable Logic Control (PLC) 
               -     Position Encoder 
               -     Solenoid valves (SV) 
               -     Irrigation segments and drop tubes 

                   -     Calculating number of emitters required on the drop tubes and length of drop tubes  
                   -     Evaluation of emitter performance 

3.2.4.1 Programmable logic control

        The 2nd span of CP was controlled by the pulsing technique using PLC and SV as DIC by EIB-

BUS (Europäischer Installationsbus) for variable-rate water application. EIB-BUS is a free-cost 

and simple communication protocol that can control many SV together with one cable. All 

electrical output devices including SV, position encoder, etc., were controlled by a prototype PLC 

and EIB-Bus communication which were developed by Büro für Steuerungstechnik und 
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Schaltanlagen (www.schudzich.de). The control unit was mounted on the CP about 3 m from pivot 

point (Figure 3.9). PLC was programmed to control 64 SV including 16 boxes (every box to 

control 4 SV). But in this study only four boxes installed on 2nd CP span including fifteen SV were 

used. The integrative PLC had an on-board PC as data logger, which can read a saved data file and 

allows changes in the system information and can convert the map of control to on/off setting in the 

directly-addressable solenoid control registers of the PLC. The main features and flowchart of this 

PLC are shown in Figure 3.14. When the location had been determined and a zone boundary was 

crossed, the program checked the expected application map, the appropriate table lookup was 

performed and the solenoid registers set accordingly. The application rate was varied by different 

SV pulsing levels from 0 to 100 % of 100 seconds intervals as inserting and removing the pin 

provided a time-averaged application rate ranging from about 0 to 100 % of maximum sprinkler 

flow rate. For example for pulsing level of 70 %, SV were 70 seconds opened and 30 seconds 

closed (1 second for every 1 % pulsing level).  

 

           Field tests of PLC validation and uniformity performance: Tests of water distribution 

were conducted using catch-cups in the direction of system travel (vertical distribution) and along 

the length of CP (horizontal distribution) a) to examine and evaluate the validation of the PLC and 

system modifications, b) to ensure that the pulsing technique produces the desired amount of 

irrigation under different pulsing levels and c) to examine water uniformity over the entire separate 

IMZ. This water distribution will be used as the comparison baseline for the evaluation of the 

effectiveness of the PLC for variable-rate water application. To better visualize a comparison of 

different pulsing conditions, tests were conducted using a sprinkler (NELSON R3000 rotator, U4-8 

°, blue plate) before installing drop tubes and under relatively light wind. Seven pulsing levels and 

two CP speed levels were considered to test PLC validation. The tests were run while the machine 

was operating under 15 and 30 % of CP speed and programmed on three different pulsing settings 

of 10-40-70 %, 30-60-90 % and 100-100-100 % of pulsing levels. Three pulsing levels within each 

setting were considered for IMZ1, IMZ2 and IMZ3, respectively. Uniformity tests are currently 

being conducted to ensure that the irrigation system is applying an even distribution of water over 

the entire span of the CP lateral. In this case average uniformity of horizontal and vertical 

distribution at different pulsing levels and CP speeds were calculated. Uniformity tests were 

conducted based on a new ASAE standard (2003), which has been updated, and DIN EN ISO 

11545 (2001) using the formula developed by Heermann et al (1992):
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                                                                                 (3.10) 

 
Figure 3.14: Flow-chart of the PLC 

 

where CUHH is the Heermann and Hein uniformity coefficient, n is number of collectors used in 

data analysis, i is a number assigned to identify a particular collector beginning with i = 1 for the 

catch cup located nearest to the pivot point and ending with i = n for the most remote catch cup 

from the pivot point, Vi is the volume (or alternately the mass or depth) of water collected in the ith 

catch cup; Si  is the distance of the ith catch cup and  is the weighted average of the volume of 

water caught by all collectors. The tests were conducted during early morning hours, the wind 

speed during test time was less than 1.5 m/s and considered to have an insignificant effect on 

distribution. Water was collected in two horizontal and three vertical rows of 12 catch-cups placed 

40 cm from the ground and spaced 1 m between catch-cups with two replications as shown in 

Figure 3.15. Three catch cup collection arrangements were simultaneously placed on the field as 

every collection collected water under the different conditions of three zones. Tests were conducted 

between 90° and 130° where all three IMZ had enough width in both horizontal and vertical 

distribution.  
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3.2.4.2 Position encoder 
 
          The spatial location of each depth was to be determined based on the system operating 

parameters: angle of rotation and location along the truss. Target application rates were to be 

determined from digitised maps stored in a computer file. The location in the field was determined 

using position encoders from the company HENGSTLER with 12 bit resolution (www.hengstler. 

de/en/c1002 /Encoder/) by counting the number of teeth, which gives a definite edge in reading the 

pivot’s exact location relative to a 360° circle. The position encoder converts the angular position 

of a shaft to a digital code. The position encoder was installed at the beginning of the CP mainline 

and was connected to the control unit (Figure 3.10 and 3.15). 

 

 
 Figure 3.15: Catch-cup arrangement for PLC validation and uniformity test 

 

 

3.2.4.3 Solenoid valves (SV) 

          Using valves with minimum pressure loss across the valve will help in minimising the power 

costs. When valves are subjected to higher discharges, the head loss is independent of diaphragm 

performance and depends only on the discharge rate and valve construction. In this study, the 

selection of solenoid valve types was limited because of the necessity to use intelligent and 
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longeval solenoid valves which are appropriate for EIB-BUS communication protocols and allow 

some of them to be controlled together. Therefore fifteen “Baureihe 82340/82440” solenoid valves, 

(Figure 3.16) from the Buschjost company (www.buschjost.de) were used and installed at the 

beginning of each sprinkler vertical tube position subsequently connected to the irrigation segment 

containing three drop tubes starting from the 2nd span (Figure 3.17). In appendix A, the distance 

between the solenoid valve and the pivot point and the position of the irrigation blocks supplied by 

solenoid valves [m] are shown. Solenoid valves were used while pulsing in order to control the 

depth of water applied along the system radius to each of the individual zones in the system. In this 

study, every four solenoid valves were wired together in one box by an EIB-Bus communication 

protocol and connected to the central control box installed 3 m from the pivot point that opened and 

closed, based on data-base values and the location in the field (using the position encoder).   

          Valves that are actuated in this way have a combination of direct and indirect actuation. A 

mechanical coupling between the solenoid core (pilot stage) and the piston (or diaphragm) assists 

the opening movement of the piston (or diaphragm) that is called forced lifting. “Baureihe 

82340/82440” solenoid valves, which were used in this study, are normally open without any 

electrical energy, and a minimal pressure differential is not necessary with this combined method 

of operation in order to open the valve and keep it open. This condition causes the valve to be 

drained of water during the resting position and protected against freezing water in the winter, 

which is an advantage as compared with other valves. 

 
 
 

  
Figure 3.16:  Solenoid valves without differential pressure – with forced lifting (Source:
                      www.buschjost.de)
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3.2.4.4 Irrigation segments and drop tubes 
 
          An MDI system was established by replacing the sprinklers with drop tubes. Because of 

about 2.5 m spacing between sprinklers installed on the CP mainline (Figures 3.17 and 3.19), the 

chosen width of the research control element was 2.5 m (LT = 2.5 m). The sprinklers in the 2nd span 

were replaced by the segments which were subsequently connected to three drop tubes (Figure 

3.17). 

          The 2nd span was located at 39.05 to 77 m from the pivot point. The selection of the 2nd span 

was based on the recommendation of the American Society of Agricultural and Biological 

Engineers (ASABE) standards (2001) that inner spans not be tested. This is because they are 

inherently less uniform due to the limitation of the nozzle size needed to achieve limited flows 

required in these spans. A pressure regulator (model 0075-PRV produced by NETAFIM -

www.netafim.com) was used at the inlet of the drop tubes number 1, 8 and 15 to adapt the 

operating pressure between 0.5 to 120 kPa. The horizontal PE tube is an additional part that was 

used for the installation of the drop tubes. In this study, a Mono & Tandem - coextruded type of

Siplast drop tube (www.siplast.it) including emitters delivering 15.8 l/h at 120 kPa was used. 

Moreover, 155 mesh filtration at the pump station was recommended to avoid any clogging. 

Emitter spacing on drop tubes was 20 cm, while the distance between the drop tubes varied from 

76 to 92 cm. Nominal diameter, pipe inside diameter and pipe outside diameter of drop tubes were 

20.0, 17.7 and 20.1 mm, respectively.  

3.2.4.5 Calculation of the number of emitters installed on the drop tubes (Ne) and the  
            length of the drop tubes

          The number of emitters installed on the drop tubes was calculated based on emitter discharge 

at 120 kPa (qe = 15.8 l/h), irrigation time (T = 48 h), the maximum irrigation depth required, Imax, 

(that is equal to required irrigation depth at MAD = 55 % for which IMZ has minimum TAWC) 

and irrigated area covered by drop tubes that was calculated using the distance from the pivot point 

(r) and narrow spacing covered by the drop tube (dr). Ne was calculated as follows as it was 

calculated by Chu and Moe (1972): 

                  Ne = 2�3.14�r�dr� ( Imax / T) /qe                                                                             (3.11) 

Where: 

r = distance between drop tube and pivot point 

dr = narrow spacing covered by  drop tube 
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          Schematic diagrams of narrow spacing covered by the drop tube located at r meter distance 

from the pivot point and radios of the area irrigated by the centre  pivot (R) are shown in Figure 

3.18. With due attention to increasing the water application rate and appearing runoff while 

decreasing the spacing between emitters as well as increasing the length of the drop tube while 

increasing the spacing between emitters, an appropriate spacing between emitters should be 

considered. The length of the drop tubes at any point of the pivot lateral (LT) is dependent upon the 

number of emitters installed on the drop tube and the spacing between emitters on the drop tube (in 

this study 20 cm). Thus, LT at any point of the pivot lateral was calculated as follows: 

             LT = Ne� (0.2)                                                                                                             (3.12) 

Where Ne is number of emitters installed on drop tube. For the connection of the drop tubes to 

manifolds, a 3 m free emitter tube was used as shown in Figure 3.19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Pressure regulator and manometer        Figure 3.18:  Schematic   diagram  of   narrow           
used   to   adapt    the    operating spacing  covered  by  drop   tube  
pressure  at  the inlet of the MDI located at r meter distance  from   
drop (Derbala, 2003) pivot  point (dr)  and  radios  of 

the area irrigated by the centre 
pivot (R) (Derbala, 2003) 
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 Figure 3.19: Modified centre pivot irrigation system 

 

3.2.4.6 Evaluation of emitter performance 

          The efficiency of trickle irrigation systems depends directly on the uniformity with which 

water is discharged from the emission devices throughout the system. Ideally, all emitters in the 

system should discharge equal amounts of water. One major cause of flow rate difference between 

two identical emitters from the same manufacturer is the manufacturing variation. Before installing 

trickle irrigation, the performance of emitters must be evaluated and in this case emitter discharge 

(q), the emitter discharge exponent (x), the coefficient of variation of the discharge (CV), emission 

uniformity (EU) and emitter flow variation (qvar.) are important parameters:   

 

          Emitter discharge: Keller and Karmeli (1974) and Howell et al. (1980) calculated the 

relationship between emitter discharge and operating pressure in the design of drop irrigation 

systems given by the following equation:  

                                           qe = KeHX                                                  (3.13) 
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Where qe is emitter discharge, in l/h, Ke is the emitter discharge coefficient that characterises the 

emitter dimensions, H is operating pressure at the emitter, in kPa and x is the emitter discharge 

exponent which is a characteristic of the emitter flow regime. 

 

          Coefficient of variation of the discharge: CV is one of the significant parameters related to 

the uniformity and efficiency of the system. It could be obtained by taking a random sample of 

emitters and measuring  the discharge rates at the same temperature and pressure. It was calculated 

as follows:  

 CV = (Sq/qav) �100                                                                        (3.14) 

Where CV is the discharge coefficient of variation, in %, Sq = the standard deviation of discharge 

rates of the emitters in the sample, in l/h and qav. = mean of emitter discharge rate, in l/h. The 

standard deviation values were calculated in the same manner using the following equation given 

by Wagenführ (1974) : 

                                                                           (3.15) 

Where Sq is the standard deviation of discharge, in l/h, � is the sum of samples, xi is the measured 

discharge value in l/h and x is mean of discharge. Classifications of the coefficient of discharge 

variation values according to ISO standards are given in the International Standard Organisation 

(1991) as indicated in Table 3.3. 

Table 3.3: Classifications of coefficient of variation values (ISO standard, 1991) 

Category CV details Classification

A 0 to +/- 5 % higher uniformity of emission rate and smaller deviations 

 from the specified nominal emission rate 
Good 

B +/-5 to +/- 10 % medium uniformity of emission rate and medium 

deviations  from the specified nominal emission rate 
Medium 

C >10 % lower uniformity of emission rate and greater deviations  

from the specified nominal emission rate 
Poor 
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    Emission uniformity: EU was also calculated by Keller and Karmeli (1974) as follows: 

                    EU = (qn / qav)  �  100                                                                                        (3.16) 

Where EU is the emission uniformity of emitters, in %, qn is average discharge from emitters in the 

lowest 25 % of the discharge range, in l/h and qav is average discharge of all emitters, in l/h. They 

recommended that EU values of 94 % or more are desirable and in no case should the designed EU 

be below 90 %.  

 

                    Emitter flow variation: qvar can be shown by comparing maximum and minimum emitter 

flows and was expressed by Wu and Gitlin (1983) as follows: 

                 qvar. = (qmax. – qmin.)/ qmax.  �  100                                                                             (3.17) 

where qvar. is emitter flow variation, in %, qmax. is maximum emitter discharge, in l/h and qmin.  is 

minimum emitter discharge, in l/h. 

          Manufacturer values of the Siplast emitter discharge exponent, Ke, CV and EU were 0.444, 

14.4, 0.03 and 90 %, respectively. The manufacturing pressure-flow rate relation of Siplast with a 

nominal diameter of 20 mm  is shown in Table 3.4. 

 

Table 3.4: Pressure flow rate relation of Siplast emitters (Source: www.siplast.de) 

Pressure [kPa] 50 100 120 150 200 

Flow rate [l / h] 11.1 14.5 15.7 17.1 19.4 

 

    

 

          The laboratory experiments: In this study, two drop tubes (drop tube number 10 including 19 

emitters and LT = 3.8 m and drop tube number 35 including 35 emitters and LT = 7.0 m) were 

tested to measure qav, the emitter discharge exponent, CV, EU and qvar. .In these tests, the operating 

pressures were 50, 100, 120, 150, 200 and 250 kPa with an accuracy of 5 kPa measured by a 

manometer. The water temperature measured by a mercury thermometer was adjusted to 22 °C by 

using an electrical heater to compare different pressure (ISO 9260, 1991). Two-litre measuring 

cylinders with 20 ml divisions were used with three replications to collect the water from the 

emitters as shown in Figure 3.20. When the chosen pressure was reached, pressure in the drop tube 

was controlled using a pressure regulator. Emitter discharge was measured over a range of six 

pressures to determine the manufacturing variation of emitters. The discharge of the emitters was 

measured volumetrically and a stopwatch was used to measure the flow times. The water volumes 

were collected in the graduated cylinders and manually read and recorded. 
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Figure 3.20: Measurement of the emitter discharge rate in the laboratory (Derbala, 2003) 

       The field tests of MDI: Discharged water from two drop tubes (drop tube number 10 and 35) 

were collected using a 20-litre measuring pail during 30 minutes with 2 replications as shown in 

Figure 3.21. After water pressure had been adjusted to 120 kPa using a pressure regulator  installed 

before the drop tube,  the water application rate of the MDI at different CP speeds and ten different 

pulsing levels including 10, 20, 30, 50, 60, 70, 80, 90 and 100 percent was calculated. The volume 

of the water collected in the pail was converted to the depth of water with due attention to the area 

irrigated under drop tubes that is given in appendix B. In addition,  the quantity of  water 

discharged from the drop tubes including Ne = 19, LT = 3.8 m and Ne = 35, LT = 7.0 m during 30 

minutes at  maximum and minimum pressure at the pivot point and at the beginning of the drop 

lateral are given in appendix B. 

          Then variation in irrigation depth against different amounts of pulsing level was calculated 

and drawn for different CP speeds. It was tested under motionless condition, but irrigation depth 

was calculated for different CP speeds with due attention to linear CP speed, length of drop tube 

and the area irrigated under the drop tube.  
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Figure 3.21: Field measurement of the drop tube water application rate
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4 RESULTS AND DISCUSSION 

          At first IMZs were delineated on a 16.6 ha field using sensor-based ECa measurements and 

then a wireless communication and modified CP were developed to apply site-specific amounts 

of water to a grass field. The system was tested and run in the months of June, July, August and 

September of 2006. The results and discussion are divided into three main sections. 1) the 

delineation of IMZs using sensor-based soil EC measurements with the aid of  EM38  and 

VERIS 3100; 2) remote real-time site specific DIC and monitoring  by means of wireless  soil 

moisture measurement and pulsing techniques for the delivery of  variable amounts of irrigation 

depth using programmable logic control and 3)  potential economic implications. 

4.1 Delineation of irrigation management zones 

4.1.1 Data collection 

         Individual ECa measurements of 8383, 8304, 7967 and 7967 were obtained respectively for 

EM38-h, EM38-v, VERIS 3100-sh, VERIS 3100-dp on different dates during the winter 2005 

experimentation period on the 16.6 ha field. The average soil temperature at the site ranged from 

0 to 10° C over different depth intervals at different times. Therefore ECa data were standardized 

to 25° C (EC25).

          EC25 collected in each of the two operating modes with each of the two sensors were 

mapped (Figure 4.1). Within each map, an equal number of readings were represented within 

each classification interval. The conductivity readings provided by  each sensor (in mS/m) were 

considerably different in magnitude even though  the range was within the trends observed  at the 

field level  on  a map  based on  one single EM38 measurement. These results are in agreement 

with those found by Sudduth et al. (1999). However, similar trends were not found in a map 

based on one single VERIS 3100 measurement and EM38 and VERIS 3100 measurements in 

contrast to the results found by Sudduth et al. (1999).  
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4.1.2 Comparison of the EM38 and VERIS 3100 readings 

Because of unequal measurements of transect locations between EM38_v, EM38_h, 

VERIS 3100_sh and VERIS 3100_dp readings, a combined data set (about 300 points) was 

created at different ECa to allow ECa readings to be compared. Based on DGPS coordinates the 

closest EM38_v, EM38_h, VERIS 3100_sh and VERIS 3100_dp readings were combined. If a 

match was not found within a 3 m radius, that point was removed from the data set. Coefficient 

of determination values (R2) were calculated between the various ECa measurements. Alongside 

these, the comparison of coefficients of determination between ECa measurements showed that 

there was not any good coefficient of determination between ECa measurement methods. The 

highest coefficient of determination (R2 = 0.55) was generally found between EM38_h and 

EM38_v  as shown in Figure 4.2 and from visual comparison between maps in Figure 4.1. 

EC25(EM38-v) [mS/m] with 150 cm measurement depth      EC25(EM38-h) [mS/m] with 75 cm measurement depth      
         21.50-25.63         25.64-27.31        27.32-33.49              45.54-48.36          48.37-49.87          49.88-54.49 
                                

EC25(VERIS-dp) [mS/m] with 90 cm measurement depth     EC25(VERIS-sh) [mS/m] with 30 cm measurement depth     
         3.72-7.09             7.10-8.11             8.12-12.00                 4.64-7.80             7.81- 10.62          10.63-16.43 

Figure 4.1:  Comparison  of  the   different EC25 obtained with VERIS 3100 (shallow and deep) 
                     and   EM38   (horizontal  and  vertical). Within each map,  an  equal  number of   
                     readings  are represented within each classification interval 
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        Sudduth et al. (2002b and 2003), Triantafilis and Lesch (2005) and Doolittle et al. (2005) 

also came to a same conclusion. This result can be discerned from the EM38_h   and EM38_v 

curves in Figures 3.6 and 3.7 (P. 50) where these two curves lie closer together than other curves 

(EM38 was applied suspended 30 cm above the ground surface). However, lower coefficients of 

determinations were obtained between VERIS 3100_dp and EM38_h (R2 = 0.29) and VERIS 

3100_dp and VERIS 3100_sh (R2 = 0.26) and very low coefficients of determination between 

VERIS 3100_sh to EM38_h, VERIS 3100_sh to EM38_v and VERIS 3100_dp to EM38_v 

(Figure 4.2).  These results also can be discerned from Figures 3.6 and 3.7 (P. 50) where related 

curves were found to lie further away from the other curves. These results are contrary to the 

high coefficient of determination between EM38 and VERIS 3100 found by Malo et al. (2000), 

Sudduth et al. (1999 and 2003), Bramley (2002) and Lück (2002).
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Figure 4.2: Relationships between different ECa readings standardized to 25° C obtained
                   with VERIS 3100 and EM38 
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        A statistical summary of the different apparent soil electrical conductivity (ECa) readings 

standardized to 25° C obtained with VERIS 3100 and EM38 data for each measurement after 

limitation of the unreasonable values, is shown in Table 4.1. Maximum and minimum ECa 

readings were found in the EM38_h and VERIS 3100_dp readings, respectively compared with 

other sensor- based ECa readings. However, the VERIS 3100_sh and VERIS 3100_dp readings 

were somewhat equal. In general, there was a large difference between EM38 and VERIS 3100 

readings. The ECa readings of  the EM38 were higher than the ECa readings of  VERIS 3100, 

though variations among VERIS 3100 readings were significantly higher than among EM38 

readings as shown by the measured CV values listed in Table 4.1 (CV(VERIS 3100_sh) = 26.0 % and 

CV(VERIS 3100_dp) = 16.1 %). These results are in agreement with soil-depth variation on the study 

field that is more variable in the upper 40 cm (mix of loam and sand) and more uniform at  

greater depths (mostly sandy) and can be found in Figure 3.2 (P. 46) and in particular  in Figure 

3.6 (P. 50) where about 94, 56, 40 and 24 % of the cumulative response of the VERIS 3100_sh, 

VERIS 3100_dp, EM38_h and EM38_v, respectively, are found  in the upper 40 cm. That means 

the major variability in the soil properties that affect ECa may be in the upper layers of the study 

field, which are weighted more in the VERIS 3100 ECa measurements. Moreover, more 

uniformity in the soil properties that affect ECa may be at  greater depths, which  are less heavily 

weighted as shown in Figures 3.6 and 3.7 (P. 50). Sudduth et al. (2002b) came to a similar 

conclusion.     

          Differences between maps were attributed to the differences in sensing depth of the 

different sensors (EM38 and VERIS 3100) and different data collection modes (vertical vs. 

horizontal or deep vs. shallow, respectively). However, VERIS 3100-sh readings were not able to 

measure soil ECa at deeper layers than about 30 cm, which is the appropriate sensing depth for 

this device, as stated by the manufacturer.  

Table 4.1: Statistical values of the different ECa readings standardized to 25°  C obtained
                 with VERIS 100 and EM38 based on based on a combined data set (300 points) 

EC25

[mS/m] 

count Minimum 

[mS/m] 

Maximum

[mS/m] 

Sum Mean 

[mS/m] 

    Standard 

Deviation 

CV

[%] 
EC25 (EM38-h) 300 45.6 54.4 16280.5 49.3 1.7 3.5 

EC25 (EM38-V) 300 21.6 33.7 8891.1 26.9 1.8 6.7 

EC25 (VERIS-sh) 300 0.3 20.0 3565.4 10.8 2.8 26.0 

EC25 (VERIS-dp) 300 1.3 15.6 2821.1 8.6 1.4 16.1 
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4.1.3 Soil samples and the best sensor-based methods of ECa
         measurements for the delineation of TAWC variability

         To determine the best sensor-based method for the delineation of  TAWC variability and 

the development of  field-specific relationships between ECa data and TAWC, twenty nine 

monitoring points (black points in Figure 4.4) were located using DGPS  based on the ECa 

spatial variability pattern and considering  the whole range of ECa values present. Average 

P.W.P., F.C., TAWC, ECa readings and the latitude-longitude of the sampling calibration points 

are shown in Table 4.2.   

        Linear calibration equations for the TAWC as a function of ECa were developed separately 

for each of   the two operating modes with each of the two sensors (Figure 4.3), since the effect 

of operating mode and sensor were found to be statistically significant. However, a better 

coefficient of determination was found between TAWC and the VERIS 3100 readings (in  both 

shallow and deep modes). These results can be discerned from the VERIS 3100_sh and VERIS 

3100_dp curves as shown in Figures 3.5 and 3.7 (P. 50) where VERIS 3100 curves have bigger 

relative responses in  the upper layers (near the surface) than the other curves. About 97, 68, 55 

and 32 % of the cumulative response of the VERIS 3100_sh, VERIS 3100_dp, EM38_h and 

EM38_v, respectively, came from  the upper 60 cm of the soil  as described by McNeill (1992; 

1980). These results are in agreement with the soil-depth variation of the study field where there 

is more variability on soil texture in the upper 40 cm  (mix of loam and sand) and more 

uniformity in the more deeper layers (mostly sandy). The estimation  of  TAWC from VERIS 

3100_sh data showed that the data matched well  and had a high coefficient of determination (R2

= 0.77), whereas  calibrations  to  EM38  data  (both  vertical  and  horizontal  orientation)  were  

low  and apparently could not adequately reflect the spatial variability of the TAWC due to the 

greater  influence of the EM38 on deeper layers, which  are more uniform.  

          The VERIS 3100_sh data exhibited the highest coefficient of determination and apparently 

could adequately reflect the spatial variability of the TAWC. Thus, the VERIS 3100_sh method 

was selected as a technique of sensor-based soil electrical conductivity measurement to develop a 

TAWC map that will be used for decision making to create an irrigation application map showing  

different irrigation depths for different management zones. Figure 4.4 shows an interpolated ECa 

map standardized to 25° C (EC25) obtained with VERIS 3100 (shallow) and an interpolated 

TAWC map (TAWC was calculated with the aid of an equation similar to the one used for the 

calculation of the coefficient of variation  between VERIS 3100_sh readings and TAWC at 

twenty nine soil sampling  points).    
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Table 4.2:  Average  P.W.P.,  F.C.,  TAWC,  ECa  readings  and  latitude-longitude  of  the
                  sampling calibration points

Geographical position Soil water content Soil electrical conductivity [mS/m]NO of 

sample 

point Longitude Latitude
F.C. 

[%W]
P.W.P. 
[%W]

TAWC
[cm/60cm]

EM38-
h

EM38-
v

VERIS
3100-sh

VERIS
3100-dp

6 10.4521856 52.3008423 13.6 2.9 9.08 36.3 21.1 4.6 5.4 
23 10.4528086 52.2990774 17.0 4.7 10.59 44.0 29.9 7.1 6.4 
19 10.4540946 52.3011483 15.4 3.0 10.62 47.9 24.8 5.8 6.4 
5 10.4535433 52.3001776 15.8 3.1 10.77 50.6 28.7 7.1 7.3 

12 10.4525315 52.3004647 15.8 3.2 10.82 52.1 30.3 6.1 7.1 
18 10.4545495 52.3008132 15.8 3 10.96 49.3 28.1 8.6 7.6 
21 10.4554904 52.3010982 16.0 3.1 10.97 53.1 22.0 6.1 7.9 
17 10.4559177 52.3010160 16.4 3.5 11.00 51.7 30.3 5.6 7.4 
2 10.4557382 52.2988216 16.8 3.8 11.09 52.6 31.9 7.8 8.6 

24 10.4572069 52.3004510 16.6 3.5 11.16 50.2 28.7 7.8 8.3 
16 10.4549903 52.3005991 17.1 3.9 11.18 47.5 23.9 6.5 8.3 
11 10.4571022 52.2999910 16.5 3.2 11.28 52.3 31.9 10.6 8.6 
27 10.456513 52.298718 17.0 3.7 11.33 49.3 22.5 7.8 7.3 
22 10.4552880 52.3009359 16.8 3.4 11.36 46.4 34.2 7.6 8.1 
10 10.4564437 52.3006691 17.1 3.4 11.7 50.4 27.8 7.0 7.6 
1 10.4567739 52.2987210 16.8 3.0 11.75 46.8 23.2 7.8 6.4 

15 10.4539019 52.3007334 17.1 3.1 11.89 51.9 30.8 7.5 6.8 
4 10.4531331 52.2996885 17.7 3.5 12.07 47.5 24.4 8.8 6.9 

20 10.4561360 52.2983884 16.2 1.4 12.64 48.8 27.3 8.1 6.8 
9 10.4540553 52.2994025 18.1 3.3 12.65 47.5 25.1 7.3 8.8 
7 10.4581784 52.2994835 18.7 3.8 12.66 48.0 25.8 8.8 8.2 

25 10.4563245 52.2992208 18.6 3.6 12.83 53.8 36.7 10.0 7.9 
3 10.4528688 52.2992744 17.4 2.3 12.91 53.8 36.0 9.1 8.8 

28 10.452198 52.300891 15.9 0.7 12.96 50.1 37.4 10.1 9.0 
14 10.4573551 52.2984173 17.2 1.9 13.04 53.8 35.1 12.1 11.1 
8 10.4554557 52.2994951 19.1 2.8 13.90 53.7 35.9 14.9 10.2 

26 10.4564054 52.2989562 20.2 3.4 14.34 53.9 36.0 11.8 10.3 
13 10.4576453 52.2990727 19.3 2.4 14.37 54.0 37.9 10.8 11.2 
29 10.4567443 52.2994572 24.3 5.6 15.89 39.8 38.2 16.4 12.0 

% w = Soil moisture content on a dry-weight basis 
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Figure 4.3: TAWC calibration from  different ECa  readings  standardized  to  25° C  (EC25)
                   obtained   with  VERIS 3100  (both   shallow   and   deep   readings)  and  EM38   
                   (both horizontal and vertical orientations) 

Figure 4.4: Interpolated  apparent  soil  electrical conductivity  (ECa)  map  standardized to
25°  C (EC25) obtained with VERIS 3100_sh and  interpolated total available water

                   content (TAWC)  map. Within each  classification interval, an equal  number  of
                   readings  is   represented as well as 29  samples   (calibration   points)   located   
                   using DGPS (black points)                                                                                  
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4.1.4 Optimum number of irrigation management zones 

          Six TAWC zones were identified based on the number of classes that minimize two cluster 

validity indices: (the FPI and the MPE) at a fuzziness exponent value of 1.3 (Boydell and 

McBratney, 1999). Euclidean distance was used to enhance the influence of the highly variable 

TAWC. The FPI and MPE values plotted against the number of management zones are shown in 

Figure 4.5. The FPI indicates very good initial segregation of the data in two zones and reaches a 

minimum value in two zones. The MPE indicates a large amount of initial disorganization in two 

zones. However, as the number of zones increases, both cluster validity indices (FPI and MPE) 

indicate that the degree of membership sharing between zones also increases until four zones and 

then two cluster validity indices are reduced to six zones. However, with equal weight given to 

both indices, a classification into six zones would be optimal for the study field. 
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Figure 4.5:  Plots of clustering  performance  (FPI = fuzziness performance  index;  MPE =
                   modified partition entropy) against the number of zones   
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4.1.5 Features of irrigation management zones  

          Based on standard deviation, these six TAWC classes were identified as IMZ1: 99 to 105  

mm/60 cm,  IMZ2: 105  to 116 mm/60 cm,  IMZ3: 116  to 127 mm/60 cm,  IMZ4: 127  to 138  

mm/60 cm, IMZ5: 138 to 149 mm/60 cm, IMZ6: 149 to 152 mm/60 cm just as within field 

variation of field  capacity  in  volumetric  percent  was IMZ1: 20.6 to 21.5, IMZ2: 21.5 to 23.6, 

IMZ3: 23.6   to 25.5, IMZ4: 25.5 to 27.5, IMZ5: 27.5 to 29.6, IMZ6: 29.6 to 33.7 (Figure 5.8). 

Zones 1, 2, 3, 4, 5, 6 accounted for: 0.13 ha (1.6 %), 2.77 ha (33.8 %), 3.23 ha (39.4 %), 1.30 ha 

(15.9 %), 0.55 ha (6.7 %) and 0.21 ha (2.6 %) of the 16.6 ha study field, respectively (Figures 4.6 

and 4.7). IMZ1 and IMZ3 are the smallest and the biggest irrigation zones including 39 and 2 % of 

the entire study field, respectively (Figures 4.6 and 4.7). Moreover, Figure 4.7 shows that about 

50 % of the area (median TAWC) had TAWC values of 118 mm/60 cm or less. Therefore the 

average TAWC of the study field are equal to 121.6 mm on this field:  

(1.6�102+33.8�110.5+ 39.4�121.5+15.9�132.5+6.7�143.5+150.5�2.6) /100 = 121.6 mm/60 cm 

          Given the  similarity of the physical soil characteristics of zone 3 (including 121.5 mm 

average TAWC) and the  average physical characteristics considered under conventional uniform 

irrigation (normal irrigation), it could be concluded that  no water could be saved by using site-

specific irrigation instead of conventional uniform irrigation on  this study field  (because   deficit 

and over-irrigation are similar in volume) as stated by Oliveira et al. (2003), but that irrigation 

water application and energy consumption are optimized and yield increases (King et al., 2006; 

Camp et al., 2000). Under conventional uniform irrigation, IMZ1 and IMZ2 (about 35.4 % of 

area) were over irrigated whereas IMZ4, IMZ5 and IMZ6 (about 25.2 % of the area) showed an 

irrigation deficit. It is possible to optimize water consumption and to increase water use 

efficiency in irrigated zones by reducing water consumption within over-irrigated zones and 

increasing the irrigation water volume in zones which show an irrigation deficit.  Oliveira et al. 

(2003) found that the difference between average water application depth in site-specific 

irrigation (PI) and   uniform application was significant (approximately 90 %).  Depending on the 

site-specific irrigation schedule, the distribution of water applied in the field varied in each 

irrigation zone over the years but the annual averages were not statistically significant (p > 0.73). 

It is a logical conclusion that PI can not necessarily save water because zones showing an 

irrigation deficit  (areas with high amounts of TAWC) will receive more water with PI than under 

conventional, uniform irrigation and  over irrigated zones (areas  with  low  amounts  of  TAWC)   
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Figure 4.6: Six  optimum  management  zones  delineated  on  the  basis  of  TAWC  map
                  (classification is represented on the basis of standard deviation)   

Figure 4.7: Variation of cumulative area against TAWC 

nearly  position  of 
irrigated area under  
2nd CP span                    

TAWC [mm/60cm]
------------------

99-105     (IMZ1)

105-116   (IMZ2)

116-127   (IMZ3)

127-138   (IMZ4)

138-149   (IMZ5)

149-152   (IMZ6)
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will receive  less  water  with  PI  than under conventional, uniform irrigation. Thus, with due 

attention to the overlapping of over and deficit consumption of water (similar deficit and over 

irrigated water volume), the quantity of water supplied is not necessarily reduced. 

        The appropriate EC25  variation of IMZs can be calculated using the calibration equation 

based on TAWC and EC25 (Figure 4.8). More details and the features of zones (F.C., P.W.P. and 

EC25) and the relationship between these features are shown in Figure 4.8. There was a good 

coefficient of determination between EC25 readings by VERIS 3100_sh and the volume percent 

of field capacity at twenty nine monitoring points. However, a low coefficient of determination 

between the volume percent of the permanent wilting point and EC25 readings by VERIS 

3100_sh was found. Using Figure 4.8 and based on measurements of soil moisture within each 

management zone in the upper 60 cm, it is possible to realize different irrigation depths by 

calculating the soil moisture deficit in order to reach 80 percent of field capacity in the upper 60 

cm of each management zone. Figure 4.8 shows that there is an obvious difference in TAWC 

between minimum TAWC and maximum TAWC in study field. Although this significant 

difference could not save and decrease the water consumption,  a big advantage and an obvious 

potential for the optimization of  water application based on site-specific TAWC variation could 

be derived.

         With due attention to uniform area under the 2nd span of the CP (Figure 4.6), an artificial 

TAWC map including three IMZs (IMZ1, IMZ2, IMZ3) and the whole extent of real variation of 

field TAWC was created (Appendix C). To decrease the cost of purchasing six soil moisture 

sensors for the six IMZs defined in Figures 4.6, three IMZs were considered within the new 

TAWC map as shown in Figure 4.8. Appendix C indicates details and also the variation of 

irrigation depth including the volumetric soil moisture of three artificial IMZs. The artificial 

zones of IMZ1, IMZ2 and IMZ3 had a TAWC variation from 99 to 116 mm/60 cm, from 116 to 

130 mm/60 cm and from 130 to 152 mm/60 cm. These TAWC variations were attributed to an 

EC25 variation of 4.64 to 7.8 mS/m, 7.8 to 10.62 mS/m and 10.62 to 16.43 mS/m, respectively. 
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Figure 4.8: Calibration and relative changes of  TAWC,  F.C.  and  P.W.P from  EC25 VERIS
                   3100_sh  for  the  organization  of  management  zones  and  the  creation of  an
                   irrigation application map

IMZ1:
EC25 = 4.64-5.5  mS/m  
FC = 20.6-21.5 % 
PWP = 4.0-4.1 % 
TAWC = 99-105 mm/60cm 

IMZ2:
EC25 = 5.5-7.4  mS/m  
FC = 21.5-23.6 % 
PWP = 4.1-4.3 % 
TAWC = 105-116 mm/60cm 

IMZ3:
EC25 = 7.4-9.1  mS/m  
FC = 23.6-25.5 % 
PWP = 4.3-4.5 % 
TAWC = 116-127 mm/60cm 

IMZ4:
EC25=9.10-11.0  mS/m  
FC=25.5-27.6 % 
PWP=4.5-4.9 % 
TAWC=127-138 mm/60cm 

IMZ5:
EC25=11.0-12.8  mS/m  
FC=27.6-29.6 % 
PWP=4.9-5.4 % 
TAWC=138-149 mm/60cm 

IMZ6:
EC25 = 12.8-16.43  mS/m  
FC = 29.6-33.7 % 
PWP = 5.4-6.7 % 
TAWC = 149-161 mm/60cm 
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4.2 Performance  and  evaluation  of a remote  real-time  and    
         site-specific distributed  irrigation  control  system  

          This section is covers: field tests related to irrigation scheduling, soil moisture monitoring 

and irrigation system modification.   

4.2.1 Irrigation scheduling

         The maximum and minimum MAD values chosen for this study were   equal to 80 % and 

60 % of TAWC, respectively. The range was reasonable and in agreement with Tables 2.1 and  

2.2 (very fine sandy loam soil texture on the  study field and 60 cm root depth). Imax was 

considered with due attention to:

a)  20 % (100-80 = 20) free soil water capacity for the absorption of rainfall to be expected 
after irrigation and for the maintenance of  soil moisture between an acceptable maximum 
and minimum MAD. Frequent rainfall during the  irrigation season (285 mm from 17 May 
until 30 September) showed that the consideration of  free capacity for the absorption of 
rainfall to be expected  after irrigation is a logical decision and could save water and 
energy.  

b) Limitation of the length increase of the  drop tube  
c) Watering the grass root zone up to a depth of 60 cm  

          Net irrigation depth: It is irrigation depth that must be stored in the root zone. Normally 

irrigation depth is bigger than net irrigation depth because of some water losses (infiltration and 

runoff, for example). The irrigation amounts of three IMZs in Appendix C are calculated based 

on soil sample data at different soil moisture levels before irrigation as shown in the following 

equation:

                       In = (80-SML) �(F.C. – P.W.P.) �6                                                                (4.1) 

 Where In is the net irrigation depth [mm]  required to increase the  soil water content of the 

upper 60 cm to 80 percent of TAWC, SML is the soil moisture level before irrigation [%] that is 

variable between 60 and 80 percent, F.C. and P.W.P are the volumetric soil water content at field 

capacity and the permanent wilting point, respectively. Imax was calculated 21.7 mm for IMZ1

which has minimum TAWC (soil moisture deficit of IMZ1 from 60 % TAWC to 80 % TAWC) 

which is equal to 63 % and 70 % of TAWC in IMZ2 and IMZ3, respectively. The comparison of 
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irrigation depth variation and soil moisture variation inside three IMZs is shown in Figure 4.9. It 

is shown as well that when the soil moisture content and soil drought are reduced, the soil needs 

more water to reach the 80 % of field capacity. Moreover, Figure 4.10 shows the variation of 

irrigation depth and also the variation of soil moisture in percent of TAWC against average soil 

moisture in the upper 60 cm inside IMZ1. The values in Figure 4.10, which can be used in 

practice during the irrigation season, show that the soil moisture content of IMZ1 in percent of 

TAWC (right axis) is reduced when the soil water content decreases and that the  irrigation depth 

of IMZ1 (left axis) grows. 
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           Soil moisture within IMZs was measured using the EnviroSCAN soil moisture sensor and 

the AMBAV-CWB-model every day. It was decided to irrigate all three IMZs whenever the soil 

moisture content inside IMZ1 decreased to 60 % of TAWC, but this was not realized because the 

soil in the study field was homogeneous, water supply was limited, and some technical and 

mechanical problems occurred during the irrigation season. Thus, as shown in Figure 4.11 (c), it 

was not possible to maintain the soil moisture content between 60 and 80 % of TAWC during the 

irrigation season.

          However, this study (like PI) is in the development phase and practical experience and the 

results of this work can be used for the next step in PI development.  Figure 4.11 (a, b and c), also 

shows the variation of the soil moisture content in samples and sensor readings and the variation 

of ´irrigation + rain´ during the data collection period. The results suggest that sensors were able 

to follow the general trend successfully as soil water content measured by sampling changed 

during the growing season, but EnviroSCAN sensors were not able to reliably  repeat moisture 

conditions on sandy soils (under 40 cm depth). 
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4.2.2 Field tests for soil moisture monitoring 

          Field tests related to soil moisture monitoring include the evaluation and soil-specific 

calibration of the EnviroSCAN soil moisture sensor, the field tests of data transmission and 

power supply as well as the validation of the AMBAV model. 

4.2.2.1 Evaluation and soil-specific calibration of the EnviroSCAN soil moisture sensor  

Soil moisture is a direct indicator of soil water content and must be accurately observed for 

irrigation decision support. Moisture contents were measured and transmitted to central control 

every four minutes during the measuring period. The results evidenced that the universal 

calibration equation used in the software of the EnviroSCAN system has been generated based on 

varying soil types. It shows a significant difference as compared with equations developed from 

soil sample data (Figure 4.11). Therefore, soil-specific calibration was found to be essential for  

precise soil moisture content measurements as well as for the improvement of  the sensor’s 

accuracy and performance in accordance with the findings of Jabro et al. (2005), Mead et al. 

(1995), Paltineanu and Starr (1997) and Morgan et al. (1999). Thus, equations have been 

developed during the measuring period on  the study field to relate and calibrate sensor readings 

to the actual moisture content and to an amount of irrigation for future  application using   sub-

surface soil samples  (from a depth of 40 to 70 cm ) gained under different moisture condition as 

shown in  Figures 4.12 and 4.13.  

        The results exhibited an underestimation of the uncalibrated sensor-based soil moisture 

content in comparison with data from both the surface  surface and the subsurface in agreement 

with Mead et al. (1995) in sandy loam, Morgan et al. (1999) in fine sand and Paltineanu and Starr 

(1997) in mattapex silt loam. These results were in contrast to those found by Jabro et al. (2005), 

which consistently overestimated soil water content by a magnitude of nearly 10 % of the volume 

in silt loam soil. Meanwhile, Kelleners et al. (2004) in saline silty clay and Fares et al. (2004) in 

clay soil found both underestimation and overestimation of the soil water content in an 

uncalibrated equation. Although the general trend of sensors installed at different depths were 

similar, visual and statistical analyses indicated that the actual measured values varied 

significantly between the sensors and soil sampling measurements. 
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Figure 4.11: Variation of A) Soil  sample  moisture at  different  depths of  IMZ1,  B) ”Rain +  
                     irrigation” depth during  measuring  period and C) Uncalibrated  sensor-based   
                     soil  moisture  measurement at different depths of  IMZ1.  Variation of SWC due
                     to soil watering. The same trend of SWC variation  in A  and C can be discerned
                     in a  visual comparison between curves
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Figure 4.12: Soil-specific calibration curve of the EnviroSCAN sensor installed at different  
                       layers of 0 to 10 cm,10 to 20 cm and 20 to 30 cm 
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Figure  4.13:  Soil-specific  calibration  curve of  the  EnviroSCAN  sensor  installed  at
                      different layers of 40 to 50 cm  and 50 to 60 cm 
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        The results shown in Figures 4.12 and 4.13 indicated that EnviroSCAN sensors installed at 

depths between  40  and  70 cm  (where soil texture was more sandy) were not able to repeat the 

soil moisture conditions (R2 = 0.45) because   the soil moisture content variation shown by them 

was not similar to the values gained from soil samples. But a good calibration coefficient of R2 =

0.84 was found for sensors installed in loamy sand layers (upper 40 cm). Thus, uncalibrated 

EnviroSCAN-based soil moisture measurements in the upper 40 cm must be modified by using 

the calibration equation of Figure 4.12, where x is uncalibrated EnviroSCAN-based soil moisture 

measurement by content and y is soil-specific modified or calibrated EnviroSCAN-based soil 

moisture reading by volume. Therefore, a soil specific calibration of each sensor would have 

been necessary to obtain a high degree of absolute accuracy in soil water content measurements. 

Thus, it could be concluded that the expensive EnviroSCAN sensor is not a reliable sensor to 

repeat moisture conditions on sandy soils and it could not be applied in an effective way to 

measure soil water content. However, the sampling water content method as a witness 

measurement may not be correct. Therefore,  the distance between the  sampling points and the  

installation point of the sensor must be reduced  and more sampling and calibration points are 

needed in order to improve accuracy.  

4.2.2.2 The field tests of data transmission and power supply  

          Communication from the EnviroSCAN sensors to the central ISM modem and PLC 

worked as expected. The 2.4 GHz band of 8N1 wireless serial protocol combined with two 

specific antennas from VIMCOM AG (model 242451) and MOBILE MARK (model RMM-

UMB) was found to be a wireless solution for the in-field wireless sensor used in this study. It 

was found that the maximum data transfer rate of 2400 bit/sec reached by 8N1 serial over a 400 

m distance is significantly bigger than the data transfer rate needed for this study, because soil 

moisture data were transferred every 4 minutes. However, it could be reduced to every one hour 

in real-time PI.  

          The field tests showed that soil moisture data can be transferred between two ISM modems 

as well without any problem as it was tested for different distances of 50, 100, 150, 200, 250, 

300, 350 and 400 m. Field observation showed that the VIMCOM antenna (model 242451) 
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installed at a height of 5 m, which had a frequency of 2310-2485 MHz and a bandwidth of 175 

MHz enabled the transfer range for soil moisture data to be increased from 300 m to 400 m. 

Moreover, soil moisture data measured at 00:00 o´clock (the same time when weather data 

measurement by DWD begins) were easily received on a mobile phone and then transferred to a 

programmed Excel table on a computer using “Kurznachricht Pro 2.2” software to calculate 

irrigation depth and draw its variation. 
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   Figure 4.14: Variation of battery voltage during measuring period 

         The “Kurznachricht Pro 2.2” software and the simple Excel program for the calculation of  

irrigation depth and the drawing of  its variation were found to be easy and suitable to use and to 

improve application. The battery voltage dissipation of the EnviroSCAN sensor was often 

observed on  rainy or cloudy days, but it did not get below minimum operation voltage (11.2 V) 

during the measuring period. Therefore there was not any necessity for battery recharging to 

avoid lower voltage dissipation. This is an indication that the solar panel size was adequate for 

the self-recharging of batteries. Figure 4.14 shows the variation in the voltage of three batteries 

placed inside three IMZs during the measuring period with a minimum battery voltage of 11.9 V.
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4.2.2.3 Validation of the AMBAV model 

A comparison between the observed soil water content using sampling and simulated 

values of soil water content in the upper 60 cm (root zone) of grass crops during the measuring 

period reveals close variation, and the model satisfactorily simulated the SWC (Figure 4.15) like 

in a conceptual model eveloped by Panigrahi and Panda (2003) where SWC was simulated 

reliably in the root zone of crops.  The results suggest that AMBAV model is a cheap method that 

can be used instead of expensive and nonereliable EnviroSCAN soil moisture sensors for 

irrigation decision support. Simulated values of SWC during the measuring period gained using 

the AMBAV model are shown in Appendix D in millimetres of water available in the root zone. 

The simulated SWC in the root zone of grass can be calculated as follows:

         SWC [vol %] = ([available water in root zone [mm] + (P.W.P. = 24mm)]/ 600) �100                     (4.1)

          In some cases, discrepancies between the observed and simulated values of soil water 

contents are noticed. The reason might be due to spatial variation in soil water content. In the 

simulation model, it is also assumed that all the soil water in excess of soil storage capacity 

percolates out of the active root zone of the crop instantaneously, which is not true under actual 

field conditions. Downward flux in the soil profile below the root zone actually continues for 

several days after redistribution. Because of the aforementioned reasons, some discrepancies are 

noticed in some cases between the observed and simulated values of soil water content in the 

active root zone.
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           However, a significant finding observed in the present study is that the trend of variation 

of soil water content throughout the growing season remains constant for both observed and 

simulated cases. The soil was watered many times due to irrigation and rainfall as is shown in 

Figure 4.11b. During the periods when there was neither rainfall nor any supplementation by 

irrigation, the soil water content in the root zone was depleted gradually. This is due to the loss of 

water by the grass in the form of evapotranspiration. However, if during the crop-growing season 

there was any rainfall or irrigation, then water content in the root zone was observed to increase 

as shown in Figure 4.11a and c.   

          To strengthen the model`s predictive performance, the values of the coefficient of 

determination (R2) of the observed and the simulated root zone soil water content were estimated. 

The R2 value was 0.94 (Figure 4.16). Since the R2 value was close to one, it could be concluded 

that the AMBAV model performance was satisfactory in simulating the root zone soil water 

content under field conditions. In addition to the graphical presentation, statistical tests were 

carried on to investigate the model´s predictive performance. The MARE value was found to be 

0.11. The low values of MARE (according to the methods outlined in Equation 4.8) of the 

simulated and observed data signify that the AMBAV model can be safely used for the 

simulation of the root zone soil water content. Furthermore, the PE index was estimated using the 

methods outlined in Equation 4.9. It was found out that the value of the PE index is 0.999 (99.9 

%). Low MARE values and high values of PE and R2 indicate that the soil water balance 

simulation model as presented in the paper can be used safely to simulate the soil water content 

in the root zone.
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Figure 4.16: Relationship between observed and simulated SWC 
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4.2.3 Evaluation of the modified centre pivot irrigation system

          The results of the evaluation of the modified centre pivot were divided into three parts of 

field tests, in which   PLC performance, the number of emitters installed on the drop tubes, the 

length of the drop tubes and the laboratory and field tests of drop tubes were assessed.  

4.2.3.1 Field tests for the evaluation of programmable logic control performance 

The PLC and the solenoid valve functioning (open and close) was able to pulse the water on 

and off for any given application rate at a  programmable pulsing level from 0 to 100 % in a  

pulsing interval of 100 seconds and at  15 to  30 % of the given CP speed. Field observation 

showed that the opening and closing time of the SV depended on the pulsing level at a rate of 

100% (nozzle on for 100 seconds, off for 0 seconds), at a rate of 90 % (nozzle on for 90 seconds, 

off for 10 seconds), at a rate of 70 % (nozzle on for 70 seconds, off for 30 seconds), at a rate of 

60 % (nozzle on for 60 seconds, off for 40 seconds), at a rate of 40 % (nozzle on for 40 seconds, 

off for 60 seconds), at a rate of 30 % (nozzle on for 30 seconds, off for 70 seconds), at a rate of 

10 % (nozzle on for 10 seconds, off for 90 seconds).  Figures 4.17 and 4.18 show the pulsing 

effect on nozzle irrigation depth. The results show that the pulsing technique operated 

successfully while providing a flexible means of applying variable water treatments (Fraisse et 

al., 1995 and Duke et al., 1997). Although the control system was firstly programmed on a 

pulsing interval of 20 seconds but field observation showed that a 20 second pulsing interval is 

short because of water hammering due to valves being turned on and off at various pre-planned 

locations in the field (changes in flow rate and then changes in pressure). Therefore the pulsing 

interval was increased to 100 seconds, but it is proposed to apply pulsing intervals longer than 

100 seconds. In order to solve the problem of water hammering  in the variable rate linear move 

irrigation system, Moore et al. (2005) installed a variable frequency drive (Zentac America, 

Madison, CT) on the pump that was manufactured by Franklin Electric to slow down the motor 

as flow decreased to the system. The variable frequency drive operates in the range from 60 Hz at 

full capacity to about 40 Hz. When the pump motor turns at a rate below 40 Hz, it will 

automatically shut down the motor to prevent overheating of the shaft and bearings. A high 

pressure cut-off switch was also installed at the pump to shut it down if line pressure exceeds 550 

kPa.
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Table 4.3: Average irrigation depth and error produced at different pulsing rate and CP speed 

CP speed 15 [%] CP speed 30 [%]Pulsing 
level [%] Measured 

Irrigation depth  
[mm]

Theoretical 
irrigation depth 

[mm]

Error  
[%]

Measured 
Irrigation depth  

[mm]

Theoretical 
irrigation depth 

[mm]

Error  
[%]

10 2.6 2.15 20.9 1.1 1.02 7.8
30 5.5 6.45 14.7 2.4 3.06 21.6
40 7.7 8.6 10.5 3.4 4.08 16.7
60 12.3 12.9 4.7 5.7 6.12 6.9
70 14.1 15.05 6.3 6.3 7.14 11.8
90 19.4 19.35 0.3 8.3 9.18 9.6
100 21.5 21.5 0.0 10.2 10.2 0.0

        Generally measured irrigation depths reached the target depths, but there was significant 

difference between measured and target irrigation depths for low pulsing levels as shown by 

Table 4.3. This difference was reduced by increasing the pulsing level and decreasing CP speed. 

These results are in agreement with field observations and also in agreement with Fraisse et al. 

(1995) since the valves had a discrete response time for opening and closing (valves open 

quickly, but require a longer time to close) and can have a greater effect on water distribution 

during short time irrigation than during long time irrigation (irrigation time is short when CP 

speed is high and pulsing level is low). However, it could be concluded that irrigation depth 

determination must be based on field measurement instead of theoretical calculation. Nozzle 

irrigation depth at other  CP speed dial settings was determined with due attention to the nozzle 

irrigation depth of  15 to  30 % and the relationship between the speed dial setting on the CP 

control box and the linear speed at the end of the 2nd CP span (Figure 4.19).
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        The measurements indicated some deviations at the management zone’s border with 

more/less irrigation depth than the target depths. The error is considered very small when 

compared to typical sizes of irrigation zones and when considering that in  the border area (where 

the irrigation zone receives water from sprinklers which are installed inside overlapping 

neighbouring irrigation zones) water application depth or rate blending will occur. This is 

because the sprinklers used in the package had a relatively large wet radius, which indicates the 

importance of using sprinklers with a smaller wet radius to reach depths much closer to the target 

depths. Moreover, the selection of the proper sprinkler packages also has an effect on the size of 

the management unit or the zone in the application map, which depends mainly on the ability to 

measure and manage it (Blackmore, 1994). Therefore, as suggested by Omary and Sumner 

(2001), the throw radius of the spray nozzle should not be larger than three times the spacing 

between the spray nozzles. The contrasts between the target and measured depths at the border 

area is decreased and increased when the required change in water depth is small and big, 

respectively. This indicates that this variable rate irrigation system is appropriate for applying 

variable target amounts step-wise. Otherwise some deviations in the applied amount are 

expected. In this study, however, sprinklers were actually replaced by drop tubes. Therefore, they 

could not cause deviations in the management zone’s border with more/less irrigation depth than 

the target depths, which can be considered one of the advantages of PMDI.   

        With due attention to linear the CP speed at the end of the 2nd span at 30 % and 15 % of the 

programmed CP speed, which was 0.489 and 0.208 m/min, respectively, irrigation depth 

produced under 15 % has to be 2.35 times more that irrigation depth produced under 30 %, but 

field tests showed that the proportion was about 2.21 times greater than the small deviation 

between measured and target irrigation depth (Figure 4.20). Although some deviation could be 

caused by wind that exceeded the maximum velocities described by the ASAE Standard S436.1 

(2003) for a short time, it can be concluded that the determination of irrigation depth must be 

based on field measurements instead of theoretical calculation. This suggests that wind was a 

factor in this study for a short time. This was important to prevent any other factor affecting 

water distribution except the open/close time of the solenoid valves.

        Because the system pulses water on and off to produce the desired amount of irrigation, the 

uniformity of water application along the system is a concern. In site-specific irrigation, the 

distribution uniformity within each IMZ must be as uniform as possible. Therefore water 

distribution uniformity was also considered to be a vitally important aspect of the performance of 

the system using  sprinkler  outlets before  installing  drop  tubes. The  insignificant  deviation  in  
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Figure 4.20:  Comparison  between  irrigation  depths produced  under 15 %  and  30 %  of  
                       programmed CP speed 

water distribution patterns could be attributed to  the  small  loss  in  pressure  due  to  the  

solenoid  valve installation which has a low impact on the distribution patterns (Fraisse et al., 

1995). The coefficient of uniformity for conventional CP irrigation systems ranges from 0.85 to 

0.95 (Scherer et al., 1999).    

        The coefficients of uniformity at different pulsing levels and CP speeds in this study can be 

seen in Table 4.3. The solenoid valve functioning (open and close) had no effects on the CU and 

the uniformity of the nozzle output was not adversely affected by using the pulsing technique for 

water application as compared to the uniformity of a conventional CP system. 

       In this study and based on equation 4.10 (Heermann et al. 1992), the CU was between 72.8 

and 97.2 % as shown in Table 4.4. Michael et al. (2006) came to a similar conclusion that tested 

uniformity of variable-rate irrigation control systems and measured CU equal to 93 and 84 % for 

modified centre pivot and linear move systems, respectively. Also Moore et al. (2005) and King 

and Wall (2001) obtained a high quantity range of CU from 79 to 95 % for irrigation depths 

between 6 to 25 mm for   a variable rate linear move system and from 87 to 92 % for relative 

application rates of 33 to 100 % and mean water application depths within 10 % of the target 

depths of  modified CP, respectively, that are in agreement with current results.
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Table 4.4: Coefficient of uniformity at different pulsing level and CP speed 

Pulsing level [%] CUHH at 15 % of CP speed CUHH at 30 % of CP speed

10 76.3 72.8
30 89.9 91.8
40 90.8 89.5
60 94.4 89.9
70 94.1 90.8
90 96.2 96.9

100 97.2 94.7

         There were no observed system failures or malfunctions that would affect  its performance, 

except that the pressure in the system inlet at the pivot point was significantly changed (increased 

or decreased) when a section of CP was arriving to the new IMZ or while simultaneously 

opening or closing all the solenoid valves. Since no system failures or malfunctions occurred it 

could be concluded that the position encoder can help PLC to find the spatial location of each 

irrigation depth as well.        

          One of the most important advantages of MDI is decreased operation pressure around 100 

kPa because drop tubes were used instead of sprinklers. But field observation has shown that 

although about 100 kPa operation pressure was enough for drippers it was not able to open and 

close the “Baureihe 82340/82440” solenoid valves and that the inertia of the solenoid valve must 

become better. Thus, operation pressure was obligatorily increased to 120 kPa in the SV position. 

Therefore it is proposed to select SV with good inertia, which are able to provide the minimum 

required dripper operation pressure.  

          In this study, besides simplicity and flexibility, the risk of system failure caused by 

mechanical damage or electrical storms and wiring costs was reduced for an EIB-BUS or DIC 

system in comparison to centralized control systems.  Although the cost of multiple control units 

required by a DIC control system used in this study could be greater than the cost of a central 

controller required by a centralized control system, the wiring costs for the distributed control 

system would be significantly reduced. 
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4.2.3.2 Number of emitters installed on the drop tubes and length of drop tubes 

 The number of Siplast on drop tubes emitters installed on 2nd span was calculated based 

on Equation 4.11 and Siplast emitter discharge at 120 kPa (qe = 15.8 l/h), the irrigated area 

covered by the drop tubes (the distance from the pivot point and narrow spacing covered by drop 

tube), irrigation time (T = 48 h, that was equal to CP dial set of 14 %) and the maximum 

irrigation depth required within IMZ1 (Imax = 21.7 mm) as indicated in Appendix E. The number 

of drop tubes installed on the CP, drop tube position, distance between drop tubes, narrow 

spacing covered by the drop tube, irrigated area covered by the drop tube, volume of water which 

has to be discharged by the drop tube for Imax = 21.7 mm, discharge of water by the drop tube for 

Imax = 21.7 mm and CP speed = 30 % and the related number of emitters installed on the drop 

tube and the length of the drop tube are shown in Appendix E. According to the number of 

emitters installed on each drop tube and the spacing between emitters on the drop tube (20 cm), 

the length of the drop tubes at any point of the pivot lateral was calculated using equation 4.12. 

The water quantities at the drop tubes increased with growing the distance from the pivot point. 

Thus, the length of the tubes and the number of emitters installed on each drop tube were 

increased with growing distance from the pivot point. The shortest drop tube, which was located 

at a distance 39.67 m from the pivot point, and the longest drop tube located at a distance 77.02 

m from the pivot point had lengths of 1.4 and 3.0 m,  respectively. The minimum number of 

emitters installed on the shortest drop tube and the maximum number of emitters installed on the 

longest drop tubes of the 2nd CP span were 7 and 15 respectively. For a CP 400 m in length, the 

number of emitter installed on the last drop tube and the length of the last drop tube will be 80 

and 16.0 m, respectively. Although a pressure of 170 kPa on the pressure manometer was used at 

the beginning, it was decreased to 120 kPa as a suitable operation pressure at the beginning of the 

drop tubes and before the pressure regulator (Figure 3.17), because of the possibility to save 

energy. In Figure 4.21, the lengths of the drop tubes are calculated at two pressures of 120. To 

show the effect of water pressure on the length of the drop tube, it is also calculated for 170 kPa. 

The calculated length of the drop tube at 120 kPa was longer than at an operating pressure of 170 

kPa because of less emitter discharge. With due attention to increasing drop tube  length with 

growing  distance from the pivot point, it is better to calculate the friction force between the drop 

tube and the grass in particular  for the last span of the CP as it was calculated by Derbala (2003).   

          Field observations showed that the drop tube was tangled into the CP drive mechanism 

when the CP changed its direction. Thus, a metallic bar was installed at a distance of 0.5 m and 

parallel to the CP wheel to solve this problem (Appendix G).  
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Figure 4.21: Length of drop tubes at two pressures under the conditions of MDI with a
                     centre  pivot irrigation system 

4.2.3.3 The laboratory and field tests of drop tubes 

          Different performance parameters were calculated in the laboratory to illustrate the 

relationship between the operating pressure and discharge rate, the emitter discharge exponent, 

the coefficient of variation, flow variation and emission uniformity. The pressure-discharge  

relationships  of emitters are expressed by equation 4.13. The Siplast emitter discharge was very 

uniformly distributed for all emitters at all operating pressures as shown in Figure 4.22. At the 

same time, the discharge increased linearly as the operating pressure grew because this type of 

emitters is a non-pressure compensating (NPC). The effect of operating pressure on the emitter 

discharge was highly significant and the emitter discharge was strongly influenced by the 

operating pressure. The discharge was about 10 l/h and 19.4 l/h at 50 kPa and 200 kPa, 

respectively.         

        Means of the measured discharge rates at different operating pressures are illustrated in 

Figure 4.23. The results indicated that  the emitter discharge rate  increased linearly with 

operating pressure. Except at 200 kPa, measured discharge flow rates at other pressure levels and 

in particular at 50 kPa did not reach the design flow rate claimed by the manufacturer. These 

variations are presented in Table 4.5.  
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Figure 4.22: Emitter discharge rate at different operating pressures for drop tube including  
                     19 emitters under laboratory condition 
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Figure 4.23: Emitter discharge rate at different operating pressures for drop tube including  
                    35 drippers under laboratory conditions 
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Table 4.5: Average difference between the nominal discharge indicated by manufacturer and
                measured discharge in laboratory 

Emitter pressure 

[kPa]

Nominal discharge 

by manufacturer [l/h] 

Measured discharge 

in laboratory [l/h] 

Difference [%]  

50 11.1 9.9 - 10.8
100 14.5 13.7 - 5.5
120 15.7 17.1 + 8.9
150 17.1 17.7 + 3.5
200 19.4 19.4 0.0

        In addition, the hydraulic characteristics of emitter were calculated based on estimated 

coefficient of determination values. Ke and x were 1.3444 and 0.5128, respectively as shown in 

Figure 4.24. With due attention to the turbulent flow type when the emitter exponent values is 

higher than 0.5, the Siplast emitter is classified as NPC. The coefficient of determination (R2) is 

also reported. When the R2 value is very close to 1, equation 4.13 is an appropriate model for the 

description of the relationship between the discharge and the pressure of these emitters, but low 

R2 values either indicate considerable data scattering or that the model used was not appropriate. 

The coefficient of determination for the Siplast emitter was 0.96 (given by Figure 4.24). Thus, 

equation 4.13 is an appropriate model for the description of the relationship between the 

discharge and the pressure of Siplast emitters. 

y = 1.3444x0.5128
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Figure 4.24: Means of measured discharge rates for all tested emitters  at different pressures    
                      under laboratory conditions 



Results and Discussion: Performance  and evaluation of remote real-time and site-specific distributed                 
.                                      irrigation control system                                                                                              108                              

         The coefficient of discharge variation of emitters in the sample falling within a given 

deviation from the mean discharge was calculated using equation 4.14. The results indicated that 

the coefficient of discharge variation value was followed by a normal distribution at each 

operating pressure. Emitter performance was classified as good based on the coefficient of 

variation in Table 4.2, according to ISO standards (1991). Emission uniformity was calculated 

using equation 4.16. The relationship between operating pressure and both emission uniformity 

discharge and the coefficient of variation is illustrated in Figure 4.25. The emission uniformity 

value was higher than 95 % at all operating pressures. At the same time, results indicated that the 

measured CV value at 100 kPa was less than the design CV (3 %) claimed by the manufacturer 

as shown in Figure 4.25. The fluctuation of the coefficient of variation with pressure may be used 

to define emitter discharge sensitivity to pressure. The manufacturer coefficient of variation 

should be 15 % or less to achieve reasonable uniformity of water application (Solomon, 1977). 

The results showed that an increasing value of the coefficient of discharge variation CV leads to 

decreasing emission EU uniformity.  
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Figure 4.25: Relationship between the operating pressure and both the coefficient of
                     variation and emission uniformity of Siplast drop tube

       The calculation  of emitter flow variation using equation 4.17 showed that the mean value of 

emitter flow variation was about 10.9 % at operating pressures ranging from 50 kPa to 200 kPa 

and that the maximum value of emitter flow variation was reached at  120 kPa. These results are 

presented in Figure 4.26.  
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Figure 4.26:  The  relationship  between  different  operating  pressures  and  emitter  flow  
                      variation

         The calculation of water application rates by MDI and two drop tubes (Ne = 19, LT = 3.8 m 

and Ne = 35, LT = 7.0 m) at different CP speeds and different pulsing levels under field 

conditions showed the expected results. These tests were the suggested solution which would 

provide variable rate water application in the radial direction as stated in the hypothesis upon 

which a strategy for precision irrigation is based. These test cases represented different locations 

in the application map (different angles in the field). The field tests of the drop tube show: 

a) The variation of the drop tube flow output is proportionate to the number of emitters  
       installed on the drop tube 
b)   The variation of the drop tube flow output is proportionate to the pulsing level  

          Field tests of MDI depth variation were done against pulsing level under different CP 

speed. An example of this variation for 20 % of CP speed is shown in Figure 4.27. In Appendix 

F, same curves for 10, 30, 40, 50, 60, 70, 80 and 90 % of programmed CP speed are drawn. In 

practice, one of these curves can be selected for each irrigation time based on irrigation duration 

and the maximum available flow rate for pumping. 
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Figure 4.27:  Field   test   variation  of  MDI  depth  against pulsing   level  for  20 %   of 
                      programmed CP speed 

       With due attention to different irrigation rates needed to cover different irrigation depths, it is 

very important to consider  that the maximum irrigation rate used  within  IMZs  must  be  below 

the  soil infiltration rate to avoid runoff. Since  saturated infiltration rates on the  study field are  

48 mm/h according to measurements  by Seibold et al. (1998), the minimum speed set at the  CP 

control box [%] for the avoidance of  runoff was  calculated for different pulsing levels. This 

minimum speed can be calculated based on the water application rate at different pulsing levels, 

lengths of the drop tube and a saturated infiltration rate of 48 mm/h. CP speed must be reduced  

by decreasing the pulsing level as shown in Table 4.6.

         The results showed that at a pulsing level of 100%, the speed set at the  CP control box to 

avoid runoff must be more than 34.3 %. But the minimum speed set at the  CP control box to 

avoid runoff can be improved by increasing distance between emitters on drop tubes. The results 

showed that the maximum pulsing level used at 10 % CP speed setting can be 68 % to avoid 

runoff, but at 20 % of CP speed or more, the maximum pulsing level of 100 % can be used 

without any runoff as shown by Figures 4.27. The average manufacturer value of discharge and 

the average values of emitter discharge under laboratory and field conditions at 120 kPa were 

15.8, 17.1 and 15.3 l/min, respectively. 

          Field observation showed that in spite of some advantages of the Siplast drop tube, it has 

hard and inflexible material and was difficult to install and to work with. Moreover, a metallic 

horizontal tube was found to be better than a horizontal tube of out polyethylene shown in Figure 
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3.17 because of the ard sliding of two tubes out of different materials which lay one on top of the 

other.

       Although this system had not experienced any clogging problems even though no filtration 

system had been installed in the summer of 2006, a DN-150 filter from the company Hüdig 

(www.huedig.de) was installed between the supply and the pivot point for future applications of 

mobile CP drip irrigation. 

Table 4.6: Minimum  allowed  speed  set  at  the  CP control  box to avoid  runoff at  different 
                 pulsing levels

Pulsing level [%] 10 20 30 40 50 60 70 80 90 100 

speed set on CP 
control box [%] 

7.1 10.5 12.6 15.9 17.9 20.0 22.5 28.2 33.0 34.3 Minimum 

allowed CP 

speed to 

avoid runoff 

Linear speed at the 
end of 2nd CP span 

[m/min]

0.12 0.30 0.49 0.68 0.85 1.03 1.24 1.42 1.64 1.81 
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4.3 Potential economic implications 

          The cost of irrigation per hectare varies from system to system, but they all have different 

economic returns. The primary extra costs in the PI technology are the costs of modification of 

conventional irrigation systems to PI systems as well as the acquisition of data and their 

conversion to information. The general introduction of PI will not take place for several years 

until the field data for irrigation control are available in manageable forms (Sourell and Sommer, 

2002). While this management system is in its early stages, it could be expected in the coming 

years with regard to technological improvements in industry that these extra costs of industrial 

accessories could be minimised. Thus, a full economic analysis cannot be conducted until full 

results from research programmes are available.  

          The potential benefits of a PI system include increased crop yield (King et al., 2006; Camp 

et al., 2000 and Oliveira et al., 2003), cost-efficient usage of inputs via variable-rate application 

(Kenneth, 1988), water and energy optimising or saving, reduced contamination of water supplies 

by  deep percolation of agrochemicals or runoff (Beckie et al., 1997; Lindquist et al., 1998) and 

increasing yield quality (King et al., 2004 and 2006; Nijbroek et al., 2000 and 2003).  

           In this study, the economic analysis is followed by conclusions based on the model that is 

presented in Equations 4.1 and 4.2. By this model allows the irrigation costs and farming benefits 

of different irrigation systems for different crops to be compared. 

Total irrigation cost [€/(ha�year)] = fixed costs [€/(ha�year)] + variable costs [€/(ha�year)]             (4.1)

Fixed costs are including the repairing, waiting and depreciation costs and the variable costs are 

including the labour, water and energy costs. 

Farming benefit [€/(ha�year)] = (yield [kg/(ha�year)]�yield price [€/kg])–total irrigation cost [€/(ha�year)] 
(4.2)
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4.3.1 Capital requirement and fixed costs

         A very expensive prototype  irrigation  control  system  (€ 12.900)  was  used in this study,  

but  for economic analysis, a  market  price  of  € 8000  was  considered  (market price includes 

cost of development phase). Moreover, although a very expensive “Baureihe SV” (€ 162) from 

the Buschjost company was used in this study, many other cheaper SV which could be used were 

found on the market. Some of them are Elektro-Magnetventil and  AVS-GAMMA-Ventil  at € 74 

and € 88, respectively (www.magnetventile-shop.de) and SV from the ESSKA company 

(www.esska.de) at € 61. Therefore, normal market prices of control systems and solenoid valves 

were used for the economic analysis of the work carried out in this study. Capital requirements 

for CP modification and annual fixed cost of different irrigation system per hectare in Germany 

and Iran are given in Tables 4.7, 4.8 and 4.9. In this study, the costs of ISM modems and wireless 

soil moisture data transference is neglected, because a CWB-model is considered to be more 

economical than wireless data transfer with due attention to the fact that the AMBAV-model was 

developed  as a safe and cheap method instead of the expensive and wireless EnviroSCAN soil 

moisture sensors for irrigation decision support (Each ISM modem and EnviroSCAN soil 

moisture sensor cost about € 006). A promising hardware low-cost Bluetooth wireless solution (€ 

766 ), which cost 1000 and € 1257, respectively was used, although Kim et al. used five in-field 

sensing stations to measure soil moisture and soil temperature. The fixed costs determined in the 

current study are comparable with those found by:       

a) Evans and  Harting (2005) that a  total PLC system  costs  approximately € 178  per   hectare   
       on wiring,  while a  370  meter  long CP  or  about € 18   per   sprinkler  and  a  pivot   control   
       system  including  PLC,   valves,  air  lines, labour, etc  installed directly on the  CP  machine   
       come  to  about   € 4444  with  a  GPS   compared   to   € 3333   for   the   current  version  of    
       commercially available digital control systems (based on 2004 prices). 
b) Miranda et al. (2005) that  hardware  construction  cost for one irrigation controller unit  was   
        approximately  € 136 (based  on  2003  prices),  including  the  solar  panel  and  the  battery.    
        With sensors and the latching solenoid valve, the total cost was  € 222,  but  for a  production 
        scale  of 1000  units,  the  estimated  unit  cost  would  be  € 86  for  the irrigation  controller,   
        and € 150 including sensors and valve and 
b)     Al-Karadsheh  (2003)  that  a   total   PI  control   system  including  PLC,  SV,  wiring   and   
         technical works costs approximately 194 [€/(ha�year)] (based on 2001 prices).  

           A comparison between PI costs determined in this study and the expenses for a PI system 

found in the above mentioned three studies shows that the PI system of the current study is 

expensive and can be reduced especially for the control system and SV. In the coming years, 

when this new management system establishes itself, it is expected that these costs will go down 
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to a level that does not make the additional costs an obstacle to the application of such a 

management system.  Capital requirements in Iran are lower than in Germany, particularly in the 

development phase. Capital requirements per hectare in Iran are considered to be about € 250 

(Personal communication, Golestan Agricultural and Natural Resources Research Centre, 2007). 

Table 4.7: Details  of  capital   requirements for the modification of a   CP  with  400 m
                  radius   (50.2  ha)  and  mapping cost  for  PMDI  in  Germany  (Personal
                  communication, Sourell and Schudzich, 2007)     

Item No. of units Price per unit [€] cost [€]
Control System  1 9000 9000  
Solenoid valve 33(4) 100 (61-162) 3300 
CWB-model 1 70 70 
Cables and boxes ------ ------- 4350 
Pressure sensitive 
drop tube 

4691 m for 120 kPa,  0.25 1173 

Fitting 500 1.5 750 
EM38(1)- VERIS 
3100(2)

50.2  ha 9.5 - 12 540 

Soil sampling(3) 50.2  ha 2.7 154 
Total 19337 
Capital requirements per hectare [€/ha] 385
(1)Service from company Agricon   
(2)Service from company Arndt Kerkenpass 
(3)Service from laboratory of German Weather Station 
(4)Although 3 m distance between sprinklers on the conventional CP irrigation system was considered as minimum width of control zone,  
   but economic analysis of the study was done based on 12 m minimum width of control zone (400/12 = 33). 

Table 4.8:  Capital requirement of different irrigation systems per hectare in Germany and  
                  Iran from hydrant on  the ground surface including head station without  pump 
                  (Enciso   et  al.  2004;  Personal   communication,   Sourell,  2007;   Personal  
                  communication, Golestan Agricultural  and Natural Resources Research Centre,
                  2007)  

Factors
Surface irrigation
for 50.2 ha 

Centre pivot 
with 400 m 
radius

Drip irrigation for 
maximum lateral 
length of 200 m and 
50.2 ha 

PMDI with 
400m radius 
CP

Capital requirement in 
Germany [€/ha] 

--- 1077 1451 1462 (1)

Capital requirement in 
Iran [€/ha] 

0 1000 1300 1250 (2)  

(1) 1077+385 = 1462 
(2) 1000+250 = 1250 
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Table 4.9:  Annual  fixed  cost  of  different irrigation systems  per  hectare  in  Germany  and   
                  Iran including repairs,  maintenance and depreciation (Personal   communication,
                  Sourell (2007), Teichert (2007), Personal communication, Golestan Agricultural    
                  and   Natural Resources  Research  Centre  (2007).  In  this  table,  labour, water
                  and energy cost are not included

Factors
Surface

irrigation 
for 50.2 ha 

Centre pivot 
with 400m 

radius

Drip irrigation for 
maximum lateral length 

of 200 m and 50.2 ha 
PMDI with 400 m 

 radius CP 

Fixed cost in Germany 
[€/(ha�year)]

--- 143 (1) 306 (2) 195 (1)

Fixed cost in Iran 
[€/(ha�year)] (3)

0 180 (3) 353 (4) 225 (3)

    Amortization of drop  tube  by  Morris (1999), Wade  and  Boman  (2003),   Fereres and Meyer  (1978),    Teichert (2007)   and   Netafim     
    company (www.netafim.com) were considered 10, 8-12, 7-8, 2,  and 5  years,   respectively.  With   due   attention   to   these   references,   
    amortization of drop  tubes in this study were considered 5 and 4 years for Germany and Iran, respectively.  

(1) Interest rate = 3 %  of  capital requirement per ha, “repair + maintenance” cost = 2 % of capital requirement per ha, depreciation = 8.33 %   
    of capital  requirement  per  ha  with  12  years  amortization. Although amortization of  drop tube  under  PMDI  is also 5 years, but  it  is   
    neglected  because  of low proportional cost of drop tube than PMDI.  

(2) It is  including  570 [€/ha]  for head station,  chemigation  requirement  and  distribution  system  with  10  years  amortization   (10 %   of   
   capital requirement depreciation),  interest rate = 3 %  of  capital  requirement,  “repair + maintenance” cost = 2 %  of capital  requirement  
   and 881[€/ha]  for  drop  tubes with 5 years amortization  (20 %  of  capital  requirement  depreciation), interest rate = 3 %  of capital 
requirement, “repair + maintenance” cost = 2 % of capital  requirement [(570� 15 % ) + (881� 25 % ) = 306]. 

 (3) Interest rate = 5 % of  capital  requirement per ha, “repair + maintenance” cost = 3 % of capital  requirement  per  ha, depreciation = 10 % 
     of capital requirement per ha with 10 years amortization. 

(4) It is including 507 [€/ha]  for  head  station,  chemigation  requirement and distribution system  with  10 years  amortization  and  10 %  of  
   capital  requirement  depreciation,  interest  rate = 5 %  of   capital   requirement  per  ha,  “repair  + maintenance”  cost = 3  %  of   capital     
    requirement  per  ha and and 793 [€/ha]  for  drop  tubes  with  4  years amortization and 25 % of capital requirement per ha  depreciation,    
    interest  rate = 5 %  of  capital requirement per ha, “repair + maintenance” cost = 3 % of capital requirement per ha (507� 18 % + 793 �
    33 % = 353) 

4.3.2 Variable costs 

         The variable costs of different irrigation systems include labour, water and energy costs. In 

this study and in agreement with Feinerman and Voet (2000) and the field study of Oliveira et al. 

(2003), it was found that increasing flexibility of water application (via subdivision of the field 

into some IMZs) does not necessarily involve a reduction in total water use. As seen in Section 

4.1.5, no water could be saved under PI in this study, but it can increase yield quantity and 

quality with due to optimised water consumption (improving soil moisture and soil aeration 

conditions). In this study, and because of soil homogeneity of the study area under the second 

span of the PMDI system, it was not possible to compare the volume of water applied under 
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uniform irrigation and PI. But in this study and in agreement with Perry et al. (2004), water 

savings of 10 % were seen in the PMDI as compared with drip irrigation. Perry et al. (2004) 

found the potential water savings from four modified CP at, about 7, 0, 8 and 36 percent water 

savings compared to a “normal” application based on application maps and soil variability on 

four fields. Table 4.10 shows irrigation water requirements, yield and yield price of different 

irrigation systems and crops in Germany and Iran that were derived by the German Ministry for 

Food, Agriculture and Consumer Protection, 2006;  Tognetti et al., 2000; Erdem et al., 2006;  

Krüger et al., 1999; Kalle and Salo, 2007; Personal communication, Sourell, 2007; Farshi, et al., 

1996 and Personal communication, Golestan Agricultural and Natural Resources Research 

Centre, 2006. 

          Moreover, total energy use can be calculated based on power input integrated over the time 

(McCann et. al, 1996). Therefore, the various flows and pressure as reflected in energy use must 

be identified, because the rate of energy use at any time is a function of flow rate and pressure. 

However, when PI includes the use of a drop tube instead of a sprinkler, a significant quantity of 

energy can be saved because of low operation pressure of emitters. If a drop tube is used instead 

of sprinkler, water could also be saved by converting sprinkler irrigation to drip irrigation. In this 

study, kWh/m3 needed for surface irrigation, sprinkler irrigation, drip irrigation and PMDI were 

considered about 0.0, 0.5, 0.2 and 0.2 kWh/m3 (Personal communication, Sourell, 2007), for both 

Germany and Iran. Therefore it could be concluded that energy consumption can be reduced by 

about 70 % under PMDI as compared with CP if it is possible to use a variable-rate pumps or 

multiple staged pumps which are expensive. The energy required to discharge one cubic meter of 

water under PMDI and drip irrigation is reduced by about 0.3 kWh ([(0.5-0.2)/0.5] � 100 = 70 

%). Moreover, water consumption is reduced by about 10 % because CP irrigation is replaced 

with PMDI. Therefore energy saving for different irrigation system and crops in Germany and 

Iran can be calculated as shown in Figure 4.28. Figure 4.28 shows that although energy saving 

and consequently cost reduction by PMDI is not too much in comparison to drip irrigation, but in 

comparison to CP irrigation a high amount of 575.4, 378.0, 462 and 588 kWh energy can be 

saved per hectare for different crops, such as lettuce, sugar beet, potato and strawberry, 

respectively. Also the energy and water cost of different irrigation system and different crops are 

calculated in Table 4.11. Table 4.11 showed that in addition to perceptibly lower annual fixed 

cost of PMDI than drip irrigation (Table 4.9), it also has less labour, water and energy costs also 

in both of Germany and Iran. 
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Figure 4.28: Energy requirement of different irrigation systems and some crops in  Germany 

Table 4.10: Irrigation water requirement, yield and yield price of different irrigation systems
                   and some crops in Germany and Iran 

Germany 

cropItem Irrigation system 
Lettuce Sugar beet Potato Strawberry 

CP irrigation 1644 1080 1320 1680 
Drip irrigation 1370 900 1100 1400 

Irrigation water 
requirement 
[m3/ha] PMDI (1)   1233 810 990 1260 

CP irrigation 43000 60000 43000 15500 
Drip irrigation 48000 70000 46000 19000 

Yield [kg/ha] PMDI    50400 73500 48300 19950 
Price [€/kg] (2) 0.60 0.05 0.37  1.65 

Iran
CropIrrigation system 

Cotton Lettuce  Potato Strawberry 
Surface irrigation 11340 12650 9407 12650 
CP irrigation 5965 6655 4949 6655 
Drip irrigation 4930 5500 4090 5500 

Irrigation water 
requirement 
[m3/ha] PMDI (1) 4437 4950 3681 4950 

Surface irrigation 2050 30000 23000 11000 
CP irrigation 2700 40000 34000 13000 
Drip irrigation 3600 47000 40000 16000 Yield [kg/ha] 
PMDI 3780 49350 42000 16800 

Price [€/kg] (2)    0.45 0.12 0.085 0.45 
(1)  It this study and  in  agreement  with  Perry  et al.,  (2004)  10 %  water  saving  is  considered  with   PMDI   in   comparison   with   drip   
     irrigation. 

 (2) Yield price in field is to be  considered about 66 %  of  wholesale  selling  prices   (Bundesministerium  für   Ernährung,    Landwirtschaft
     und Verbraucherschutz, 2006) 
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Table 4.11: Required labour, water and energy cost of different irrigation systems  and  some
                   crops in Germany and Iran

Germany

Item Irrigation system Lettuce Sugar beet Potato Strawberry 

CP irrigation(3) 0 0 0 0 
Drip irrigation(4)  245 245 245 245 

Required
labour cost 
related to 
irrigation
[€/(ha�year)] PMDI (3) 0 0 0 0 

CP irrigation 123+8.2 81+5.4 99+6.6 126+8.4 

Drip irrigation 41+6.9 27+4.5 33+5.6 42+7.0 
Energy and 
water cost 
[€/(ha�year)](1)

PMDI 37.8+6.3 24.3+4 29.7+5 37.8+6.3(2) 

Iran
Item Irrigation system Cotton Lettuce  Potato Strawberry 

Surface irrigation(5) 25 25 25 25 
CP irrigation(3) 0 0 0 0 
Drip irrigation(6) 15 15 15 15 

Required
labour cost 
related to 
irrigation
[€/(ha�year)]

PMDI(3) 0 0 0 0 

Surface irrigation 0+68 0+75.9 0+56.4 0+75.9 
CP irrigation 63+35.8 6.7+39.9 5+29.7 6.7+39.9 
Drip irrigation 2+29.6 2.2+33 1.6+24.5 2.2+33 

Energy and 
water cost 
[€/(ha�year)](1)

PMDI 1.8+26.6 2+29.7 1.5+22.1 2+29.7 
(1)  Water cost in Germany and Iran were 0.005 and  0.006 [€/m3],  respectively.  Cost   of  electricity in   Germany  and  Iran   is   0.15   and  
     0.002 [€/kWh],  respectively.  In  this study,   kWh/m3  needed  for  surface  irrigation,   sprinkler  irrigation,   drip   irrigation  and PMDI  
     were considered about 0.0, 0.5, 0.2 and 0.2 kWh/m3, for both of Germany and Iran.  
                                          Water cost = Volume of consumed water � Water cost    
                                          Energy cost = (Cost of electricity per kWh) � (Required kWh electricity per 1 m3 volume of consumed water) 

(2)  Energy cost + water cost = (0.15�0.2�1260) + (1260�0.005) = 37.8 + 6.3 

(3) It is calculated by considering 0.04 and 0.01 [hr/(ha�year)] of man work time for CP and PMDI in Germany.  Salary  was  considered  12   
    and 0.8 [€/h] in Germany and Iran, respectively (Teichert, 2007; Sourell, personal communication,  2007;  and  Personal  communication,   
    Golestan Agricultural and Natural Resources Research Centre, 2007).  Therefore  required  labour cost related to CP irrigation and  PMDI   
     will be  near zero (0.04*12 = 0.48 [€/(ha�year)] for Germany and 0.01*0.8 = 0.008 [€/(ha�year)] for Iran). 

(4) It is calculated by considering 20.44 [hr/(ha�year)]  of man work time and 12 [€/ha]  salary  in  Germany  (Teichert, 2007 and  Rosegger    
    et al., 1977). 

(5) It is calculated by considering 32 [h/ha]  man work time and 0.8 [€/ha] salary (32�0.8 = 25). 

(6) It is calculated by considering 20.44 [hr/(ha�year)]   of   man  work   time   and   12   and   0.8   [€/h]   salary  (Personal   communication,  
   Golestan Agricultural and Natural Resources Research Centre, 2007 and Rosegger et al., 1977). 

                                     



Results and Discussion: Potential economic implications                                119                              

4.3.3 Total irrigation cost 

         Based on Equation 4.2, the total irrigation cost of different irrigation system was calculated 

(Table 4.12).  A comparison between total the irrigation cost of different irrigation systems 

(Table 4.12) showed that the PMDI system is not the most expensive system with regard to 

capital requirements in spite of its novelty and the extra installation on CP. Table 4.12 shows that 

drip irrigation and PMDI systems are the most expensive and cheapest irrigation system in 

Germany, respectively and drip and surface irrigation systems are the most expensive and 

cheapest irrigation systems in Iran, respectively. Moreover, PMDI is mainly more expensive than 

CP for different crops. Under PMDI in Germany, annual irrigation costs are 360.7, 359.2, 359.9 

and 360.9 [€/ha] less than drip irrigation for different crops, such as lettuce, sugar beet, potato 

and strawberry, respectively. These differences show the advantage of PMDI over drip irrigation. 

Moreover, from Table 4.12 it is concluded that under German conditions, PMDI is cheaper than 

CP irrigation systems, because of lower energy and water costs. in addition, the economic returns 

of PI methods need to be improved before wide-range acceptance can be reached (Domsch and 

Giebel, 2001). By distributing capital costs for mapping over more land and time and using the 

skills of PI specialists, the costs could be reduced, and precision irrigation would gain wider 

acceptance.

       Figure 4.29 which is derived from Tables 4.10 and 4.12, shows that although the cost of each 

millimetre of irrigation water depth for different crops in PMDI is somewhat more than in CP, it 

is significantly less than in drip irrigation. The results show that with increasing irrigation depth, 

the cost of each millimetre of irrigation depth will be reduced because the expenses for greater 

irrigation depth would be distributed. The irrigation costs of 1.7, 2.1, 1.9 and 1.7 [€/mm] 

determined in this study for different crops (lettuce, sugar beet, potato and strawberry) in 

Germany, respectively, are comparable with the irrigation cost of 2.5 [€/mm] established by 

Fricke (2004) for different crops irrigated by sprinkler irrigation. 

        Under Iran´s conditions, except for cotton, annual farming costs of PMDI are generally 

higher than the costs of a CP irrigation system. Annual farming costs of PMDI in Iran are 344.2, 

344.5, 343.5 and 344.5 [€/ha] less than drip irrigation for different crops, i.e. cotton, lettuce, 

potato and strawberry, respectively. 
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Table 4.12: Total  irrigation  cost  (including  fixed  and variable costs) under different irrigation  
                    systems and crops  in Germany and Iran [€/(ha�year)]    
                                        

Irrigation system Lettuce Sugar beet Potato Strawberry 

Centre pivot 274.2  229.4  248.6  277.4  
Drip irrigation 598.9  582.5  589.6  600  Germany 

PMDI with 400 m CP radius  238.2 223.3 229.7 239.1 (1)

Irrigation system           Cotton Lettuce Potato Strawberry 
Surface irrigation 93  100.9  81.4  100.9  

Centre pivot 278.8  226.6 214.7  226.6  
Drip irrigation 399.6  403.2  394.1  403.2  

Iran

PMDI with 400 m CP radius  253.4 256.7 248.6 256.7 
(1)  (37.8 + 6.3) + 0 + 195 = 239.1 
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4.3.4 Farming benefit 

PI has additional farming benefits related to more yield quantity and better yield quality. 

For the sake of simplification in economic analysis, and also in agreement with King et al. (2006) 

and Oliveira et al. (2003), the yield under PMDI is considered to be 5 % more than under drip 

irrigation, but continued research and development is needed in order to realize an increase in  

productivity. Moreover, in spite of better yield quality under PI than other irrigation systems 

(King et al., 2002 and 2006; Nijbroek et al., 2000 and 2003), the same yield price was considered 

for production under all four irrigation systems in the current study. Although total farming costs 

were not calculated in this study, but by assuming the same costs of tillage, sowing, fertilization, 

herbicide, harvesting and irrigation costs up to the hydrant on the ground surface for different 

irrigation systems, total farming cost and consequently farming benefits [€/(ha�year)] can be 

compared for the same crops irrigated by different irrigation systems using Equation  (4.2). In 

Figure 4.30, total incomes [€/(ha�year)] are compared for different irrigation systems. With due 

attention to the possibility of double cropping per year in Iran, total income (Figure 4.30c) and 

farming benefit can be increased. It was considered that under double cropping conditions in 

Iran, total income and total cost can be increased by about 70 and 100 %, respectively. Figure 

4.30 shows that PMDI and surface irrigation provide the maximum and minimum total income 

for all crops and both countries, respectively. Moreover, the effect of the crop type on total 

income shows that although lettuce and strawberry show a high total income, they have a higher 

farming cost in comparison to other crops (Figure 4.30).                              

         By comparing the farming benefit of different irrigation systems (based on Equation 4.2), it 

could be concluded that PMDI has the highest benefit in all cases. The results show that even 

without any increase in yield under PMDI in comparison with drip irrigation, it is more 

economical than the drip irrigation system. Significant benefit differences of 1800, 534, 1211 and 

1928 [€/(ha�year)] between PMDI and drip irrigation for different crops (lettuce, sugar beet, 

potato and strawberry) in Germany show the profitability of PMDI despite its high capital 

requirements. This advantage is also derived from Iran´s farming conditions where 228, 428, 315 

and 506 [€/(ha�year)] more benefit of PMDI as compared with drip irrigation resulted for 

cotton, lettuce, potato and strawberry crops, respectively. More benefit of PI in this study is 

comparable to the field study of Oliveira et al. (2003) that found 1926 [€/ha] (€ 31285 in a 16.24 

ha field) more average annual benefit of PI as compared with uniform and conventional 

irrigation.
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       PI will not likely be an economically viable practice for all crops and all growing conditions. 

It seems that planting low income crops like wheat is not economical under PI and PMDI. PI can 

preferably be used for deluxe and high income crops like strawberry, melon, lettuce. PI will most 

likely be economical on crops where yield and quality are highly water sensitive and crop price 

structure is heavily dependent upon crop quality like in potato (King et al., 2002). With due 

attention to creating a better yield quality under PI (King et al., 2002 and 2006; Nijbroek et al., 

2000 and 2003), and especially under PMDI, and since marketable yield is the primary factor in 

computing gross income, gross income closely follows marketable yield in each irrigation zone. 

King et al. (2002) found that the average gross income across the field derived from potato 

cultivation under site-specific irrigation management was € 118 per hectare higher as compared 

with conventional uniform irrigation management because of better quality and more yield. 

          The profitability of PMDI is more obvious when its benefit is compared to centre pivot and 

surface irrigation systems. With due attention to the expense and  economic considerations of 

PMDI, at first glance the results suggest that to extend and develop PMDI, its advantages and 

especially its economic benefits must be presented to the farmers. However, a greater net return 

will depend upon the cost and useful life of the equipment required for site-specific management 

as well as the operational costs.  In agreement with the tentative conclusion from Heermann et al. 

(2002), the potential economic benefit of site specific management is small where the farmer’s 

management tolerance for risk is low. Meanwhile their costs are dependent on the accuracy 

desired and the rate of soil texture variation. Therefore the economic viability of PI practice also 

depends on the: 

a) Number of  irrigation  zones  that  can  affect  the number  of  soil  moisture  monitoring  
devices including soil moisture sensors and the ISM modem and  

b) Degree of variability within a field  that can affect the number of solenoid valves and in  
large  part on  the  value  people  place  on  the  environment and the value  of the crops
grown. Therefore with due attention to the low degree of variability of  the  study  field,  
more water is expected to be saved on highly variable fields.      
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4.4 Other advantages of precision irrigation 

        In order to recover the additional costs caused by the adoption of PI, farmers would need to 

achieve advantages and savings, which could be the following in addition to water and energy 

savings:

a) High water  distribution  and no  water  losses due to wind drift and  evaporation  by  PMDI
b) Savings in inputs due to taking into consideration the off-target spray problems, which       

include watering non-cropped areas   such as roads, rocks, etc (Sanders et al., 2000). 
c) No value judgement concerning energy saving could be expressed as to the adoption of       

this new practice, but there could be some savings. 
d) In addition to  these  benefits, other  savings  could  be realized, due to the possibility of 

chemigation and  reductions  in  the quantities of chemicals  and  fertilisers   applied   
and/or  loss  rates in chemical and fertiliser application. 

e) In agreement with the investigation of King et al.  (2002)  and  Nijbroek  et  al. (2000; 
2003), the  expectations regarding   the  use of  PI anticipate  an  improvement  in  yield  
quality,  which should  be  assessed   and added  to  the benefits.  Based on investigations 
by King et  al. (2002) and  the  increased tuber quality of   tomatoes,  the  trend   in  gross 
receipts was approximately 84 [€/ha]  greater  under site-specific   water   management   as 
compared  to conventional  uniform   irrigation   management   for    the  field   site. Also  
the  strategy of irrigating   the   soybean   field   uniformly  according   to    the   optimal   
schedule  for  the largest  MZ  produced  2 % less than independent  zone irrigation 
(Nijbroek et al, 2000  and 2003). 

f) This management system would exhibit small, but positive effects on most of the current 
environmental concerns. Therefore, environmental protection, the decrease in ecosystem 
damage, low CO2 emissions and the sustainability of the agricultural resources should be 
also evaluated and added to the benefits.  

        In addition, future environmental regulations may greatly change the economic feasibility of 

the site-specific irrigation control system. For example, application restrictions on the aerial 

application of chemicals and recent changes in the endangered species listing of the various 

salmon and steelhead fish runs could have a large impact on the adoption of site-specific 

irrigation control programs in the Pacific Northwest (Evans and Harting, 2005). 
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5 CONCLUSION 
          Precision irrigation provides the opportunity to decrease input costs and the potential to  

increase net income by applying water at the right place in  the right quantity and at the right 

time. Fields that show spatial variability in TAWC would benefit from a precision irrigation 

system which has the ability to vary the amount of water applied. Despite the inherent high 

frequency and fairly uniform applications of CP, considerable yield variations still exist, which 

are often attributed to spatial variability in TAWC and related nutrient availability.  

5.1 Delineation of irrigation management zones 

          Sensor-based measurements of ECa using VERIS 3100 at field capacity and under the  

non-saline conditions of the study field could provide important information on within-field 

variation of the TAWC in an upper shallow soil profile. It is better to select an ECa sensing 

system to delineate TAWC be based on its nominal depth of investigation as an initial selection. 

The need for irrigation was different between various zones of the study field, because of spatial 

soil variation of TAWC. Differences were attributed to differences between the depth-weighted 

response functions for the four data types, the differences in sensing depth between the different 

sensors (VERIS 3100 and EM38) and data collection modes (deep vs. shallow or vertical vs. 

horizontal, respectively). This study showed that, while qualitatively similar, ECa data obtained 

with different commercial sensors were quantitatively different. With these differences, the 

selection of an ECa sensing system for a particular application should be based on both practical 

implementation issues and the intended use of the data. Fields with high variations of soil 

properties affect ECa and especially when these properties are heavily weighted in the upper 

layers, there is a big difference between EM38 and VERIS 3100 readings. VERIS 3100 readings 

can reflect the spatial variability better than EM38 because the VERIS 3100 is heavily weighted 

in the upper layers as compared with EM38.  

         In this study, a better coefficient of determination between VERIS 3100 readings and 

TAWC was found. Six zones were identified to be the optimum number of IMZs based on 

VERIS 3100-sh readings. It was concluded that under conventional uniform irrigation, IMZ1 and 

IMZ2 were over-irrigated whereas IMZ4, IMZ5 and IMZ6 had deficit irrigation and thus were 

drier. With reduction of water consumption within IMZ1 and IMZ2 and the accretion of water 
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used within IMZ4, IMZ5 and IMZ6, water consumption is optimized and water use efficiency is 

increased, but by using PI and the subdivision of the field into some IMZs, total water and energy 

consumption can not necessarily be reduced because of some overlapping of deficit irrigation and 

over consumption of energy and water (the rate of energy use at any time is a function of flow 

rate and pressure). But by replacing the drop tube with low operation pressure instead of a 

sprinkler, energy consumption is certainly reduced. This result has an important policy 

implication because PI is not necessarily a water and energy saving technology, but it is a water 

and energy optimising technology. On the other hand, PMDI is certainly a water and energy 

saving and optimising technology. Considering the free capacity to absorb probable rainfall after 

irrigation is a logical decision and can save water and energy under German weather conditions.   

5.2  Performance  and  evaluation  of   remote   real-time   and
        site-specific distributed irrigation control systems 

          The concept of pulse irrigation was a feasible and viable technique. The system was able to 

vary the amount of water in proportion to the pulsing level, as the system is capable of 

controlling fifteen banks of fifteen nozzles to discharge  a variable amount of water using the 

pulsing method (for example between 0 mm and 33 mm per application in each plot under 20 % 

of CP speed). During the field tests, there were no apparent problems with the pulsing water 

delivery system. It could be concluded that water application under pulsed conditions was 

directly proportionate to the fraction of time the valve was opened and that the technique is 

viable for the control of applications on study plots. The pulsing technique used to deliver 

variable amounts of irrigation and CP speed had a few adverse effects on system uniformity and 

the nozzle flow rate. Uniformity coefficients were reduced by decreasing the pulsing level and 

increasing CP speed. As application rates get lower, irrigation adequacy declines due to time 

delays in the system. Although the observations and measurements of water application indicate 

that control system performance is acceptable, more detailed evaluations and improvements of 

fertiliser and chemical application will be required before definitive conclusions can be reached. 

A continuing part of the future development of the site-specific irrigation control system must 

be the application of fertilizers and fungicides using the precision irrigation control system. 

Further studies on this concept should be conducted to determine its potential and extend its use 

beyond the research phase to commercial irrigation machines for which spatially varied water 
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application is desired. The main hardware issue holding this technology back is the lack of a 

good, inexpensive variable-rate sprinkler with a wide range of flow rates for a given design 

(ideally 0-100 % of full) and essentially constant relative spray distribution at all flow rates. If 

these sprinklers could be controlled using some addressable bus or wireless control system, it 

would reduce wiring costs and difficulties. DGPS may be the eventual solution to determining 

the location, except possibly for shorter pivots where the bow doesn’t cause errors using the 

resolver. The control programs must also keep an automatic record of the amount of water 

applied during the growing season (flow rate monitoring) and take the decreased water 

application due to the variable irrigation control program into account.  

          Field observation showed that installing a metallic bar parallel to the CP wheel in a 0.5 m 

distance is necessary to avoid drop tube tangling in the mobile drip CP wheel (Appendix G). 

Selecting SV with good inertia, short closing periods and longer pulsing cycle duration in order 

to decrease water hammering due to valves being turned on and off can improve system 

operation. SV with good inertia and low energy requirements will make PI implementation 

easier. In the near future, solenoid valves and many other products will require alternate plating 

compounds. Also using sprinklers having a smaller wetted diameter will improve water 

distribution uniformity near IMZ borders.  

          The problem of water pressure variations and water hammering due to valves being turned 

on and off at various flow rates can be solved by: 

a)  Using  variable-rate pumps, which are expensive                                                                           
b)  Using multiple staged pumps, for example, a series of three or  four  increasingly                        
--  -larger  pumps,  each  drawing  from  a  reservoir.  The  pumps  may  be linked  in              
-- - parallel  and  used  in  combination  with  a pressure  bypass  to  the  reservoir  to  
--  -provide constant pressure at all flow rates                                                              
c)   A third alternative might be a constant-rate with a re-circulating bypass.  

To address this problem, some research was done by Archer et al. (2000) and Zhu et al. 

(2002). However, if there is no big soil TAWC variation in the field, a normal pump (not an 

expensive variable-rate pump) can be used but if there is significant variation of TAWC in the 

field, a variable-rate pump will be necessary. Also with due attention to emitter clogging and for 

the future application of MDI with CP, a filtration system can easily be installed between the 

supply and the pivot point.  A priori knowledge is required to manage the system at  the current 

state of development. Additional research and development is needed to allow for automatic 

operation based on sensory input. 
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       The control system was able to monitor wireless soil moisture sensors via radio telemetry. 

Soil moisture data were easily received by mobile phone and then transferred to an Excel table on 

a computer using “Kurznachricht Pro 2.2” software to calculate irrigation depth and graphically 

present its variation. Although “Kurznachricht Pro 2.2” software and the simple Excel program 

(to automatically calculate irrigation depth and draw its variation) were found to be easy and 

suitable for use and to improve application facility, the EnviroSCAN sensor was found to be 

delicate, and intricate to use and calibrate. It could be concluded that in this study not only the 

universal calibration equation used in the software of the EnviroSCAN system as it has been 

generated from varying soil types, but also soil-specific calibration equation were not able to 

produce accurate estimates of the soil water content even though the equipment and techniques 

developed by the manufacturers of EnviroSCAN were applied. Underestimates of soil water 

content due to the uncalibrated equation in the current study and other research, and its 

overestimation by Jabro et al. (2005), suggest that more calibration research and especially soil-

specific research with the EnviroSCAN capacitance sensor are needed.  In this study, using a 

GSM-mobile phone with RS232 installed on a computer instead of a mobile phone for 

connecting the computer to the PLC can be another aspect of future trends in wireless data 

transmission. Local wireless sensor networks can be overlaid with a wireless LAN to accomplish 

various farming operations in a systematic, precise and well-managed fashion. In the near future, 

wireless sensors and computer controlled robots are a good combination to use instead of large-

power and heavy weight farm machines that cause permanent damage to fields by compaction. 

Also when radio frequency identification technology (RFID) is combined with wireless sensors, 

the RFID system can record environmental parameters and specific quality/safety attributes of 

the product along the chain. It can be predicted that the deployment of RFID and wireless sensors 

in traceability systems will experience a great boom in the near future. The main drawbacks of 

RFID technology are the relatively short communication range (1-2 m) and the fact that the 

devices are passive, which limits future extensions, such as the monitoring of temperature and 

motion. 

          The field tests also showed that soil moisture data can be transferred between two ISM 

modems without any problem over maximum distances of 400 m. A soil specific calibration of 

each sensor would have been necessary to obtain a high degree of absolute accuracy in soil water 

content measurements and improve the sensor´s accuracy and performance. The results indicates 

that EnviroSCAN sensors installed at a depth of more than  40 cm  (where soil texture is more 

sandy), are not able to repeat soil moisture condition, but a better calibration coefficient is found 
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for sensors installed in  loamy sand layers (upper 40 cm). The results suggest that EnviroSCAN 

sensors are able to follow the general trends successfully as the soil water content measured by 

sampling changed during the growing season, but are not a reliable sensor to report moisture 

conditions on sandy soils (at greater depths than 40 cm). The AMBAV model is capable of 

determining and simulating SWC in the root zone of grass crops as a cheap, safe and reliable 

method. Monitoring plant response using the potential of remote sensing to determine 

environmental stresses offers an opportunity for early detection and remediation. 

5.3 Laboratory experiments 

          The MDI in the field requires drop tubes which are easy to install and have the smallest 

distance between the emitters as well as high discharge in order to reduce both the length of the 

drip tubes and the number of emitters. In addition, MDI requires emitters which operate at low 

pressure to reduce the energy costs. Moreover, the MDI in the field requires in-line emitters 

which provide high emission uniformity and the lowest coefficient of variation to enhance water 

distribution on the soil surface. High uniformity of water distribution is required in trickle 

irrigation to minimize irrigation losses. After the system is installed, flow variation due to 

pressure differences, emitter clogging, temperature variation and aging have an adverse effect on 

uniformity. It is also very important to look at manufacturing variations when choosing an 

emitter. Design should be based on reliable test data, not on data provided by the manufacturers. 

Because of the need for high uniformity in a trickle system, every effort should be taken to test 

the emitters before and after they are installed. Manufacturers should provide specifications that 

describe their products. The effect of operating pressure on the discharge of Siplast emitters is 

highly significant and the emitter discharge is strongly influenced by the operating pressure. In 

spite of high emission uniformity and a low coefficient of variation of the Siplast drop tube, 

which consists of hard and inflexible material, it deviates to some extent from the design flow 

rate claimed by the manufacturer.   
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5.4 Potential economic implications 

          The economic returns of PI methods need to be improved before wide-range acceptance 

can be reached. It could be concluded that PMDI is more economic than the drip irrigation 

system even without any increase in yield because of lower expenses  for labour, energy and 

water, in particular at locations  where  double cropping  is possible. This study showed that 

using a safe and cheap irrigation model can decrease the cost of PI. Calculation shows that 

although annual fixed costs under PMDI are more than CP, it causes perceptibly less annual fixed 

expenses than drip irrigation in both Germany and Iran. Economic calculation showed that 

although capital requirement per hectare under PMDI is about € 338 and € 250 more than drip 

irrigation in Germany and Iran, respectively, it causes perceptibly less annual fixed expenses  

than drip irrigation (111 and 128 [€/(ha�year)] and is cheaper than drip irrigation in  both 

countries. As an  important policy implication,  the results showed that site-specific or variable 

rate irrigation (PI) is not necessarily a water saving technology, but that it provides an 

optimization of water use (irrigation without any deficit or over watering) that leads to increasing 

yield. However, using a drop tube instead of a sprinkler in PMDI can increase water use 

efficiency by deleting wind draft and evaporation losses in comparison with CP.       

           Site-specific irrigation management will most likely be economical on crops where yield 

and quality are highly water sensitive and crop price structure is heavily dependent upon crop 

quality. With regard to  the possibility of high level water management  and other agricultural 

input applications under PMDI or PI, it is better that deluxe and high income crops like 

strawberry, melon, lettuce, etc. be planted. The number of irrigation zones and the degree of 

variability within a field has an effect on the economic viability of PI in practice. Besides lower 

wiring costs, a DIC system is simpler and more flexible than a hard-wired centralized control 

system. Continued research and development is needed to reduce the capital and operational 

costs of site-specific irrigation management and to realize an increase in net return.  

5.5 Resume 

          With due attention to expensive and destructive soil sampling methods and also shallow 

depth measurement by means of aerial photography to delineate irrigation management zones, 

sensor-based ECa measurement at F.C. in non-saline soil can be used as an cheap, rapid and non-
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destructive alternative to delineate irrigation management zones when an acceptable coefficient 

of determination between soil EC data and TAWC of soil samples is found. More work will be 

needed in areas with a wide range of ECa differences, such as Iran, to verify these results and 

establish a standard relationship between ECa and TAWC. In any case, if the uncertainty in 

results appears to be too high, either sampling density has to be increased or an attempt has to be 

made to back-calculate soil properties from yield maps. Field studies using larger irrigation 

systems on fields having different soil types, topographic, or crop characteristics are 

recommended to validate the precision irrigation concept. 

          Although Siplast was found to be a unique in-line drop tube having a short length with 

higher emitter discharge at low operation pressure and less emitter distance, the difficulties of 

installing Siplast and working with it on  the field and in the laboratory because of its hard and 

inflexible material causes scientists to seek a flexible drop tube.  

          Although pulsing with the aid of a solenoid valve and PLC was a feasible and viable 

variable rate irrigation technique, the extra costs of industrial accessories for this technique must 

be minimised in the coming years. Given the early stage of development of the PI technique and 

improvements in industrial technology, such a development can be expected. Considerable 

research and development is needed to realize and validate the potential benefits of site-specific 

irrigation and chemigation and insure a positive net economic return to the producer. 

          Sensors developed to economically conduct appropriate monitoring for different stresses 

and soil water levels on a near real time basis are urgently needed. More work on soil-based or 

machine-based sensing of crop conditions needs to be integrated into irrigation machine control. 



Summary                                                                                                                                                               132 

6 SUMMARY 
Site-specific irrigation: Improvement of application maps and dynamic steering of 
modified centre pivot irrigation system 

Introduction: A management concept for sustainable utilization and the efficient use of 

agricultural inputs is known as “Precision Agriculture” (PA). The PA concept, when applied to 

irrigation management is known as Precision Irrigation (PI). In PI, the need for irrigation may 

differ between zones of a particular field due to the spatial variation of soil properties or the 

cropping of different plants on the same field. Spatial variation of total available water content 

(TAWC) as a primary factor causes spatial variation of irrigation depth and frequency within 

fields. While moving irrigation systems apply water at constant rates, some areas of the field may 

receive too much water and others not enough. In this regard, precision irrigation (PI) is capable 

of applying water in the right place in  the right amount at the right time using the right irrigation 

system. Therefore the key objectives of the present study were a) Delineation of irrigation 

management zones (IMZs) using sensor-based soil electrical conductivity (ECa) measurement 

with the aid of  EM38 and VERIS 3100, b) Developing and evaluating a precision mobile drip 

irrigation (PMDI) and c) Evaluating wireless EnviroSCAN sensors and AMBAV-models to 

measure the soil moisture content.

Materials and methods: EC25 data (ECa in 25° C) were collected using EM38 and VERIS 

3100 at field capacity on a 16.6 ha non-saline field in the FAL, Braunschweig, Germany. ECa

data were obtained in 1-s intervals corresponding to a 2 to 3 m data spacing on transects spaced 

approximately 4 to 6 m apart. An ArcView (ESRI) software program was used to create the EC25

and TAWC maps after the readings were interpolated using a spherical kriging model. 29 

calibration points taken at a depth of 0 - 60 cm depth were located using DGPS based on the ECa 

spatial variability pattern and with the objective of covering the whole range of ECa values 

present to determine the best sensor-based method to monitor TAWC. 

        The second span of the centre pivot irrigation machine (CP) was modified to PMDI and 

controlled for variable-rate water application with a pulsing technique by installing solenoid 

valves (SV), programmable logic control (PLC) and using a Siplast drop tube instead of 

sprinklers. One quarter of the study field was controlled by the EnviroSCAN soil moisture sensor 

and another quarter was controlled by the AMBAV-model to determine irrigation depth. In 

addition, the hydraulic performance of the Siplast drop tube was evaluated in the laboratory by 

collecting discharge rates at different pressure of 50, 100, 150 and 200 kPa. 
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Results and discussion: This study showed that, while qualitatively similar, EC25 data 

obtained with different commercial sensors were quantitatively different because of different 

depth-weighted response functions. The highest coefficients of determination (R2) were generally 

found between EM38_h and EM38_v (R2 = 0.55). In this study, a better value of R2 between 

TAWC and the VERIS 3100 readings was found. The R2 value from VERIS 3100-sh data for 

TAWC estimation was maximally (0.77) and matched the TAWC data quite well, whereas R2

values to EM38-h and EM38-v data were low and apparently could not adequately reflect the 

spatial variability of the TAWC due to the higher influence of the EM38 on deeper layers. Six 

IMZs (IMZ1: 99 to 105, IMZ2: 105 to 116, IMZ3: 116 to 127, IMZ4: 127 to 138, IMZ5: 138 to 149 

and IMZ6: 149 to 152 mm/60 cm) were identified based on fuzzy-k-means unsupervised 

classification as an optimum number of IMZs within the study field. It was concluded that under 

conventional uniform irrigation, IMZ1 and IMZ2 were over-irrigated, whereas IMZ4, IMZ5 and 

IMZ6 were under-irrigated.  

        The developed concept of pulse irrigation was a feasible and a viable technique. Water 

application was directly proportional to the fraction of time the valve was opened as the system 

was capable of controlling fifteen banks of fifteen nozzles. There were no apparent problems with 

the pulsing water delivery system where the field tests were conducted. CP speed and the pulsing 

technique used to deliver variable amounts of irrigation had little adverse effect on system 

uniformity and the nozzle flow rate. Uniformity coefficients were reduced by decreasing the 

pulsing level and increasing CP speed.  

        The control unit was able to monitor wireless soil moisture sensors via radio telemetry and 

communication from the EnviroSCAN sensors to the central ISM modem, which worked as 

expected. Although the EnviroSCAN soil moisture sensor was found to be delicate and intricate 

to use and calibrate, soil moisture data were easily sent from the control unit and received by the 

mobile phone and then transferred to an Excel table on a computer using easy and suitable 

“Kurznachricht Pro 2.2” software to calculate irrigation depth. The results suggest that 

EnviroSCAN sensors are able to follow the general trends successfully as soil water content 

measured by sampling changed during the growing season, but are not a reliable sensor to repeat 

moisture conditions on sandy soils (at greater depths than 40 cm ) despite its soil-specific 

calibration. Meanwhile, an AMBAV model as a cheap and reliable alternative instead of the 

expensive EnviroSCAN sensor was capable of determining and simulating soil moisture in the 

root zone of grass crops.  
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           Drip irrigation design should be based on reliable data sets, but not on data supplied by the 

manufacturer. The laboratory experiments showed that the effect of operating pressure on the 

discharge of Siplast emitters was highly significant and the emitter discharge was strongly 

influenced by the operating pressure, while some deviation from the design flow rate claimed by 

the manufacturer occurred. CV values were classified as good, on the basis of the ISO standard. 

Based on the laboratory experiments, it was found that the in-line Siplast emitter has high 

emission uniformity and a low coefficient of variation. In spite of high emission uniformity and a 

low coefficient of variation of the Siplast drop tube, it must consist of hard and inflexible 

material. To have a shorter drip tube installed on CP, using an in-line drop tube lateral with 

higher emitter discharge at low operation pressure and less emitter distance is proposed.

         The economic  analysis of this study showed that although capital requirement per hectare 

under PMDI is about € 338 and € 250 more than for drip irrigation in Germany and Iran, 

respectively, it causes  perceptibly less annual fixed cost than drip irrigation (111 and 128 

[€/(ha�year)] cheaper than drip irrigation in  Germany and Iran, respectively). Although PMDI 

causes more annual fixed expenses than CP irrigation, it has less total irrigation cost per hectare 

and year than CP and drip irrigation and has the potential benefit to increase yield quantity, 

quality and farming benefit. The results showed as an important policy implication that PMDI is 

not necessarily a water saving technology and it does not necessarily involve a reduction in total 

water use, but that it can optimize water consumption. Given a reduction of energy and water 

consumption of 70 % and 25 %, respectively, achieved by the PMDI as compared with the CP, 

results showed that about 575, 378, 462 and 588 kWh energy per hectare can be saved by PMDI 

in comparison with the conventional CP irrigation of lettuce, sugar beet, potato and strawberry.   

Conclusion: Sensor-based ECa measurement at F.C. in non-saline soil can be used as a 

cheap, rapid and non-destructive alternative to delineate IMZ instead of using soil sampling and 

aerial photography methods. Field studies using larger irrigation systems and fields with different 

soil types, topographic or crop characteristics are recommended to validate the precision 

irrigation concept and to realize and ensure a positive net economic return to the producer. With 

due attention to the success of PI in the early stages and developments in industrial technology in 

the coming years, the extra costs of industrial accessories could be minimised.



ZUSAMMENFASSUNG                                                                                                                                       135 

7 ZUSAMMENFASSUNG 
Teilflächenspezifische Beregnung: Entwicklung von Beregnungsapplikationskarten und 
einer dynamischen Steuerung für Kreisberegnungsmaschinen

Einleitung: Ein Management Konzept für nachhaltige und effiziente Nutzung 

landwirtschaftlicher Maßnahmen ist bekannt als teilflächenspezifische Landwirtschaft (PA – 

Precision Agriculture). Wird das teilflächenspezifische Konzept im Bewässerungsmanagement 

eingesetzt, wird es teilflächenspezifische Bewässerung genannt (PI – Precision Irrigation). Bei 

der teilflächenspezifische Bewässerung kann die Bewässerung zwischen den Bereichen eines 

Feldes auf Grund der Variabilität der Bodeneigenschaften oder dem Anbau von verschiedenen 

Pflanzen auf dem selben Feld variieren.  Die räumliche Veränderung der nutzbaren Feldkapazität 

als Primärfaktor bedingt die räumliche Veränderung der Bewässerungshöhe und der 

Bewässerungsfrequenz. Die Bewässerungssysteme verteilen das Wasser bis heute gleichmäßig, 

so dass die Flächen teilweise überbewässert oder unterbewässert sind. Bezogen auf dieses 

Problem ist die teilflächenspezifische Beregnung geeignet, das Wasser an der richtigen Stelle 

zum richtigen Zeitpunkt unter Benutzung des richtigen Bewässerungssystems auszubringen. 

Folglich sind die Schlüsselziele dieser Arbeit: a) die Abgrenzung von 

Beregnungsmanagementzonen (IMZs – Irrigation Management Zones) unter Nutzung von 

sensorbasierten Messungen der elektrischen Leitfähigkeit (ECa – depth-weighted apparent soil 

electrical conductivity) des Bodens mit EM38 und VERIS 3100, b) die Entwicklung und 

Evaluierung einer teilflächenspezifischen mobilen Tropfbewässerung und c) Auswertung von 

drahtlosen Bodenfeuchtesensoren (EnviroSCAN) und der klimatischen Wasserbilanz (AMBAV-

Modell) zur Bestimmung der Bodenfeuchte bzw. der Bewässerungshöhe. 

Material und Methoden: EC25-Daten (ECa bei 25° C) wurden unter Verwendung von 

EM38 und VERIS 3100 Geräten bei Feldkapazität auf einem 16,6 ha großen Feldstück der FAL, 

Braunschweig, Deutschland, gemessen. Die ECa Daten wurden im Sekundenintervall mit zwei 

bis drei Metern Messabstand und in Reihenabständen von etwa vier bis sechs Metern gemessen. 

Zur Erstellung der EC25- und Bodenfeuchte Karten wurde die Software ArcView genutzt, 

nachdem die Messdaten mit Hilfe des sphärischen Kriging-Verfahren interpoliert wurden. 29 

Kalibrierungspunkten wurden mit Hilfe von DGPS lokalisiert, um die beste sensorbasierte 

Methode zur Abgrenzung der Beregnungsmanagementzonen zu bestimmen. Bodenproben 

wurden in 0 - 60 cm Tiefe entnommen.  
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        Der zweite Bogen der Kreisberegnungsmaschinen wurde für die teilflächenspezifische 

mobile Tropfbewässerung umgerüstet. Eine kontrollierte Wassermenge konnte, durch 

Installierung einer Pulstechnik mit Magnetventilen (SV – Solenoid Valve), einem Computer 

gesteuerten Programm (PLC – Programable Logic Control) und Auswechseln der Düsen durch 

Siplast Tropfrohre ausgebracht werden. Ein Teil des Feldversuches wurde durch EnviroSCAN 

Bodenfeuchtesensoren gesteuert und der andere Teil wurde durch das AMBAV-Modell gesteuert, 

um die Beregnungshöhe zu bestimmen. Die hydraulische Genauigkeit der Siplast Tropfrohre 

wurde im Labor bei unterschiedlichen Wasserdrücken von 50, 100, 150 und 200 kPa untersucht.  

Ergebnisse und Diskussion: Die Untersuchung zeigt, dass EC25-Daten von verschiedenen 

gewerblichen Sensoren auf Grund der unterschiedlichen Gewichtung der Tiefe quantitativ 

unterschiedlich sind. Das höchste Bestimmtheitsmaß wurde  zwischen EM38_h und EM38_v (R2

= 0,55) gefunden. In dieser Arbeit wurde ein gutes Bestimmtheitsmaß zwischen nFK und den 

VERIS 3100 Werten gefunden. Eine Kalibrierungsgleichung zur Abschätzung der nFK von 

VERIS 3100-sh zeigte eine hohe Ähnlichkeit zu den nFK Daten auf und hatte das höchste 

Bestimmtheitsmaß (R2 = 0,77). Die Bestimmtheitsmaße zu EM38-v- und EM38-h-Daten waren 

niedrig und anscheinend nicht ausreichend, um die räumliche Variabilität der nFK reflektieren zu 

können. Ein Grund kann die größere Messtiefe von EM38 sein. Sechs 

Beregnungsmanagementzonen (IMZ1: 99 bis 105, IMZ2: 105 bis 116, IMZ3: 116 bis 127, IMZ4:

127 bis 138, IMZ5: 138 bis 149 und IMZ6: 149 bis 152 mm/60 cm) wurden als optimale Anzahl 

an Beregnungsmanagementzonen auf dem Versuchsfeld, basierend auf den fuzzy-k-Mittelwerten 

(Boydell and McBratney, 1999) der zufälligen Einteilung, erkannt. Es wurde gefolgert, dass unter 

konventioneller Beregnung IMZ1 und IMZ2 überbewässert und IMZ4, IMZ5 und IMZ6

unterbewässert wurden.

       Das entwickelte Konzept der Pulsbewässerung hat sich als eine zuverlässige Technik 

bewährt. Die Wasserapplikationsmenge war direkt proportional zur Öffnungsdauer des Ventils, 

und das System war in der Lage, die Wassermenge entsprechend des Bewässerungspulses zu 

variieren. Weiterhin war es in der Lage, 15 Reihen mit jeweils 15 Düsen zu steuern. Es gab keine 

offenkundigen Probleme mit dem gepulsten Wasserabgabesystem in den durchgeführten 

Feldversuchen. Die Kreisberegnungsmaschinengeschwindigkeit und Pulstechnik zur 

Bereitstellung verschiedener Wassermengen hatten einen geringen nachteiligen Einfluss auf die 

Gleichmäßigkeit der Beregnungshöhe. Die Gleichmäßigkeitskoeffizienten wurden durch 

sinkende Pulszeiten und steigende Kreisberegnungsmaschinengeschwindigkeiten gesenkt. Die 

Kontrolleinheit war wie erwartet in der Lage die Bodenfeuchtedaten mittels Fernmesstechnik von 
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dem EnviroSCAN Sensor zum zentralen Modem zu senden. Obwohl der EnviroSCAN-

Bodenfeuchtigkeitssensor empfindlich und kompliziert zu benutzen und zu kalibrieren ist, 

wurden die Bodenfeuchtigkeitsdaten fast störungsfrei von der Kontrolleinheit empfangen, 

gespeichert und zum Mobiltelefon gesendet. Für die Übertragung auf den PC wurde die Software 

„Kurznachricht Pro 2.2“ genutzt. Anschließend wurde die differenzierte Bewässerungshöhe 

kalkuliert. Die Ergebnisse zeigen, dass die EnviroSCAN-Sensoren in der Lage sind, den Verlauf 

der Bodenfeuchte während der Wachstumsperiode erfolgreich zu verfolgen. Weniger gut arbeitet 

der Sensor, um die Feuchtigkeitsverhältnisse auf sandigen Böden (unter 40 cm Tiefe), trotz 

bodenspezifischer Kalibrierung zu bestimmen. Während dessen hat sich das AMBAV-Modell als 

eine Alternative zum kostenintensiven EnviroSCAN erwiesen, das in der Lage ist, die 

Bodenfeuchtigkeit in der Wurzelzone der Graspflanzen als eine preiswerte und verlässliche 

Methode zu simulieren.  

        Das Tropfbewässerungssystem sollte auf verlässlichen Testergebnissen und nicht auf 

Herstellerangaben beruhen. Die Laborexperimente zeigten, dass der Einfluß des Betriebsdrucks 

auf den Durchfluss am Siplast Tropfer hoch signifikant war und der Tropferdurchfluß stark vom 

Betriebsdruck abhing. Die CV-Werte wurden auf dem ISO-Standard basierend als gut eingestuft. 

Aus den Laborexperimenten wurde herausgefunden, dass der in-line Siplast Tropfer eine hohe 

Ausbringungsgleichmäßigkeit und einen geringen Variationskoeffizienten aufweist. Das 

Rohrmaterial des Siplast Tropfer ist hart und unflexibel. Es sollte nach weiteren Produkten 

gesucht werden, die flexibler sind und somit die Kulturen schonen.

        Die ökonomische Analyse dieser Arbeit zeigt, dass der Kapitalbedarf  pro Hektar unter 

teilflächenspezifische mobile Tropfbewässerung um etwa 338 € und 250 € höher liegt als bei 

entsprechender Tropfbewässerung in Deutschland und im Iran. Die jährlichen Fixkosten sind 

geringer, als bei der Tropfbewässerung (111 und 128 [€/(ha � Jahr)] in Deutschland oder im 

Iran). Obwohl die teilflächenspezifische mobile Tropfbewässerung teurer ist als die Beregnung 

mit Kreisberegnungsmaschinen, verursacht sie weniger Wasser- und Energiekosten als die 

Kreisberegnungsmaschinen und hat das Potenzial den Ertrag qualitativ und quantitativ, sowie den 

landwirtschaftlichen Gewinn zu steigern. Die Ergebnisse zeigen, als wichtige Folge des 

Verfahrens, dass die teilflächenspezifische mobile Tropfbewässerung nicht notwendiger Weise 

eine wassersparende Technologie ist, aber es kann den Wasserbedarf optimieren. Der 

Energiebedarf kann um 70 % und der Wasserbedarf kann um 25 % durch die 

teilflächenspezifische mobile Tropfbewässerung gegenüber der Kreisberegnungsmaschine 

gesenkt werden. Die Modellbetrachtungen zeigten, dass durch die teilflächenspezifische mobile 

Tropfbewässerung im Vergleich mit der konventionellen Kreisberegnungsmaschine bei Salat, 
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Zuckerrübe, Kartoffel und Erdbeere etwa 575, 378, 462 und 588 kWh Energie pro Hektar gespart 

werden können.  

        Schlussfolgerung: Die sensorbasierte Messung der elektrischen Leitfähigkeit bei 

Feldkapazität von nicht salzigen Böden  ist eine preiswerte, schnelle und das Bodengefüge nicht 

zerstörende Alternative, um die Beregnungsmanagementzone räumlich abzugrenzen und ist den 

Methoden der Bodenprobenahme und Luftbildauswertung vorzuziehen. Feldstudien mit größeren 

Bewässerungssystemen und Felder mit verschiedenen Bodentypen, Topographie oder 

Pflanzenbeständen sind weiterhin zu untersuchen, um die Genauigkeit des 

Bewässerungskonzeptes zu validieren. Vor dem Hintergrund, dass teilflächenspezifische 

Bewässerung in den Anfängen steckt und eine weitere Verbreitung dieser Technologie zu 

erwarten ist, könnten die zusätzlichen Kosten für industrielle Ausrüstungsteile gesenkt werden. 

Beträchtliche Forschung und Entwicklung ist noch nötig, um die möglichen Vorteile der 

teilflächenspezifischen Beregnung und der Flüssigdüngung besser zu realisieren, um ein positives 

ökonomisches Ergebnis für den Erzeuger zu sichern.  
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Appendix B:  Discharged water from laterals which are including Ne = 19, LT = 3.8m and  
Ne=35, LT = 7.0m during 30 minute and maximum and minimum pressure  
at pivot point and at the beginning of drop lateral 

 
Pressure [bar]  

Pivot Lateral 
Pulsing 

level 
[%] 

Discharged water 
from lateral which is 

including Ne = 19 
and LT = 3.8m 

during 30 minute 
[litre] 

Discharged water 
from lateral which is 

including Ne = 35 
and LT = 7.0m 

during 30 minute 
[litre] 

Min Max Min Max 

10 18 26 1.5 7 0 1.2 
20 32 57 1.5 6.5 0 1.2 
30 46 69 1.6 6.5 0 1.2 
40 56 100 1.6 6.3 0 1.2 
50 64 121 1.5 6.2 0 1.2 
60 72 148 1.6 5.2 0 1.2 
70 89 164 1.6 5 0 1.3 
80 115 218 1.5 5 0 1.4 
90 140 252 1.5 5 0 1.4 

100 145 269 1.5 5 0 1.4 
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Appendix C: Details of IMZs and also variation of irrigation depth with volumetric soil
moisture for all three IMZs 

Irrigation Management Zone 1 (IMZ1):
EC25 = 4 .65-7.80 [mS/m]
 
P.W.P. = 4.0 – 4.3 [vol %] 
F.C. =  20.6 – 24.1 [vol %] 
TAWC = 165 - 193 mm/m  =  99 - 116 mm/60cm
Rz = Depth of root zone = 60 cm 
SML = soil moisture level [%]  
SML min  = minimum SML before every irrigation = 60 % TAWC  
SML max  =  maximum SML after every irrigation  = 80 % TAWC 
� x [vol %]=Volumetric soil moisture before irrigation [vol %]= P.W.P.+ (SML/100) � (F.C. – P.W.P.) 
� i [vol %]=(P.W.P.+0.80� (F.C. – P.W.P.)) - �x 
In [mm] = net irrigation depth =  �i � 600/100 
  

 
 

 

SML [%] � x [vol %] �i [vol %] In [%]

60 15.040 3.6300 21.7 
61 15.222 3.4485 20.7 
62 15.403 3.2670 19.6 
63 15.585 3.0855 18.5 
64 15.766 2.9040 17.4 
65 15.948 2.7225 16.3 
66 16.129 2.5410 15.2 
67 16.311 2.3595 14.2 
68 16.492 2.1780 13.1 
69 16.674 1.9965 12.0 
70 16.855 1.8150 10.9 
71 17.037 1.6335 9.8 
72 17.218 1.4520 8.7 
73 17.400 1.2705 7.6 
74 17.581 1.0890 6.5 
75 17.763 0.9075 5.4 
76 17.944 0.7260 4.4 
77 18.126 0.5445 3.3 
78 18.307 0.3630 2.2 
79 18.489 0.1815 1.1 
80 18.670 0 0.0 
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Appendix C : Cont`d

Irrigation Management Zone 2 (IMZ2):
EC25 = 7 .81 – 10.62 [mS/m]

P.W.P. = 4.3 – 4.9 [vol %] 
F.C.    =  24.1 – 27.2 [vol %] 
Rz  =  Depth of root zone =  60 cm 
TAWC = 193 – 216 mm/m = 116 – 130 mm/60cm 
SML  = soil moisture level [%] 
SML min  = minimum SML before every irrigation =  60 % TAWC  
SML max  = maximum SML after every irrigation    =  80 % TAWC 
� x [vol %] = Volumetric soil moisture before irrigation [vol %] = P.W.P.+ (SML/100) � (F.C. – P.W.P.) 
� i [vol %] = (P.W.P.+0.80� (F.C. – P.W.P.)) - � x 
In [mm] = net irrigation depth  =  � i � 600/100 
  

 

 

SML [%] � x [vol %] � i (vol %) In  [mm]

60 17.260 4.220 25.3 
61 17.471 4.009 24.1 
62 17.682 3.798 22.8 
63 17.893 3.587 21.5 
64 18.104 3.376 20.3 
65 18.315 3.165 19.0 
66 18.526 2.954 17.7 
67 18.737 2.743 16.5 
68 18.948 2.532 15.2 
69 19.159 2.321 13.9 
70 19.370 2.110 12.7 
71 19.581 1.899 11.4 
72 19.792 1.688 10.1 
73 20.003 1.477 8.9 
74 20.214 1.266 7.6 
75 20.425 1.055 6.3 
76 20.636 0.844 5.1 
77 20.847 0.633 3.8 
78 21.058 0.422 2.5 
79 21.269 0.211 1.3 
80 21.480 0 0.0 
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Appendix C : Cont`d
Irrigation Management Zone 3 (IMZ3):
EC25=10.63-16.43 [mS/m]

P.W.P. = 4.9 – 6.7 [vol %] 
F.C.    =  27.2 – 33.7 [vol %] 
Rz  =  Depth of root zone = 6 0cm 
TAWC =  216 - 253 mm/m  = 130 – 152 mm/60cm 
SML  = soil moisture level [%] 
SML min   = minimum SML before every irrigation  =  60 % TAWC  
SML max   =  maximum SML after every irrigation    =  80 % TAWC 
� x [vol %] = Volumetric soil moisture before irrigation [vol %] = P.W.P.+ (SML/100) � (F.C. – P.W.P.) 
� i [vol %]   = (P.W.P.+0.80� (F.C. – P.W.P.)) - �x 
In [mm] =  net irrigation depth  =  �i � 600/100 
 

 SML[%] � x [vol %] � i [vol 
%]

In [mm] 

60 27.58 7.260 43.6 
61 27.943 6.897 41.4 
62 28.306 6.534 39.2 
63 28.669 6.171 37.0 
64 29.032 5.808 34.8 
65 29.395 5.445 32.7 
66 29.758 5.082 30.5 
67 30.121 4.719 28.3 
68 30.484 4.356 26.1 
69 30.847 3.993 24.0 
70 31.210 3.630 21.8 
71 31.573 3.267 19.6 
72 31.936 2.904 17.4 
73 32.299 2.541 15.2 
74 32.662 2.178 13.1 
75 33.025 1.815 10.9 
76 33.388 1.452 8.7 
77 33.751 1.089 6.5 
78 34.114 0.726 4.4 
79 34.477 0.363 2.2 
80 34.840 0 0.0 
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Appendix E: Calculation related to number of emitters installed on drop tube and length of drop tubes 

n
TRP
[m]

D
[cm]

dr
[cm]

A
[m2]

V
[litre]

Q
[litre/h]

Ne-120 LT-120 
[m]

Ne-170 LT-170 
[m]

1 38.84 83 83 202.6 4597.9 102.2 7.0 1.4 6.0 1.2 
2 39.67 83 83 206.9 4696.2 104.4 7.0 1.4 6.0 1.2 
3 40.5 84 83.5 212.5 4823.3 107.2 7.0 1.4 6.0 1.2 
4 41.34 83 83.5 216.9 4923.4 109.4 7.0 1.4 6.0 1.2 
5 42.17 83 83 219.9 4992.2 110.9 7.0 1.4 6.0 1.2 
6 43 89 86 232.4 5274.4 117.2 7.0 1.4 7.0 1.4 
7 43.89 88 88.5 244.1 5540.1 123.1 8.0 1.6 7.0 1.4 
8 44.77 88 88 247.5 5619.2 124.9 8.0 1.6 7.0 1.4 
9 45.65 84 86 246.7 5599.5 124.4 8.0 1.6 7.0 1.4 

10 46.49 83 83.5 243.9 5536.7 123.0 8.0 1.6 7.0 1.4 
11 47.32 83 83 246.8 5601.8 124.5 8.0 1.6 7.0 1.4 
12 48.15 85 84 254.1 5768.8 128.2 8.0 1.6 8.0 1.6 
13 49 85 85 261.7 5940.5 132.0 8.0 1.6 8.0 1.6 
14 49.85 85 85 266.2 6043.5 134.3 9.0 1.8 8.0 1.6 
15 50.7 83 84 267.6 6074.3 135.0 9.0 1.8 8.0 1.6 
16 51.53 83 83 268.7 6100.2 135.6 9.0 1.8 8.0 1.6 
17 52.36 83 83 273.1 6198.5 137.7 9.0 1.8 8.0 1.6 
18 53.19 85 84 280.7 6372.6 141.6 9.0 1.8 8.0 1.6 
19 54.04 85 85 288.6 6551.5 145.6 9.0 1.8 9.0 1.8 
20 54.89 85 85 293.2 6654.6 147.9 9.0 1.8 9.0 1.8 
21 55.74 87 86 301.2 6837.1 151.9 10.0 2.0 9.0 1.8 
22 56.61 88 87.5 311.2 7064.9 157.0 10.0 2.0 9.0 1.8 
23 57.49 88 88 317.9 7215.8 160.4 10.0 2.0 9.0 1.8 
24 58.37 84 86 315.4 7159.7 159.1 10.0 2.0 9.0 1.8 
25 59.21 83 83.5 310.6 7051.6 156.7 10.0 2.0 9.0 1.8 
26 60.04 83 83 313.1 7107.6 157.9 10.0 2.0 9.0 1.8 
27 60.87 87 85 325.1 7379.5 164.0 10.0 2.0 10.0 2.0 
28 61.74 88 87.5 339.4 7705.2 171.2 11.0 2.2 10.0 2.0 
29 62.62 88 88 346.2 7859.6 174.7 11.0 2.2 10.0 2.0 
30 63.5 78 83 331.2 7517.2 167.0 11.0 2.2 10.0 2.0 
31 64.28 78 78 315.0 7151.2 158.9 10.0 2.0 9.0 1.8 
32 65.06 78 78 318.9 7237.9 160.8 10.0 2.0 9.0 1.8 
33 65.84 86 82 339.2 7700.3 171.1 11.0 2.2 10.0 2.0 
34 66.7 85 85.5 358.3 8133.9 180.8 11.0 2.2 11.0 2.2 
35 67.55 85 85 360.8 8189.4 182.0 12.0 2.4 11.0 2.2 
36 68.4 82 83.5 358.9 8146.1 181.0 12.0 2.4 11.0 2.2 
37 69.22 82.5 82.25 357.7 8120.3 180.5 11.0 2.2 11.0 2.2 
38 70.045 83 82.75 364.2 8267.1 183.7 12.0 2.4 11.0 2.2 
39 70.875 83.5 83.25 370.7 8415.6 187.0 12.0 2.4 11.0 2.2 
40 71.71 84 83.75 377.4 8565.9 190.4 12.0 2.4 12.0 2.4 
41 72.55 84 84 382.9 8692.1 193.2 12.0 2.4 11.0 2.2 
42 73.39 96 90 415.0 9420.8 209.4 13.0 2.6 12.0 2.4 
43 74.35 96.5 96.25 449.6 10206.8 226.8 14.0 2.8 13.0 2.6 
44 75.315 96.5 96.5 456.7 10366.1 230.4 15.0 3.0 13.0 2.6 
45 76.28 96.5 96.5 462.5 10498.9 233.3 15.0 3.0 14.0 2.8 
46 100 100 100 628.3 14262.9 317.0 20.0 4.0 18.0 3.6 
47 150 100 100 942.5 21394.3 475.4 30.0 6.0 28.0 5.6 
48 200 100 100 1256.6 28525.7 633.9 40.0 8.0 37.0 7.4 
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49 250 100 100 1570.8 35657.2 792.4 50.0 10.0 46.0 9.2 
50 300 100 100 1885.0 42788.6 950.9 60.0 12.0 55.0 11.0 
51 350 100 100 2199.1 49920.0 1109.3 70.0 14.0 65.0 13.0 
52 400 100 100 2513.3 57051.5 1267.8 80.0 16.0 74.0 14.8 
53 30 83 83 156.5 3551.5 78.9 5.0 1.0 5.0 1.0 
54 20 83 83 104.3 2367.6 52.6 3.0 0.6 3.0 0.6 
55 10 83 83 52.2 1183.8 26.3 2.0 0.4 2.0 0.4 
56 5 83 83 26.1 591.9 13.2 1.0 0.2 1.0 0.2 

          

n = Number of drop tube installed on drop tubes  
DTP = Distance between drop tube and pivot point [m] 
D = Distance between drop tubes [cm] 
dr = Narrow spacing covered by  drip tube [cm] 
A = Irrigated area covered by drip tube [m2]
V= Volume of water which has to be discharged by drop tube for Imax=22.7 mm [litre] 
Q= Discharge of water by drop tube for Imax=22.7 mm during a 48 h cycle [litre/h] 
Ne-120= Number of emitters installed on drop tube for Imax=22.7 mm. P=120kPa and q=15.8 [litre/h]  
during a 48 h cycle 
LT-120= Length of drop tube for Imax=22.7 mm. P=120 kPa and q=15.8 (liter/hr) during a 48 h cycle  
Ne-170= Number of emitters installed on drop tube for Imax=22.7 mm. P=170kPa and q=17.2 [litre/h]  
during a 48 h cycle 
LT-170= Length of drop tube for Imax=22.7 mm. P=170 kPa and q=17.2 [litre/h] during a 48 hr cycle
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Appendix G: Installing a metallic bar parallel to CP wheel to avoid drop tube tangling in to
 mobile drip CP wheel 
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