1,904 research outputs found

    Safety Barrier Certificates for Heterogeneous Multi-Robot Systems

    Get PDF
    This paper presents a formal framework for collision avoidance in multi-robot systems, wherein an existing controller is modified in a minimally invasive fashion to ensure safety. We build this framework through the use of control barrier functions (CBFs) which guarantee forward invariance of a safe set; these yield safety barrier certificates in the context of heterogeneous robot dynamics subject to acceleration bounds. Moreover, safety barrier certificates are extended to a distributed control framework, wherein neighboring agent dynamics are unknown, through local parameter identification. The end result is an optimization-based controller that formally guarantees collision free behavior in heterogeneous multi-agent systems by minimally modifying the desired controller via safety barrier constraints. This formal result is verified in simulation on a multi-robot system consisting of both cumbersome and agile robots, is demonstrated experimentally on a system with a Magellan Pro robot and three Khepera III robots.Comment: 8 pages version of 2016ACC conference paper, experimental results adde

    From supply chains to demand networks. Agents in retailing: the electrical bazaar

    Get PDF
    A paradigm shift is taking place in logistics. The focus is changing from operational effectiveness to adaptation. Supply Chains will develop into networks that will adapt to consumer demand in almost real time. Time to market, capacity of adaptation and enrichment of customer experience seem to be the key elements of this new paradigm. In this environment emerging technologies like RFID (Radio Frequency ID), Intelligent Products and the Internet, are triggering a reconsideration of methods, procedures and goals. We present a Multiagent System framework specialized in retail that addresses these changes with the use of rational agents and takes advantages of the new market opportunities. Like in an old bazaar, agents able to learn, cooperate, take advantage of gossip and distinguish between collaborators and competitors, have the ability to adapt, learn and react to a changing environment better than any other structure. Keywords: Supply Chains, Distributed Artificial Intelligence, Multiagent System.Postprint (published version

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    The 2014 International Planning Competition: Progress and Trends

    Get PDF
    We review the 2014 International Planning Competition (IPC-2014), the eighth in a series of competitions starting in 1998. IPC-2014 was held in three separate parts to assess state-of-the-art in three prominent areas of planning research: the deterministic (classical) part (IPCD), the learning part (IPCL), and the probabilistic part (IPPC). Each part evaluated planning systems in ways that pushed the edge of existing planner performance by introducing new challenges, novel tasks, or both. The competition surpassed again the number of competitors than its predecessor, highlighting the competition’s central role in shaping the landscape of ongoing developments in evaluating planning systems

    Human Factors in Agile Software Development

    Full text link
    Through our four years experiments on students' Scrum based agile software development (ASD) process, we have gained deep understanding into the human factors of agile methodology. We designed an agile project management tool - the HASE collaboration development platform to support more than 400 students self-organized into 80 teams to practice ASD. In this thesis, Based on our experiments, simulations and analysis, we contributed a series of solutions and insights in this researches, including 1) a Goal Net based method to enhance goal and requirement management for ASD process, 2) a novel Simple Multi-Agent Real-Time (SMART) approach to enhance intelligent task allocation for ASD process, 3) a Fuzzy Cognitive Maps (FCMs) based method to enhance emotion and morale management for ASD process, 4) the first large scale in-depth empirical insights on human factors in ASD process which have not yet been well studied by existing research, and 5) the first to identify ASD process as a human-computation system that exploit human efforts to perform tasks that computers are not good at solving. On the other hand, computers can assist human decision making in the ASD process.Comment: Book Draf

    Coalition based approach for shop floor agility – a multiagent approach

    Get PDF
    Dissertation submitted for a PhD degree in Electrical Engineering, speciality of Robotics and Integrated Manufacturing from the Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaThis thesis addresses the problem of shop floor agility. In order to cope with the disturbances and uncertainties that characterise the current business scenarios faced by manufacturing companies, the capability of their shop floors needs to be improved quickly, such that these shop floors may be adapted, changed or become easily modifiable (shop floor reengineering). One of the critical elements in any shop floor reengineering process is the way the control/supervision architecture is changed or modified to accommodate for the new processes and equipment. This thesis, therefore, proposes an architecture to support the fast adaptation or changes in the control/supervision architecture. This architecture postulates that manufacturing systems are no more than compositions of modularised manufacturing components whose interactions when aggregated are governed by contractual mechanisms that favour configuration over reprogramming. A multiagent based reference architecture called Coalition Based Approach for Shop floor Agility – CoBASA, was created to support fast adaptation and changes of shop floor control architectures with minimal effort. The coalitions are composed of agentified manufacturing components (modules), whose relationships within the coalitions are governed by contracts that are configured whenever a coalition is established. Creating and changing a coalition do not involve programming effort because it only requires changes to the contract that regulates it
    • …
    corecore