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Abstract

Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse
coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding
because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics,
occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the
predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two
models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate
optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition
assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both
models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of
‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse
correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific
choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast
majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal
sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high
proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study,
therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual
cortex.

Citation: Bornschein J, Henniges M, Lücke J (2013) Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study. PLoS Comput Biol 9(6): e1003062.
doi:10.1371/journal.pcbi.1003062

Editor: Olaf Sporns, Indiana University, United States of America

Received January 2, 2013; Accepted March 21, 2013; Published June 6, 2013

Copyright: � 2013 Bornschein et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was funded by the German Research Foundation (DFG) grant LU 1196/4-2, by the German Ministry of Research and Education (BMBF) grant
01GQ0840 (BFNT Frankfurt), and by the Honda Research Institute Europe. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: luecke@fias.uni-frankfurt.de

Introduction

Evolution and synaptic plasticity optimize the visual cortex for

the processing of visual stimuli. The quantification of the degree of

optimization has long been subject of theoretical and physiological

studies. Among the most influential contributions are models such

as independent component analysis [1–3] (ICA) and sparse coding

[4] which became popular because they linked response properties

of simple cells in primary visual cortex to the view of sensory

systems as optimal information encoders [5–8]. Since they were

first introduced, many different versions of sparse coding and ICA

have been investigated. While many technical studies focused on

different ways to efficiently infer the model parameters [3,9], many

others investigated the assumptions used in the underlying

stimulus model itself such as the sparsity prior or the assumed

stimulus noise [10–13]. An assumption that has been investigated

very little in the context of sparse coding models is the assumption

of linear superposition of basis functions. For many types of data,

linear superposition can be motivated by the actual combination of

stimulus components (e.g., sound waveforms combine linearly).

However, for image patches an assumption of linear superposition

implies that component occlusions are not considered.

But does neglecting or including occlusions have an impact on

receptive fields predicted by sparse coding? If so, what is the

main difference if occlusions are considered and how do model

predictions compare with experimental measurements? A

critical inspection of standard sparse coding as a model for

simple cell responses has recently been motivated by increas-

ingly detailed experimental studies of simple cell responses.

Using reverse correlation, a broad variety of receptive field

shapes has been recorded, e.g., for macaque monkeys [14],

ferrets [15] or mice [16]. In general, the distribution of receptive

field shapes was found to be more diverse than the distributions

predicted, e.g., by sparse coding or ICA [14]. The most

significant qualitative difference from modeling predictions was

the experimental finding of large numbers of simple cells with

globular instead of Gabor-like receptive fields [14–16]. None of

the seminal papers on simple cell coding [2,17] had predicted

such fields. Experimentally, globular fields were presumably not

prominently reported earlier because of previously used

estimation and/or cell selection methods. If oriented stimuli

(often Gabors or light-bars) with different orientations and

positions are used, cells with globular or center-surround fields

are difficult to detect.
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After the discrepancy of diverse receptive field shapes and

standard encoding models was pointed out [14], further studies did

show that large numbers of globular fields can be obtained in

computational models [11,18–20]. Notably, two of these models

[11,20] are sparse coding versions based on a linear superposition

assumption. One uses a specific sparse prior and a specific hand-

set sparsity [11]. The other [20] reports large numbers of globular

fields for specific combinations of overcompleteness and sparsity.

For the very large number of other studies on models with linear

superposition (including all ICA models), no or only low

proportions of globular fields were observed (compare, e.g.,

[9,10,21]).

In this study we, for the first time, provide a systematic

investigation of the impact of occlusion-like non-linearities on

predicted simple cell responses. In order to quantify the differences

to the neglection of occlusions, we study two sparse coding models:

one assuming standard linear superposition [2,17] and the other

approximating occlusions with strongly non-linear superpositions

of components [22,23]. Fig. 1A,B illustrates the difference between

the linear and the non-linear superposition used. By comparing

the two combination rules with the actual combination of

components in images, we can observe a better match of the

non-linear superposition rule to the actual combination of

components. If all components had the same intensity (i.e., the

same color for the illustration in Fig. 1A,B), the max-combination

rule would represent the correct model for component occlusions

[22] (also see Fig. 2). For components with different intensities, the

non-linear combination is an approximation of the actual

combination rule. However, the much weaker interferences

resulting from the non-linear rule are a significantly closer match

to occlusion non-linearities (see Fig. 1B).

Although the only difference between the two sparse coding

models investigated is the rule for component combination, non-

linear sparse coding versions have been investigated much less

than linear versions because parameter optimization becomes

more challenging. To model image patches for instance, large-

scale applications of non-linear models with large numbers of

observed and hidden variables have not yet been reported. By

applying novel training methods [24] it is possible to overcome

computational tractability limitations, e.g., for the strongly non-

linear model illustrated in Fig. 1. Consequently, we can

systematically study the effect of the combination rule on receptive

fields predicted by sparse coding. The models’ predictions will

allow us to answer the question if and how occlusions can impact

simple cell coding. Comparison of the model predictions to in vivo

recordings then provides experimental evidence for the impact of

occlusions on simple cell coding.

Results

Models for the encoding of image patches
We compare two generative sparse coding models for the

encoding of image patches by simple cells. Both models have the

same set of parameters and both assume, like standard sparse

coding, independent visual components and Gaussian noise in the

data. The distinguishing feature of the non-linear model is the use

of a point-wise maximum to describe the combination of visual

components. The maximum combination is illustrated and

contrasted with the standard linear combination in Fig. 2. If we

denote by ~yy an observed image patch and by~ss the hidden units

encoding presence or absence of components, the full generative

formulation of the non-linear model is given by:

p(~ssDH)~P
h

psh (1{p)1{sh (Bernoulli) ð1Þ

p(~yyD~ss,H)~N (~yy; max
h

DDfsh
~WWhg,s2 ) ð2Þ

This model is compared to one assuming the standard linear

superposition:

p(~ssDH)~P
h

psh (1{p)1{sh (Bernoulli) ð3Þ

p(~yyD~ss,H)~N (~yy;
X

h

sh
~WWh,s2 ) ð4Þ

The parameters of both models are the H basis functions
~WW1, . . . ,~WWH (which will later be related to receptive fields), the

noise variance s2, and the sparsity parameterized by p. We define

W to be the matrix containing all basis functions (columns of W )

and for brevity denote H~(W ,s2,p) to be the set of all model

parameters. The non-linear superposition in equation 2 is given by

the function maxDDhfsh
~WWhg (compare Fig. 2). Instead of linearly

summing basis function entries at pixel d like in the linear model

(Eqn. 4, ~yyd~
P

h shWdh), the mean value of the Gaussian, ~yyd , is

set by the (active) basis function entry with maximal magnitude:

~yyd~Wdho where ho~argmaxhfDshWdhDg. The function in (2) is

the vector valued version defined by applying the maximum

magnitude function for each entry. By using a point-wise

maximum, the model is a variant of maximal causes analysis

(MCA) [22,23] and will be referred to accordingly. For the

generation of image patches, both models assume a basis function

to be either part of the patch or not (binary hidden variables). Such

an assumption is consistent with objects or edges being either

present or absent in a given patch. However, binary hidden units

are different from conventional sparse coding in which continuous

hidden variables are used. For later comparison, we therefore also

study conventional sparse coding based on the generative model

Author Summary

The statistics of our visual world is dominated by
occlusions. Almost every image processed by our brain
consists of mutually occluding objects, animals and plants.
Our visual cortex is optimized through evolution and
throughout our lifespan for such stimuli. Yet, the standard
computational models of primary visual processing do not
consider occlusions. In this study, we ask what effects
visual occlusions may have on predicted response prop-
erties of simple cells which are the first cortical processing
units for images. Our results suggest that recently observed
differences between experiments and predictions of the
standard simple cell models can be attributed to occlusions.
The most significant consequence of occlusions is the
prediction of many cells sensitive to center-surround
stimuli. Experimentally, large quantities of such cells are
observed since new techniques (reverse correlation) are
used. Without occlusions, they are only obtained for specific
settings and none of the seminal studies (sparse coding,
ICA) predicted such fields. In contrast, the new type of
response naturally emerges as soon as occlusions are
considered. In comparison with recent in vivo experiments
we find that occlusive models are consistent with the high
percentages of center-surround simple cells observed in
macaque monkeys, ferrets and mice.

Are V1 Simple Cells Optimized for Occlusions?
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given by:

p(~ssDH)~P
h

1

2b
exp({

DshD
b

) (Laplace) ð5Þ

p(~yyD~ss,H)~N (~yy;
X

h

sh
~WWh,s2 ) ð6Þ

where a Laplace prior is used to model continuous sparse values

(instead of the Bernoulli prior used in the other two considered

models). This model is the generative analogue of the objective

function formulation of sparse coding with L1 regularization. We

will refer to the model of Eqn. 5 and Eqn. 6 as standard sparse coding

(SC) and to the linear model with Bernoulli prior (Eqns. 3 and 4) as

binary sparse coding (BSC) [25,26].

For each model above we now seek the parameters that

optimally model the statistics of image patches. As a result, each

model predicts a set of basis functions which can be compared to

each other and to in vivo recordings of simple cell receptive fields.

To find optimal parameters, we apply maximum likelihood

learning on the same set of preprocessed image patches (see

Methods). For maximal causes analysis (MCA) and binary sparse

coding (BSC) we applied a variational EM approach [24], while

parameter optimization for standard sparse coding (SC) applied a

maximum a-posteriori approach [4,9]. All optimization approach-

es used allow for the inference of parameters for large numbers of

input and hidden units. While large-scale applicability of linear

sparse coding models has been demonstrated repeatedly in the

Figure 1. Illustration of the combination of image components, comparison with computational models of component
combinations, and receptive field comparison. A Image patch (bottom left) showing an intersection of two branches extracted from a
grey-level natural scene image (adapted from the van Hateren natural image database [58] with permission from J. H. van Hateren). Preprocessed
version of the image patch (bottom right) obtained by using a center-surround filter to model the preprocessing by the lateral geniculate nucleus. B
Left: Two image patches manually generated from the grey-level patch in A. Each patch is dominated by one of the two crossing branches of the
original patch. Middle: The preprocessed versions of the two patches (central parts). Right: Combination of the two preprocessed patches using an
occlusive combination (top) and a standard linear combination (bottom). C Examples of globular and Gabor-like receptive fields measured in V1 of
macaque monkeys (courtesy of D. Ringach), and examples of the two receptive field types predicted by the occlusive encoding model. D Percentages
of globular receptive fields predicted by different models for 1,000 hidden units compared to percentages of globular fields of in vivo recordings.
doi:10.1371/journal.pcbi.1003062.g001

Figure 2. Example of the non-linear and the linear generative
model. Suppose all hidden units are zero except of units h~3 and

h~5. In this case the patch is generated using the basis functions ~WW3

and ~WW5 . If the two basis functions have the form as displayed on the
right-hand-side, the non-linear and the linear model generate the
patches on the left-hand-side. Given a pixel d , the non-linear model
chooses the basis function ho with the maximal absolute value
(ho~argmaxhfDshWdhDg) to set the value d of the patch, ~yyd~Wdho

.
For the example pixel (red box), Wd3 is chosen but for other pixels Wd5

may be chosen. Note that the max-superposition models the
exclusiveness of occlusion without considering object or edge depths.
The linear model always sums the basis function values, ~yyd~

P
h shWdh.

After the generation of the noiseless patches ~~yy~yy both models assume the
addition of Gaussian noise for the generation of patches~yy (see Eqns. 2
and 4 but not shown in the figure). The color scale is defined as in Fig. 1.
doi:10.1371/journal.pcbi.1003062.g002

Are V1 Simple Cells Optimized for Occlusions?
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past [9,17,27], comparatively efficient optimization of strongly

non-linear models has only been demonstrated very recently

[23,24]. The optimization procedure applied to MCA and BSC

furthermore allows the inference of all model parameters H
including stimulus noise and sparsity. The only remaining

parameters are the size of image patches and the number of basis

functions (with the degree of over-completeness given by the ratio

of the two).

Comparison of predicted receptive fields
For the generative models above, we optimized the model

parameters for a set of natural image patches. First, natural image

patches were preprocessed using an array of linear center-

surround filters to model preprocessing by the lateral geniculate

nucleus (LGN). Details are given in the Methods section. Given a

fixed set of preprocessed stimuli, we optimized the parameters for

the non-linear model (MCA), for binary sparse coding (BSC), and

for standard sparse coding (see Methods and Supporting

Information). All models were applied to the same set of

preprocessed patches (no independent ON-/OFF-channels). After

optimization, all models predicted a large number of Gabor-like

receptive fields (compare Fig. 3 A,B). However, we found

significant quantitative differences in the statistics of receptive

field shapes. Most saliently, the different models showed different

fractions of globular fields, i.e., fields that are not Gabor-like but

are best described as center-surround (difference-of-Gaussians)

fields [14]. In the primary visual cortices of different species,

significant proportions of simple cells with such receptive fields

have been reported [14–16] (see Fig. 1 C for examples of such cells

in macaque monkeys). However, globular fields are either not

observed or only done so in relatively small numbers when

standard sparse coding or ICA are applied to image patches. We

observed globular fields for both linear and non-linear models.

However, the predicted proportions of such fields were very

different. Fig. 1 D shows the proportions of globular cells for 1,000
hidden units for the different models and Fig. 3 C shows the

proportions for each model for different numbers hidden units

(different degrees of overcompleteness). For standard sparse coding

[9], the percentage of globular fields tends to increase correspond-

ing to an increase in overcompleteness [27] but stays low in

relative comparison (below 2%).

Sparse coding with binary latents as in BSC results in a

consistently higher percentage of globular fields ranging from 2%
for 300 units to about 5% for 2,000. By far however, the highest

percentages of globular fields were observed in applications of the

non-linear model (MCA). Relatively independent of the number of

latents, fractions between 22 and 26% of globular receptive fields

were obtained. For comparison, the fraction of globular fields in

macaque monkeys [14] is estimated to be about 23% (see Methods

and SI), in ferrets about 16% of the fields were reported to be

globular [15], and in mice about 18% globular fields were

measured [16]. For ferrets and mice the percentages were reported

in the corresponding studies [15,16], and for macaque monkeys

we used original receptive field recordings (courtesy of D. Ringach)

and applied the same classification procedure as for the predictions

computed by the models (see Methods and Fig. S6 and S7). The

percentages of globular fields estimated on the grounds of the three

experimental studies [14–16] are given as horizontal red lines in

Fig. 3 C.

Of all remaining non-globular fields predicted by the models,

almost all have a Gabor-like shape (with few fields having

unspecific shapes; see Methods and compare Figs. S3 and S7). To

analyze remaining differences between these Gabor-like fields, we

followed an approach suggested by an earlier experimental study

[14], i.e., we matched the fields with Gabor functions and plotted

Gabor shape parameters (Gaussian envelope parameters and

frequency) using dimensionless nx=ny-plots (see Methods and SI

for details). nx is proportional to the width of the Gaussian

envelope in wave-vector direction; ny is proportional to its width

orthogonal to the wave-vector. The widths are measured in

multiples of the spatial wavelength. As we have separated out the

globular fields first, we avoided having to match center-surround

fields with Gabor functions, which removes a problem of earlier

applications of the nx=ny analysis. Fig. 4 A shows the obtained

distributions for the non-linear and the linear model (for

D~26|26, H~700), respectively. As can be observed, both

distributions are relatively broadly shaped but differ. The

distribution predicted by the non-linear model is shaped upwards

starting from nx~0:3 while the distribution predicted by the linear

model is more elliptical. Furthermore, the receptive fields of the

non-linear model tend to lie closer to the origin with a center-of-

mass at about (nx,ny)~(0:38,0:39) compared to a center-of-mass

at (nx,ny)~(0:45,0:55) for the linear model. For comparison, we

applied the same analysis of receptive field shapes to in vivo

recordings of macaque simple cells [14] (data provided by D.

Ringach, see Methods and Fig. S7). The resulting shape

distributions are overlaid with the model predictions in Fig. 3 A.

The center-of-mass of the experimental recordings lies at

(nx, ny)~(0:39, 0:39) and is much closer to the center-of-mass

of the non-linear model. In general, the distributions predicted by

both models show a large diversity of Gabor shapes and a

relatively large overlap with macaque recordings, however.

Other than investigating different models for image patch

encoding, we explored different preprocessing methods prior to

the application of the encoding models. We used a neurally

plausible preprocessing by modeling LGN input to the cortex

using center-surround (difference-of-Gaussians) filtered patches.

Another (and related) method of preprocessing popular for

functional modeling is zero-phase PCA whitening [28]. To control

for the influence of the preprocessing method (i.e., the model for

LGN input to the cortex), we applied the linear and non-linear

models also to image patches preprocessed using zero-phase PCA

whitening (ZCA). We found that preprocessing has a significant

influence on the shapes of predicted receptive fields. A change in

preprocessing both changes the percentages of globular fields (see

Fig. 3 C, ZCA curves) and the shape distribution of Gabor fields

(see Methods and Fig. S4). The main difference between the linear

and non-linear receptive fields remains the consistently much

higher percentage of globular fields for the non-linear model,

however. Similarly, the degree to which center-ON and center-

OFF cells are assumed to convey input independently from one-

another [29] has an impact on the shapes of receptive fields.

Controls with ON- and OFF-cells treated independently of each

other again reproduce the same qualitative results, with the non-

linear model showing a much higher percentage of globular fields

than the linear model (see Fig. S5). Finally, also controls with

sparsity levels fixed to the same values for both models always

resulted in a much higher percentage of globular fields for the non-

linear model. This much higher percentage was, without

exception, observed in all of the experiments and controls of this

study.

Sparsity and inference
Unlike standard sparse coding [4] and most of its variants

[9,11,30], the non-linear MCA model and the linear BSC model

both do not only infer parameters for the basis functions but also

parameters for sparsity and stimulus noise. Consequently, these

parameters do not have to be hand-set or inferred by cross-

Are V1 Simple Cells Optimized for Occlusions?
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validation in numerical experiments. More importantly, however,

we can directly ask if the degrees of inferred sparsity differ between

the non-linear and linear model. Sparsity is of high interest for

understanding neural coding [31–33]. Theoretical predictions of

sparsity levels have, so far, only been studied for linear models.

Here we can study sparsity for the non-linear and linear model

very directly. Because of binary hidden variables described by a

Bernoulli prior, we use the number pH as sparsity measure. This

number is simply the average number of active units across all

image patches. Or in other words, the average number of basis

functions a model needs to combine for the generation or

reconstruction of an image patch. Note that the value pH

corresponds to an inverse sparsity (however, we will refer to this

value as sparsity measure or simply sparsity if the meaning is clear

from the context).

In analogy to Fig. 3 C, inferred degrees of sparsity are plotted in

Fig. 4 B for different numbers of basis functions. For both models,

MCA and BSC, the average number of active hidden units

decreases (sparsity increases) with increasing number of basis

functions (i.e., with increasing over-completeness). However, while

both models converge to increasingly sparse solutions, the non-

linear model was found to be consistently and very significantly

sparser. On D~20|20 patches and H~2,000 hidden variables

the non-linear model estimates a patch to consists of on average

four to five components (basis functions) compared to seven to

eight as estimated by the linear model. Fig. 5 illustrates the

different encodings of the two models for different example

patches. For the simple example patch showing an oriented

‘branch’ (Fig. 5, top), both models combine basis functions of

similar orientation. However, MCA uses fewer ‘line segments’ to

re-construct the patch while BSC uses more basis functions. For

patches with more complex structures (Fig. 5, examples in the

middle), the differences become still more salient. Again, MCA uses

fewer basis functions and usually reconstructs a patch from

components which correspond to actual components in a patch.

The final example (Fig. 5, bottom) illustrates inference with Gabor-

like and globular components. The MCA model uses a globular

field to reconstruct a two dimensional end-stopping structure. In the

example, BSC reconstructs the patch by exclusively using Gabors.

Some of them are very localized but clearly Gabor-like fields (the

two right-hand-side fields). Often the BSC fields are not closely

aligned with true image components. Sometimes we also observed

BSC to use a globular field for an end-stopping structure but it does

so much more rarely than MCA. We have never observed standard

sparse coding to use a globular field for the examples investigated. In

general, BSC and (much more so) standard sparse coding use more

basis functions (reflecting the lower sparsity) and usually combine

components which do not directly correspond to actual image

components. In control experiments using different preprocessing

approaches, we found that concrete sparsity levels do depend on the

type of preprocessing. However, as was the case for the percentage

of globular fields, in all experiments sparsity levels were consistently

much higher for the non-linear model than for the linear one (see

Methods and SI).

Discussion

In this work we have investigated the impact of occlusion non-

linearities in visual stimuli on simple cell coding. Specifically, we

compared optimal coding of a linear sparse coding model to a

sparse coding model taking strong occlusion-like non-linearities

into account. The comparison of the two (otherwise identical)

sparse coding models showed significant differences in the

predicted receptive fields as well as in predicted levels of sparsity.

Figure 3. Percentages of globular receptive fields predicted by the computational models in comparison to in vivo measurements.
A Receptive fields predicted if occlusion-like superposition is assumed (20 out of 700 receptive fields are shown). B Receptive fields predicted if
standard linear superposition is assumed (20 out of 700 receptive fields are shown). C Percentages of globular fields predicted by the occlusive model
(MCA) and by the linear model (BSC) versus number of hidden units. The experiments for MCA (blue line) and BSC (green line) on DoG preprocessed
image patches were repeated five times and the error bars extend two empirical standard deviations. Standard sparse coding (yellow line) on DoG
processed data shows the lowest fraction of globular fields. To control for the influence of preprocssing, additional experiments were performed on
ZCA whitened data (dashed blue and dashed green lines). The bold red line (and its error bar) shows the fraction of globular fields computed based
on in vivo measurements of macaque monkeys [14]. Dashed red lines show the fractions reported for ferrets [15] and mice [16].
doi:10.1371/journal.pcbi.1003062.g003

Are V1 Simple Cells Optimized for Occlusions?
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Comparison of model predictions and in vivo recordings
The non-linear model consistently predicted a high percentage

of globular receptive fields (Figs. 1 D and 3 C) which was relatively

independent of the degree of overcompleteness (i.e., number of

fields). The linear model and standard sparse coding showed much

lower percentages. For comparison with in vivo recordings of

simple cells, we used data from macaques [14], ferrets [15] and

mice [16]. Notably, high percentages of globular fields were found

in all these experimental studies. The percentage of globular fields

in macaques was estimated here based on data provided by D.

Ringach. By applying the same classification procedure as for the

theoretical predictions, 23% of the original receptive field

recordings were classified as globular fields. For ferrets, 16%
globular or center-surround receptive fields were reported [15]. For

mice, 18% of recorded cells consisted of just one subfield [16],

which is a close match to globular fields as defined in this work. It

should be pointed out that none of the experimental studies had a

focus on globular fields. These fields have been observed while

general properties of V1 receptive fields were investigated.

For comparison, the experimentally measured percentages of

globular fields (16%, 18%, and 23%) tend to be lower than the

percentages predicted by the non-linear model (22% to 26%) but

they are much higher than the low percentages (below 8%) of the

linear models. Fig. 3 C visualizes the predictions of the models for

different degrees of overcompleteness with experimental results

shown as horizontal lines. For the measurements and for the

models, the percentages of globular fields can depend on different

experimental or model settings. On the experimental side,

receptive field measurements can depend, e.g., on the type of

stimuli used for reverse correlation. On the modelling side, the

percentage of globular fields can change, e.g., by changing sparsity

levels or overcompleteness. For our comparative study we

removed the arbitrariness in sparsity levels by applying an

optimization procedure which automatically infers the level of

sparsity. To study the influence of overcompleteness, we screened

through different values for the number of hidden units.

Considering all numerical experiments, the type of component

superposition emerged as having by far the most significant

influence on percentages of globular fields, with the non-linear

model showing robustly very high percentages. Neither standard

sparse coding with the usual parameter settings nor a range of

other standard models predict such high percentages: For sparse

coding, globular fields only emerge with specific priors and/or

specifically chosen sparsity levels [11,20,30]. For independent

component analysis, k-means, sparse auto-encoders or restricted

Boltzmann Machines no globular fields were observed [21]. The

high percentages of globular fields for the occlusive model studied

here and the high percentages observed in in vivo recordings

suggest a strong impact of visual occlusions on simple cell

encoding.

Furthermore, the reported results suggest direct experiments to

verify or falsify the models studied here: Suppose different simple

Figure 4. Comparison of Gabor shape statistics with in vivo recordings and predicted sparsity. A Analysis of learned Gabor-like receptive
fields for experiments with H~700 hidden units (and patch size D~26|26): nx=ny distribution of Gabor shaped receptive fields learned by
occlusion-like (MCA) and linear sparse coding (BSC). The red triangles in both plots depict the distribution computed based on in vivo measurements
of macaque monkeys [14]. B Average number of active units accross image patches as a function of the number of hidden units H (note that error
bars are very small; experiments on D~20|20 pixel sized DoG preporcessed patches).
doi:10.1371/journal.pcbi.1003062.g004
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cells with receptive fields at the same location in the visual field

were identified, then the linear and non-linear models could be

used to predict the responses if complex stimuli are presented at

the same location. For a crossing of two edges the linear model

would for instance predict responses less aligned with responses to

the individual edges than the non-linear model (compare Fig. 5).

This is because the linear model combines less specific components

(and more of them) as they can be added and subtracted more

freely than those of the non-linear model. The linear model would

thus predict a higher difference between the response to

overlapping line segments and the responses to the individual

segments. Measuring the difference of a response to a crossing and

to the individual lines would thus allow to verify or falsify the linear

or non-linear model more directly. Also predictions of different

sparsity levels could be verified or falsified but such experiments

are more difficult because it is challenging to accurately measure

sparsity levels in vivo. The consistently much sparser encoding

predicted by a non-linear sparse coding model has, however, a

significant potential impact on the ongoing debate on sparse

encodings and recent experimental results [32,33].

In contrast to differences in sparsity and in the percentage of

globular receptive fields, we found the differences of Gabor-shape

distributions (Fig. 4) less instructive for distinguishing image

encoding based on linear or occlusion-like models. For both

superposition assumptions we obtained a large diversity of Gabor

shapes. Notably, both distributions are broader and have a larger

overlap with macaque receptive fields than ICA and standard

sparse coding [14]. As the non-linear and linear model studied

here use binary hidden units, the higher overlap of both models

with experimental results may, instead, be taken as evidence for a

more discrete neural encoding of components than assumed, e.g.,

by a standard continuous Laplace prior [17,27].

Comparison to other computational models
Since the diversity of receptive field shapes was suggested as a

means for comparison of models to experimental data [14,34],

different modeling approaches have been shown to result in broad

distributions of Gabor shapes. Consistent with our observation

that more discrete priors result in a large diversity of shapes, recent

studies [11,30] reported a large diversity based on more discrete

Figure 5. Decomposition of image patches into basic components for four example patches. For each example the figure shows: the
original patch (left), its DoG preprocessed version (second to left), and the decomposition of the preprocessed patch by the three models. For better
comparison with the original patches, basis functions are shown in grey-scale. The displayed functions correspond to the active units of the most
likely hidden state given the patch. In the case of standard sparse coding, the basis functions are displayed in the order of their contributions.
Standard sparse coding (SC) uses many basis functions for reconstruction but many of them contribute very little. BSC uses a much smaller subset of
the basis functions for reconstruction. MCA typically uses the smallest subset. The basis functions of MCA usually correspond directly to edges or to
two dimensional structures of the image while basis functions of BSC and (to a greater degree) of SC are more loosely associated with the true
components of the respective patch. The bottom most example illustrates that the globular fields are usually associated with structures such as end-
stopping or corners. For the displayed examples, the normalized root-mean-square reconstruction errors (nrmse) allow to quantify the reconstruction
quality. For standard sparse coding the errors are (from top to bottom) given by 0.09, 0.08, 0.10 and 0.12, respectively. For the two models with
Bernoulli prior they are larger with 0.51, 0.63, 0.53, and 0.42 for MCA, and 0.37, 0.47, 0.44 and 0.39 for BSC. We give reconstruction errors for
completeness but note that they are for all models based on their most likely hidden states (MAP estimates). For MCA and BSC the MAP was chosen
for illustrative purposes while for most tasks these models can make use of their more elaborate posterior approximations.
doi:10.1371/journal.pcbi.1003062.g005
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values for the hidden units. Two studies [11,20] notably obtained

high percentages of globular fields by simultaneously assuming a

linear combination of components. However, parameter optimi-

zation of both studies focused on the basis functions themselves,

sparsity was hand-set and not inferred from data. One of the

studies [11] specifically chose the sparsity level which resulted in

the highest similarity between model and experimental distribu-

tion of receptive fields. The hand-set sparsities of these two linear

models are, consequently, unlikely to be the optimal sparsity values

for the data. It therefore remains an open question what

percentages the models would predict for (approximately) optimal

values of sparsity and data noise. For sparse coding with standard

parameter settings (e.g., SC in Fig. 3 C), for novel linear sparse

coding models (e.g., [30]) or for other models [21] no or only

relatively few globular fields were observed. For the non-linear

model investigated here, high percentages of globular fields

robustly emerged in all experiments with sparsity levels (and data

noise) always automatically estimated from the used set of image

patches.

In addition to functional and probabilistic approaches to model

simple cell coding, other computational investigations are based on

models of neural circuits. While many studies directly relate to

linear sparse coding [11,30,35], other contributions are not

directly linked to an underlying functional model and, notably,

often point out that non-linearly overlapping components can be

learned well [19,36–39]. The non-linear generative model studied

in this paper can be seen as a functional correlate to neural circuit

models that do well in learning non-linearly combining compo-

nents. Consequently, a neural model for non-linear component

extraction [19,38] was among the first modelling approaches to

report and discuss globular receptive fields [18,19]. Such

microcircuit models suggest that, on the one hand, a neural

implementation of the non-linear model may have some

advantages over the linear model because the max-superposition

is closely related to a (soft) k-winner-take-all competition or rank-

coding among computational units [19]. On the other hand,

standard linear models with appropriate sparse priors can be

shown to result in mono-modal posteriors [17]. Such modes can

efficiently be found using gradient-based neural dynamics which

may represent a computational advantage of such models. In the

case of ICA, activities of hidden units can directly be computed via

filter responses.

In general there may, therefore, be relevant aspects other than

the theoretical optimality of the generative model itself. To obtain

as optimal as possible results, an encoding model has to fulfill two

requirements: (A) it has to reflect the data generation process well

and (B) it has to provide an efficient procedure to learn optimal

parameters. A simpler model may in practice have the advantage

of a more efficient learning procedure while learning based on a

non-linear model may be harder. There may, for instance, be

higher computational costs associated with a non-linear model or

convergence to local optima may represent a problem. It has,

therefore, been argued in the literature [40] that discussions about

coding efficiency should contain learning efficiency as an integral

part. In controls with our models using ground-truth stimuli, we

indeed found a higher tendency of the non-linear model to

converge to local optima compared to the linear model (see

Methods, Numerical experiments). Learning still frequently

converged to a global optimum, though, and could easily be

improved using annealing. For natural image patches, we did not

observe differences between runs with and without annealing

(Methods). All experiments resulted in the same percentages of

globular fields (within the limits of the error bars in Fig. 3C), for

instance. Based on the used learning approach, finding optimal

parameters therefore does not seem much more challenging for

the non-linear model than for the linear one. Also the

computational cost is about the same (compare Methods and

[24]). Furthermore, both models face essentially the same

challenges regarding neural implementability. Because of discrete

hidden variables, a standard MAP estimation can not be applied

and would be prohibitive for a direct inference of the optimal

sparsity and stimulus noise. An implementation in neural

microcircuits would consequently have to focus on how the

posterior could be represented efficiently. This may be realized

through population codes (e.g., [41,42]) or through a sampling

based representation (e.g., [32,43]). The latter can be related to the

approximation used here [44]. Accuracy and response times would

then depend on the concrete realization of such a neural

implementation. Functionally, sensory coding efficiency is very

task dependent (see [40] for a discussion). Regarding metabolic

coding efficiency, a sparser code is preferable over a less sparse

code, which would favor the non-linear model. For image

reconstruction, linear models may remain well suited (compare,

e.g., reconstructions in Fig. 5), and a reduced sparsity can help for

this task. However, best results for general tasks and for further

processing in the visual pathway are presumably achieved for the

best stimulus model, i.e., for a model which well approximates the

actual stimulus generation process.

Note, that the maximum non-linearity and standard linear

superposition as studied here are only two possible models for the

combination of components. In the literature, other non-linearities

such as noisy-OR combinations [45–47] or non-linear ICA [48]

have been investigated before. Neither these non-linearities nor

the maximum non-linearity have, so far, been shown to predict

simple cell receptive fields, however. The reason is that non-linear

models could, so far, not be scaled-up to the problem size required

to study optimal codes on image patches. This is, again, due to the

requirement of learning approaches that go significantly beyond

MAP-based approximations.

Although sparse coding and its variants represent the standard

model for simple cell coding, other computational models have

been suggested. More recently, for instance, the suitability of

mixture model approaches has been discussed [21,49,50]. While

such models emphasize fitting model to data distributions,

approaches such as ICA, sparse coding or MCA aim at learning

a distributed encoding based on a combination of components.

Still another functional approach to model visual stimuli is a line of

research referred to as dead leaves approaches [50–53]. These

statistical models of visual stimuli have long emphasized the

importance of occlusions, and they were shown to reproduce many

statistical properties of visual stimuli [52,53]. So far, this

prominent line of statistical image models was incompatible with

sparse coding and simple cell models, though. The incorporation

of occlusion non-linearities into sparse coding offers a way to

reconcile these lines of research. Again it should be noted,

however, that the non-linear model studied here accounts for

occlusions by assuming strongly non-linear superpositions of low-

level image components. A more explicit encoding of occlusion

would result in a more accurate functional model but involves a

larger set of parameters and further increases computational

requirements [54]. Furthermore, explicit occlusion models are

presumably more relevant for mid- and high-level vision (with

objects and object parts as components) than they are for low-level

image statistics.

Why globular fields?
While different recent models report that globular receptive

fields do emerge in applications to image patches [11,18,19,30],
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they offer no explanation why this is the case. In this context, our

comparative study allows for an explanation that is closely linked

to discrete hidden units and the superposition model. First

consider the selection of typical DoG preprocessed image patches

as displayed in Fig. 6 A. As can be observed, the patches contain

Gabor-like components as well as globular components. Also note

that the maximal intensities of Gabor and globular components

are similar. Now suppose that a sparse coding model has already

represented Gabor-like fields such as those shown in Fig. 6 B (left-

hand-side). If these two Gabor fields are linearly superimposed and

then rescaled by a factor 1=2 (Fig. 6 B), an (approximately)

globular field is generated. If the two Gabors are linearly

superimposed but can not be rescaled (Fig. 6 C), then the intensity

of the globular field becomes higher than the intensity of typical

globular structures in the data. For the non-linear superposition

(Fig. 6 D) no globular structures can be generated by superim-

posing Gabors. Fig. 6 illustrates that globular structures in image

patches can be explained by linearly superimposing Gabors. For

linear sparse coding approaches with continuous values for hidden

variables, globular structures do, consequently, not have to be

represented explicitly. This may explain why almost all versions of

sparse coding or ICA do not predict globular fields or only very

low percentages thereof [2,3,9,10]. If hidden units are prevented

from taking on continuous values [11,26], a stronger incentive is

generated to explicitly represent globular fields. This can explain

the observation of larger numbers of globular fields for models

with more discrete priors [11,26,30]. A strongly non-linear

superposition of Gabors can not generate globular fields.

Consequently, such components have to be represented explicitly.

This may explain the high percentages of globular fields in the

non-linear model and, presumably, the high percentages of

globular fields in the experimental measurements. Also note that

the generation of globular structures in the linear models requires

more fields than in the non-linear model, which is consistent with

the sparser encoding in the non-linear case.

Both Gabor-like and globular fields are useful for image

encoding. While Gabors are closely associated with edges, we

observed globular fields to be more closely associated with two

dimensional structures (see Fig. 5) such as corners or ends of

branches (also compare [20] for a discussion). Furthermore, both

component types may be useful for texture encoding. Both types

are certainly observed in preprocessed stimuli (Fig. 6 A) and they

are both measured in vivo. On the functional side, many tasks seem

to work well with approaches not resulting in globular fields, as a

large body of literature, e.g., on image processing with linear

models shows. Also inference examples, e.g. those of Fig. 5, show

that linear models (with low percentages of globular fields) can

perform well, e.g., in terms of image reconstruction (mainly

because they use a large number of components which they can

add and subtract). For data with non-linearly combining

components, non-linear models are naturally performing better

if inference of the true components is the task [22,24,38,55]. The

functional capabilities of non-linear models and globular fields

will, therefore, be very task dependent. The observation that

globular fields are observed in in vivo recordings may, however, be

interpreted as evidence for them being functionally very useful for

the typical tasks animals and humans have to accomplish.

Conclusion
Our study answers whether occlusions can have an impact on

theoretical predictions of simple cell models. Based on a direct

comparison of superposition assumptions we have observed very

significant differences between the receptive fields and sparsity

levels predicted by the linear and the occlusive model. Both

models represent approximations of the exact model for local

visual component combinations. However, we have observed that

a non-linear superposition results in both a closer match to the true

combination rule of visual components and a closer match of

predicted receptive fields to in vivo measurements. This higher

consistency between predicted receptive fields and in vivo

recordings suggests that stimulus encoding in V1 is optimized by

taking visual occlusions into account. Most significantly, high

quantities of a new type of simple cells with center-surround fields,

reliably and robustly emerge if visual occlusions are considered.

Methods

Optimization of model parameters
In this study we compared the predictions of two sparse coding

models, MCA and BSC, when trained on natural image patches.

Given the generative models (Eqns. 1 and 2 for MCA; Eqns. 3 and

4 for BSC) and a set of preprocessed image patches~yy(1) to~yy(N) we

sought for each model the parameter values H�~(W �,s�,p�) that

maximize the data likelihood. In its logarithmic form the

likelihood function is given by:

L(H)~
XN

n~1
log p(~yy(n)DH): ð7Þ

For all models considered here (MCA, BSC and conventional SC),

the optimization of the likelihood function represents a compu-

tationally intractable problem for higher dimensional hidden

spaces. We therefore require approaches that approximately but

efficiently optimize the likelihood. For MCA and BSC we apply

variational expectation maximization [56] (variational EM). That

is, instead of maximizing the likelihood directly, we maximize the

so-called free-energy:

F (q,H) ~
XN

n~1

X
~ss

q(n)(~ss;H’) log(p(~yy(n),~ssDH))zH(q), ð8Þ

where the sum
P

~ss runs over all binary vectors~ss and whereH(q) is

an entropy term. The free-energy function F (q,H) is a lower

bound of the log-likelihood. By applying variational EM, the

Figure 6. Illustration of different superposition models and
globular fields. A Selection of typical preprocessed image patches. B
Superposition of two Gabor fields as assumed by standard sparse
coding with continuous priors (along with additive Gaussian noise after
superposition). C Superposition of the same two Gabor fields if hidden
units (prefactors) are binary. D Superposition of the Gabor fields if a
point-wise maximum is used as superposition model.
doi:10.1371/journal.pcbi.1003062.g006
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function is maximized alternately with respect to q in the E-step

(while H is kept fixed) and with respect to H in the M-step (while q is

kept fixed). For the M-step, expectation values of functions g with

respect to distributions q(n)(~ss;H’) have to be computed. The

optimal choice for these distributions in the E-step are the posterior

probabilities given the stimulus, q(n)(~ss;H’)~p(~ssD~yy(n),H’). Sparse

coding models are computationally intractable because these exact

posterior distributions and their expectation values are intractable.

E-step. To efficiently optimize the models’ parameters, we apply

a variational EM approach by choosing distributions q(n) which

are truncated approximations to the exact posteriors [24]:

q(n)(~ss;H)*p(~ss D~yy (n),H)d(~ss[Kn), ð9Þ

where d is an indicator function (i.e., d(~ss[Kn)~1 if~ss[Kn and zero

otherwise) and where Kn is a data point dependent subset of the

hidden space. By choosing the variational distributions q(n)(~ss;H)
as in Eqn. 9, we obtain the following approximations for

expectation values with respect to the exact posteriors:

Sg(~ss)T
q(n)~

P
~ss[Kn

p(~ss,~yy(n)DH) g(~ss)P
~ss ’[Kn

p(~ss’,~yy(n)DH)
&Sg(~ss)T

p(~ss D~yy(n),H)
ð10Þ

The sums for the approximate expectation values now run over Kn

instead of the entire hidden space. If Kn is chosen to be small but

to contain the states with most posterior probability mass, the

computation of the expectations in Eqn. 10 becomes tractable

while a high accuracy of the approximations is maintained [24].

The set Kn is, therefore, chosen to consider the subset of the H ’
most relevant hidden units for a patch~yy(n). Furthermore, at most c
of these H ’ units are assumed to be active simultaneously D~ssDƒc.

More formally we define:

Kn~ ~ss ~ssj j1ƒc and Vi 6[ I : si~0
� �

or ~ssj j1ƒ1
��� �

, ð11Þ

where the index set I contains those H ’ hidden units that are the most

likely to have generated data point~yy(n) (while the last term in Eqn. 11

assures that all states ~ss with just one non-zero entry are also

considered). To determine the H ’ hidden variables for I , we use those

units h with the H ’ largest values of a selection function Sh(~yy(n)) given by:

Sh(~yy)~N (~yy; ~WWh,s2 ) ð12Þ

Through the selection of states with high posterior mass, the function

resulted in a high accuracy for parameter recovery on data with

ground-truth (see numerical experiments further below). Parameters

of the approximation are the maximal number of components

considered, H ’, and the maximal number of simultaneously active

components c. They can be chosen such that a high approximation

accuracy is achieved with simultaneously high efficiency (see

numerical experiments).

M-step. If the variational distributions q(n)(~ss;H) of the free-

energy are chosen as in Eqn. 9, then M-step equations for

parameter updates follow from the optimization of a truncated

free-energy [24] which is given by:

F (q,H)~

X
n[M

X
~ss[Kn

q(n)(~ss;H’)log(p(~yy(n)j~ss,H)
p(~ssjH)P

~ss0[K p(~ss0jH)
)zH(q)

ð13Þ

where K~f~ssD D~ssDƒcg is the set of all states with less than c active

hidden units. The setM is a subset of those data points with less or

equal c components. Data points with more than c components

are not well approximated and are therefore not considered for

learning. M is defined to contain the Ncut data points with

smallest values for
P

~ss[Kn
p(~ss,~yy(n)DH), where Ncut is the expected

number of well approximated data points [24] given by

Ncut~N A(p) with A(p) defined as in Eqn. 20 below.

MCA update equations. The M-step equation for the gener-

ative fields W for MCA is derived along the same lines as for the

original MCA model [22,24]. However, the scalable algorithm in [24]

did not infer data noise s nor data sparsity p. Furthermore, note that

the MCA model used in this work applies a point-wise maximum

magnitude function. Instead of being aimed at positive data as the

original MCA algorithm, the maximum magnitude version developed

for this work is directly applicable to data with positive and negative

values, and it treats (like sparse coding) these values equally. The

model is, therefore, directly applicable to the same data as standard

sparse coding or BSC. Additional channel separation [23,57] to

convert preprocessed stimuli to positive values is consequently not

required, which reduces the difference between MCA and BSC to the

component combination rule alone.

To derive update equations for W we first replace the maxDD

operation by a smooth approximation W
r
(~ss,W ) :

p(~yyD~ss,H)~N (~yy; W
r
(~ss,W ),s2 )

with W
r

d (~ss,W )~
XH
h~1

(shWdh)r

 !1
r

,

ð14Þ

where r is a large and odd positive integer. Note that in the limit of

r approchaing infinity, W
r
(~ss,W ) becomes the maxDD operation we

replaced it for:

lim
n??

r~2nz1

W
r

d (~ss,W )~W d (~ss,W )~ maxDD
h

fshWdhg ð15Þ

To maximize the truncated free-energy F (q,H) (Eqn. 13) with

respect to Wdh, we use equation 14 and obtain:

L
LWdh

F (q,H)

~
X
n[M

X
~ss[Kn

q(n)(~ss)
L

LWdh

log p(~yy(n)j~ss,H)
� �� �

~
X
n[M

X
~ss[Kn

q(n)(~ss)
L

LWdh

W
r

d (~ss,W )

� �
f ~yy(n)

d ,W
r

d (~ss,W )
	 


~
X
n[M

X
~ss[Kn

q(n)(~ss)Ar
dh(~ss,W ) f ~yy(n)

d ,W
r

d (~ss,W )
	 


~
!

0

where Ar
dh(~ss,W )~

L
LWdh

W
r

d (~ss,W )

and f (y,w)~
L

Lw
log p(y; w)

ð16Þ

with p(y; w)~N (~yy; w,s2 ). Now, for any well-behaved function

g and for large values r we can write

Ar
dh(~ss,W )g W d (~ss,W )

� �
&Ar

dh(~ss,W )g(Wdh) ð17Þ
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because Ar
dh(~ss,W )&0 whenever W d (~ss,W )=Wdh. Hence it

follows from Eqn. 16 that:

0&
! X

n[M

X
~ss[Kn

q(n)(~ss)Ar
dh(~ss,W )f ~yy(n),Wdh

� �

[0&
! X

n[M

X
~ss[Kn

q(n)(~ss)Ar
dh(~ss,W ) ~yy(n)

d {Wdh

	 
 ð18Þ

Rearranging terms of (18) results in the update equation for W (see

Eqn. 23 below).

The derivation of the M-step update for s is straight-forward.

The derivation of the M-step for p involves a term that corrects for

discounting the data points with more than c components. This

term is a consequence of the additional prior term in the truncated

free-energy (Eqn. 13). For the derivation we used

d

dp
log(A(p))~

B(p)

p(1{p)A(p)
{

H

1{p
, ð19Þ

with

A(p)~
Xc

c
0
~0

H

c
0

� �
pc 0 (1{p)H{c0 and ð20Þ

B(p)~
Xc

c
0
~0

c
0 H

c
0

� �
pc0 (1{p)H{c 0 : ð21Þ

By taking the derivative of the truncated free-energy (Eqn. 13) with

respect to p we then obtain:

p~
A(p)p

B(p)

1

Mj j
X
n[M

SD~ssDT
q(n) with D~ssD~

XH
h~1

sh: ð22Þ

Applying this equation in the fix-point sense (compare Eqn. 25) results

in a convergence to values p that represent solutions of Eqn. 22.

To summarize, the M-step equations for the MCA model are

given by:

W new
dh ~

P
n[M

SAr
dh(~ss,W )T

q(n) y
(n)
dP

n[M
SAr

dh(~ss,W )T
q(n)

ð23Þ

snew~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mj jD
X
n[M

~yy(n){ maxjj
h

fsh
~WWhg

�����
�����

2

q(n)

vuuut ð24Þ

pnew~
A(p)p

B(p)

1

DMD

X
n[M

S~ssj jT
q(n) ð25Þ

where E:E in Eqn. 24 denotes the L2-norm. Eqns. 23 to 25 with

expectation values as given in Eqn. 10 represent the learning

algorithm of the MCA generative model.

One important property of the max-function of the MCA model

is that only the largest value of its arguments determines the

function’s value. In the case of a finite dataset for optimization, this

has the effect that those elements of the matrix W with small

absolute values, have an influence on only very few of the supplied

data points~yy(n). In these cases the updated values for W new (Eqn.

23) are, therefore, based on very low evidence from the data. At

the same time, with the maximum-function, even small changes to

Wdh can change which basis function is responsible for a given

data point element y
(n)
d . As a result, many close-to-zeros elements

Wdh frequently change their value in an EM iteration. While their

values stay close to zero, the exact values irregularly vary with each

EM iteration due to the finite size of the dataset. To address this

effect, we introduced a learning rate ldh, which slows down the

learning for those basis functions that only have low evidence:

W new�
dh ~ldhW new

dh z(1{ldh)W old
dh

where we set ldh to be a monotonous function between 0:2 and 1:0
based on the amount of evidence that was available for each of the

matrix elements Wdh:

ldh~max 0:2 , exp {
1

2

X
n[M

SAr
dh(~ss,W old)T

q(n)

 !( )

The reasoning behind this choice is that for each data point~yy the

expectation value 0ƒSAr
dh(~ss,W )T

q(n)ƒ1 quantifies the responsi-

bility of elements Wdh for explaining the data point. With this

choice, the learning rate is &0:64 when a matrix element is

responsible to explain only two data points, while it rapidly

approaches 1:0 when it is responsible for explaining more than 10

data points. This modification insures numerical stability due to

finite sample sizes without biasing the optimization result.

The computational complexity of the MCA learning algorithm

is dominated by the number of states that have to be evaluated for

each E-step. The scaling of this number can be estimated to be

(compare [24]):

Complexity
ET(H

0
,c)

(N,D,H)&aN DHzbN D
Xc

c
0
~0

H
0

c
0

 !
c
0
,ð26Þ

where c and H ’ are the approximation constants introduced

earlier. The first term is associated with the preprocessing step, the

second with the combinatorics of the selected units. a and b are

scaling constants. They depend on the computational costs of the

concrete functions for preselection and state evaluation.

BSC update equations. For the BSC model, the derivation

of the M-step for W is analogous to the derviation of W for

standard sparse coding (and other linear models). The M-step for

the data noise s is straight-forward, and the derivation for the M-

step for the sparsity parameter p is analogous to the corresponding

derivation of the MCA model. The resulting M-step equations are

given by:

W new~
X
n[M

~yy(n)S~ssTT

q(n)

 ! X
n’[M

S~ss~ssTT
q(n
0
)

 !{1

ð27Þ

snew~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mj jD
X
n[M

S ~yy(n){W~ssk k2T
q(n)

s
ð28Þ
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pnew~
A(p)p

B(p)

1

DMD

X
n[M

S~ssj jT
q(n) ð29Þ

where the set M is defined as above. Because of the standard

linear superposition used by the BSC model, the update equation

of W has the same form as for standard sparse coding (or principal

component analysis). The only difference is the summation over

the subset M instead of the whole set of data points. The update

equation for the data noise s is the same as for MCA except of the

combination rule, while the M-step equation for the sparsity p is

identical to the one for MCA (but note that the distributions q(n)

are different due to the different generative models). Likewise, the

computation of the expectation values is analogous to MCA and

uses the same definition of Kn, the same selection function, and the

same values for approximation parameters c and H ’. Accordingly,

the computational complexity of the BSC learning algorithm is

essentially the same, with the difference of a smaller scaling factor

b in Eqn. 26.

Parameter initialisation. For all numerical experiments

with MCA and BSC the model parameters needed to be

initialized. We used the same initialization procedure for both

models and set the basis functions ~WWh to the data mean plus

Gaussian noise (unit variance), the sparsity parameter to corre-

spond to one active component on average (p~ 1
H

) and the data

noise s2 was set to the variance of the data:

~WW init
h ~

1

N

XN

n~1

~yy(n)z~gg, pinit~
1

H
, ð30Þ

sinit~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ND

XD

d~1

XN

n~1

~yy(n)
d

	 
2

{
XN

n~1

~yy(n)
d

 !2
2
4

3
5

vuuut ð31Þ

All the source code and the datasets to rerun our experiments are

publically available at: http://fias.uni-frankfurt.de/,bornschein/

NonLinSC

Parameter optimization for conventional SC. For stan-

dard sparse coding we applied a MAP based approximation to

optimize the parameters W . All experiments were run using a

publically available implementation which is based on an earlier

publication [9]. We used the standard L1 sparsity function and set

the batch size to 5,000. The number of bases H was set according

to the experiment while parameters in the code (e.g., beta~0:4)

were left unchanged. For alle experiments, the algorithm detected

to have reached an optimum after about 15 iterations. For small H
we performed 70 iterations but did not encounter any more

changes after an optimum was detected. For Hw900 we thus only

ran 25 iterations. Computational demand became impractically

large for experiments exceeding H~1,600.

Numerical experiments - artificial data
To verify that the learning algorithms for MCA and BSC

correctly recover data components at least approximately, we first

applied them to artificial stimuli where ground-truth is available.

For each model, a dataset of N~1,000 stimuli~yy (n) was generated.

The generation followed the MCA and BSC model, respectively,

using the same set of generating parameters for the basis functions,

stimulus noise and sparsity. The used stimuli consisted of patches

with D~5|5 pixels generated from ten basis functions in the

form of horizontal and vertical bars (five bars for each orientation).

The parameter values of each bar were defined to be either z10 or

{10 (with small amounts of additive Gaussian noise). The

generating sparsity was set to p~ 2
10

(two bars on average), and

the stimulus noise was set to s~1:0. Examples of the generated

patches are shown in Fig. S1 A for the MCA model, and in Fig. S2 A

for the BSC model. The stimuli represent forms of a standard

ground-truth stimulus set [36]. For MCA experiments the max
softening parameter r in equation 14 was set to r~21 (a large odd

integer). The MCA and BSC algorithms were run on the respective

data using 50 EM iterations each. For both algorithms the first third

of the iterations (up to EM step 15) were performed on the full

dataset with Ncut~N. For iterations 16 upto 33 Ncut was linearly

decreased to Ncut~N A(p). After 50 EM iterations, both models

recovered the generating parameters of the data with high accuracy.

The recovered generative fields after 50 iterations and the time

courses of data noise and sparsity are shown in Fig. S1 B–D for the

MCA model, and in Fig. S2 B–D for the BSC model. Parameter

optimization for both models is non-convex but, after convergence,

we observed the parameters to represent the ground-truth basis

functions for both models in most of the trials. MCA we observed to

converge more frequently to local optima. By applying annealing,

MCA and BSC both more efficiently avoided local optima. The

bars stimuli have very pronounced local optima because the

stimulus values are not continuously distributed. For stimuli with

more continuous distributions of observed values such as images, we

observed no significant differences between runs with and without

annealing. In particular, no significant differences in the numbers of

globular fields were observed. Both algorithms were, therefore, run

without annealing for all the experiments on image patches.

Numerical experiments - natural image patches
To optimize the model parameters on natural image stimuli, we

extracted a set of N~100,000 patches of size 20|20 pixels for

one set of experiments, and N~200,000 patches of size 26|26
for another set of experiments. Patches were extracted at random

positions from the van Hateren natural image database [58]. In

mammals, visual information is transferred to the visual cortex via

center-ON and center-OFF cells in the lateral geniculus nucleus

(LGN). The sensitivity of these neurons can be modeled by a

difference-of-Gaussians (DoG) filter. We therefore preprocessed all

patches by convoluting them with a difference-of-Gaussians

kernel. Following experimental results [59], the ratio between

the standard deviation of the positive and the negative Gaussian

was chosen to be 1
3

and the amplitudes were chosen to obtain a

mean-free center-surround filter [19,23]. After DoG filtering,

values were scaled to fill the interval [210,10] which provides a

form of divisive contrast normalization [60]. Control experiments

with divisive variance normalization [28,60] (which serves the

same purpose) produced closely matching results. To control for

the influence of the DoG convolution filtering, we ran further

experiments using zero-phase PCA whitening (ZCA) which

represents a standard preprocessing procedure often used with

functional models [28]. Furthermore, we controlled for the

influence of separating positive and negative channels.

For each experiment, the same set of stimuli was used to train

the three models under consideration. Those experiments, where

we screened through different degrees of overcompleteness (3=4|

overcomplete with H~300 to 5| overcomplete with H~2,000)

were performed on N~100,000 stimuli of size D~20|20 pixels

(Fig. 3 C and Fig. 4 B). Each experiment was repeated five times to

obtain empirical error bars on the recovered sparseness and the

predicted percentage of globular fields (we show twice the standard
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deviations in Figs. 3 C and 4 B). All other experiments, including

those investigating the nx=ny shape statistics (Fig. 4 A) were

performed on N~200,000 stimuli of size 26|26. In total, results

of 255 experiments were gathered to create Figs. 3 C and 4 B;

additionally, about 100 experiments were performed for various

nx=ny-plots and for additional controls on differently preprocessed

sets of image patches (see below). For each experiment on image

patches we performed 100 EM iterations. Analogously to the

verification experiments on artificial data, the first 1
3

of the EM

steps (1 up to 33) were run on the full dataset. For iterations 34 to

66, Ncut was again linearly decreased to Ncut~N A(p) and kept at

Ncut for the last 34 EM steps. The smoothing parameter for the

non-linearity of the MCA algorithm was set to r~21 as for the

artificial data. The approximation parameters for the non-linear

and the linear model were both set to H
0
~12 and c~10. Each

experiment to find optimal parameters was typically run on 240
CPU cores using a parallelized implementation.

Controls for different LGN models. To control for changes

of receptive field shapes depending on different types of prepro-

cessing, we applied MCA and BSC to zero-phase PCA (ZCA)

whitened patches [28] and to DoG preprocessed patches with an

independent treatment of center-ON and center-OFF fields.

ZCA: Zero-phase PCA (ZCA) preprocessing is common in

more technical applications of sparse coding or ICA. We replaced

the DoG convolution by ZCA and normalized the patches as for

DoG preprocessing. When MCA and BSC are applied to ZCA

whitened data, the globular field percentages change with a lower

percentage of globular fields for MCA as one consequence. Also

for ZCA whitened data, globular field percentages for MCA

remain consistently and significantly higher than for BSC (with at

least 50% more globular fields for MCA; compare Fig. 3 C, dashed

blue and green lines). Also the shape distribution of Gabor-like

receptive fields changes: we observed for both models more fields

elongated along the wave-front, i.e., higher ny values (compare

Fig. S4 B). This increase in elongation is somewhat more

pronounced for the BSC model than for MCA.

Independent ON-/OFF-channels: In mammals, visual infor-

mation is transferred to the cortex via two types of neurons in the

lateral geniculus nucleus (LGN): center-ON and center-OFF cells.

ON- and OFF-cells project to the primary visual cortex (mainly

layer 4). Pairs of center-ON and center-OFF cells can be

combined to provide a net center-surround input to cortical cells.

Such ‘push-pull’ inputs are suggested by strongly overlapping

receptive fields of LGN cells connecting to the same cortical

column (see, e.g., a recent study [29] for discussions and

references). We modeled such inputs by using DoG preprocessed

patches for numerical experiments. However, center-ON and

center-OFF inputs to the cortex may also be assumed to be

entirely independent a-priori. The model for this latter situation

would correspond to a separation of negative and positive inputs

after DoG preprocessing. To control for the effect of independent

ON and OFF inputs, we considered experiments on patches that

are DoG preprocessed and normalized as above except of a

subsequent separation into inputs for positive and negative parts.

More formally, we used the same DoG filter and preprocessing to

generate patches ~yy[ D as previously but then converted

them into patches ~yy of size D~2D by assigning:

yd~½yd �z and yDzd~½{yd �z (for d~1, . . . ,D) where

½x�z~x for x§0 and ½x�z~0 otherwise (see Fig. S5A for an

illustration). Note that ~yy
(n)

§0 holds after separation. As a

consequence the maxDD for the MCA model (Eqn. 2) reduces to

the conventional max function. The applications of MCA and

BSC to DoG preprossed image patches assuming independent

ON- and OFF-cells essentially reproduced the results for the

previous DoG preprocessed patches. Exemplarily, using H~500
fields, we find that (1) BSC used, on average, more active units to

encode a given image patch than MCA (Fig. S5C); (2) MCA

inferred a much higher fraction of globular receptive fields than

BSC (Fig. S5C); (3) MCA and BSC resulted in different

distributions of Gabor field shapes (Fig. S5D). The differences in

the nx=ny-distributions is again not very pronounced, however.

In general, the type of preprocessing has an impact on the shapes

of predicted receptive fields - affecting both percentages of globular

fields and Gabor shape statistics. However, the difference in the

percentages of globular fields with a consistently much higher

percentage for the non-linear model is a very stable observation for

all used preprocessing models. Also the sparsity of the non-linear

model has always been observed to be much higher. Differences

between the non-linear and linear model were much less

pronounced if the shape distributions of Gabor-like fields were

considered. While we found differences between the models for

different preprocessing types, they were small compared to

differences in sparsity and globular field percentages. At the same

time, all distributions using nx=ny-plots show a large diversity of

fields with relatively large overlap with in vivo recordings. The

analysis of nx=ny-distributions has by now frequently been applied

to analyse the quality of simple cell models [11,18,19,30,61] but for

the purposes of this study we found nx=ny-distributions much less

instructive than percentages of globular fields and sparsity levels.

Analysis of receptive fields
After parameter optimization we computed an estimate of the

predicted receptive fields by convolving the learned basis functions
~WWh with the same DoG filter as used for preprocessing.

Subsequently, we matched both the predicted receptive fields

and the in vivo data with Gabor-wavelets and difference-of-

Gaussians to gather the statistics of shapes.

The convolution with the DoG filter is an estimate of the receptive

field assuming a linear mapping: If~II denotes a patch (with pixel values

as vector entries) and if ~RRh parameterizes the mapping, the linear

response is given by sh~
P

d
0 Rhd

0 Id
0 . The original response of a unit

to a patch consists of two steps: a linear preprocessing and a non-linear

response to the preprocessed patch, where the non-linear response is

described by the corresponding sparse coding model. We therefore

rewrite the mapping R as a two-step mapping. If ~yy denotes a

preprocessed patch (as in the main text), it is given by:

~ssh~
X

d

Bhd yd~
X

d

Bhd

X
d
0

K
dd
0 I

d
0 , ð32Þ

where (K
dd
0 ) is the DoG kernel for the convolution and where (Bhd )

parameterizes a linear mapping from preprocessed patches to hidden

units. The mapping ~BBh can be estimated by reverse correlation [14]

using the models’ approximate posteriors as responses. If we denote

such an estimate by ~̂BB~BBh, the total linear response is given by:

~ssh&
X

d

B̂Bhd

X
d
0

K
dd
0 I

d
0~
X

d
0

X
d

B̂Bhd K
dd
0 I

d
0

~
X

d
0

R
hd
0 I

d
0 with R

hd
0~
X

d

B̂BhdK
dd
0

ð33Þ

This means the receptive field estimate is given by ~̂BB~BBh convoluted with

the same kernel as used for preprocessing. Fig. S6 (top row) shows

examples of estimates obtained in this way. Alternatively, note that the
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basis functions ~WWh are already similar to stimuli that best drive the

hidden units. A direct estimate of the parameters~BBh is therefore given

by the basis function parameters themselves (~̂BB~BBh~~WWh), and the

corresponding receptive field estimate is given by convoluted basis

functions: R
hd
0~
P

d W T
hd K

dd
0 . In numerical experiments, both

estimates resulted in very similar receptive fields, and some

representative examples are shown in Fig. S6. Because of this high

similarity we used the convoluted basis functions as receptive field

estimates, which reduced the otherwise extensive computational costs

of reverse correlation for the very large number of receptive fields that

were analysed in this study.

To analyse the shape statistics of the estimated receptive fields

resulting from our numerical experiments and from experimental

recordings [14], receptive fields were matched against Gabor-

wavelets G(x,y) and difference-of-Gaussians D(x,y). Note that for

notational purposes we replace the index d denoting the input units

by two-dimensional coordinates x and y denoting the actual planar

position in the two-dimensional field. The in vivo data analysed for

comparison was obtained in experiments on macaque monkeys in

an earlier study [14]. These receptive fields were recorded from

neurons in the primary visual cortex using reverse correlation, and

were matched with Gabor and DoG functions in the same way as

the receptive fields predicted by the models. Representative

examples are shown in Fig. S7 A. For each receptive field

Rh(x,y), we sought the eight parameters which minimized the

mean squared error between the field and the Gabor-wavelet

G(x,y; mx,my,Y,sx,sy,k0,t,A). Where mx and my are the center

coordinates of the Gabor-wavelet, Y is its spatial rotation, sx and sy

parameterize the shape of the Gaussian envelope, k0 is a measure of

the frequency of the planar wave component, t is its phase shift and

A is the overall amplitude of the Gabor-wavelet:

G(x,y)~A cos x’k0zt½ �|N
x’

y’

 !
; m~

0

0

 !
,S~

s2
x 0

0 s2
y

 ! !

~A cos x’k0zt½ �| 1

2psxsy

exp {
1

2

x’

y’

 !T
s2

x 0

0 s2
y

 !{1
x’

y’

 !2
4

3
5,

ð34Þ

where
x’
y’

� �
~

cosY sinY
{sinY cosY

� �
x{mx

y{my

� �
are the translated

and rotated coordinates of the function.

Similarly, again for each receptive field Rh(x,y), we sought the eight

parameters of the difference-of-Gaussians kernel

D(x,y; mx,my,Y,sx,sy,c,A1,A2) which minimized the squared dis-

tance to each field. mx and my are the center coordinates of the DoG

kernel, Y its spatial rotation. sx and sy parameterize the shape of the

inner Gaussian, c parameterizes the size difference between the

Gaussians and A1 and A2 specify the amplitudes of the Gaussians:

D(x,y)~A1 N
x’

y’

 !
; m~

0

0

 !
,S~

s2
x 0

0 s2
y

 ! !
{

A2 N
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 !
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0

0

 !
,S~

s2
xc2 0

0 s2
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 ! !

~
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exp {
1

2
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 !T
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x 0
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y
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 !2
4
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We classified a receptive field as being globular if the reconstruction

error of the best matching DoG function was smaller then the

reconstruction error of the best matching Gabor wavelet and if the

aspect ratio of the DoG was smaller than 2.0 (sx=syƒ2, where sx is

the parameter for the more elongated axis). A small difference

between the errors of a match with DoG and a match with a

Gabor function means that the receptive field is neither clearly

center-surround nor clearly Gabor-like. In such cases we call the

field ambiguous. Using a standard least-square optimization

method [62], we got robust result for fitting and classification

for almost all receptive fields. We applied matching and

classification to the results of each of our numerical experiments

as well as to the experimental data [14] provided by D. Ringach.

The experimental data consisted of 5 fields of 32|32 pixels, 123
fields of 64|64 pixels, and 122 fields of 128|128 pixels. Our

procedure classified 46 fields as clearly globular and 182 as

clearly Gabor-like (see Fig. S7 A for some examples). As the

experimental data is less smooth than the theoretical receptive

field predictions, a relatively large number of 22 (out of 250) fields

were ambiguous in this case (see Fig. S7 B for some examples). By

considering half of these fields as globular, we obtained 57
globular fields (a percentage of 22:8%); considering all of them as

globular corresponds to 27:2% globular fields; and considering all

ambiguous fields as Gabor-like results in a percentage of 18:4%
globular fields. In Fig. 2 C we used 22:8% as mean with the

higher and the lower percentages defining the limits of the

corresponding error bar.

To analyse the shape distribution of receptive fields, the shape

relevant parameters can be visualized as an nx=ny-plot. That is, for

each receptive field (predicted or measured) the dimensionless values

given by nx~f sx~
k0sx

2p
and ny~f sy~

k0sy

2p
were computed,

where f is the spatial frequency of the fitted Gabor function, and where

sx, sy are the standard deviations of its Gaussian envelope in

wavevector direction and orthogonal to it [11,14,19,30]. For our

analysis, we first removed the globular fields from the sets of

experimentally measured fields as well as from the sets of predicted

receptive fields before visualizing the corresponding nx=ny distribu-

tions. This procedure removed the otherwise ill-posed problem of

having to match center-surround fields with Gabor wavelets.

Supporting Information

Figure S1 Experiments with MCA on artificial data. A
Random selection of 20 artificially generated data points with basis

functions in the form of bars. Each data point~yy (n) is composed of

D~5|5~25 pixels. B Learned basis functions ~WWh. C, D
Evolution of the inferred sparsity p and the noise parameter s over

a course of 50 EM steps (dashed lines indicate ground-truth).

(TIFF)

Figure S2 Experiments with BSC on artificial data. A
Random selection of 20 artificially generated data points with basis

functions in the form of bars. Each data point~yy (n) is composed of

D~5|5~25 pixels. B Learned basis functions ~WWh. C, D
Evolution of the inferred sparsity p and the noise parameter s over

a course of 50 EM steps (dashed lines indicate ground-truth).

(TIFF)

Figure S3 Example results when applying MCA and
BSC to DoG preprocessed images. A Predicted basis

functions for MCA (left) and BSC (right) with H~300 hidden

units each. B Predicted basis functions for MCA (top) and BSC

(bottom) with H~700 hidden units each.

(TIFF)
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Figure S4 Results when applying MCA and BSC to zero-
phase whitened data (ZCA). A Full set of learned basis

functions when applied with H~700 hidden units. B Distribution

of shapes for the Gabor-like fields in A.

(TIFF)

Figure S5 Results when MCA and BSC are applied to
DoG preprocessed data with independent ON- and OFF-
center channels. A Visualization of the doublication of input

dimensions for independent ON and OFF channels. B, C, D
Results for MCA and BSC after running on N~500,000 patches

(size 26|26 pixels) with independent ON and OFF channels. The

number of hidden variables was set to H~500.

(TIFF)

Figure S6 Comparison of receptive field estimates.
Representative examples of receptive fields estimated from basis

functions ~WWh are shown. Estimates based on reverse correlation

(top row) are shown together with their corresponding estimates

based on direct convolution of the basis function (bottom row).

(TIFF)

Figure S7 Fitting of learned and in vivo receptive fields
with Gabor functions and DoGs. A Selection of 16 of the 250

receptive fields measured in macaque monkeys [15] using reverse

correlation together with their resulting matches. A The upper row

shows original recordings that were classified as globular, and the

second row shows the corresponding DoG matches. The third row

shows original recordings that were classified as Gabor-like, and

the forth row shows their corresponding matches. B Examples of

original receptive fields that were ambiguous, i.e., neither clearly

difference-of-Gaussian nor Gabor-like. Note the Gaussian fields

can be well matched by DoG and Gabor functions and are

therefore inherently ambiguous. C A selection of 16 receptive field

estimates resulting from numerical experiments. The fields and

their matches are shown as in A.

(TIFF)
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24. Lücke J, Eggert J (2010) Expectation truncation and the benefits of preselection
in training generative models. J Mach Learn Res 11: 2855–900.

25. Haft M, Hofman R, Tresp V (2004) Generative binary codes. Pattern Anal Appl

6: 269–84.

26. Henniges M, Puertas G, Bornschein J, Eggert J, Lücke J (2010) Binary sparse
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- a model of efficient neural inference and learning. Proc NIPS 24: 2618–2626.
45. Saund E (1995) A multiple cause mixture model for unsupervised learning.

Neural Comp 7: 51–71.

46. Dayan P, Zemel RS (1995) Competition and multiple cause models. Neural
Comp 7: 565–579.
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