59,201 research outputs found

    Improving cyber-security of smart grid systems via anomaly detection and linguistic domain knowledge

    Full text link
    The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, this paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security

    Spatio-temporal traffic anomaly detection for urban networks

    Get PDF
    Urban road networks are often affected by disruptions such as accidents and roadworks, giving rise to congestion and delays, which can, in turn, create a wide range of negative impacts to the economy, environment, safety and security. Accurate detection of the onset of traffic anomalies, specifically Recurrent Congestion (RC) and Nonrecurrent Congestion (NRC) in the traffic networks, is an important ITS function to facilitate proactive intervention measures to reduce the level of severity of congestion. A substantial body of literature is dedicated to models with varying levels of complexity that attempt to identify such anomalies. Given the complexity of the problem, however, very less effort is dedicated to the development of methods that attempt to detect traffic anomalies using spatio-temporal features. Driven both by the recent advances in deep learning techniques and the development of Traffic Incident Management Systems (TIMS), the aim of this research is to develop novel traffic anomaly detection models that can incorporate both spatial and temporal traffic information to detect traffic anomalies at a network level. This thesis first reviews the state of the art in traffic anomaly detection techniques, including the existing methods and emerging machine learning and deep learning methods, before identifying the gaps in the current understanding of traffic anomaly and its detection. One of the problems in terms of adapting the deep learning models to traffic anomaly detection is the translation of time series traffic data from multiple locations to the format necessary for the deep learning model to learn the spatial and temporal features effectively. To address this challenging problem and build a systematic traffic anomaly detection method at a network level, this thesis proposes a methodological framework consisting of (a) the translation layer (which is designed to translate the time series traffic data from multiple locations over the road network into a desired format with spatial and temporal features), (b) detection methods and (c) localisation. This methodological framework is subsequently tested for early RC detection and NRC detection. Three translation layers including connectivity matrix, geographical grid translation and spatial temporal translation are presented and evaluated for both RC and NRC detection. The early RC detection approach is a deep learning based method that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM). The NRC detection, on the other hand, involves only the application of the CNN. The performance of the proposed approach is compared against other conventional congestion detection methods, using a comprehensive evaluation framework that includes metrics such as detection rates and false positive rates, and the sensitivity analysis of time windows as well as prediction horizons. The conventional congestion detection methods used for the comparison include Multilayer Perceptron, Random Forest and Gradient Boost Classifier, all of which are commonly used in the literature. Real-world traffic data from the City of Bath are used for the comparative analysis of RC, while traffic data in conjunction with incident data extracted from Central London are used for NRC detection. The results show that while the connectivity matrix may be capable of extracting features of a small network, the increased sparsity in the matrix in a large network reduces its effectiveness in feature learning compared to geographical grid translation. The results also indicate that the proposed deep learning method demonstrates superior detection accuracy compared to alternative methods and that it can detect recurrent congestion as early as one hour ahead with acceptable accuracy. The proposed method is capable of being implemented within a real-world ITS system making use of traffic sensor data, thereby providing a practically useful tool for road network managers to manage traffic proactively. In addition, the results demonstrate that a deep learning-based approach may improve the accuracy of incident detection and locate traffic anomalies precisely, especially in a large urban network. Finally, the framework is further tested for robustness in terms of network topology, sensor faults and missing data. The robustness analysis demonstrates that the proposed traffic anomaly detection approaches are transferable to different sizes of road networks, and that they are robust in the presence of sensor faults and missing data.Open Acces

    Anomaly detection and automatic labeling for solar cell quality inspection based on Generative Adversarial Network

    Full text link
    Quality inspection applications in industry are required to move towards a zero-defect manufacturing scenario, withnon-destructive inspection and traceability of 100 % of produced parts. Developing robust fault detection and classification modelsfrom the start-up of the lines is challenging due to the difficulty in getting enough representative samples of the faulty patternsand the need to manually label them. This work presents a methodology to develop a robust inspection system, targeting thesepeculiarities, in the context of solar cell manufacturing. The methodology is divided into two phases: In the first phase, an anomalydetection model based on a Generative Adversarial Network (GAN) is employed. This model enables the detection and localizationof anomalous patterns within the solar cells from the beginning, using only non-defective samples for training and without anymanual labeling involved. In a second stage, as defective samples arise, the detected anomalies will be used as automaticallygenerated annotations for the supervised training of a Fully Convolutional Network that is capable of detecting multiple types offaults. The experimental results using 1873 EL images of monocrystalline cells show that (a) the anomaly detection scheme can beused to start detecting features with very little available data, (b) the anomaly detection may serve as automatic labeling in order totrain a supervised model, and (c) segmentation and classification results of supervised models trained with automatic labels arecomparable to the ones obtained from the models trained with manual labels.Comment: 20 pages, 10 figures, 6 tables. This article is part of the special issue "Condition Monitoring, Field Inspection and Fault Diagnostic Methods for Photovoltaic Systems" Published in MDPI - Sensors: see https://www.mdpi.com/journal/sensors/special_issues/Condition_Monitoring_Field_Inspection_and_Fault_Diagnostic_Methods_for_Photovoltaic_System

    Distributed Network Anomaly Detection on an Event Processing Framework

    Get PDF
    Network Intrusion Detection Systems (NIDS) are an integral part of modern data centres to ensure high availability and compliance with Service Level Agreements (SLAs). Currently, NIDS are deployed on high-performance, high-cost middleboxes that are responsible for monitoring a limited section of the network. The fast increasing size and aggregate throughput of modern data centre networks have come to challenge the current approach to anomaly detection to satisfy the fast growing compute demand. In this paper, we propose a novel approach to distributed intrusion detection systems based on the architecture of recently proposed event processing frameworks. We have designed and implemented a prototype system using Apache Storm to show the benefits of the proposed approach as well as the architectural differences with traditional systems. Our system distributes modules across the available devices within the network fabric and uses a centralised controller for orchestration, management and correlation. Following the Software Defined Networking (SDN) paradigm, the controller maintains a complete view of the network but distributes the processing logic for quick event processing while performing complex event correlation centrally. We have evaluated the proposed system using publicly available data centre traces and demonstrated that the system can scale with the network topology while providing high performance and minimal impact on packet latency

    Identification of ICS Security Risks toward the Analysis of Packet Interaction Characteristics Using State Sequence Matching Based on SF-FSM

    Get PDF
    This paper discusses two aspects of major risks related to the cyber security of an industrial control system (ICS), including the exploitation of the vulnerabilities of legitimate communication parties and the features abused by unauthorized parties. We propose a novel framework for exposing the above two types of risks. A state fusion finite state machine (SF-FSM) model is defined to describe multiple request-response packet pair sequence signatures of various applications using the same protocol. An inverted index of keywords in an industrial protocol is also proposed to accomplish fast state sequence matching. Then we put forward the concept of scenario reconstruction, using state sequence matching based on SF-FSM, to present the known vulnerabilities corresponding to applications of a specific type and version by identifying the packet interaction characteristics from the data flow in the supervisory control layer network. We also implement an anomaly detection approach to identifying illegal access using state sequence matching based on SF-FSM. An anomaly is asserted if none of the state sequence signatures in the SF-FSM is matched with a packet flow. Ultimately, an example based on industrial protocols is demonstrated by a prototype system to validate the methods of scenario reconstruction and anomaly detection

    Detecting Anomalies From Big Data System Logs

    Get PDF
    Nowadays, big data systems (e.g., Hadoop and Spark) are being widely adopted by many domains for offering effective data solutions, such as manufacturing, healthcare, education, and media. A common problem about big data systems is called anomaly, e.g., a status deviated from normal execution, which decreases the performance of computation or kills running programs. It is becoming a necessity to detect anomalies and analyze their causes. An effective and economical approach is to analyze system logs. Big data systems produce numerous unstructured logs that contain buried valuable information. However manually detecting anomalies from system logs is a tedious and daunting task. This dissertation proposes four approaches that can accurately and automatically analyze anomalies from big data system logs without extra monitoring overhead. Moreover, to detect abnormal tasks in Spark logs and analyze root causes, we design a utility to conduct fault injection and collect logs from multiple compute nodes. (1) Our first method is a statistical-based approach that can locate those abnormal tasks and calculate the weights of factors for analyzing the root causes. In the experiment, four potential root causes are considered, i.e., CPU, memory, network, and disk I/O. The experimental results show that the proposed approach is accurate in detecting abnormal tasks as well as finding the root causes. (2) To give a more reasonable probability result and avoid ad-hoc factor weights calculating, we propose a neural network approach to analyze root causes of abnormal tasks. We leverage General Regression Neural Network (GRNN) to identify root causes for abnormal tasks. The likelihood of reported root causes is presented to users according to the weighted factors by GRNN. (3) To further improve anomaly detection by avoiding feature extraction, we propose a novel approach by leveraging Convolutional Neural Networks (CNN). Our proposed model can automatically learn event relationships in system logs and detect anomaly with high accuracy. Our deep neural network consists of logkey2vec embeddings, three 1D convolutional layers, a dropout layer, and max pooling. According to our experiment, our CNN-based approach has better accuracy compared to other approaches using Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) on detecting anomaly in Hadoop DistributedFile System (HDFS) logs. (4) To analyze system logs more accurately, we extend our CNN-based approach with two attention schemes to detect anomalies in system logs. The proposed two attention schemes focus on different features from CNN\u27s output. We evaluate our approaches with several benchmarks, and the attention-based CNN model shows the best performance among all state-of-the-art methods

    Neuromorphic Learning Systems for Supervised and Unsupervised Applications

    Get PDF
    The advancements in high performance computing (HPC) have enabled the large-scale implementation of neuromorphic learning models and pushed the research on computational intelligence into a new era. Those bio-inspired models are constructed on top of unified building blocks, i.e. neurons, and have revealed potentials for learning of complex information. Two major challenges remain in neuromorphic computing. Firstly, sophisticated structuring methods are needed to determine the connectivity of the neurons in order to model various problems accurately. Secondly, the models need to adapt to non-traditional architectures for improved computation speed and energy efficiency. In this thesis, we address these two problems and apply our techniques to different cognitive applications. This thesis first presents the self-structured confabulation network for anomaly detection. Among the machine learning applications, unsupervised detection of the anomalous streams is especially challenging because it requires both detection accuracy and real-time performance. Designing a computing framework that harnesses the growing computing power of the multicore systems while maintaining high sensitivity and specificity to the anomalies is an urgent research need. We present AnRAD (Anomaly Recognition And Detection), a bio-inspired detection framework that performs probabilistic inferences. We leverage the mutual information between the features and develop a self-structuring procedure that learns a succinct confabulation network from the unlabeled data. This network is capable of fast incremental learning, which continuously refines the knowledge base from the data streams. Compared to several existing anomaly detection methods, the proposed approach provides competitive detection accuracy as well as the insight to reason the decision making. Furthermore, we exploit the massive parallel structure of the AnRAD framework. Our implementation of the recall algorithms on the graphic processing unit (GPU) and the Xeon Phi co-processor both obtain substantial speedups over the sequential implementation on general-purpose microprocessor (GPP). The implementation enables real-time service to concurrent data streams with diversified contexts, and can be applied to large problems with multiple local patterns. Experimental results demonstrate high computing performance and memory efficiency. For vehicle abnormal behavior detection, the framework is able to monitor up to 16000 vehicles and their interactions in real-time with a single commodity co-processor, and uses less than 0.2ms for each testing subject. While adapting our streaming anomaly detection model to mobile devices or unmanned systems, the key challenge is to deliver required performance under the stringent power constraint. To address the paradox between performance and power consumption, brain-inspired hardware, such as the IBM Neurosynaptic System, has been developed to enable low power implementation of neural models. As a follow-up to the AnRAD framework, we proposed to port the detection network to the TrueNorth architecture. Implementing inference based anomaly detection on a neurosynaptic processor is not straightforward due to hardware limitations. A design flow and the supporting component library are developed to flexibly map the learned detection networks to the neurosynaptic cores. Instead of the popular rate code, burst code is adopted in the design, which represents numerical value using the phase of a burst of spike trains. This does not only reduce the hardware complexity, but also increases the result\u27s accuracy. A Corelet library, NeoInfer-TN, is implemented for basic operations in burst code and two-phase pipelines are constructed based on the library components. The design can be configured for different tradeoffs between detection accuracy, hardware resource consumptions, throughput and energy. We evaluate the system using network intrusion detection data streams. The results show higher detection rate than some conventional approaches and real-time performance, with only 50mW power consumption. Overall, it achieves 10^8 operations per Joule. In addition to the modeling and implementation of unsupervised anomaly detection, we also investigate a supervised learning model based on neural networks and deep fragment embedding and apply it to text-image retrieval. The study aims at bridging the gap between image and natural language. It continues to improve the bidirectional retrieval performance across the modalities. Unlike existing works that target at single sentence densely describing the image objects, we elevate the topic to associating deep image representations with noisy texts that are only loosely correlated. Based on text-image fragment embedding, our model employs a sequential configuration, connects two embedding stages together. The first stage learns the relevancy of the text fragments, and the second stage uses the filtered output from the first one to improve the matching results. The model also integrates multiple convolutional neural networks (CNN) to construct the image fragments, in which rich context information such as human faces can be extracted to increase the alignment accuracy. The proposed method is evaluated with both synthetic dataset and real-world dataset collected from picture news website. The results show up to 50% ranking performance improvement over the comparison models
    • …
    corecore