86,166 research outputs found

    Radio interferometric imaging of spatial structure that varies with time and frequency

    Full text link
    The spatial-frequency coverage of a radio interferometer is increased by combining samples acquired at different times and observing frequencies. However, astrophysical sources often contain complicated spatial structure that varies within the time-range of an observation, or the bandwidth of the receiver being used, or both. Image reconstruction algorithms can been designed to model time and frequency variability in addition to the average intensity distribution, and provide an improvement over traditional methods that ignore all variability. This paper describes an algorithm designed for such structures, and evaluates it in the context of reconstructing three-dimensional time-varying structures in the solar corona from radio interferometric measurements between 5 GHz and 15 GHz using existing telescopes such as the EVLA and at angular resolutions better than that allowed by traditional multi-frequency analysis algorithms.Comment: 12 pages, 4 figures. SPIE Proceedings, Optical Engineering+Applications; Image Reconstruction from Incomplete Dat

    TVL<sub>1</sub> Planarity Regularization for 3D Shape Approximation

    Get PDF
    The modern emergence of automation in many industries has given impetus to extensive research into mobile robotics. Novel perception technologies now enable cars to drive autonomously, tractors to till a field automatically and underwater robots to construct pipelines. An essential requirement to facilitate both perception and autonomous navigation is the analysis of the 3D environment using sensors like laser scanners or stereo cameras. 3D sensors generate a very large number of 3D data points when sampling object shapes within an environment, but crucially do not provide any intrinsic information about the environment which the robots operate within. This work focuses on the fundamental task of 3D shape reconstruction and modelling from 3D point clouds. The novelty lies in the representation of surfaces by algebraic functions having limited support, which enables the extraction of smooth consistent implicit shapes from noisy samples with a heterogeneous density. The minimization of total variation of second differential degree makes it possible to enforce planar surfaces which often occur in man-made environments. Applying the new technique means that less accurate, low-cost 3D sensors can be employed without sacrificing the 3D shape reconstruction accuracy

    A Bayesian Approach to Manifold Topology Reconstruction

    Get PDF
    In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We incorporate statistical priors on the object geometry to improve the reconstruction quality if additional knowledge about the class of original shapes is available. The priors can be formulated analytically or learned from example geometry with known manifold tessellation. The statistical objective function is approximated by a linear programming / integer programming problem, for which a globally optimal solution is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demon-strating that a statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where sampling conditions are violated

    A robust inversion method for quantitative 3D shape reconstruction from coaxial eddy-current measurements

    Get PDF
    This work is motivated by the monitoring of conductive clogging deposits in steam generator at the level of support plates. One would like to use monoaxial coils measurements to obtain estimates on the clogging volume. We propose a 3D shape optimization technique based on simplified parametrization of the geometry adapted to the measurement nature and resolution. The direct problem is modeled by the eddy current approximation of time-harmonic Maxwell's equations in the low frequency regime. A potential formulation is adopted in order to easily handle the complex topology of the industrial problem setting. We first characterize the shape derivatives of the deposit impedance signal using an adjoint field technique. For the inversion procedure, the direct and adjoint problems have to be solved for each coil vertical position which is excessively time and memory consuming. To overcome this difficulty, we propose and discuss a steepest descent method based on a fixed and invariant triangulation. Numerical experiments are presented to illustrate the convergence and the efficiency of the method
    corecore