27,006 research outputs found

    Short-term electric load forecasting based on a neural fuzzy network

    Get PDF
    Centre for Multimedia Signal Processing, Department of Electronic and Information Engineering2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Short-Term Electric Load Forecasting Based on a Neural Fuzzy Network

    Full text link
    Electric load forecasting is essential to improve the reliability of the ac power line data network and provide optimal load scheduling in an intelligent home system. In this paper, a short-term load forecasting realized by a neural fuzzy network (NFN) and a modified genetic algorithm (GA) is proposed. It can forecast the hourly load accurately with respect to different day types and weather information. By introducing new genetic operators, the modified GA performs better than the traditional GA under some benchmark test functions. The optimal network structure can be found by the modified GA when switches in the links of the network are introduced. The membership functions and the number of rules of the NFN can be obtained automatically. Results for a short-term load forecasting will be given

    Short-term power demand forecasting using the differential polynomial neural network

    Get PDF
    Power demand forecasting is important for economically efficient operation and effective control of power systems and enables to plan the load of generating unit. The purpose of the short-term electricity demand forecasting is to forecast in advance the system load, represented by the sum of all consumers load at the same time. A precise load forecasting is required to avoid high generation cost and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to a high cost preparations. Differential polynomial neural network is a new neural network type, which forms and resolves an unknown general partial differential equation of an approximation of a searched function, described by data observations. It generates convergent sum series of relative polynomial derivative terms which can substitute for the ordinary differential equation, describing 1-parametric function time-series. A new method of the short-term power demand forecasting, based on similarity relations of several subsequent day progress cycles at the same time points is presented and tested on 2 datasets. Comparisons were done with the artificial neural network using the same prediction method.Web of Science8230629

    LOAD FORECASTING FOR DAILY LOAD OPERATIONAL PLAN USING LSTM (CASE STUDY: SOUTH SULAWESI SUB SYSTEM)

    Get PDF
    The electrical load required in an electricity sub-system changes every day. Electric power operators must be able to generate and distribute electricity according to consumer needs. In the Sulawesi sub-system, the power plants used are still dominated by fossil fuel generators, so that in their operations, fuel requirements need to be given serious attention. Planning a good daily electricity consumption is needed so that the fuel cost becomes optimal. In the current condition, the load forecasting for the Daily Load Operation Plan (ROH) is still based on Expert Judgment, which is different for each forecaster. With a fairly large error tolerance limit of 4%. We need a load forecasting instrument capable of better error tolerance. Forecasting methods such as ARIMA, SARIMA and ARIMAX have been used for many years. In recent years, several artificial intelligence techniques such as Neural Network and machine learning have been developed for time series analysis. And recently, more accurate forecasting results are shown by Artificial Neural Network (ANN) and Recurrent Neural Network (RNN) compared to traditional forecasting methods. Long Short Term Memory (LSTM) is a model of RNN that uses past data (Long Term) to predict current data (Short Term). Electric load in Sulawesi subsystem used as data training after normalized using min-max normalization. The LSTM model is made with different data input. Forecasting  performance of each model is then evaluated based on the RMSE and MAPE values. Of the several data input models, forecasting models with daily data input show better performance than other scenarios. The MAPE and RMSE values obtained were 2.384% and 33.95, respectively

    Probabilistic Short-Term Low-Voltage Load Forecasting using Bernstein-Polynomial Normalizing Flows

    Get PDF
    The transition to a fully renewable energy grid requires better forecasting of demand at the low-voltage level. However, high fluctuations and increasing electrification cause huge forecast errors with traditional point estimates. Probabilistic load forecasts take future uncertainties into account and thus enables various applications in low-carbon energy systems. We propose an approach for flexible conditional density forecasting of short-term load based on Bernstein-Polynomial Normalizing Flows where a neural network controls the parameters of the flow. In an empirical study with 363 smart meter customers, our density predictions compare favorably against Gaussian and Gaussian mixture densities and also outperform a non-parametric approach based on the pinball loss for 24h-ahead load forecasting for two different neural network architectures

    An improved LSTM-Seq2Seq-based forecasting method for electricity load

    Get PDF
    Power load forecasting has gained considerable research interest in recent years. The power load is vulnerable to randomness and uncertainty during power grid operations. Therefore, it is crucial to effectively predict the electric load and improve the accuracy of the prediction. This study proposes a novel power load forecasting method based on an improved long short-term memory (LSTM) neural network. Thus, an long short-term memory neural network model is established for power load forecasting, which supports variable-length inputs and outputs. The conventional convolutional neural network (CNN) and recurrent neural network (RNN) cannot reflect the sequence dependence between the output labels. Therefore, the LSTM-Seq2Seq prediction model was established by combining the sequence-to-sequence (Seq2Seq) structure with that of the long short-term memory model to improve the prediction accuracy. Four prediction models, i.e., long short-term memory, deep belief network (DBN), support vector machine (SVM), and LSTM-Seq2Seq, were simulated and tested on two different datasets. The results demonstrated the effectiveness of the proposed LSTM-Seq2Seq method. In the future, this model can be extended to more prediction application scenarios

    Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks

    Get PDF
    Electricity is indispensable and of strategic importance to national economies. Consequently, electric utilities make an effort to balance power generation and demand in order to offer a good service at a competitive price. For this purpose, these utilities need electric load forecasts to be as accurate as possible. However, electric load depends on many factors (day of the week, month of the year, etc.), which makes load forecasting quite a complex process requiring something other than statistical methods. This study presents an electric load forecast architectural model based on an Artificial Neural Network (ANN) that performs Short-Term Load Forecasting (STLF). In this study, we present the excellent results obtained, and highlight the simplicity of the proposed model. Load forecasting was performed in a geographic location of the size of a potential microgrid, as microgrids appear to be the future of electric power supply.Hernández, L.; Baladrón Zorita, C.; Aguiar Pérez, JM.; Carro Martínez, B.; Sanchez-Esguevillas, A.; Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies. 6(3):1385-1408. doi:10.3390/en6031385S1385140863Booklets European Comission. Your Guide to the Lisbon Treaty 2009http://ec.europa.eu/publications/booklets/others/84/en.pdfHernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446http://ec.europa.eu/energy/technology/set_plan/set_plan_en.htmFUTURED—Spanish Technological Platform for Energy Grids Home Pagehttp://www.futured.es/European Technology Platform for Electricity Networks of the Future—SmartGrids ETP Home Pagehttp://www.smartgrids.eu/Kim, H.-M., Kinoshita, T., & Shin, M.-C. (2010). A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment. Energies, 3(12), 1972-1990. doi:10.3390/en3121972Kim, H.-M., Lim, Y., & Kinoshita, T. (2012). An Intelligent Multiagent System for Autonomous Microgrid Operation. Energies, 5(9), 3347-3362. doi:10.3390/en5093347Xiao, Z., Li, T., Huang, M., Shi, J., Yang, J., Yu, J., & Wu, W. (2010). Hierarchical MAS Based Control Strategy for Microgrid. Energies, 3(9), 1622-1638. doi:10.3390/en3091622Hong, Y.-Y., & Chou, J.-H. (2012). Nonintrusive Energy Monitoring for Microgrids Using Hybrid Self-Organizing Feature-Mapping Networks. Energies, 5(7), 2578-2593. doi:10.3390/en5072578Douglas, A. P., Breipohl, A. M., Lee, F. N., & Adapa, R. (1998). The impacts of temperature forecast uncertainty on Bayesian load forecasting. IEEE Transactions on Power Systems, 13(4), 1507-1513. doi:10.1109/59.736298Sadownik, R., & Barbosa, E. P. (1999). Short-term forecasting of industrial electricity consumption in Brazil. Journal of Forecasting, 18(3), 215-224. doi:10.1002/(sici)1099-131x(199905)18:33.0.co;2-bHuang, S. R. (1997). Short-term load forecasting using threshold autoregressive models. IEE Proceedings - Generation, Transmission and Distribution, 144(5), 477. doi:10.1049/ip-gtd:19971144Infield, D. G., & Hill, D. C. (1998). Optimal smoothing for trend removal in short term electricity demand forecasting. IEEE Transactions on Power Systems, 13(3), 1115-1120. doi:10.1109/59.709108Sargunaraj, S., Sen Gupta, D. P., & Devi, S. (1997). Short-term load forecasting for demand side management. IEE Proceedings - Generation, Transmission and Distribution, 144(1), 68. doi:10.1049/ip-gtd:19970599Hong-Tzer Yang, & Chao-Ming Huang. (1998). A new short-term load forecasting approach using self-organizing fuzzy ARMAX models. IEEE Transactions on Power Systems, 13(1), 217-225. doi:10.1109/59.651639Hong-Tzer Yang, Chao-Ming Huang, & Ching-Lien Huang. (1996). Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Transactions on Power Systems, 11(1), 403-408. doi:10.1109/59.486125Yu, Z. (1996). A temperature match based optimization method for daily load prediction considering DLC effect. IEEE Transactions on Power Systems, 11(2), 728-733. doi:10.1109/59.496146Charytoniuk, W., Chen, M. S., & Van Olinda, P. (1998). Nonparametric regression based short-term load forecasting. IEEE Transactions on Power Systems, 13(3), 725-730. doi:10.1109/59.708572Taylor, J. W., & Majithia, S. (2000). Using combined forecasts with changing weights for electricity demand profiling. Journal of the Operational Research Society, 51(1), 72-82. doi:10.1057/palgrave.jors.2600856Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F., & Brace, C. (1997). Short-run forecasts of electricity loads and peaks. International Journal of Forecasting, 13(2), 161-174. doi:10.1016/s0169-2070(97)00015-0Soliman, S. A., Persaud, S., El-Nagar, K., & El-Hawary, M. E. (1997). Application of least absolute value parameter estimation based on linear programming to short-term load forecasting. International Journal of Electrical Power & Energy Systems, 19(3), 209-216. doi:10.1016/s0142-0615(96)00048-8Hyde, O., & Hodnett, P. F. (1997). An adaptable automated procedure for short-term electricity load forecasting. IEEE Transactions on Power Systems, 12(1), 84-94. doi:10.1109/59.574927Ku-Long Ho, Yuan-Yih Hsu, Chuan-Fu Chen, Tzong-En Lee, Chih-Chien Liang, Tsau-Shin Lai, & Kung-Keng Chen. (1990). Short term load forecasting of Taiwan power system using a knowledge-based expert system. IEEE Transactions on Power Systems, 5(4), 1214-1221. doi:10.1109/59.99372Rahman, S., & Hazim, O. (1993). A generalized knowledge-based short-term load-forecasting technique. IEEE Transactions on Power Systems, 8(2), 508-514. doi:10.1109/59.260833Mori, H., & Kobayashi, H. (1996). Optimal fuzzy inference for short-term load forecasting. IEEE Transactions on Power Systems, 11(1), 390-396. doi:10.1109/59.486123Bakirtzis, A. G., Theocharis, J. B., Kiartzis, S. J., & Satsios, K. J. (1995). Short term load forecasting using fuzzy neural networks. IEEE Transactions on Power Systems, 10(3), 1518-1524. doi:10.1109/59.466494Papadakis, S. E., Theocharis, J. B., Kiartzis, S. J., & Bakirtzis, A. G. (1998). A novel approach to short-term load forecasting using fuzzy neural networks. IEEE Transactions on Power Systems, 13(2), 480-492. doi:10.1109/59.667372Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-211. doi:10.1207/s15516709cog1402_1Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2-3), 195-225. doi:10.1007/bf00114844Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480. doi:10.1109/5.58325Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., & Hernández, L. (2012). Performance Study of the Application of Artificial Neural Networks to the Completion and Prediction of Data Retrieved by Underwater Sensors. Sensors, 12(2), 1468-1481. doi:10.3390/s120201468Martínez-Martínez, V., Baladrón, C., Gomez-Gil, J., Ruiz-Ruiz, G., Navas-Gracia, L. M., Aguiar, J. M., & Carro, B. (2012). Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks. Sensors, 12(10), 14004-14021. doi:10.3390/s121014004Park, D. C., El-Sharkawi, M. A., Marks, R. J., Atlas, L. E., & Damborg, M. J. (1991). Electric load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 6(2), 442-449. doi:10.1109/59.76685Ho, K. L., Hsu, Y.-Y., & Yang, C.-C. (1992). Short term load forecasting using a multilayer neural network with an adaptive learning algorithm. IEEE Transactions on Power Systems, 7(1), 141-149. doi:10.1109/59.141697Drezga, I., & Rahman, S. (1998). Input variable selection for ANN-based short-term load forecasting. IEEE Transactions on Power Systems, 13(4), 1238-1244. doi:10.1109/59.736244Drezga, I., & Rahman, S. (1999). Short-term load forecasting with local ANN predictors. IEEE Transactions on Power Systems, 14(3), 844-850. doi:10.1109/59.780894Lee, K. Y., Cha, Y. T., & Park, J. H. (1992). Short-term load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 7(1), 124-132. doi:10.1109/59.141695Lu, C.-N., Wu, H.-T., & Vemuri, S. (1993). Neural network based short term load forecasting. IEEE Transactions on Power Systems, 8(1), 336-342. doi:10.1109/59.221223Papalexopoulos, A. D., Shangyou Hao, & Tie-Mao Peng. (1994). An implementation of a neural network based load forecasting model for the EMS. IEEE Transactions on Power Systems, 9(4), 1956-1962. doi:10.1109/59.331456Bakirtzls, A. G., Petridls, V., Klartzis, S. J., Alexladls, M. C., & Malssls, A. H. (1996). A neural network short term load forecasting model for the Greek power system. IEEE Transactions on Power Systems, 11(2), 858-863. doi:10.1109/59.496166AlFuhaid, A. S., El-Sayed, M. A., & Mahmoud, M. S. (1997). Cascaded artificial neural networks for short-term load forecasting. IEEE Transactions on Power Systems, 12(4), 1524-1529. doi:10.1109/59.627852Lamedica, R., Prudenzi, A., Sforna, M., Caciotta, M., & Cencellli, V. O. (1996). A neural network based technique for short-term forecasting of anomalous load periods. IEEE Transactions on Power Systems, 11(4), 1749-1756. doi:10.1109/59.544638Srinivasan, D. (1994). Forecasting daily load curves using a hybrid fuzzy-neural approach. IEE Proceedings - Generation, Transmission and Distribution, 141(6), 561. doi:10.1049/ip-gtd:19941288Kwang-Ho Kim, Jong-Keun Park, Kab-Ju Hwang, & Sung-Hak Kim. (1995). Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems. IEEE Transactions on Power Systems, 10(3), 1534-1539. doi:10.1109/59.466492Daneshdoost, M., Lotfalian, M., Bumroonggit, G., & Ngoy, J. P. (1998). Neural network with fuzzy set-based classification for short-term load forecasting. IEEE Transactions on Power Systems, 13(4), 1386-1391. doi:10.1109/59.736281Senjyu, T., Mandal, P., Uezato, K., & Funabashi, T. (2005). Next Day Load Curve Forecasting Using Hybrid Correction Method. IEEE Transactions on Power Systems, 20(1), 102-109. doi:10.1109/tpwrs.2004.831256Hsu, Y.-Y., & Yang, C.-C. (1991). Design of artificial neural networks for short-term load forecasting. Part 2: Multilayer feedforward networks for peak load and valley load forecasting. IEE Proceedings C Generation, Transmission and Distribution, 138(5), 414. doi:10.1049/ip-c.1991.0052Rejc, M., & Pantos, M. (2011). Short-Term Transmission-Loss Forecast for the Slovenian Transmission Power System Based on a Fuzzy-Logic Decision Approach. IEEE Transactions on Power Systems, 26(3), 1511-1521. doi:10.1109/tpwrs.2010.2096829Wang, Y., Xia, Q., & Kang, C. (2011). Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting. IEEE Transactions on Power Systems, 26(2), 500-507. doi:10.1109/tpwrs.2010.2052638Kebriaei, H., Araabi, B. N., & Rahimi-Kian, A. (2011). Short-Term Load Forecasting With a New Nonsymmetric Penalty Function. IEEE Transactions on Power Systems, 26(4), 1817-1825. doi:10.1109/tpwrs.2011.2142330Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803-1832. doi:10.1063/1.1144830Taylor, J. W., & Buizza, R. (2002). Neural network load forecasting with weather ensemble predictions. IEEE Transactions on Power Systems, 17(3), 626-632. doi:10.1109/tpwrs.2002.800906Chu, W.-C., Chen, Y.-P., Xu, Z.-W., & Lee, W.-J. (2011). Multiregion Short-Term Load Forecasting in Consideration of HI and Load/Weather Diversity. IEEE Transactions on Industry Applications, 47(1), 232-237. doi:10.1109/tia.2010.2090440Zhang, W. Y., Hong, W.-C., Dong, Y., Tsai, G., Sung, J.-T., & Fan, G. (2012). Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy, 45(1), 850-858. doi:10.1016/j.energy.2012.07.006Hong, W.-C. (2011). Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm. Energy, 36(9), 5568-5578. doi:10.1016/j.energy.2011.07.015Nose-Filho, K., Lotufo, A. D. P., & Minussi, C. R. (2011). Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network. IEEE Transactions on Power Delivery, 26(4), 2862-2869. doi:10.1109/tpwrd.2011.2166566Hernández, L., Baladrón, C., Aguiar, J., Carro, B., & Sánchez-Esguevillas, A. (2012). Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies, 5(12), 5215-5228. doi:10.3390/en5125215Good, R. P., Kost, D., & Cherry, G. A. (2010). Introducing a Unified PCA Algorithm for Model Size Reduction. IEEE Transactions on Semiconductor Manufacturing, 23(2), 201-209. doi:10.1109/tsm.2010.2041263Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169http://www.ree.es/sistema_electrico/pdf/indel/Atlas_INDEL_REE.pdfHsu, C.-C., & Chen, C.-Y. (2003). Regional load forecasting in Taiwan––applications of artificial neural networks. Energy Conversion and Management, 44(12), 1941-1949. doi:10.1016/s0196-8904(02)00225-
    corecore