511 research outputs found

    A literature review. Introduction to the special issue

    Get PDF
    UIDB/00183/2020 UIDP/00183/2020 PTDC/FER-FIL/28278/2017 CHIST-ERA/0002/2019Argumentation schemes [35, 80, 91] are a relatively recent notion that continues an extremely ancient debate on one of the foundations of human reasoning, human comprehension, and obviously human argumentation, i.e., the topics. To understand the revolutionary nature of Walton’s work on this subject matter, it is necessary to place it in the debate that it continues and contributes to, namely a view of logic that is much broader than the formalistic perspective that has been adopted from the 20th century until nowadays. With his book Argumentation schemes for presumptive reasoning, Walton attempted to start a dialogue between three different fields or views on human reasoning – one (argumentation theory) very recent, one (dialectics) very ancient and with a very long tradition, and one (formal logic) relatively recent, but dominating in philosophy. Argumentation schemes were proposed as dialectical instruments, in the sense that they represented arguments not only as formal relations, but also as pragmatic inferences, as they at the same time depend on what the interlocutors share and accept in a given dialogical circumstance, and affect their dialogical relation. In this introduction, the notion of argumentation scheme will be analyzed in detail, showing its different dimensions and its defining features which make them an extremely useful instrument in Artificial Intelligence. This theoretical background will be followed by a literature review on the uses of the schemes in computing, aimed at identifying the most important areas and trends, the most promising proposals, and the directions of future research.publishersversionpublishe

    Soft Computing Techiniques for the Protein Folding Problem on High Performance Computing Architectures

    Get PDF
    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.This work is jointly supported by the FundaciónSéneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC and European Commission FEDER under grant with reference TEC2012-37945-C02-02 and TIN2012-31345, by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). We also thank NVIDIA for hardware donation within UCAM GPU educational and research centers.Ingeniería, Industria y Construcció

    A GPT-Based Approach for Scientometric Analysis: Exploring the Landscape of Artificial Intelligence Research

    Full text link
    This study presents a comprehensive approach that addresses the challenges of scientometric analysis in the rapidly evolving field of Artificial Intelligence (AI). By combining search terms related to AI with the advanced language processing capabilities of generative pre-trained transformers (GPT), we developed a highly accurate method for identifying and analyzing AI-related articles in the Web of Science (WoS) database. Our multi-step approach included filtering articles based on WoS citation topics, category, keyword screening, and GPT classification. We evaluated the effectiveness of our method through precision and recall calculations, finding that our combined approach captured around 94% of AI-related articles in the entire WoS corpus with a precision of 90%. Following this, we analyzed the publication volume trends, revealing a continuous growth pattern from 2013 to 2022 and an increasing degree of interdisciplinarity. We conducted citation analysis on the top countries and institutions and identified common research themes using keyword analysis and GPT. This study demonstrates the potential of our approach to facilitate accurate scientometric analysis, by providing insights into the growth, interdisciplinary nature, and key players in the field.Comment: 29 pages, 10 figures, 5 table

    Selectively decentralized reinforcement learning

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The main contributions in this thesis include the selectively decentralized method in solving multi-agent reinforcement learning problems and the discretized Markov-decision-process (MDP) algorithm to compute the sub-optimal learning policy in completely unknown learning and control problems. These contributions tackle several challenges in multi-agent reinforcement learning: the unknown and dynamic nature of the learning environment, the difficulty in computing the closed-form solution of the learning problem, the slow learning performance in large-scale systems, and the questions of how/when/to whom the learning agents should communicate among themselves. Through this thesis, the selectively decentralized method, which evaluates all of the possible communicative strategies, not only increases the learning speed, achieves better learning goals but also could learn the communicative policy for each learning agent. Compared to the other state-of-the-art approaches, this thesis’s contributions offer two advantages. First, the selectively decentralized method could incorporate a wide range of well-known algorithms, including the discretized MDP, in single-agent reinforcement learning; meanwhile, the state-of-the-art approaches usually could be applied for one class of algorithms. Second, the discretized MDP algorithm could compute the sub-optimal learning policy when the environment is described in general nonlinear format; meanwhile, the other state-of-the-art approaches often assume that the environment is in limited format, particularly in feedback-linearization form. This thesis also discusses several alternative approaches for multi-agent learning, including Multidisciplinary Optimization. In addition, this thesis shows how the selectively decentralized method could successfully solve several real-worlds problems, particularly in mechanical and biological systems

    Computational Ontologies and Information Systems I: Foundations

    Get PDF
    This paper provides a state-of-the-art review about computational ontologies to raise awareness about this research area in the IS discipline and to explore areas where IS researchers can engage in fruitful research. This paper discusses the basic foundations and definitions pertaining to the field of computational ontologies. It reviews the intersection of computational ontologies with the IS discipline. It also discusses methods and guidelines for developing computational ontologies. The paper concludes with recommendations for important and emerging directions for research. The technical aspects of ontologies are presented in a companion paper (Volume 14, article 9). The companion paper provides a comprehensive review of the formalisms, languages, and tools used for specifying and implementing computational ontologies
    • …
    corecore