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Power load forecasting has gained considerable research interest in recent

years. The power load is vulnerable to randomness and uncertainty during

power grid operations. Therefore, it is crucial to effectively predict the electric

load and improve the accuracy of the prediction. This study proposes a

novel power load forecasting method based on an improved long short-

term memory (LSTM) neural network. Thus, an long short-term memory

neural network model is established for power load forecasting, which

supports variable-length inputs and outputs. The conventional convolutional

neural network (CNN) and recurrent neural network (RNN) cannot reflect

the sequence dependence between the output labels. Therefore, the LSTM-

Seq2Seq prediction model was established by combining the sequence-to-

sequence (Seq2Seq) structure with that of the long short-termmemorymodel

to improve the prediction accuracy. Four prediction models, i.e., long short-

term memory, deep belief network (DBN), support vector machine (SVM),

and LSTM-Seq2Seq, were simulated and tested on two different datasets.

The results demonstrated the effectiveness of the proposed LSTM-Seq2Seq

method. In the future, this model can be extended to more prediction

application scenarios.

KEYWORDS
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1 Introduction

Smart grids are the future direction of development for power grids. For the
safe, stable, and efficient operation of power systems, it is necessary to develop
advanced information processing and application technologies (Majeed Butt et al., 2021;
Javed et al., 2022). Current power industry research is gradually progressing toward the
refinement and dispatching optimization stage, which has the potential to improve
the optimal allocation of social resources. Consequently, all entities in the power
industry, including power generation companies, power planning enterprises, and
scheduling departments, must be able to perceive the shifting patterns and growth
trends of grid loads with greater precision. Therefore, accurate grid load forecasting
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is a crucial prerequisite for scientific power generation, dispatch,
and distribution (Aslam et al., 2021). Forecasting grid loads
entails analyzing historical loads in addition to meteorological,
economic, and other factors to determine the changing
characteristics and operating modes of future power grid loads.
It is the basis for power generation planning, market trading,
and power dispatching. In addition, it is an indispensable
resource for the construction and maintenance of power grids
(Velasquez et al., 2022). There are four forecasting scales based
on the forecast time: Long-term, medium-term, short-term, and
ultra-short-term. The accuracy of the prediction of the power
load directly affects the safety and stability of the development
of the power industry. A more accurate load forecast leads to a
more efficient utilization of power generation equipment and
an increase in the dispatching precision (Jahan et al., 2020).
Therefore, improving power load forecasting technology is
essential for the effective operation of the power sector.

Among the four scales of prediction, the short-term and
ultra-short-term predictions are the most significant. It is
crucial for power planning and dispatching systems to improve
the accuracy of short-term load forecasts. In addition, the
improvement of the algorithm for short-term load forecasting
provides the foundation for refined power dispatching and
management. However, the short-term load forecasting system
for the power grid necessitates flawless load forecasting,
analysis, and management functions. In this study, a method
of deep learning was used to improve the accuracy of power
load forecasting. To predict the power load, a long-short-
term memory (LSTM) neural network model was established.
Further, we developed a novel sequence-to-sequence (Seq2Seq)
prediction model by adapting an LSTM neural network to
irregular inputs.

It is essential for the operation and design of a power system
to determine the load change law during the day, night, and year.
Typically, the power loads are continuous and do not fluctuate
abruptly. The majority of factors influencing system load exhibit
regularity, which facilitates accurate prediction. Nevertheless,
the short-term or ultra-short-term load is a non-stationary
stochastic process in the time series due to the influence of a
variety of factors, such as weather changes and social activities.
Therefore, randomness and uncertainty must be taken into
account to improve the accuracy of the forecasting model’s
predictions. This study presents a method for load forecasting
based on a network with LSTM neural network. The following
are the main contributions of this study:

(i) Utilizing an LSTM neural network, a model for predicting
electricity load was developed. The process of modeling
is described in detail. In the electricity load forecasting
problem involving a time series, the simulation results
demonstrated that the prediction performance of the LSTM-
based model was better than that of the feedforward neural
network.

(ii) On the basis of the aforementioned LSTM model, a Seq2Seq
optimization model was proposed. This model solves
the issue encountered by conventional recurrent neural
networks (RNN), which cannot account for the sequence
dependency between output tags. Furthermore, it supports
inputs and outputs of variable length, which enhances the
adaptability of the entire framework for prediction.

(iii) The established hybrid LSTM-Seq2Seq-based model’s
efficacy was evaluated utilizing two distinct electricity
load datasets from the United States and Switzerland. The
experimental results demonstrated that the structure of
the LSTM-Seq2Seq-based prediction model is superior to
that of other prediction models, regardless of whether the
influencing factors are included in the prediction process.

The remainder of the paper is organized as follows: The
Section 2 presents an introduction to related works on power
load forecasting. In Section 3, an LSTM-based forecasting
method is proposed. On this basis, an improved LSTM-Seq2Seq
forecasting framework is put forward in Section 4. The paper
provides experiments in the next section. Lastly, the concluding
remarks are provided in Section 6.

2 Related works

In the past several decades, extensive research has been
conducted on power-load forecasting. There are lots of
methods including artificial neural networks, support vector
regression, decision tree, linear regression, and fuzzy sets
(Jahan et al., 2020). Velasquez et al. (2022) examined three time
series approximations and their respective combinations. The
results demonstrated that the seasonal regression method
presented the best approximation effect, while a combination of
the time series methods assisted in reducing the approximation
error. Löschenbrand et al. (2021) developed a fitted non-linear
Bayesian regression model utilizing Bayesian neural networks
for short-term load forecasting. It permitted the generation
of samples from non-linear probabilistic forecasts that do not
require the tuning properties of deep-learning methods. The
uncertainty in the data and the probability distribution of the
electric load data can be statistically formulated. Liu et al. (2022)
proposed amodel forecastingmethod by combiningmultivariate
phase space reconstruction and support vector regression,
and obtained improved short-term load forecasting results for
multiple energy sources.

Machine-learning methods have been widely implemented
in load forecasting due to the development of non-linear
research. They present better learning abilities in the complex
non-linear correlation of power data when compared to the
conventional prediction techniques (Lee and Cho, 2021).
Currently, various machine learning methods are being
implemented, including the back-propagation neural network
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FIGURE 1
Flowchart of power load forecasting.

FIGURE 2
The chain of RNN.

FIGURE 3
The chain of LSTM neural network.

(BP) (Bian et al., 2020), convolutional neural network (CNN)
(Imani, 2021; Zhang et al., 2021), artificial neural network
(ANN) (Xiao et al., 2022; Sa’ad et al., 2022; Aly, 2020), LSTM
networks (Bouktif et al., 2018; Kong et al., 2019; Yu et al., 2019;
Memarzadeh and Keynia, 2021; Peng et al., 2022; Zhaorui Meng
and Xie, 2022), support vector machine (SVM) (Xia et al., 2018;
Mayur Barman, 2020), extreme learning machine (ELM)
(Chen et al., 2020; Jeddi and Sharifian, 2020; Sahu et al., 2021;
Krishna Rayi et al., 2022), and deep belief network (DBN)
(Gao et al., 2022; Hong et al., 2022). Using only a neural network
for load forecasting faces several limitations since it cannot fully

utilize historical data for learning and generalization. Therefore,
extensive research has been conducted to overcome these
limitations by combining optimization algorithms and neural
networks to improve the accuracy of the prediction results.

Peng et al. (2021) proposed and evaluated a forecasting
method that combined a backtracking search optimization
algorithm with a double-reservoir echo state network.
Hu et al. (2019) proposed a short-term power load forecasting
model based on a hybrid GA-PSO-BPNN algorithm that was
used to optimize the parameters of the BPNN; however, it could
not prevent the prediction results from easily falling into the
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FIGURE 4
Structure of a cell in the LSTM neural network. (A) Forgetting gate. (B) Input gate. (C) State updating part. (D) Output gate.

local optimum. Krishna Rayi et al. (2022)developed an efficient
hybrid time series forecasting model by combining variational
mode decomposition and a deep learning mixed kernel ELM
autoencoder which presented a precise prediction of wind
power. Dong et al. (2021) proposed a distributed belief network
(DDBN) with a Markov switching topology to avoid manually
adjusting the weights of hidden layer nodes. It presents good
model generalization performance and generates an accurate
solution of output weights through the generalized least squares
method, thus conserving storage space and improving the
prediction accuracy. Bashir et al. (2022) proposed a hybrid
method using prophet and LSTM models to circumvent the low-
speed convergence limitation in an effort to accurately predict
load. Zheng et al. (2017) developed an improved hybrid short-
term load prediction model by combining similar day selection,
empirical mode decomposition, and an LSTM neural network. It
presented a higher prediction accuracy than the LSTM model.

3 LSTM-based forecasting
framework

The process of power load forecasting can generally be
divided into data acquisition, dataset production, forecasting
model establishment, load forecasting, and result evaluation.The
acquisition of actual and reliable power load data is crucial in the
first stage of load forecasting. Two different sets of power load
data were used in this study. These are the Swiss power load data
obtained from the European Internet Network website (ENTSO-
e) and the power load data obtained from Atlanta city in the
United States from the data platform. In the second stage, the

FIGURE 5
Encoder-Decoder architecture.

collected data were preprocessed and the training, verification,
and test datasets were established. A prediction model was
established in the third stage. Subsequently, the established load
forecasting model is tested using the data in the validation
dataset, and the model is continuously corrected and improved
until it is adjusted to the optimal state. Lastly, the prepared dataset
was verified, and the effectiveness of the model was evaluated
using evaluation indicators. Figure 1 depicts the power load
forecasting process.

Time series is an important factor in power load data.
RNNs typically presentmore advantages in predictions involving
time series when compared to feedforward neural networks.
However, they face two major problems during the training
process. Firstly, the longer the distance from the current time
step during the training process, the less significant the gradient
signal. They also face capture capability failure, which is a
problem of gradient disappearance. Secondly, each training step
must take a derivative of the activation function. If the result of
this part is greater than one, the gradient update will increase
exponentially with the increase in the number of layers, and a
gradient explosion will eventually occur.
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FIGURE 6
The framework of the LSTM-Seq2Seq model.

This paper proposes a load forecasting model based on an
LSTM neural network to overcome the drawbacks of the RNN;
the LSTM neural network is an improved RNN. The RNN
network has the chained form of an RNN module; this loop
module has a very simple structure, as shown in Figure 2. Each
module of the RNN network contains a tanh layer. The network
structure of the LSTM is similar to that of an RNN, except in the
recurrent module, as shown in Figure 3. Unlike the single neural
network layer of RNN, the LSTM neural network has four layers,
which interact differently.

There are four parts in an LSTM neural network cell model:
the input and output, and the forgetting and updating parts, as
shown in Figure 4. In Figure 4, xt denotes the input at moment
t, ht denotes the hidden state at moment t, and ct denotes
the cell state at moment t. σ represents the logistic sigmoid
functionwhich outputs a probability value between zero and one,

indicating the possibility of signal passing. Zero indicates that the
signal cannot pass, and 1 indicates that all the signals are allowed
to pass.

Each cell has a complex structure, which is controlled by
three gates: the forgetting gate, input gate, and output gate. The
cell controls the information in the network using the three
gates to remove or add information to the cellular state ct ,
i.e., “memory.” The forgetting gate determines the forgetting
intensity, as shown in Figure 4A ft denotes the gate control
switch of the forgetting door, which controls the number of
previous forgotten cell states. Similar to human memory, the
forgetting gate can obtain the function of forgetting unimportant
information, while retaining important information.

ft = σ(W f [ht−1,xt] + b f) (1)
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FIGURE 7
Diagrams on electricity loads of Switzerland and the city Atlanta, United States. (A) Electricity data of Switzerland. (B) Electricity data of the city
Atlanta.

TABLE 1 Experimental results of LSTM and FFNN.

Method Dataset Dimensions Neurons MAPE (%) RMSE

FFNN  Swiss 6 30 3.523 311.983

10 50 3.050 272.097

12 50 2.895 260.900

Atlanta 6 30 1.621 170.489

10 50 1.572 157.283

12 50 1.560 156.235

LSTM Swiss \ \ 2.294 219.908

Atlanta \ \ 1.557 153.441

Figure 4B depicts the input gate, which receives new
information from the extracellular input and selectively
remembers the input at the current state and the data in the
previously hidden state. This creates a new vector that holds the
data; this vector can be updated. In the input gate, the tanh layer
determines the candidate value of the updated content and
the sigmoid layer determines the content to be updated. The
probability value lies between 0 and 1.

it = σ(Wi [ht−1,xt] + bi) (2)

∼
c t = tanh(Wc [ht−1,xt] + bc) (3)

The next step involves updating the cell state, as shown in
Figure 4C. The specific process is as follows. Firstly, ct−1 of the
previous moment is updated to ct , where ct−1 is multiplied by ft .
Subsequently, the unimportant information is forgotten and the
important information is retained. Lastly, the information left in
the current input is retained to obtain the latest cell status. This

step changes based on the extent to which each state is updated.

ct = ft ⋅ ct−1 + it ⋅
∼
c t (4)

The sigmoid layer in the output gate determines the output
from the current cell state, as shown in Figure 4D. This process
is performed using the tanh function. The output of the sigmoid
layer is then multiplied by the processed value between -1 and 1
to obtain the output. Lastly, the output gate transfers the obtained
cell state ct and the output ht to the next cell.

ot = σ(Wo [ht−1,xt] + bo) (5)

ht = ot ⋅ tanh(ct−1) (6)

where Wf , Wi, Wc, and Wo are the weight matrices of
the forgetting gate, input gate, cell state, and output gate,
respectively; bf , bi, bc, and bo are the corresponding bias
vectors.

The conventional LSTM neural network model solves the
n-step prediction problem by adding a dense layer when
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FIGURE 8
Prediction results of the FFNN model and the LSTM Model with the two Datasets. (A) Results of the FFNN model with Dataset 1. (B) Results of the
FFNN model with Dataset 2. (C) Results of the LSTM model with Dataset 1. (D) Results of the LSTM model with Dataset 1.

outputting ht . This maps the hidden state to an n-dimensional
vector, thus satisfying the data format of the problem. The
n steps to be predicted are completely independent at this
point. Consequently, the sequence dependence between the
output tags cannot be considered when using the LSTM neural
network for prediction. Furthermore, the LSTMneural networks
cannot support variable-length input. Essentially, if a sensor
suddenly fails during monitoring, resulting in a partial loss of
the prediction data, an LSTM neural network may not be able to
complete the training. These limitations can be overcome using
the proposed LSTM-based power load forecasting model, which
employs the sequence-to-sequence method.

4 LSTM-Seq2Seq forecasting
framework

Cho et al. (2014) proposed the first sequence-to-sequence
(Seq2Seq) model and used it to solve the problem of phrase

representation learning. Their model was developed by
combining an encoder-decoder architecture with an RNN.
Sutskever et al. (2014) employed an encoder-decoder with
an LSTM neural network to perform sequence-to-sequence
learning tasks in the field of machine translation and achieved
good results. In this study, an LSTM-Seq2Seq forecasting
framework was designed and an LSTM neural network was
deployed for the encoder and decoder. It contains two main
components: an encoder and a decoder. The encoder accepts a
variable-length sequence and converts it into a coded state in
a fixed format by using an LSTM neural network. The decoder
also comprises an LSTM neural network which maps the fixed-
form encoded state to a variable-length sequence. This is called
the encoder-decoder architecture, as shown in Figure 5. This
structure can overcome the problem faced during the training
process, where training cannot be performed due to the lack of
input data.

In the encoding process, the encoder first encodes the
variable-length sequence data into a fixed-length intermediate
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FIGURE 9
True and predicted load with different models with dataset 1 and dataset 2. (A) Results of the DBN model with dataset 1. (B) Results of the DBN
model with dataset 1. (C) Results of the SVM model with dataset 1. (D) Result of the SVM model with dataset 2. (E) Results of the LSTM-Seq2Seq
model with dataset 1. (F) Results of the LSTM-Seq2Seq with dataset 2.

vector. The intermediate state vector can be considered as a
fixed-length representation of the input sequence, which is
generally known as the background vector. In the decoding
process, the decoder decodes a fixed-length intermediate vector
as the prediction output. This enables an input sequence of

any length to be mapped to an output sequence of any
length.

Figure 6 depicts the LSTM-Seq2Seq framework proposed
for predicting power load. Define an input sequence
x = (x1,x2,… ,xn) and encode it using a multi-layer LSTM. After
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FIGURE 10
Results of the LSTM-Seq2Seq model with ALT-dataset.

being embedded, the input array x is fed into the first layer
of a multi-layer LSTM, and the hidden states h = {h1,h2,…,hn}
output by this layer serve as inputs to the LSTM in the layer above.
Thus, representing each layer with a superscript l (l = 1,2,…,k)
yields the following expression for the hidden states in the
corresponding layer.

hln = EncoderLSTMl (xn,h
l
n−1) (7)

Using a multi-layer LSTM also necessitates the input of an
initial hidden state per layer hl0 and the output of a state vector
per layer zl. This paper simply views cn as another type of hidden
state. Similar to hl0, c

l
0 will be initialized to a tensor of all zeros.

In addition, the intermediate state vector is now the final hidden
state and the final cell state, i.e. zl = (hln,c

l
n).

We obtain the following by extending our multilayer
equations to LSTMs:

(hln,c
l
n) = EncoderLSTMl (xn, (h

l
n−1,c

l
n−1)) (8)

Next, we construct a decoder, that is also a multi-layer
LSTM. The “Decoder” class performs a single decoding step per
time-step, i.e., it outputs a single token. (slm−1,c

l
m−1), sm and cm

represent the hidden layer state and final cell state of the decoder,
respectively. And feeds it to the LSTM along with the current
embedded token ym to generate a new hidden and cell state
(slm,c

l
m). The subsequent layers will utilize the hidden state of the

layer beneath them sl−1m as well as the previous hidden and cell
states from their layer (slm−1,c

l
m−1). This provides equations that

closely resemble those in the encoder.

sm = DecoderLSTM(ym, sm−1) (9)

(slm,clm) = DecoderLSTMl (ym, (s
l
m−1,c

l
m−1)) (10)

Initial hidden and cell states for the decoder are intermediate
state vectors, which are the encoder’s final hidden and cell states
from the same layer, i.e. (sl0,c

l
0) = z

l = (hlm,clm). Then, we pass the
hidden state of the LSTM’s top layer slm through a linear layer f to
make a prediction of what the next token in the target (output)
sequence should be ŷm+1. The data in the decoder are always
produced sequentially, one per time step. Use the actual next
data from the dataset ym sometimes and the word predicted by
our decoder ŷm−1 other times. This is referred to as “teacher
forcing.”

ŷm+1 = f (s
l
m) (11)

5 Experiment

5.1 Dataset selection

The effectiveness of the proposed LSTM-Seq2Seq model
is verified using two datasets from different regions. Dataset
1 is Switzerland’s power-load data, which was provided by
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FIGURE 11
Error curves with different models with the two datasets. (A) Error curves with different models with dataset 1. (B) Error curves with different
models with dataset 2.

the European Internet Network (ENTSO-e). Contrary to other
EU countries, Swiss electricity is primarily generated by
hydropower, nuclear power, and conventional thermal power
plants, accounting for 59.9%, 33.5%, and 2.3%, respectively. The
dataset includes the hourly power load data from 2015 to 2017,
as well as weather features, such as the temperature and wind
speed. Dataset 2 contains the power load data of Atlanta in
the United States from 2015 to 2017, which was provided by
the data platform. It also recorded the hourly electric load data
during this period. Unlike Dataset 1, Dataset 2 contains only the
time-series and power load data. The prediction performance
of the proposed LSTM-Seq2Seq model was evaluated by
comparing it with three predictionmethods: theDBN, SVM, and
conventional LSTM. Each prediction model selects the 100-day
data from the dataset for testing. Figures 7A, B present the real
power load data of Switzerland and Atlanta, the United States,
respectively.

5.2 Experimental environment

The simulation experiments were conducted on a computer
equipped with Intel Core i7-9800X @ 3.8 G Hz and 32.0 GB
RAM. The development software Pycharm, was used as the
software environment for this testing. It was combined with
the Anaconda platform to install the dependency environment
for the algorithms and required packages. The electrical load
forecasting models were implemented using Keras 2.3.1 and
Tensorflow 1.14.0.

5.3 Evaluation indicators

There are evaluation indicators for predictionmodels, such as
the mean square error (MSE), root mean square error (RMSE),
and mean absolute percentage error (MAPE). RMSE and MAPE
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TABLE 2 Experimental results of DBN, SVM, LSTM and LSTM-Seq2Seq.

Dataset Method MAPE (%) RMSE

Swiss DBN 2.597 246.623

SVM 2.897 236.626

LSTM 2.294 219.908

LSTM-Seq2Seq 2.124 210.381

Atland DBN 1.800 174.127

SVM 1.391 143.396

LSTM 1.557 153.441

LSTM-Seq2Seq .980 100.516

ALT-dataset LSTM-Seq2Seq 2.213 220.570

are described as follows:

RMSE =
√

n

∑
i=1
(ŷi − yi)

2

n
(12)

MAPE =

n

∑
i=1
|ŷi − yi|

yi
⋅ 100%

n
(13)

5.4 Comparison of the LSTM model and a
FFNN model

We trained and tested the proposed LSTM neural network
power load forecasting model. We evaluated its performance
by comparing it with the feedforward neural network (FFNN)
model. Several groups of FFNN parameters were set for specific
parameter settings, as shown in Table 1. Datasets 1 and 2 were
used for load forecasting. Dataset 1 contains the electricity load
data for Switzerland. Dataset 2 contains the electricity load data
for Atlanta in the United States. To facilitate visual observation,
we intercepted a segment of 240 data points from 2,400 forecast
data points and drew forecast curves, as shown in Figure 8.
Figures 8A, B present the experimental results of the FFNN
model with datasets 1 and 2, respectively, and Figures 8C, D
present the experimental results of the LSTMmodelwith datasets
1 and 2, respectively. Table 1 presents the performances of the
two load prediction models. It can be observed that the LSTM
model performed slightly better than the FFNN model for both
datasets. However, the performance of the LSTM model was not
outstanding in terms of the prediction accuracy.

5.5 Testing of the LSTM-Seq2Seq model

The LSTM-Seq2Seq model primarily handles the time-series
and variable-length input and output problems. The two datasets
from the above section were used to test the model. The LSTM-
Seq2Seq model proposed in this paper can be optimized by
changing the model parameters of the encoder and decoder, and
the parameter adjustmentmethod is the same as that of the LSTM
model. Both the encoder and decoder in this paper use a two-
layer LSTM model, in which the number of hidden layer nodes
of the encoder and decoder is 512, the batch size is 50, and the
epoch is 50. The validation sample rate validation_split of the
dataset is .05, which means that 5% of the data in the dataset
is used to validate the prediction results. Figure 9 presents the
experimental results of the three forecasting models on the two
datasets, including the DBN, SVM, and LSTM-Seq2Seq models.
The DBN and SVM models were compared with the LSTM-
Seq2Seq model. Figures 9A, B present the prediction results of
the DBN model, Figures 9C, D present the prediction results
of the SVM model, and Figures 9E, F present the experimental
results of the LSTM-Seq2Seq model. Table 2 lists the evaluation
indices for the four prediction models. The MAPE of the LSTM
model was 2.294% and 1.557% for Datasets 1 and 2, respectively.
When compared to the experimental results of the LSTM-
Seq2Seq model, the MAPE of the LSTM-Seq2Seq model on
Dataset 1 decreased by .17%. However, the MAPE for Dataset 2
decreased by .577%. Therefore, the LSTM-Seq2Seq structure can
significantly improve the prediction accuracy of the power-load
forecasting system.

The LSTM-Seq2Seq model also supports variable-length
input data. For example, when the temperature factor in the
prediction dataset is partially missing due to sensor faults,
the conventional LSTM network cannot perform arithmetic
prediction. This problem can be solved by the improved LSTM-
Seq2Seq model. We changed the data in Dataset 1 to obtain
a new dataset called the ALT-dataset, in which the data of
weather characteristics such as the temperature, wind speed,
and humidity were randomly removed. The new ALT-dataset
was used to test the LSTM-SeqSeq model and the MAPE
is obtained as 2.213%. The accuracy of this prediction was
only slightly lower than that of the original dataset. Figure 10
depicts the experimental curves. Figures 11A, B depict the error
curves of Datasets 1 and 2, respectively. Since the ALT dataset
was generated by randomly removing the input data, only the
LSTM-Seq2Seq method proposed in this paper was applicable.
Table 2 demonstrated that the LSTM-Seq2Seq method cannot
significantly improve MAPE performance, but it had its own
unique advantages when dealing with time series problems with
variable length inputs.
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6 Conclusion

Ensuring the precision of the power industry load forecasting
is crucial for improving the utilization rate of the power
generation equipment and the effectiveness of economic
dispatch. In this paper, we proposed a new forecasting
framework by combining the Seq2Seq structure and LSTM
network, and by considering the time series and variable
length input-output factors. This model supports variable-
length inputs and outputs and also improves the flexibility
of the prediction model. Furthermore, it overcomes the
limitations faced by the conventional RNN and CNN, which
cannot consider the sequence dependence between the output
labels. The actual data from different countries and regions
were used for testing and evaluating the proposed prediction
model. Additionally, four prediction models, i.e., DBN, SVM,
LSTM, and LSTM-Seq2Seq, were compared to determine
the effectiveness of the proposed model. The experimental
results demonstrate that the LSTM-Seq2Seq prediction model
presents a better prediction performance. This model can be
extended to more prediction application scenarios in the future
due to the consideration of the variable-length input-output
characteristics.

WhenCNN is used to learn time series, additional processing
is required, and the results are typically subpar. Typically, RNN
is better suited for time series-sensitive problems, but it has
long-term dependence and gradient explosion or vanishing
issues. It is difficult for RNN to store data for an extended
period of time. The LSTM with a special implicit unit is
intended to maintain the input for an extended period of time,
making it suitable for time series problems. Concurrently, LSTM
solves the Vanishing Gradient problem caused by the gradual
decrease of RNN during gradient backpropagation. It is evident
that LSTM is advantageous for the power load forecasting
problem. However, when the input variable changes, LSTM
becomes ineffective. Currently, the proposed LSTM-Seq2Seq
model can effectively address the issue of variable input or output
scale. However, the LSTM-Seq2Seq model does not have an
advantage in parallel processing. When the network is large, it
is computationally intensive and time-consuming. Additionally,
parameter adjustment becomes challenging. In order for it to
be calculated faster, we are currently working to simplify the
LSTM-Seq2Seq model by reducing the number of parameters

and making it easy to tune, while maintaining its prediction
accuracy.
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