119 research outputs found

    Optimization for automated assembly of puzzles

    Get PDF
    The puzzle assembly problem has many application areas such as restoration and reconstruction of archeological findings, repairing of broken objects, solving jigsaw type puzzles, molecular docking problem, etc. The puzzle pieces usually include not only geometrical shape information but also visual information such as texture, color, and continuity of lines. This paper presents a new approach to the puzzle assembly problem that is based on using textural features and geometrical constraints. The texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. Feature values are derived from these original and predicted images of pieces. An affinity measure of corresponding pieces is defined and alignment of the puzzle pieces is formulated as an optimization problem where the optimum assembly of the pieces is achieved by maximizing the total affinity measure. An fft based image registration technique is used to speed up the alignment of the pieces. Experimental results are presented on real and artificial data sets

    A texture based approach to reconstruction of archaeological finds

    Get PDF
    Reconstruction of archaeological finds from fragments, is a tedious task requiring many hours of work from the archaeologists and restoration personnel. In this paper we present a framework for the full reconstruction of the original objects using texture and surface design information on the sherd. The texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. The confidence of this process is also defined. Feature values are derived from these original and predicted images of pieces. A combination of the feature and confidence values is used to generate an affinity measure of corresponding pieces. The optimization of total affinity gives the best assembly of the piece. Experimental results are presented on real and artificial data

    A Survey of Geometric Analysis in Cultural Heritage

    Get PDF
    We present a review of recent techniques for performing geometric analysis in cultural heritage (CH) applications. The survey is aimed at researchers in the areas of computer graphics, computer vision and CH computing, as well as to scholars and practitioners in the CH field. The problems considered include shape perception enhancement, restoration and preservation support, monitoring over time, object interpretation and collection analysis. All of these problems typically rely on an understanding of the structure of the shapes in question at both a local and global level. In this survey, we discuss the different problem forms and review the main solution methods, aided by classification criteria based on the geometric scale at which the analysis is performed and the cardinality of the relationships among object parts exploited during the analysis. We finalize the report by discussing open problems and future perspectives

    Automatic Reassembly Method of 3D Thin-wall Fragments Based on Derivative Dynamic Time Warping

    Get PDF
    In order to address the automatic virtual reassembling of 3D thin-wall fragments, this paper proposes a 3D fragment reassembly method based on derivative dynamic time warping. Firstly, a calculation method of discrete curvature and torsion is designed to solve the difficulty of calculating curvature and torsion of discrete data points and eliminate effectively the noise interferences in the calculation process. Then, it takes curvature and torsion as the feature descriptors of the curve, searches the candidate matching line segments by the derivative dynamic time warping (DDTW) method with the feature descriptors, and records the positions of the starting and ending points of each candidate matching segment. After that, it designs a voting mechanism with the geometric invariant as the constraint information to select further the optimal matching line segments. Finally, it adopts the least squares method to estimate the rotation and transformation matrices and uses the iterative closest point (ICP) method to complete the reassembly of fragments. The experimental results show that the reassembly error is less than 1mm and that the reassembly effect is good. The method can solve the 3D curve matching in case there are partial feature defects, and can achieve the virtual restoration of the broken thin-wall fragment model quickly and effectively

    Effective 3D Geometric Matching for Data Restoration and Its Forensic Application

    Get PDF
    3D geometric matching is the technique to detect the similar patterns among multiple objects. It is an important and fundamental problem and can facilitate many tasks in computer graphics and vision, including shape comparison and retrieval, data fusion, scene understanding and object recognition, and data restoration. For example, 3D scans of an object from different angles are matched and stitched together to form the complete geometry. In medical image analysis, the motion of deforming organs is modeled and predicted by matching a series of CT images. This problem is challenging and remains unsolved, especially when the similar patterns are 1) small and lack geometric saliency; 2) incomplete due to the occlusion of the scanning and damage of the data. We study the reliable matching algorithm that can tackle the above difficulties and its application in data restoration. Data restoration is the problem to restore the fragmented or damaged model to its original complete state. It is a new area and has direct applications in many scientific fields such as Forensics and Archeology. In this dissertation, we study novel effective geometric matching algorithms, including curve matching, surface matching, pairwise matching, multi-piece matching and template matching. We demonstrate its applications in an integrated digital pipeline of skull reassembly, skull completion, and facial reconstruction, which is developed to facilitate the state-of-the-art forensic skull/facial reconstruction processing pipeline in law enforcement

    Report on shape analysis and matching and on semantic matching

    No full text
    In GRAVITATE, two disparate specialities will come together in one working platform for the archaeologist: the fields of shape analysis, and of metadata search. These fields are relatively disjoint at the moment, and the research and development challenge of GRAVITATE is precisely to merge them for our chosen tasks. As shown in chapter 7 the small amount of literature that already attempts join 3D geometry and semantics is not related to the cultural heritage domain. Therefore, after the project is done, there should be a clear ‘before-GRAVITATE’ and ‘after-GRAVITATE’ split in how these two aspects of a cultural heritage artefact are treated.This state of the art report (SOTA) is ‘before-GRAVITATE’. Shape analysis and metadata description are described separately, as currently in the literature and we end the report with common recommendations in chapter 8 on possible or plausible cross-connections that suggest themselves. These considerations will be refined for the Roadmap for Research deliverable.Within the project, a jargon is developing in which ‘geometry’ stands for the physical properties of an artefact (not only its shape, but also its colour and material) and ‘metadata’ is used as a general shorthand for the semantic description of the provenance, location, ownership, classification, use etc. of the artefact. As we proceed in the project, we will find a need to refine those broad divisions, and find intermediate classes (such as a semantic description of certain colour patterns), but for now the terminology is convenient – not least because it highlights the interesting area where both aspects meet.On the ‘geometry’ side, the GRAVITATE partners are UVA, Technion, CNR/IMATI; on the metadata side, IT Innovation, British Museum and Cyprus Institute; the latter two of course also playing the role of internal users, and representatives of the Cultural Heritage (CH) data and target user’s group. CNR/IMATI’s experience in shape analysis and similarity will be an important bridge between the two worlds for geometry and metadata. The authorship and styles of this SOTA reflect these specialisms: the first part (chapters 3 and 4) purely by the geometry partners (mostly IMATI and UVA), the second part (chapters 5 and 6) by the metadata partners, especially IT Innovation while the joint overview on 3D geometry and semantics is mainly by IT Innovation and IMATI. The common section on Perspectives was written with the contribution of all

    Image Processing Applications in Real Life: 2D Fragmented Image and Document Reassembly and Frequency Division Multiplexed Imaging

    Get PDF
    In this era of modern technology, image processing is one the most studied disciplines of signal processing and its applications can be found in every aspect of our daily life. In this work three main applications for image processing has been studied. In chapter 1, frequency division multiplexed imaging (FDMI), a novel idea in the field of computational photography, has been introduced. Using FDMI, multiple images are captured simultaneously in a single shot and can later be extracted from the multiplexed image. This is achieved by spatially modulating the images so that they are placed at different locations in the Fourier domain. Finally, a Texas Instruments digital micromirror device (DMD) based implementation of FDMI is presented and results are shown. Chapter 2 discusses the problem of image reassembly which is to restore an image back to its original form from its pieces after it has been fragmented due to different destructive reasons. We propose an efficient algorithm for 2D image fragment reassembly problem based on solving a variation of Longest Common Subsequence (LCS) problem. Our processing pipeline has three steps. First, the boundary of each fragment is extracted automatically; second, a novel boundary matching is performed by solving LCS to identify the best possible adjacency relationship among image fragment pairs; finally, a multi-piece global alignment is used to filter out incorrect pairwise matches and compose the final image. We perform experiments on complicated image fragment datasets and compare our results with existing methods to show the improved efficiency and robustness of our method. The problem of reassembling a hand-torn or machine-shredded document back to its original form is another useful version of the image reassembly problem. Reassembling a shredded document is different from reassembling an ordinary image because the geometric shape of fragments do not carry a lot of valuable information if the document has been machine-shredded rather than hand-torn. On the other hand, matching words and context can be used as an additional tool to help improve the task of reassembly. In the final chapter, document reassembly problem has been addressed through solving a graph optimization problem
    corecore