14 research outputs found

    A power efficient time-to-current stimulator for vagal-cardiac connection after heart transplantation

    Get PDF
    This paper presents a stimulator for a cardiac neuroprosthesis aiming to restore the parasympathetic control after heart transplantation. The stimulator is based on time-to-current conversion, instead of the conventional current mode digital-to-analog converter (DAC) that drives the output current mirrors. It uses a DAC based on capacitor charging to drive a power efficient voltage-to-current converter for output. The stimulator uses 1.8 V for system operation and 10 V for stimulation. The total power consumption is Istim × 10 V +18. u μW during the biphasic current output, with a maximum Istim of 512 μA. The stimulator was designed in CMOS 0.18 μm technology and post-layout simulations are presented

    A Multi-Channel Stimulator With High-Resolution Time-to-Current Conversion for Vagal-Cardiac Neuromodulation

    Get PDF
    This paper presents an integrated stimulator for a cardiac neuroprosthesis aiming to restore the parasympathetic control after heart transplantation. The stimulator is based on time-to-current conversion. Instead of the conventional current mode digital-to-analog converter (DAC) that uses ten of microamp for biasing, the proposed design uses a novel capacitor time-based DAC offering close to 10 bit of current amplitude resolution while using only a bias current 250 nA. The stimulator chip was design in a 0.18 m CMOS high-voltage (HV) technology. It consists of 16 independent channels, each capable of delivering 550 A stimulus current under a HV output stage that can be operated up to 30 V. Featuring both power efficiency and high-resolution current amplitude stimulation, the design is suitable for multi-channel neural simulation applications

    An external control unit implemented for stimulator ASIC testing

    Get PDF
    This paper presents the design and development of an external control unit (ECU) for a stimulator ASIC testing purposes. The ECU consists of a graphical user interface (GUI) from the PC, a data transceiver and a power transmitter. The GUI was developed using MATLAB for stimulation data setup. The data transceiver was designed using hardware description language (HDL) Verilog code and was implemented in a Virtex-II Pro FPGA board. The overall stimulator ASIC design architecture and its operation for an epiretinal implant application are briefly explained to correlate with the ECU’s design requirements. The flexible multichannel stimulator ASIC was successfully fabricated in a 0.35μm AMS HVCMOS technology. Conducted simulation and measurement results on stimulation waveform generation, supply voltage compliance and external control of supply voltage adaptation validate the functionality of the designed ECU and the stimulator ASIC.Keywords: external control unit; data transceiver; stimulator ASIC; retinal prosthesis; epiretinal implant; stimulation waveform; Manchester data; voltage compliance

    Advances in Scalable Implantable Systems for Neurostimulation Using Networked ASICs

    Get PDF
    Neurostimulation is a known method for restoring lost functions to neurologically impaired patients. This paper describes recent advances in scalable implantable stimulation systems using networked application specific integrated circuits (ASICs). It discusses how they can meet the ever-growing demand for high-density neural interfacing and long-term reliability. A detailed design example of an implantable (inductively linked) scalable stimulation system for restoring lower limb functions in paraplegics after spinal cord injury is presented. It comprises a central hub implanted at the costal margin and multiple Active Books which provide the interface for stimulating nerve roots in the cauda equina. A 16-channel stimulation system using four Active Books is demonstrated. Each Active Book has an embedded ASIC, which is responsible for initiating stimulus current to the electrodes. It also ensures device safety by monitoring temperature, humidity, and peak electrode voltage during stimulation. The implant hub was implemented using a microcontroller-based circuit. The ASIC in the Active Book was fabricated using XFAB’s 0.6-µm high-voltage CMOS process. The stimulation system does not require an accurate reference clock in the implant. Measured results are provided

    Design of Integrated Neural/Modular Stimulators

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Estudio y análisis de un circuito de reducción de la diferencia entre las corrientes de estimulación para la prótesis epiretinal

    Get PDF
    El presente trabajo de tesis consiste en el estudio y análisis de un circuito propuesto para reducir la diferencia entre los pulsos de corrientes utilizados durante la operación de la prótesis epiretinal. La topología propuesta para la calibración es hibrida; constituye de una fase analógica y una digital a fin de reducir la diferencia de corriente y almacenar un valor de cuenta para compensar la corriente generada durante el uso de la prótesis. Dentro de los requisitos para el diseño del circuito propuesto, se considera los límites en el área y potencia del chip debido a la ubicación y dificultad de acceso de la prótesis. Asimismo, se busca que el valor de la carga remanente generada por la persistencia de la corriente de mismatch no exceda el límite de 100na a fin de evitar daños en el tejido superficial. El circuito propuesto define una variable “n” la cual corresponde al número de espejos de corriente en la fase analógica, se realiza un análisis variando “n” a fin de analizar las consecuencias y ventajas que se tiene en el nivel de mismatch final y en el área ocupada en el chip por el circuito de calibración. Se utiliza la herramienta de MATLAB para simular y ejemplificar el proceso de calibración mostrando las señales de ambos pulsos en una gráfica de tiempo desde el inicio de la calibración hasta el cálculo del valor de cuenta necesario para compensar la corriente de mismatch.Tesi

    WIRELESS POWER MANAGEMENT CIRCUITS FOR BIOMEDICAL IMPLANTABLE SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Neurostimulator with Waveforms Inspired by Nature for Wearable Electro-Acupuncture

    Get PDF
    The work presented here has 3 goals: establish the need for novel neurostimulation waveform solutions through a literature review, develop a neurostimulation pulse generator, and verify the operation of the device for neurostimulation applications. The literature review discusses the importance of stimulation waveforms on the outcomes of neurostimulation, and proposes new directions for neurostimulation research that would help in improving the reproducibility and comparability between studies. The pulse generator circuit is then described that generates signals inspired by the shape of excitatory or inhibitory post-synaptic potentials (EPSP, IPSP). The circuit analytical equations are presented, and the effects of the circuit design components are discussed. The circuit is also analyzed with a capacitive load using a simplified Randles model to represent the electrode-electrolyte interface, and the output is measured in phosphate-buffered saline (PBS) solution as the load with acupuncture needles as electrodes. The circuit is designed to be used in different types of neurostimulators depending on the needs of the application, and to study the effects of varying neurostimulation waveforms. The circuit is used to develop a remote-controlled wearable veterinary electro-acupuncture machine. The device has a small form-factor and 3D printed enclosure, and has a weight of 75 g with leads attached. The device is powered by a 500 mAh lithium polymer battery, and was tested to last 6 hours. The device is tested in an electro-acupuncture animal study on cats performed at the Louisiana State University School of Veterinary Medicine, where it showed expected electro-acupuncture effects. Then, a 2-channel implementation of the device is presented, and tested to show independent output amplitude, frequency, and stimulation duration per channel. Finally, the software and hardware requirements for control of the wearable veterinary electro-acupuncture machine are detailed. The number of output channels is limited to the number of hardware PWM timers available for use. The Arduino software implements PWM control for the output amplitude and frequency. The stimulation duration control is provided using software timers. The communications protocol between the microcontroller board and Android App are described, and communications are performed via Bluetooth
    corecore