2,796 research outputs found

    Comparing spatial features of urban housing markets:

    Get PDF
    Various location specific attributes contribute to the spatial dynamics of housing markets. This effect may partly be of a qualitative and discontinuous nature, which causes market segmentation into submarkets. The question however is, whether the most relevant partitioning criteria is directly related to the transaction price of to other, socioeconomic, demographic and physical features of the location. Two neural network techniques are used for analysing statistical house price data from Amsterdam and Helsinki. The analytic hierarchy process is used as a supporting technique. With these techniques it is possible to analyse various dimensions of housing submarket formation. The findings show that, while the price and demand factors have increased in importance, supply factors still prevail as key criteria in both cases. The outcome also indicates that the housing market structure of Amsterdam is more fragmented than that of Helsinki, and that the main discriminating housing market features, and the ways they have changed in time, are somewhat different

    A geographic knowledge discovery approach to property valuation

    Get PDF
    This thesis involves an investigation of how knowledge discovery can be applied in the area Geographic Information Science. In particular, its application in the area of property valuation in order to reveal how different spatial entities and their interactions affect the price of the properties is explored. This approach is entirely data driven and does not require previous knowledge of the area applied. To demonstrate this process, a prototype system has been designed and implemented. It employs association rule mining and associative classification algorithms to uncover any existing inter-relationships and perform the valuation. Various algorithms that perform the above tasks have been proposed in the literature. The algorithm developed in this work is based on the Apriori algorithm. It has been however, extended with an implementation of a ‘Best Rule’ classification scheme based on the Classification Based on Associations (CBA) algorithm. For the modelling of geographic relationships a graph-theoretic approach has been employed. Graphs have been widely used as modelling tools within the geography domain, primarily for the investigation of network-type systems. In the current context, the graph reflects topological and metric relationships between the spatial entities depicting general spatial arrangements. An efficient graph search algorithm has been developed, based on the Djikstra shortest path algorithm that enables the investigation of relationships between spatial entities beyond first degree connectivity. A case study with data from three central London boroughs has been performed to validate the methodology and algorithms, and demonstrate its effectiveness for computer aided property valuation. In addition, through the case study, the influence of location in the value of properties in those boroughs has been examined. The results are encouraging as they demonstrate the effectiveness of the proposed methodology and algorithms, provided that the data is appropriately pre processed and is of high quality

    Modelling the locational determinants of house prices: neural network and value tree approaches

    Get PDF
    Tom Kauko's book comprises an analysis of the locational element in house prices. Locational features can increase or decrease the value of a house compared with a similar one elsewhere. So far, the problem of isolating this element has been well documented in the literatures on spatial housing market modelling and property value modelling. These lines of research usually use the economic equilibrium model as theoretical umbrella. Kauko's approach extends this conventional model towards involving problematic aspects such as multiple equilibria, institutions and diversified preferences. By doing so, Kauko argues that using one approach only is insufficient, and therefore he applies two different methods for the empirical part of the analysis. The first one is essentially a mass-appraisal approach based on neural network modelling that identifies segments, location, and omitted variables. The second one is a dis-aggregated approach based on multiattribute value tree modelling that encapsulates the behavioural element - perceptions, preferences, price/quality relationships, and agency effects. The results show the strengths and weaknesses of the new methods as tools for a variety of appraisal purpose

    Smart Urban Water Networks

    Get PDF
    This book presents the paper form of the Special Issue (SI) on Smart Urban Water Networks. The number and topics of the papers in the SI confirm the growing interest of operators and researchers for the new paradigm of smart networks, as part of the more general smart city. The SI showed that digital information and communication technology (ICT), with the implementation of smart meters and other digital devices, can significantly improve the modelling and the management of urban water networks, contributing to a radical transformation of the traditional paradigm of water utilities. The paper collection in this SI includes different crucial topics such as the reliability, resilience, and performance of water networks, innovative demand management, and the novel challenge of real-time control and operation, along with their implications for cyber-security. The SI collected fourteen papers that provide a wide perspective of solutions, trends, and challenges in the contest of smart urban water networks. Some solutions have already been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and water demand disaggregation and forecasting), while further investigations are required for other methods, e.g., the data-driven approaches for real time control. In all cases, a new deal between academia, industry, and governments must be embraced to start the new era of smart urban water systems

    Consensus Algorithms and Deep Reinforcement Learning in Energy Market: A Review

    Get PDF
    Blockchain (BC) and artificial intelligence (AI) are often utilised separately in energy trading systems (ETS). However, these technologies can complement each other and reinforce their capabilities when integrated. This paper provides a comprehensive review of consensus algorithms (CA) of BC and deep reinforcement learning (DRL) in ETS. While the distributed consensus underpins the immutability of transaction records of prosumers, the deluge of data generated paves the way to use AI algorithms for forecasting and address other data analytic related issues. Hence, the motivation to combine BC with AI to realise secure and intelligent ETS. This study explores the principles, potentials, models, active research efforts and unresolved challenges in the CA and DRL. The review shows that despite the current interest in each of these technologies, little effort has been made at jointly exploiting them in ETS due to some open issues. Therefore, new insights are actively required to harness the full potentials of CA and DRL in ETS. We propose a framework and offer some perspectives on effective BC-AI integration in ETS

    Estimating UK House Prices using Machine Learning

    Get PDF
    House price estimation is an important subject for property owners, property developers, investors and buyers. It has featured in many academic research papers and some government and commercial reports. The price of a house may vary depending on several features including geographic location, tenure, age, type, size, market, etc. Existing studies have largely focused on applying single or multiple machine learning techniques to single or groups of datasets to identify the best performing algorithms, models and/or most important predictors, but this paper proposes a cumulative layering approach to what it describes as a Multi-feature House Price Estimation (MfHPE) framework. The MfHPE is a process-oriented, data-driven and machine learning based framework that does not just identify the best performing algorithms or features that drive the accuracy of models but also exploits a cumulative multi-feature layering approach to creating machine learning models, optimising and evaluating them so as to produce tangible insights that enable the decision-making process for stakeholders within the housing ecosystem for a more realistic estimation of house prices. Fundamentally, the MfHPE framework development leverages the Design Science Research Methodology (DSRM) and HM Land Registry’s Price Paid Data is ingested as the base transactions data. 1.1 million London-based transaction records between January 2011 and December 2020 have been exploited for model design, optimisation and evaluation, while 84,051 2021 transactions have been used for model validation. With the capacity for updates to existing datasets and the introduction of new datasets and algorithms, the proposed framework has also leveraged a range of neighbourhood and macroeconomic features including the location of rail stations, supermarkets, bus stops, inflation rate, GDP, employment rate, Consumer Price Index (CPIH) and unemployment rate to explore their impact on the estimation of house prices and their influence on the behaviours of machine learning algorithms. Five machine learning algorithms have been exploited and three evaluation metrics have been used. Results show that the layered introduction of new variety of features in multiple tiers led to improved performance in 50% of models, a change in the best performing models as new variety of features are introduced, and that the choice of evaluation metrics should not just be based on technical problem types but on three components: (i) critical business objectives or project goals; (ii) variety of features; and (iii) machine learning algorithms

    Applying the Geostatistical Eigenvector Spatial Filter Approach into Regularized Regression for Improving Prediction Accuracy for Mass Appraisal

    Get PDF
    Prediction accuracy for mass appraisal purposes has evolved substantially over the last few decades, facilitated by the evolution in big data, data availability and open source software. Accompanying these advances, newer forms of geo-spatial approaches and machine learning (ML) algorithms have been shown to help improve house price prediction and mass appraisal assessment. Nonetheless, the adoption a of ML within mass appraisal has been protracted and subject to scrutiny by assessment jurisdictions due to their failure to account for spatial autocorrelation and limited practicality in terms of value significant estimates needed for tribunal defense and explainability. Existing research comparing traditional regression approaches has tended to examine unsupervised ML methods such as Random Forest (RF) models which remain more esoteric and less transparent in producing value significant estimates necessary for mass appraisal explainability and defense. Therefore, the purpose of this study is to apply the supervised Regularized regression technique which offers a more transparent alternative, and integrate this with a more nuanced geo-statistical technique, the Eigenvector Spatial Filter (ESF) approach, to more accurately account for spatial autocorrelation and enhance prediction accuracy whilst improving explainability needed for mass appraisal exercises. By undertaking such an approach, the research demonstrates the application of this method can be easily adopted for property tax jurisdictions in a framework which is more interpretable, transparent and useable within mass appraisal given its simple and appealing approach. The findings reveal that the integration of the ESFs improves model explainability, prediction accuracy and spatial residual error compared to baseline classical regression and Elastic-net regularized regression architectures, whilst offering the necessary ‘front-facing’ and flexible structure for in-sample and out-of-sample assessment needed by the assessment community for valuing the unsold housing stock. In terms of policy and practice, the study demonstrates some important considerations for mass appraisal tax assessment and for the improvement of taxation assessment and the alleviation of horizontal and vertical inequity
    • …
    corecore