22 research outputs found

    Neural Expectation Maximization

    Full text link
    Many real world tasks such as reasoning and physical interaction require identification and manipulation of conceptual entities. A first step towards solving these tasks is the automated discovery of distributed symbol-like representations. In this paper, we explicitly formalize this problem as inference in a spatial mixture model where each component is parametrized by a neural network. Based on the Expectation Maximization framework we then derive a differentiable clustering method that simultaneously learns how to group and represent individual entities. We evaluate our method on the (sequential) perceptual grouping task and find that it is able to accurately recover the constituent objects. We demonstrate that the learned representations are useful for next-step prediction.Comment: Accepted to NIPS 201

    Pre-integration lateral inhibition enhances unsupervised learning

    Get PDF
    A large and influential class of neural network architectures use post-integration lateral inhibition as a mechanism for competition. We argue that these algorithms are computationally deficient in that they fail to generate, or learn, appropriate perceptual representations under certain circumstances. An alternative neural network architecture is presented in which nodes compete for the right to receive inputs rather than for the right to generate outputs. This form of competition, implemented through pre-integration lateral inhibition, does provide appropriate coding properties and can be used to efficiently learn such representations. Furthermore, this architecture is consistent with both neuro-anatomical and neuro-physiological data. We thus argue that pre-integration lateral inhibition has computational advantages over conventional neural network architectures while remaining equally biologically plausible

    Learning image components for object recognition

    Get PDF
    In order to perform object recognition it is necessary to learn representations of the underlying components of images. Such components correspond to objects, object-parts, or features. Non-negative matrix factorisation is a generative model that has been specifically proposed for finding such meaningful representations of image data, through the use of non-negativity constraints on the factors. This article reports on an empirical investigation of the performance of non-negative matrix factorisation algorithms. It is found that such algorithms need to impose additional constraints on the sparseness of the factors in order to successfully deal with occlusion. However, these constraints can themselves result in these algorithms failing to identify image components under certain conditions. In contrast, a recognition model (a competitive learning neural network algorithm) reliably and accurately learns representations of elementary image features without such constraints

    Are v1 simple cells optimized for visual occlusions? : A comparative study

    Get PDF
    Abstract: Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. Author Summary: The statistics of our visual world is dominated by occlusions. Almost every image processed by our brain consists of mutually occluding objects, animals and plants. Our visual cortex is optimized through evolution and throughout our lifespan for such stimuli. Yet, the standard computational models of primary visual processing do not consider occlusions. In this study, we ask what effects visual occlusions may have on predicted response properties of simple cells which are the first cortical processing units for images. Our results suggest that recently observed differences between experiments and predictions of the standard simple cell models can be attributed to occlusions. The most significant consequence of occlusions is the prediction of many cells sensitive to center-surround stimuli. Experimentally, large quantities of such cells are observed since new techniques (reverse correlation) are used. Without occlusions, they are only obtained for specific settings and none of the seminal studies (sparse coding, ICA) predicted such fields. In contrast, the new type of response naturally emerges as soon as occlusions are considered. In comparison with recent in vivo experiments we find that occlusive models are consistent with the high percentages of center-surround simple cells observed in macaque monkeys, ferrets and mice

    Connectionist Techniques for the identification and suppression of interfering underlying factors

    Get PDF
    We consider the difficult problem of identification of independent causes from a mixture of them when these causes interfere with one another in a particular manner: those considered are visual inputs to a neural network system which are created by independent underlying causes which may occlude each other. The prototypical problem in this area is a mixture of horizontal and vertical bars in which each horizontal bar interferes with the representation of each vertical bar and vice versa. Previous researchers have developed artificial neural networks which can identify the individual causes; we seek to go further in that we create artificial neural networks which identify all the horizontal bars from only such a mixture. This task is a necessary precursor to the development of the concept of "horizontal" or "vertical"

    Recurrent Sampling Models for the Helmholtz Machine

    Full text link
    corecore