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Abstract—Network Intrusion Detection Systems (NIDS) are
an integral part of modern data centres to ensure high avail-
ability and compliance with Service Level Agreements (SLAs).
Currently, NIDS are deployed on high-performance, high-cost
middleboxes that are responsible for monitoring a limited section
of the network. The fast increasing size and aggregate throughput
of modern data centre networks have come to challenge the
current approach to anomaly detection to satisfy the fast growing
compute demand.

In this paper, we propose a novel approach to distributed
intrusion detection systems based on the architecture of recently
proposed event processing frameworks. We have designed and
implemented a prototype system using Apache Storm to show
the benefits of the proposed approach as well as the architec-
tural differences with traditional systems. Our system distributes
modules across the available devices within the network fabric
and uses a centralised controller for orchestration, management
and correlation. Following the Software Defined Networking
(SDN) paradigm, the controller maintains a complete view of
the network but distributes the processing logic for quick event
processing while performing complex event correlation centrally.
We have evaluated the proposed system using publicly available
data centre traces and demonstrated that the system can scale
with the network topology while providing high performance and
minimal impact on packet latency.

I. INTRODUCTION

Data centers have been used to provide a large and varying
numbers of services, from large private compute nodes for
data analytics, search engine indexing, redundant storage to
public Cloud hosting a myriad of tenants. Regardless of their
nature, data centers critically rely on the availability of the
infrastructure and therefore anomalies, either malicious or
legitimate, must be detected, analyzed and resolved. With
the rapid growth in scale, volume and complexity of modern
data centers the task of detecting network anomalies in short
timescales is becoming more and more complex. Networks
speeds have increased over the last ten years by two orders
of magnitude, scaling from 1GbE infrastructure to 10GbE and
40/100GbE currently being deployed. The current approach
of placing high-performance middleboxes at the core of the
fabric to analyze all incoming and outgoing traffic requires
a matching growth in network and compute speed. However,
processor speeds have been increasing at a much lower pace,
requiring a radical change on the way anomaly detection is
performed.

In insight this scalability problem has been occurring in
many areas of computing science; databases moved from
single node relational databases to NoSQL geographically
distributed systems, data analytics moved out of dedicated

highly specialized infrastructures to map-reduce frameworks
such as Hadoop and network infrastructures moved away from
high port density devices to low-cost commodity devices. On
the control and orchestration aspect, Software-Defined Net-
working (SDN) has allowed operators to rely on an open-API
to implement new network behaviour opening new doors for
routing, traffic engineering and network policies with Network
Function Virtualization (NFV). For the network and compute
infrastructure alike the recent trend has been to move away
from high-performance dedicated systems towards commodity
off-the-shelf devices in order to significantly reduce cost,
prevent vendor lock-in and increase customizability and re-
purposability as the demand changes faster than the infras-
tructure. This approach to scaling changed from the traditional
horizontal scaling, where a single node resources are improved,
to vertical scaling where low-cost commodity nodes are added
to the system.

The increasing importance and demand of data analyt-
ics generated by large-scale event-logging, machine learning,
trend calculation or suggestion engines has reached scales
unsuitable for node-local processing. To process realtime
data streams, Twitter released in 2011 to the open source
community Storm, a realtime distributed event processor that
follows the horizontal scaling model. It has been designed
to classify, correlate and analyze realtime streams of data
from multiple sources at high speed. Through this process
meaningful patterns within the streams can be detected, thus
allowing events to be extracted as well as for instance their
correlation, relationship, hierarchy and timing.

In this paper we propose a novel approach to address
anomaly detection in data centers using the distributed event
processing framework Storm. In the proposed system, the
nodes and edges of the Storm topology have a one-to-one
relationship to the switches and links of a traditional multi-
layer topology of a datacenter. By collocating the network
devices and the processing node using NFV or switch-local
deployment, realtime anomaly detection can be performed
across the entire fabric without the need of a high-performance
middleboxes at the core of the fabric. Following the SDN
approach, a central controller orchestrates the infrastructure
by dynamically deploying the processing modules across the
fabric and collecting the traffic characteristics as well as the
reported anomalies.

The remainder of the paper is structured as follows: Section
II discusses existing work. Section III presents the architec-
ture and implementation of the proposed system. Section IV
evaluates the deployment of the system and finally, Section V
concludes the paper.



II. RELATED WORK

Currently there are two main approaches to network
anomaly detection: Online and Offline. [1] Online detection
is performed as traffic propagates through the network in
realtime while offline detection relies on the recording and
later analysis of the traffic after it has been processed. With
the increasing network speeds and the necessity for realtime
anomaly detection, offline anomaly detection is not suitable
due to the significant lag between the anomalous event and
the inspection as well the very large datasets that become
hard to handle if the monitoring is done at multiple points
in the network. In this paper we will focus on online anomaly
detection and how our approach can address the challenges
associated.

Online anomaly detection is one of the most widespread
methods enforcing a security policy within a protected net-
work. This is currently achieved by using network based in-
trusion detection and prevention systems (NIDS/NIPS) which
apply pattern matching in order to detect abnormal behaviours.
Intrusion detection/prevention systems can be classified as
signature based and statistics based. Existing signature based
IDS include Snort [2] - the de facto standard for intrusion
detection/prevention system and a recent development - Suri-
cata [3]. Examples of statistics based IDS are Prelude and the
Analysis Console for Intrusion Databases (ACID) plugin for
Snort.

Typical NIDS/NIPS are deployed on dedicated middle-
boxes which are connected to key points within the network
topology [4]. Those IDS monitor streams of data at fixed
points within networks and therefore the network-wide net-
work characteristics such as the network topology or traffic
flowing through other branches of the network are unknown.
As traditional middleboxes, the IDS is transparent to the traffic
and should process the stream of data with a minimum impact
on the packet latency. This approach is used by softwares such
as Snort and Surricata and is most common, due to being
relatively easy to deploy and maintain and its ability to run
on commodity servers. However the software implementations
have performance limitations and compromises often need to
be done such as sampling to prevent big impact on network
performances. Specialized and highly dedicated hardware mid-
dleboxes have been designed to perform anomaly detection
at line-rate on the aggregate of traffic, but the high-cost,
high-maintenance and low-upgradability is unattractive for DC
operators.

An alternative approach to intrusion detection is proposed
by Steven R. Snapp et. al and relies on multiple points of
attachment/monitoring that collect data and either analyse part
of it locally or forward reports to a central node specifically
tasked with analysis [5]. The proposed distributed approach
provides a number of potential improvements such as ability
to configure different sensors according to the expected work-
loads and increased scalability and fault tolerance due to the
lack of single point of failure. However, the system proposed
by Steven R. Snapp et. al is a host based intrusion detection
system and it does not address the issues of underlying
networks and detection performance.

Due to the increasing speed of the data centre networks it
has been recognised that the centralised approach is bound

to become a bottleneck [6] and some recent developments
aim to improve the performance of NIDS. A tool based on
Snort that divides the network traffic into manageable parts and
processes them separately has been proposed by Kruegel et.
al [7]. However this approach results in delays and additional
overhead for distributing the network traffic, thus preventing
the technique from being used for real-time analysis, as well
as excluding global network knowledge as part of the anomaly
detection. Another technique was proposed by Vallentin et. al
which instead of correlating detection results from multiple
intrusion detection sensors, the correlation is done on the
underlying analysis by exchanging low level data about the
traffic characteristics and thus achieving better detection results
and the desired workload distribution amongst the sensors [8].

The rise of distributed computing and the emergence of
parallel processing frameworks such as Hadoop has created
new opportunities to address the poor scalability and lim-
ited performance of centralised NIDS solutions. A network
measurement tool based on Hadoop that shows how parallel
computing frameworks can be used in the context of high speed
networks has been proposed by Yeonhee Lee & Youngseok
Lee [9]. Hadoop based intrusion detection systems have been
developed by Ibrahim Aljarah and Simone A. Ludwig [10] and
Sanjay Veetil & Qigang Gao [11] that significantly improve
parallelization of data analysis while achieving a similar de-
tection rate when compared to existing NIDS such as Snort and
Surricata. However, due to the evident limitations of Hadoop
– being created as a batch processing framework, none of
the proposed solutions can be used to analyze traffic in real-
time. They rely on conversion of the network traffic which
is captured live into a batch of data to be processed by the
Hadoop cluster. This is a major issue, limiting the adoption
of parallel processing techniques into network data analysis as
the long and unstable latency between batch processes makes
it infeasible to use Hadoop for online anomaly detection.

The lack of realtime parallel processing frameworks has
been addressed by Apache Storm, which does not require data
to be organised into batches before processing, but directly
processes all data as soon as it is available. A Storm application
processes streams of tuples flowing through topologies [12]
where each topology is made up of a directed acyclic graph
of Bolts and Spouts. Spouts introduce data to the Storm
topology in the form of tuples, which is typically achieved by
polling external queues. Bolts are responsible for processing
the tuples, data aggregation and consequently for forwarding
the tuples to the next set of bolts. The concept of tuples and
topologies has been the main driver for this work as it not
only allows realtime (low-latency) processing of input data,
but also strongly resembles the structure of data centre net-
works with tuples representing the individual packets and the
DAG topology matching the physical network topology. This
approach makes it significantly easier to produce a Distributed
IDS that adapts to the architecture of specific data centres.
Moreover, the functionality provided by bolts and spouts can
be deployed directly on network infrastructure or collocated
with some network devices by leveraging NFV [13], [14], [15]
which gives Storm the potential to bridge the gap between the
Hadoop based systems and the requirements of the current high
speed networks.



Fig. 1. Data Centre canonical tree topology and the corresponding Apache
Storm DAG topology including bolts and spouts

III. SYSTEM ARCHITECTURE

A. Storm on the Network Fabric

The architecture of the proposed anomaly detection system
is closely coupled with the architecture of Storm applications
and leverages Storm’s tuple and topology abstractions to con-
struct a Directed Acyclic Graph (DAG) that represents the flow
of data within a specific target data centre. An advantage of
Storm for this particular use case is the direct mapping between
the components of Storm and the components of a data centre
network. Bolts in a Storm topology are similar to network
switches, the former processes tuples of data while the second
processes packets with the outcome dictating where the tuple
or packet should be forwarded. Spouts are analogous to the
hosts within the data centre and to the core routers. Similarly to
how the hosts generates egress traffic and core routers receive
ingress traffic from the outside world, the spouts generate
tuples to be processed by the topology. This similarity allows
seamless generation of the required Storm topology regardless
of the complexity of the underlying network.

Figure 1 shows a typical data centre canonical tree topology
in interconnecting the edge hosts as well as the correspond-
ing Storm topology made up of bolts and spouts. The two
topologies are identical as Storm bolts are deployed on top
of the existing data centre infrastructure. The black arrows
represent the flow of data, which can be in any direction. This
allows the system to be deployed facing either the outside
world or the edge hosts. Since Storm restricts tuples to flow in
a single direction across the DAG, if bidirectional protection
is required, two identical Storm topologies can be deployed
on the same infrastructure, each performing traffic monitoring
in one of the directions. Two symmetrical deployments can
be used to monitor the two-way traffic, allowing fine grain
allocation of detection modules based on whether the traffic
to analyze is ingress where anomalies such a DDoS might be
prevalent, or egress with different anomalies such as malware
traffic.

NFV

Switch

Storm Worker

(a) Deployed on commodity infras-
tructure using NFV

Storm Worker

(b) Deployed directly on network
switches

Fig. 2. System Deployment at the infrastructure level

B. Storm NIDS architecture

The proposed NIDS builds on top of the existing data
centre network by deploying Storm Bolts on network switches
and performing anomaly detection at line-rate on the traffic.
Deploying the anomaly detection as part of the switching fabric
allows the packet processing and the packet forwarding logic
to be collocated, allowing high performanbce by preventing the
same packets to be parsed multiple times and by distributing
the packet processing logic across the entire fabric. However
consideration must be taken into account before applications
are deployed into the switches across the fabric not to ad-
versely impact performance. The anomaly detection module
must be kept lightweight in processing cost to not impact the
packet processing time and in per-packet memory utilisation to
allow large number of flows to be monitored simultaneously.
However, the performance limitation of the individual switches
is becoming less and less an issue, with many providers
virtualizing the network functions on traditional commodity
hardware using NFV. Figure 2 shows two possible deployments
of the proposed architecture, in a) the NIDS is deployed as a
software collocated with the software switch using NFV and
in b) a storm worker agent is deployed on a high-performance
switch.

To better leverage the intrinsic network topology for the
anomaly detection, the location of a network switch must be
considered while deploying the anomaly detection modules.
Different anomaly detection algorithms require different views
of the network, ranging from simple features of the aggregate
traffic such as aggregate flow volume over time across a
particular device or port to per-flow complex features to detect
more fine-grain anomalies such as malwares. By deploying the
anomaly detection modules for a particular feature on a specific
switch or set of switches can be beneficial for the performance
of the system and the accuracy of the detection. Typically
the core of the network fabric is highly utilized due to the
aggregate of ingress and egress traffic as well as the cross-rack
traffic. This particular traffic pattern makes the core suitable to
detect large volume anomalies and surges possibly impacting
the entire fabric. The aggregation layer contains a finer-grain
view of the network traffic and therefore a more in-depth
analysis can performed such as per-host network behaviour
highlighting anomalies such a DoS or flash-crowds. Finally at
the edge layer, fine-grain anomaly detection can be performed
as the traffic volume is limited.

The detection modules are responsible for extracting rele-
vant fields from the packets processed and checking them for
anomalies. Table I shows the current features that the sensors
can perform anomaly detection on, and collect statistics. The



TABLE I. PACKET FEATURES EXTRACTED BY THE DISTRIBUTED
ANOMALY DETECTION MODULES

Layer Fields

Link SrcMACAddress, DstMACAddress, 802.11Q tag
Internet SrcIPAddress, DstIPAddress, ProtocolType

Transport SrcPortNum, DstPortNum
Application PDU contents (e.g. HTTP URI and body)

anomaly detection data extracted at each layer by the detection
modules can also be aggregated to detect more complex
anomalies that need both a flow aggregate and per-flow view.
A straightforward example of the benefit of such approach
is for the detection and remediation of a DDoS. At the core
layer, the aggregate view of the traffic will show a surge
highlighting that the network is under attack (DDoS). At the
aggregation layer, if per-host characteristics are monitored, the
host under attack can be identified. Finally at the edge the
service under attack can be identified as well as the type of
attack used such as a simple SYN flood or more complex
attacks such as NTP augmentation. To deploy the modules
across the different layers of the topology and analyze the
collected network features a central controller was designed
as part of the proposed architecture.

C. Centralized management and configuration

Due to the distributed nature of the proposed system
the overall approach to anomaly detection differs from the
traditional NIDS. As the system relies on modules (bolts) being
deployed on all of the switches in the data center fabric, the
system needs to be designed to perform anomaly detection
based on data collected from multiple points. The architecture
of the system therefore focuses on modules with their specific
configuration in addition to a single centralised node used
for reconfiguration and complex event correlation, rather than
the traditional monolithic middlebox approach. Each module
within the system can be individually configured using an
API between the controller node and the modules. When a
module is instantiated in the Storm topology, a connection
is established between it and all its neighbour modules as
well as the controller node. This allows the controller to push
new configuration at runtime to adapt the anomaly detection
over time as the network behaviour changes. In an SDN
environment the Storm NIDS controller node can be collocated
with the SDN controller as a Southbound interface allowing a
single controller to manage the routing policies as well as the
network state and security.

Using the southbound interface, new bolts can be deployed
in and out of the topology in order to adapt the anomaly
detection checks performed, allowing the network anomaly
detection to evolve over time as new threats emerge. The
system is capable of swapping bolts that implement different
levels of functionality ranging from signature based detection
bolts to statistical features bolts. The system control plane is
responsible for bringing the newly introduced bolt up to date
with the latest configuration by pushing series of configuration
messages that sync the bolt with the rules and signatures it
requires for its checks. Secondly the controller acts as an
hypervisor for the bolts, monitoring their state and behaviour
over time and allowing a quick recovery on failure of the
bolt. The resulting highly flexible system provides a number

Fig. 3. Overview of the architecture of the proposed network intrusion
detection system using Apache Storm

of use cases such as dynamic reconfiguration following the
detection of a complex event. For example during a DDoS
attack if multiple modules at the same layer of a data centre
network report service request anomalies, the controller may
trigger the reallocation or instantiation of more DDoS detection
modules in order to better detect the source of the anomaly.
Subsequently after the attack is mitigated the controller may
restore the configuration back to its original settings, possibly
releasing resources for other anomaly detection modules to be
instantiated. This approach opens up a new level of freedom
towards an adaptive high-performance intrusion detection sys-
tem.

The controller node is responsible for maintaining stateful
system operation and for tracking the status and reports from
the modules. It maintains a Storage Module seen in Fig. 3
that contains the known signatures and any topology state
such as sensor locations and neighbours and the current con-
figuration of each sensor, thus supporting the reconfiguration
capabilities of the system. The second important role of the
controller node is to perform event correlation across the data
collected from the multiple modules to detect more complex
anomalies that do not follow a simple signature or statistical
pattern. This is achieved as individual sensors send reports
through the messaging API seen in Fig.3. It processes and
passes the information to the Decision Making Module which,
consults the Signature and Topology state Storages in order
to detect anomalies. By correlating data from multiple layers
different network views can be used to analyze network-scale
coarse grain behaviour and node-local per-flow characteristics
allowing to investigate anomalies at the macro- and micro-
scales. Finally if reconfiguration is required the configuration
module generates the required messages and outputs them to
the sensors concerned.

As most anomaly detection approaches, the event correla-
tion may lead to true negatives or duplicate detection events
which are highly undesirable in critical infrastructures such an
IDS. As the controller correlates inputs from multiple sources,
it uses its network-knowledge such as the sensor location
to deduce if series of reports have the same locality. The
separation of responsibilities between the modules and the
controllers results in a two layer architecture with Tactical and
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Strategic decisions. The decisions made by sensors themselves
are classified as Tactical as they rely only on their own
knowledge, and do not take into account the state of the rest
of the network. Any decisions made by the controller node are
Strategic as they rely on data from, and concerning multiple
modules. As a result the controller is capable of correcting
duplicate detections thanks to its knowledge of all the events
detected by sensors.

IV. EVALUATION

In this section we will cover the evaluation process for
the proposed intrusion detection system and provide details
on the experimental deployments and the overall performance
achieved by the prototype system.

A. System Deployment Characteristics

The proposed system is based on Storm and therefore a
Storm cluster has to be set up in order to deploy the system.
A storm cluster consists of a number of Storm workers, a
single Nimbus and a single Zookeeper was created. All of the
above were deployed on computers running Scientific Linux
release 6.7 on quad core Intel(R) Core(TM) i5-3470 CPU
@ 3.20GHz with 4GB of memory and gigabit connectivity.
Experiments were performed with 23 workers deployed apart
from the independent Nimbus and Zookeeper and were based
on the canonical tree topology shown in Fig. 1. This network
involves 16 distinct network switches, each deployed on a
separate worker thread. The remaining 7 workers are deployed
as follows: 1 worker hosting the controller node, 4 workers
responsible for introducing network traffic to the topology
referred to as Spouts , 2 responsible for collecting the traffic
processed by the topology and verifying the anomaly detection
results with the traffic processed referred to as Aggregators.

To evaluate the system with a realistic workload, traffic
and packet distribution the anonymized dataset univ1 from
IMC 2010 - Network Traffic Characteristics of Data Centers
in the Wild has been used [16]. The use of offline traffic
captures from a data centre ensures consistent results between
experiments and provides a highly realistic testbed for the
proposed system.
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B. Performance

As anomaly detection is the most important feature of
the system, the performance evaluation begins by comparing
the performance of the system when operating in a pass-
through mode where all of the bolts are switched off and no
anomaly detection is performed,to a normal operation mode
when all of the anomaly detection modules are operational.
Fig. 4 shows the difference in the system performance in both
scenarios. It highlights that the performance degradation when
operating in anomaly detection mode are minimal compared to
normal operation. In particular the difference in total number
of packets processed during operation between the two modes
equals to 4.5% while the difference in the average number of
packets processed between the two modes is 0.5%. The results
clearly show that performing anomaly detection does not add
significant overheads for the system during operation.

As we have measured the system performance during nor-
mal operation, it is important to measure the efficiency of the
system when it is tackling anomalous traffic as the distributed
nature of the system requires additional synchronisation to
occur when anomalous traffic is detected. For example, when
a module detects an anomalous packet, a report is sent to the
controller indicating the type of anomaly detected. This allows
the controller to infer anomalies spanning multiple modules
and take action, but the generation and transmission of those
messages can impact the performance of the module. Figure 4
shows the number of packets processed by the system under
different quantities of anomalous traffic. For the purposes
of the experiment anomalous traffic was introduced by a
dedicated module responsible for reading the static packet trace
and introducing packets with random anomalies of different
types. The use of a dedicated module allowed fine-grained
control over the amount and characteristics of the anomalous
traffic introduced which allowed more accurate experiment
reproduction.

The experiment was split in two stages. During the first
stage 20% of the traffic introduced contained various anomalies
such as invalid fields, blocked source and destination ad-
dresses, application layer packet contents marked as anomalous
and even Denial of Service attacks. As a result of the increased
anomalous traffic the overall throughput of the system drops
by 3.35% on average compared to normal operation due to



the increased average computational load on each module.
The second experiment injected 50% of the packets with
anomalies and resulted in a total of 7.32% lower number
of packets processed overall. As in the previous experiment,
increasing the amount of anomalies in traffic results in a small
performance penalty.

Figure 5 shows the probability density function (PDF) per-
packet processing time taken by the system for each of the
incoming packets. The results are grouped by the three layers
of bolts mapping to the layers of the underlying network topol-
ogy. It highlights that the individual packet processing time
within the event processing framework is highly stable across
the different layers of the fabric. Regardless of the layer all the
packets are processed in less than 7 microseconds with over
50% of the packet being processed in 4 microseconds. This low
processing time demonstrates that realtime anomaly detection
using an event processor is possible without impacting the
packet latency or resorting to sampling techniques.

V. CONCLUSION

The current centralised approach to network intrusion de-
tection systems is bound to become a bottleneck with the
rapid adoption of 40GbE and 100GbE networks as it requires
the underlying hardware to scale vertically, thus resulting in
significant cost increases and vendor lockdown. In this paper
we proposed a distributed approach to intrusion detection that
is based on a parallel processing framework and is capable
of exploiting the underlying network topology in order to
distribute the anomaly detection workload. We have prototyped
the proposed approach as an intrusion detection system with
distributed sensors and a centralised controller.

The system was evaluated using publicly available data
centre traces in order to measure the performance and latency
of the system in a realistic scenario. The experimental results
indicate that the system is capable of efficiently distributing
the anomaly detection workload and operating under heavy
load without suffering from degraded performance or increased
packet processing time. The proposed system shows that a dis-
tributed intrusion detection system based on event processing
framework is a promising approach to anomaly detection and
can be used where scalability and efficient resource utilization
is key.
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