
SELECTIVELY DECENTRALIZED REINFORCEMENT LEARNING
by

Thanh Minh Nguyen

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Indianapolis, Indiana

August 2018

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Snehasis Mukhopadhyay, Chair

Department of Computer and Information Science

Dr. Mohammad Al Hasan

Department of Computer and Information Science

Dr. Shiaofen Fang

Department of Computer and Information Science

Dr. George Mohler

Department of Computer and Information Science

Approved by:

Dr. Mihran Tuceryan

Head of the Graduate Program

iii

Grandpa, it is a proof showing that I can do more than what you expect!

iv

ACKNOWLEDGMENTS

This thesis marks the end-point of my 9-year study at Indiana University Purdue University

Indianapolis (IUPUI). Coincidently, the length of the period is the same to the length of the First

Vietnam War, which was the turning point building up the military tradition in my family. After a

long campaign, I have finally become a fine veteran in the Field of Science.

First, I would like to honor Dr. Snehasis Mukhopadhay, who have been mentoring me for nearly

8 years. He has been the chief architect on my success, similar to Helmuth von Moltke the Elder

on the birth of modern Germany.

Second, I appreciate Dr. Fang Shiaofen, Dr. Mohammad Al Hasan and Dr. George Mohler. I

definitely could not claim this victory without the excellent and dedicated advices from all of them.

Third, I name Dr. Jake Chen from University of Alabama at Birmingham and Dr. Syed Aun

Muhammad from Bahauddin Zakariya University Multan Pakistan and Miss Sara Ibrahim from

School of Medicine – IUPUI as trusted allies. All of them taught me Biology and allowed me to

be able to transform from a pure Computer Scientist to a Translational Scientist. I also thank other

junior allies from China, especially Sisi Zeng, Ni Cao, Lin Ma, Jinlei Guo and Tongbin Zhang,

who gained significant achievement in career thank to my teaching. They gave me excellent

ground to train my leadership skills, and some of them made some contribution in this thesis.

Finally, in every victory, I turn my heart toward my family, my home-based, where I build the

soldier-like personality, and the most important allies. I am speechless whenever I think of Son

Dang, my dear wife, who had been enduring the most difficult hardship with me during this 9-year

campaign. If I usually joke myself as the divine strategist Zhuge Liang, then she must be my Huang

Yueying. I cannot find any word to thank Dad, who never likes me saying ‘thank you’ to him, but

always gave me the critical support in my toughest spots, because he are a true veteran. And, at

the end of every victory, I recall Grandpa, one of the heroes in the legendary Dien Bien Phu and

the First Vietnam War, because it is him who first taught me how to be an elite veteran.

v

TABLE OF CONTENTS

LIST OF FIGURES .. iix

ABSTRACT ... xiii

1. INTRODUCTION ... 1

 Reinforcement Learning: overview .. 2

 Decentralized reinforcement learning ... 6

 Principles of Hamilton-Jacobi-Bellman equation ... 8

2. MARKOV DECISION PROCESS.. 12

 Overview of the MDP problem... 13

 Problem statement: HJB equation to optimally stabilize the system 14

 Discretization to setup the MDP problem ... 15

2.3.1 Discretizing the state and control vector space .. 15

2.3.2 Setting up the state transition matrix for the MDP problem 16

2.3.3 State value function in MDP problem ... 18

 The closeness of the MDP’s states toward the HJB’s states ... 18

2.4.1 The autonomous system .. 19

2.4.1.1 Theorem 2.1 .. 20

2.4.1.2 Theorem 2.2 .. 21

2.4.1.3 Theorem 2.3 .. 22

2.4.2 The non-autonomous system ... 24

2.4.2.1 Theorem 2.4 .. 26

2.4.2.2 Theorem 2.5 .. 26

 The existence of the MDP solution as to near-optimally stabilize the system 27

2.5.1.1 Theorem 2.6 .. 28

2.5.1.2 Theorem 2.7 .. 28

 Simulation results.. 29

3. SELECTIVE DECENTRALIZATION ... 31

 Problem statement of selective decentralization ... 31

 Pseudo code for selective decentralization ... 33

4. SELECTIVELY DECENTRALIZED Q-LEARNING ... 35

vi

 Selectively decentralized Q-learning method ... 36

4.1.1 Problem statement ... 36

4.1.2 System discretization and reward function .. 37

4.1.3 Selectively decentralized Q-learning formulation ... 39

 Sufficient conditions for the Q-learning policy to stabilize the system 41

4.2.1.1 Theorem 4.1 .. 42

4.2.1.2 Theorem 4.2 .. 43

4.2.1.3 Theorem 4.3 .. 44

 Toy example results .. 45

4.3.1 Converging speed of selectively decentralized Q-learning 45

4.3.2 Switching among decentralization schemes .. 49

 Discussions ... 50

5. SELECTIVELY DECENTRALIZED SYSTEM IDENTIFICATION 52

 Problem statement for selectively decentralized system-identification 53

5.1.1 Identification in unknown discrete-time invariant linear system 53

5.1.2 Identification in unknown discrete-time invariant nonlinear system 54

5.1.3 Selective decentralization pseudo code ... 54

 Reviews of system identification .. 56

5.2.1 Identification of linear time-invariant system .. 56

5.2.2 Identification of nonlinear time-invariant systems .. 57

 Simulation results.. 59

5.3.1 Linear system identification .. 59

5.3.2 Nonlinear system identification ... 62

6. SELECTIVELY DECENTRALIZED LEARNING AND CONTROL WITH

 DISCRETIZED MDP .. 66

 Problem statement for model-based reinforcement learning .. 66

 Two-phase selective decentralized control framework... 68

 Simulation results.. 69

6.3.1 Linear system ... 69

6.3.2 Nonlinear system ... 71

 Discussions ... 73

vii

7. MULTIDISCIPLINARY OPTIMIZATION IN DECENTRALIZED REINFORCEMENT

 LEARNING ... 75

 Problem statements ... 77

7.1.1 The learning adaptive control problem .. 77

7.1.2 The system identification problem statements .. 78

 Key assumptions for the MDO agents .. 79

 Design of MDO learning agents with two phases .. 80

7.3.1 MDO system identification .. 81

7.3.2 Discrete MDP for MDO agents ... 82

7.3.2.1 Discrete MDP for the centralized and completely decentralized approach 82

7.3.2.1.1 Discretize the state and action vectors .. 82

7.3.2.1.2 Setup the probabilistic transition function for the MDP 83

7.3.2.2 Discrete MDP method for the MDO approach ... 84

7.3.3 The pseudo code for the MDO learning agent ... 85

 Simulation results.. 86

7.4.1 The learning performance of MDO approach in stabilizing control system 88

7.4.2 Performance loss MDO-IDF when using resolution-less communication 89

 Discussions ... 90

8. DECENTRALIZED LEARNING IN NOISY ENVIRONMENT .. 92

 Experimental results without noise-filtering techniques... 92

8.1.1 Linear system ... 92

8.1.2 Nonlinear system with discrete-MDP approach .. 98

8.1.3 Q learning .. 102

8.1.4 MDO .. 105

 Discussions ... 108

9. CASE-STUDIES ... 109

 Learning to control the mass-spring system ... 109

9.1.1 System formulation .. 110

9.1.2 Experiment ... 112

 Potential application in drug discovery / repositioning .. 116

9.2.1 Motivation of applying reinforcement learning in drug repositioning 116

viii

9.2.2 Overall ideas of drug repositioning based on reinforcement learning 118

9.2.3 Setup the system for drug repositioning from Breast Cancer-omics data 121

9.2.4 Selectively decentralized approach improve the capability of detecting drugs

 for therapeutic Breast Cancer .. 122

10. CONCLUSIONS ... 125

APPENDIX. DeCOST framework: reinforcement learning – control system application

 in drug repurposing ... 130

Biological insights ... 130

Therapeutic scores for Breast Cancer Drugs ... 130

Potential drugs for Breast Cancer studies and biological insights 132

REFERENCES ... 134

VITA ... 141

PUBLICATIONS .. 143

ix

LIST OF FIGURES

Figure 2.1. An example of (2.15) in one-dimension state space ... 17

Figure 2.2. The closeness between x(real system) and xdis (MDP) in autonomous system 23

Figure 2.3. Derivative ∂f/∂x in autonomous system ... 23

Figure 2.4. The closeness between x(real system) and xdis (MDP) in non-autonomous system .. 27

Figure 2.5. Learning performance p(x) and q(u) in system (2.40) with MDP solution 30

Figure 4.1. Demonstration of state-layers for discretization in two dimensions 41

Figure 4.2. Comparison between centralized and selectively decentralized Q-learning in

 completely decentralized 3-subsystems ... 47

Figure 4.3. Comparison between centralized and selectively decentralized Q-learning in

 strongly couple (σ = 0.5) 3-subsystems ... 47

Figure 4.4. Comparison between centralized and selectively decentralized Q-learning in

 completely decouple 6-subsystems ... 48

Figure 4.5. Comparison between centralized and selectively decentralized Q-learning in

 strongly couple (σ = 0.5) 6-subsystem .. 48

Figure 4.6. Convergence of selectively decentralized Q-learning in the first few of tens

 windows when the systems are completely decouple .. 48

Figure 4.7. Convergence of selectively decentralized Q-learning in the first few of tens

 windows when the systems are strongly couple (σ = 0.5) ... 49

Figure 4.8. Average number of switches in selectively decentralized Q-learning 50

Figure 5.1. Comparison of converging time for identification between the centralized

 approach and the selectively decentralized approach in linear system 60

Figure 5.2. Comparison of converging identification error between the centralized model and

 the selectively decentralized model in linear system ... 61

Figure 5.3. An example of how identification error converges to 0 with initial state x(0) = 1

 in the completely decoupled and linear systems (σ = 0) .. 61

Figure 5.4. An example of how identification error converges to 0 with initial state x(0) = 1

 in the strongly coupled and linear system (σ = 0.2) .. 62

x

Figure 5.5. Comparison of converging time for system identification between the centralized

 approach and the selectively decentralized approach in nonlinear system 63

Figure 5.6. Comparison of converged identification error between the centralized model and

 the selectively decentralized model in a nonlinear system .. 64

Figure 5.7. An example of how identification error converges with initial state x(0) = 1 in the

 completely decoupled and nonlinear system case ... 64

Figure 5.8. An example of how identification error converges with initial state x(0) = 1 in the

 strongly coupled and nonlinear system (σ = 0.2) .. 65

Figure 6.1. The learning design for selective decentralized reinforcement learning 68

Figure 6.2. Comparison of control performance among the centralized system, the completely

 decentralized system and the selectively decentralized system when the system is

 linear and completely decoupled ... 71

Figure 6.3. Comparison of control performance among the centralized system, the completely

 decentralized system and the selectively decentralized system when the system is

 linear and strongly coupled .. 71

Figure 6.4. Comparison of control performance among the centralized system, the completely

 decentralized system and the selectively decentralized system when the system is

 nonlinear with different coupling ... 73

Figure 7.1. Two-phase design of the MDO learning agents ... 81

Figure 7.2. learning performance in p(x) and q(u) of the MDO approaches in weakly coupled

 system (σ = 0.05) ... 88

Figure 7.3. learning performance in p(x) and q(u) of the MDO approaches in strongly coupled

 system (σ = 0.3) ... 88

Figure 7.4. Converging time of the MDO-IDF approach with full and less resolution 89

Figure 8.1. Comparison of learning performance between the centralized systems and the

 selectively decentralized systems when the systems are completely decoupled

 and linear (σ=0) in small noise scenario .. 94

Figure 8.2. Comparison of learning performance between the centralized systems and the

 selectively decentralized systems when the systems are strongly coupled and

 linear (σ=0.5) in small noise scenario.. 95

xi

Figure 8.3. Comparison of learning performance between the centralized systems and the

 selectively decentralized systems when the systems is are completely decoupled

 and linear (σ=0) in large noise scenario .. 95

Figure 8.4. Comparison of learning performance between the centralized systems and the

 selectively decentralized systems when the systems is are strongly coupled and

 linear (σ=0.5) in large noise scenario .. 96

Figure 8.5. Number of iterations needed to bring norm(x) < 0.05 in small noise - linear

 system scenario .. 97

Figure 8.6. Comparison of identification errors between the selectively decentralized and the

 centralized approaches given increasing noise level in linear system 98

Figure 8.7. Comparison of learning performance J(x) between the selectively decentralized

 approach and the centralized approach given increasing noise level in linear

 system .. 98

Figure 8.8. Comparison of learning performance between the discrete-MDP centralized

 systems and the selectively decentralized systems when the systems are

 completely decoupled and nonlinear in small noise scenario 100

Figure 8.9. Comparison of learning performance between the discrete-MDP centralized

 systems and the selectively decentralized systems when the systems are strongly

 coupled and nonlinear in small noise scenario .. 100

Figure 8.10. Comparison of learning performance between the discrete-MDP centralized

 systems and the selectively decentralized systems when the systems are

 completely decoupled and nonlinear in large noise scenario 101

Figure 8.11. Comparison of learning performance between the discrete-MDP centralized

 systems and the selectively decentralized systems when the systems is are

 strongly coupled and nonlinear in large noise scenario ... 101

Figure 8.12. The converging learning performance of the selectively decentralized and the

 centralized discrete-MDP when the noise standard deviation increases 102

Figure 8.13. A typical example of how x and u converge in small-noise scenario in weakly

 coupled system with Q-learning ... 103

Figure 8.14. A typical example of how x and u converge in small-noise scenario in strongly

 coupled system Q-learning ... 103

xii

Figure 8.15. A typical example of how x and u converge in small-noise scenario in weakly

 coupled system with Q-learning ... 104

Figure 8.16. A typical example of how x and u converge in small-noise scenario in strongly

 coupled system with Q-learning .. 104

Figure 8.17. The converging learning performance of the selectively decentralized and the

 centralized Q-learning when the noise standard deviation increases..................... 105

Figure 8.18. A typical example of how x and u converge in small-noise scenario in weakly

 coupled system with MDO .. 106

Figure 8.19. A typical example of how x and u converge in small-noise scenario in strongly

 coupled system with MDO .. 106

Figure 8.20. A typical example of how x and u do not converge in small-noise scenario in

 weakly coupled system with MDO .. 107

Figure 8.21. A typical example of how x and u do not converge in small-noise scenario in

 strongly coupled system with MDO .. 107

Figure 8.22. The converging learning performance of the MDO and the centralized system

 when the noise standard deviation increases ... 108

Figure 9.1. The 3-mass mass-spring system ... 110

Figure 9.2. Learning and control performance of the approaches: centralized reinforcement

 learning (RL), completely decentralized RL and selectively decentralized RL 115

Figure 9.3. Overview of RL-system control-based drug repurposing frameworks 119

Figure 9.4. Comparison between the selectively decentralized and the centralized RL

 approaches in classifying drugs for Breast Cancer ER+ subtype disease 123

Figure 9.5. Comparison between the selectively decentralized and the centralized RL

 approaches in classifying drugs for Breast Cancer ER- subtype disease................. 124

Figure A1. Td score in Breast Cancer, ER-positive subtype ... 131

Figure A2. Td score in Breast Cancer, ER-negative subtype .. 131

xiii

ABSTRACT

Author: Nguyen, Thanh, Minh. PhD
Institution: Purdue University
Degree Received: August 2018
Title: Selectively Decentralized Reinforcement Learning
Major Professor: Snehasis Mukhopadhyay

The main contributions in this thesis include the selectively decentralized method in solving multi-

agent reinforcement learning problems and the discretized Markov-decision-process (MDP)

algorithm to compute the sub-optimal learning policy in completely unknown learning and control

problems. These contributions tackle several challenges in multi-agent reinforcement learning: the

unknown and dynamic nature of the learning environment, the difficulty in computing the closed-

form solution of the learning problem, the slow learning performance in large-scale systems, and

the questions of how/when/to whom the learning agents should communicate among themselves.

Through this thesis, the selectively decentralized method, which evaluates all of the possible

communicative strategies, not only increases the learning speed, achieves better learning goals but

also could learn the communicative policy for each learning agent. Compared to the other state-

of-the-art approaches, this thesis’s contributions offer two advantages. First, the selectively

decentralized method could incorporate a wide range of well-known algorithms, including the

discretized MDP, in single-agent reinforcement learning; meanwhile, the state-of-the-art

approaches usually could be applied for one class of algorithms. Second, the discretized MDP

algorithm could compute the sub-optimal learning policy when the environment is described in

general nonlinear format; meanwhile, the other state-of-the-art approaches often assume that the

environment is in limited format, particularly in feedback-linearization form. This thesis also

discusses several alternative approaches for multi-agent learning, including Multidisciplinary

Optimization. In addition, this thesis shows how the selectively decentralized method could

successfully solve several real-worlds problems, particularly in mechanical and biological systems.

1

1. INTRODUCTION

This thesis is devoted to reinforcement learning, which is one of the most attractive areas in

Computer Science, and probably in Philosophy. In this thesis, I propose, explore, and discuss

selective decentralization as a new approach in decentralized reinforcement learning, which is also

cited in the literature as distributed learning or multi-agent learning. Briefly, this thesis answers

the questions: how the computational agent learn how to act optimally when it does not know the

learning environment, and how multiple agents collaborate to learn faster in large-scale learning

problems. Here, the notion of ‘large’ is problem-specific instead of just number of dimensions.

For example, in aircraft smart control, a system of more than ten state parameter would be

considered as large, while ten is still a small number in big data area.

Let us begin with an infamous Japanese cartoon named ‘Doraemon’, a science-fiction gadget cat

who has been motivating many Asian children to love and pursue robotic and artificial intelligence

career [1]. In the series of the same name, Doraemon is a robot coming from the 22nd century to

take care of Nobita, a weak, under-performed and somewhat lazy child. Doraemon is extremely

fond of Japanese rice cake; therefore, the child Nobita usually offer Doraemon cakes to reward his

service or to ask for help. In section titled ‘Scary rice cake’ [2], again, the lazy Nobita shows

Doraemon many rice cakes; however, the condition is that Doraemon must complete Nobita’s 60

homework on the last night of the due date. Given such a large amount of work in short time and

unfamiliarity with primary school homework, Doraemon knows that he needs extra help. Then, he

uses his special ability to travel across the time to ask his copies living in several hours later in the

future to come back to his time and help. The multiple Doraemons divide the work among

themselves, try to learn and solve primary school homework, and exchange opinions on right or

2

wrong solutions. Will the Doreamons succeed in this heavy task to enjoy the rice cake or will they

fail and fighting each other? At the end, both of these outcomes occur: the gadget cats do not agree

many times during the work, sometimes fighting each other, but they manage to finish the work

and enjoy the cakes.

The short story above demonstrate many points in this thesis. First, the gadget cats have a mission

in which he does not know the domain knowledge; therefore, they must learn and act concurrently.

Second, his task is to provide homework solutions but there is no precise feedback telling him

whether or not his solutions are right or wrong. These two points are essential in reinforcement

learning. Third, the task is too large to complete by one gadget; therefore, the task needs the

distributed execution. Forth, the outcome of the task depends on the communication and

collaboration among the Doreamon copies, which is also the essential element in decentralized

learning.

From these points above, the remaining of the introduction will be divided into three sections. The

first section reviews the concepts and state-of-the-art techniques in reinforcement learning. The

second section reviews decentralized learning and multi-agent learning systems. The third section

briefly reviews Hamilton-Jacobi-Bellman equation, which is the universal mathematical

description in many reinforcement learning problems.

 Reinforcement Learning: overview

Reinforcement learning, briefly, is how the agents learn what to do when there is no instruction

telling what the agent should do [3]. The lack of instruction could be in many scenarios. First,

when the problem is naturally exploratory, there is usually neither guidance nor domain knowledge

3

for the agent to make the decision. This usually happens when the problem is relatively new for

human. A typical example in this scenario was fighting Ozma boss in Final Fantasy IX game; this

super boss took hundreds or thousands of players to play multiple rounds to discover the winning

strategy [4] in 2000. In another scenario, the learning outome could only be seen after so many

phases that the ‘good’ action in an early moment may fail later, or a ‘bad’ action in an early moment

could bring favorable outcome. This scenario often occurs in chess game or searching missions.

An example of this scenario is The Game of the Century chess, where Bobby Fischer made a queen

scarification move, which appeared to be a suicide at turn 17, but at the end claimed the victory

[5] at turn 38. In addition, when the environment is known to be uncertain, there is no guarantee

of optimality in every action. We see this scenario when Markov decision process [6] is applied.

In general, reinforcement learning is about trial-and-error interactions with a dynamic environment

[7]. The reinforcement learning problem includes the following elements

- The agent who can perceive and perform action u ∈ A, where A is the set of all actions.

- The environment where the agent operates in. The agent can perceive information from

the environment, which is also called state x. In this thesis, we assume that the environment is fully

accessible for the agent, which means the agent can obtain complete, accurate and up-to-date

information from the environment [3].

- The dynamic transition of the environment: the mapping x(t+1) = f (x(t), u(t)), in which

x(t+1) is the new state, x(t) is the exiting state and u(t) is the agent’s action at time t. In

reinforcement learning, the agent initially does not know the transition.

- The reinforcement feedback R(x(t), u(t)), which the agent knows in order to determine

how well it performs at time t. This is the agent’s learning goal.

4

The reinforcement learning agent, also called the intelligent agent, aims to maximize the

cumulative feedback R(x(t), u(t)) for the long time. For this objective, the agent tries to find the

policy function u = v(x), which tells the agent which action it should perform in a given state.

In general, the reinforcement learning techniques need to solve two major challenges to optimize

the reinforcement feedback: the unknown nature of the environment and computing the action u

as a function of state x. For the first challenges, system identification has been widely used to

approximate the dynamic environment [8-11]. For the second challenge, as it is claimed that

reinforcement learning is the direct adaptive optimal control problem [12], in theory, solving a

reinforcement learning problem is solving the equivalent Hamilton-Jacobi-Bellman (HJB)

equation, which is the fundamental of optimal control [13]. However, the closed-form solution of

the HJB equation is very difficult to find in general. In the special case of linear system, the HJB

equation becomes the well-known Riccati equation with the complete closed-form solution [14].

In nonlinear systems, researchers have been focusing on approximation methods to tackle

nonlinear HJB equation problem such as [15-18]. However, these methods are only limited for the

systems in feedback-linearizable forms.

Reinforcement learning techniques could be categorized based on how the techniques compute the

action u. In one category, the reinforcement learning techniques, inspired by the theory of dynamic

programming and HJB equation [19-21], try to estimate the expected long-time reward at every

state x, also called state utility, given the most updated policy the agent has. After executing each

action and seeing new reward, the agent updates the estimation of state utility, and updates its

policy to maximize the chance of getting higher utility based on the new estimation. In this

5

category, the agent usually needs to employ the dynamic transition of the environment for its state

utility estimation. Therefore, this category is called model-based methods [22-24]. In another

category, the learning agent keeps a history of reward for all state-action pairs and increments the

history of reward after executing each action in a given state. In this type of approach, the agent

does not need the transition of the environment since the update is only done incrementally on a

short term. Therefore, this category is called model-free methods, in which Q-learning is a typical

example [25-27]. Another category of reinforcement learning approaches is called reflex design,

in which the agent directly represent policy function in some form, especially in differentiable

form. After seeing the new reward, the agent directly adjusts the parameters of the policy function,

usually by the gradient methods [28, 29]. Overall, only the model-based category could directly

estimate the solution for the HJB equation; while the other two categories do not.

From another perspective, reinforcement learning techniques need to balance the trade-off between

exploration and exploitation [3]. Exploration refers to the amount of learning samples that the

agent should experience to find the optimal policy. Exploitation refers to the maximization of

reward at any instance. Due to unknown nature of reinforcement learning, maximization of the

short-term reward with insufficient knowledge may not lead to the optimal policy in long term. A

typical example of this trade-off could be found in the multi-bandit-arm problem [30]. Similar to

the multi-bandit-arm problem, most of the reinforcement learning algorithm has a learning rate

parameters to control how fast the learning is. In addition, some reinforcement learning techniques

apply the Boltzmann distribution, which directs how likely the agent chooses alternative options

rather than the most updated policy as it knows [31-33].

6

 Decentralized reinforcement learning

As reinforcement learning has been applied in more complex real-world problems, the interest in

multi-agent, also called distributed or decentralized, learning has been increasing for the recent

years. There are many scenarios in which single-agent, or centralized learning, is not suitable.

First, when the learning problem is large, especially when the environment is represented by high-

dimensional vectors, the single agent may not have sufficient computational power to solve such

a problem. In addition, even if the single/centralized agent have sufficient computational power, it

still has to tackle the curse of dimensionality [34, 35], which may obstruct the agent learning

optimal policy, or the slow exploration [36], which makes the learning impractical. In these

scenarios, decentralized learning may be a more practical approach. Second, when the learning

problem is naturally distributed, such as coordinating multiple players in the infamous Civilization

game series [37] where each artificial agent may control one nation collaborating-competing with

the others in the world-map, it may be more suitable to apply multi-agent learning. Third, even

when the problem is neither high-dimension nor naturally distributed but composed from multiple

disciplinary, it is more feasible to apply distributed learning, in which each learning agent is an

expert in single disciplinary. One typical example of this problem in aircraft control, where the

aero dynamic agent applies fluid dynamics law to manage the air-pressure on the aircraft wing and

the structure agent applies the material law to manage the deflection and shape of the wing [38].

It has been shown that decentralized reinforcement learning shows several advantages, compared

to centralized learning. First, as expected, decentralized learning allows the agents to operate on

less dimension, which could avoid the curse of dimensionality an improve the learning speed [39].

Second, decentralized learning offers more robustness and improves fault-tolerance: if one agent

fails in learning, the other agents could compensate for it in the overall learning problem resulting

7

in only graceful degradation of performance. Third, decentralized learning is less susceptible to

uncertain system parameters [40].

In order to avoid instability and show these advantages, the decentralized reinforcement learning

has to overcome four major challenges. First, when the agents should communicate with the others?

Second, to whom should a single agent communicate? Third, which types of information should

the single agent share with the others? Forth, how does a single agent use the information to

improve its own learning performance and contribute to the overall performance? Adding to the

complexity of decentralized learning, the answers for these questions must consider the learning

environment: collaborative (when all of the agents work together to achieve a common goal),

competitive (when the agents compete with the others to decide a winner), or mixed (including

both collaboration and competition). Thus, the ‘communication’ questions are still opened. More

details about these questions could be found in [41-43].

To the extent of our knowledge, the state-of-the-art decentralized learning could be divided into

two categories: partial communication and multi-model switching. In partial communication, each

agent is responsible to for its own communication: when, to whom, which to share and how to use

information, depending on the agent’s state variables and communication costs [44]. Some of the

recent state-of-the-art techniques in partial communication demonstrate how each agent decide the

communication in Q-learning problems [45-47], partially ordered subsystems [48], fuzzy logic

systems [49, 50] and probabilistic control sharing systems [51]. In multi-model-switching, the

entire system has K policies to allow the agents to communicate, and the entire system has a central

communicator who is responsible to switch the communication policy depending on the resulting

8

performance [52-55]. Also, criteria to decide policy switch may depends on the domain-specific

optimization of the problem, such as power efficiency function in energy system [56, 57] and

aerodynamic performance in hypersonic vehicle systems [58]. Our thesis focus on the multi-

model-switching approach, whose complexity is, at most, as of Bell’s number [59]. It is known

that the Bell’s number grows more than exponentially.

 Principles of Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman (HJB) equation, proposed by Richard Bellman in 1950s [60], is the

general theory for optimal control and reinforcement learning. The equation includes two

fundamental elements: a cost function C(x, u) (the reinforcement feedback), which forms the long-

term optimization objective, and the system function F(x, u), which forms the thresholds of the

optimization. The continuous HJB equation [60] is as follow: find u(t) as a function of (x(t)) to

minimize

𝐽𝐽 = � 𝐶𝐶(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)
𝑇𝑇

0
+ 𝐷𝐷(𝐱𝐱(𝑇𝑇)) (1.1)

In which T is the period which the optimization applies and D(x(T)) is the specific cost function at

the end of the period. When T → ∞, the optimization criteria becomes

𝐽𝐽 = � 𝐶𝐶(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)
∞

0
(1.2)

The optimization constrains is represented as

x’(t) = F(x(t), u(t)) (1.3)

in which x’(t) stands for the first derivative of x. The HJB equation in discrete-time form is:

minimize

𝐽𝐽 = �𝐶𝐶�𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)�
𝑇𝑇

𝑡𝑡=0

+ 𝐷𝐷�𝐱𝐱(𝑇𝑇)� (1.4)

9

or

𝐽𝐽 = �𝐶𝐶�𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)�
∞

𝑡𝑡=0

 (1.5)

when T → ∞. The constrains is

x(t+1) = F(x(t), u(t)) (1.6)

In the special case of linear system, the HJB equation becomes the well-known Riccati equation

[61]: minimizing

𝐽𝐽 = �𝐱𝐱(𝑡𝑡)𝑻𝑻𝐐𝐐𝐐𝐐(𝑡𝑡) + 𝐮𝐮(𝑡𝑡)𝑇𝑇𝐑𝐑𝐑𝐑(𝑡𝑡)
∞

0

 (1.7)

subject to

x(t+1) = Ax(t) + Bu(t) (1.8)

where Q and R are semi-positive-definite square matrixes.

The most important principle of the HJB equation is the dynamic optimization, which includes

two characteristics. First, the solution u(t) for equation starting at time t (t = 0) should be also the

solution at time t+1 (t = 1) [13]. Therefore, in discrete-time system with finite T , the HJB equation

could be solved by inverse dynamic programming [62]: use the solution at time t to find the

solution at t-1. Second, due to the inter-dependence of u(t) and the optimization objective J, these

two factor could be iteratively estimated [19].

Theoretically, the solution of the HJB equation follows calculus of variation [63]. For the linear

system, the HJB equation becomes the well-known Riccati equation with complete solution [14].

However, in most of the real-world cases, the system is nonlinear where the closed-form solution

for HJB equation is very difficult to find. Therefore, researchers have been focusing on

approximation methods to tackle nonlinear HJB equation problem such as [15-18]. Generally,

10

these efforts focus on the nonlinear feedback-linearization system, in which the closed-form

solution for the approximation of HJB equation has been found [64]. In the other hand , a simple

idea is to discretize the nonlinear system to convert it into a Markov-Decision-Process (MDP) and

solve it by the policy iteration algorithm [65]. Such discretization of continuous-state nonlinear

control systems has been examined in [66-68]. However, according to the best of our knowledge,

the sufficient and the closeness of the MDP approximation to the real solution of the HJB equation

has not been well-established.

Overall, the introduction highlights two major areas which will be answered by this thesis:

- How to approximate the solution of the HJB equation by the MDP approach? What are

the necessary condition for the MDP’s approximated solution to approach the HJB equation’s

solution? How closed these two solutions are?

- The communication among the agents: when? To whom? What to share? And how to use

the sharing information?

The remaining chapters of this thesis are organized as follow. In chapter 2, I show the grid-based

discretization method to convert the HJB equation into a MDP problem. In addition, I prove some

necessary condition for the MDP’s solution toward the HJB’s solution. In chapter 3, I propose the

selective decentralization approach for the communication among the agent. In chapter 4, I show

that the selective decentralization approach outperforms the centralized approach in Q-learning,

which is a typical model-free reinforcement learning technique. In chapter 5, I show the

performance of selective decentralization in system identification, which is the first sub-problem

in model-based reinforcement learning. In chapter 6, I show that the selective decentralization also

improves the learning performance, in combination with the MDP approximation for HJB

11

equation. In chapter 7, I explore the capability of multidisciplinary optimization (MDO), which is

a popular technique in aircraft control to coordinate multiple subsystems, in reinforcement

learning. In chapter 8, I add the system noise into the learning problems and see how the learning

techniques above would perform in the noisy cases. Chapter 9 demonstrates how the proposed

selective decentralization improves the learning performance in real-world problems of mechanics

and system biology. Chapter 10 concludes the thesis on how well it tackles the major challenges

in general and decentralized reinforcement learning.

12

2. MARKOV DECISION PROCESS

As mentioned in the introduction, the HJB equation’s solution has the dynamic programming

principles, which is also shared by the Markov Decision Process’s (MDP) solution [69]. Therefore,

a simple idea is to discretize the nonlinear system to convert it into a Markov-Decision-Process

(MDP) and solved it by well-known MDP algorithms [70]. Such discretization of continuous-state

nonlinear control systems have been studied in [66-68]. In addition, convergence results for

decentralized learning in Markov systems have been derived in [71, 72]. However, from our

knowledge, the theoretical proof about the existence and closeness of the MDP’s solution in the

general form HJB equation has not been widely explored.

The main challenge in approximating the HJB equation’s solution by MDP is the transformation

from the HJB’s continuity to MDP’s discreteness. Therefore, the proof of MDP’s existence and

closeness toward the HJB depends on how to discretize the HJB equation. From this argument,

this chapter is organized as followed. First, I briefly review the MDP problem. Second, I describe

the problem statement of the HJB equation in adaptive control, which has be claimed to be

equivalent to reinforcement learning [12]. Third, I demonstrate the discretization to transform the

continuous HJB equation toward the discrete MDP problem, in which I define the ‘discretized

resolution’ concept (further details could be found in publications [78, 85]). Forth, I prove some

sufficient conditions for the discrete MDP’s states to approach the discrete the continuous HJB’s

states in the long-term, which guarantee the closeness of these two problems toward each other

[78]. Fifth, I prove the existence of the MDP’s solution which can be used as a ‘stabilizer’ for the

HJB – adaptive control equation. Finally, I show some simulation experiments in which the MDP’s

solution could stabilize the system as the HJB equation aims for [78].

13

 Overview of the MDP problem

Formally, an MDP problem, which is discrete-time, has the following elements [73]

- A set of discrete states S, which is assumed to be fully accessible for the learning agent.

- A set of actions A, which the agent could do at every time step.

- The state transition distributions P, also written P(x2 | x1, u) in which x1, x2 ∈ S and u ∈

A, tell how likely to reach a new state next time when executing a specific action at a specific state.

- A reward function R: S → ℜ or S×A → ℜ to tell how good a specific state (or state-

action) is instantly. This is the reinforcement feedback for the agent.

- A discount factor γ < 1 to define the long-term learning objective of the agent. The closer

γ to 1, the more long-term the agent needs to aim for.

The learning objective is

� 𝛾𝛾𝑡𝑡𝑅𝑅(𝐱𝐱(𝑡𝑡))
∞

𝑡𝑡=0
 (2.1)

and the agent needs to find a policy function u = v(x) to optimize (2.1).

Compared to the HJB equation, we can see that most of the elements in the MDP problem are the

same to the corresponding ones in the discrete-time HJB equation, except the state transition. In

the HJB equation, the state transition is deterministic

𝐱𝐱2 = 𝑓𝑓(𝐱𝐱1,𝐮𝐮) (2.2)

Meaning that at state x1, executing action u only lead to one specific state x2. In the other hands,

the MDP is non-deterministic, which means executing the same action u at state x1 may lead to

other states rather than x2. In addition, it is easy to see that if the MDP state-transition is less

diverge: P(x2 | x1, u) → 1, then the discrete-state and non-deterministic MDP behaves closer to the

continuous and deterministic HJB equation.

14

From the dynamic programming perspective, the MDP problem could be solved by policy iteration

algorithm [65]. The main idea is to maintain an estimation of the learning objective, called utility

function, and iteratively update the policy / utility function. To be more specific, given an arbitrary

policy u = v’(x), we can always compute the utility function Vv’ (x) for every initial state x

𝑉𝑉𝑣𝑣’(𝑥𝑥) = � 𝛾𝛾𝑡𝑡𝑅𝑅�𝐱𝐱(𝑡𝑡)�
∞

𝑡𝑡=0
, 𝐱𝐱(0) = 𝐱𝐱

or 𝑉𝑉𝑣𝑣’(𝑥𝑥) = � 𝛾𝛾𝑡𝑡𝑅𝑅�𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)�
∞

𝑡𝑡=0
, 𝐱𝐱(0) = 𝐱𝐱 (2.3)

depending on how the function R is defined. Then, at time t, the agent may review all of the

possible actions and choose the action maximizing the expected next utility

argmax
𝐮𝐮

�𝑅𝑅(𝐱𝐱(𝑡𝑡)) + � 𝑷𝑷(𝐱𝐱′|𝐱𝐱(𝑡𝑡),𝐮𝐮)
∀𝐱𝐱′

𝑉𝑉𝑣𝑣’(𝐱𝐱′)� (2.4)

Equation (2.4) shows that the policy is updated. Then, the new policy in (2.4) is used to re-compute

(2.3). Theoretically, the iterative processes (2.3-2.4) has been proved to converge [71, 72], where

both the policy no longer change in (2.4) and the state utility reaches the maximum.

 Problem statement: HJB equation to optimally stabilize the system

In this thesis, we focus on discrete time, continuous-state, time-invariant system in the general

format [78, 85]

𝐱𝐱(𝑡𝑡 + 1) = 𝑓𝑓(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)) (2.5)

Where x ∈ ℜN stands for the N dimensional bounded state vector, u ∈ ℜM stands for the M

dimensional bounded control unit, t stands for the iteration number, x(0) is given and f : ℜN×ℜM

→ ℜN is an continuously differentiable unknown function. Here, the symmetric boundaries [-χ, χ]

and [-µ, µ] for all components of x and u are known. Let p: ℜN → ℜ and q: ℜM → ℜ be the two

15

continuously semi-definite negative and differentiable reward functions with the following

properties

𝑝𝑝(𝐱𝐱1) ≤ 𝑝𝑝(𝐱𝐱2) ⇔ ‖𝐱𝐱1‖ ≥ ‖𝐱𝐱2‖ and p(0) = 0 (2.6)

𝑞𝑞(𝐮𝐮1) ≤ 𝑞𝑞(𝐮𝐮2) ⇔ ‖𝐮𝐮1‖ ≥ ‖𝐮𝐮2‖ and q(0) = 0 (2.7)

where ||x|| denotes the second norm of x. The main objective is to learn the control unit u such that

x(t) → 0, u(t) → 0 as t → ∞ (2.8)

To formulate an optimal control or learning problem, we convert the objective in (2.8) into a more

formal control problem with discount factor 0 < γ → 1

𝐽𝐽(𝐱𝐱0) = �𝛾𝛾𝑡𝑡 �𝑝𝑝�𝐱𝐱(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮(𝑡𝑡)��
∞

𝑡𝑡=0

 (2.9)

It is easy to see that p(x) and q(u) is designed such that the learning objective is optimal only when

the system is stabilized.

 Discretization to setup the MDP problem

2.3.1 Discretizing the state and control vector space

Let G be the number of intervals in each dimension of x and u for which we uniformly divide the

dimension into small grids. Therefore, the entire state space is divided into GN small hyper cubes

and the control space is divided into GM small hyper cubes. All points inside a hyper cube are

discretely represented by the center of the hyper cube. Points on the borders between two hyper

cubes are represented by the center of the ‘left’ hypercube. Mathematically, the discretization

process is described by the following formulas

𝐱𝐱[𝑖𝑖] → 𝜃𝜃𝑥𝑥 + χ 𝐺𝐺⁄ ∀ 𝑖𝑖∈[1,𝑁𝑁] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐱𝐱[𝑖𝑖] ∈ [𝜃𝜃𝑥𝑥, 𝜃𝜃𝑥𝑥 + 2 χ 𝐺𝐺⁄) (2.10)

𝐮𝐮[𝑖𝑖] → 𝜃𝜃𝑢𝑢 + 𝜇𝜇 𝐺𝐺⁄ ∀ 𝑖𝑖∈[1,𝑀𝑀] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐮𝐮[𝑖𝑖] ∈ [𝜃𝜃𝑢𝑢,𝜃𝜃𝑢𝑢 + 2 𝜇𝜇 𝐺𝐺⁄) (2.11)

16

where θx ∈ {-χ, -χ + 2χ/G, -χ + 4χ/G, ..., χ- 2χ/G } and θu ∈ {-µ, -µ + 2µ/G, -µ + 4µ/G, ..., µ-

2µ/G }, which are the ‘left’ boundaries in the hyper cubes.

Let δ = max(2χ/G, 2µ/G). It is easy to see that inside each small hyper cube, the largest distance

between any two points, or the ‘main diagonal’, is bounded by

√𝛿𝛿2 + 𝛿𝛿2 + ⋯+ 𝛿𝛿2 = √𝑁𝑁𝛿𝛿2 = √𝑁𝑁δ (2.12)

in the state space and by √𝑀𝑀δ in the control space. The left side of (2.12) has N terms for x

dimension or M terms for u dimension. Trivially, G → ∞ ⇔ δ → 0, or the discretization is more

precise.

From this point, for any state vector x, we denote xdis as x’s discretized form; for any control vector

u, we denote udis as u’s discretized form. We also denote (xdis) and (udis) as the hypercube where

every x’s and u’s discretization is xdis and udis, correspondingly. Formally, from (2.10) and (2.11),

we have

(𝐱𝐱dis) = [𝐱𝐱dis(𝑖𝑖) − χ 𝐺𝐺⁄ , 𝐱𝐱dis(𝑖𝑖) + χ 𝐺𝐺⁄)] ∀𝑖𝑖 ∈ {1,2,3 …𝑁𝑁} (2.13)

and

(𝐮𝐮dis) = [𝐮𝐮dis(𝑖𝑖) − 𝜇𝜇 𝐺𝐺⁄ ,𝐮𝐮dis(𝑖𝑖) + 𝜇𝜇 𝐺𝐺⁄)] ∀𝑖𝑖 ∈ {1,2,3 …𝑀𝑀} (2.14)

2.3.2 Setting up the state transition matrix for the MDP problem

The state transition matrix for the MDP problem, which contains all conditional probability

P(x’dis | xdis, udis), has the dimension of GN×GM×GN. It is easy to observe that for each triple (x’dis,

xdis, udis) the conditional probability P(x’dis | xdis, udis) is

P(x’dis | xdis, udis) =
∭ 𝑑𝑑𝐱𝐱𝑑𝑑𝐮𝐮𝑑𝑑𝐱𝐱′�𝐱𝐱dis�×�𝐮𝐮dis�×�𝐱𝐱’dis�

∭ 𝑑𝑑𝐱𝐱𝑑𝑑𝐮𝐮𝑑𝑑𝐱𝐱′�𝐱𝐱dis�×�𝐮𝐮dis�×C
 (2.15)

17

where C is the subspace containing all possible value of f (x, u) ∀x,u∈(xdis)×(udis). In our problem

statement, since f is unknown, we replace f by𝑓𝑓, which is approximated by the neural network.

Figure 2.1 illustrates a simple case of this conditional probability when N = 1. Although the integral

could be approximated by the Monte Carlo method [74], the simpler method to approximate P(x’dis

| xdis, udis) is as follow.

- Generate a large number of S points (x, u) following the uniform distribution in

(xdis)×(udis). Here, we emphasize that the computation of P(x’dis | xdis, udis) does not use any sample

(x(t), u(t)). These S points are randomly generated without any prior knowledge of f to avoid bias.

- Count the number of points T such that 𝑓𝑓 (x, u) ∈ (x’dis).

- Then T/S → P(x’dis | xdis, udis) when S → ∞.

Figure 2.1. An example of (2.15) in one-dimension state space. <1>, the dash surface, is the
numerator in (2.15). <2>, the bold surface, is the denominator of (2.15).

18

2.3.3 State value function in MDP problem

In (2.9), from Bellman’s principle of optimality [75], for the solution u(t) of the HJB equation

(2.5)-(2.9), we have

𝐽𝐽�𝐱𝐱(𝑡𝑡)� = 𝑝𝑝�𝐱𝐱(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮(𝑡𝑡)� + �𝛾𝛾𝑡𝑡 �𝑝𝑝�𝐱𝐱(𝜏𝜏)� + 𝑞𝑞�𝐮𝐮(𝜏𝜏)��
∞

𝜏𝜏=1

= 𝑝𝑝�𝐱𝐱(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮(𝑡𝑡)� + 𝐽𝐽�𝐱𝐱(𝑡𝑡 + 1)� (2.16)

Because f is stable at the origin, from (2.2) and (2.3), J(0) = 0. Since the state value function in the

HJB equation (2.5)-(2.9) contains a discount factor, we define the corresponding value function in

the MDP as

𝑅𝑅�𝐱𝐱dis(𝑡𝑡)� = 𝑝𝑝�𝐱𝐱dis(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮dis(𝑡𝑡)�

+ �𝛾𝛾𝑡𝑡 � 𝑃𝑃�𝐱𝐱dis′(𝜏𝜏)|𝐱𝐱dis(𝜏𝜏 − 1),𝐮𝐮dis(𝜏𝜏 − 1)� �𝑝𝑝�𝐱𝐱dis′(𝜏𝜏)� + 𝑞𝑞�𝐮𝐮dis′(𝜏𝜏)��
∀𝐱𝐱dis′

∞

𝜏𝜏=1

= 𝑝𝑝�𝐱𝐱dis(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮dis(𝑡𝑡)� + 𝛾𝛾 ∑ 𝑃𝑃�𝐱𝐱dis′(𝑡𝑡 + 1)|𝐱𝐱dis(𝑡𝑡),𝐮𝐮dis(𝑡𝑡)�𝑅𝑅�𝐱𝐱′dis(𝑡𝑡 + 1)�∀𝐱𝐱dis′ (2.17)

And R(xdis) = 0 if (xdis) contains 0 or has 0 on the boundary.

 The closeness of the MDP’s states toward the HJB’s states

In this section, we examine several conditions for xdis(t) and udis(t), acquired by the discretized

MDP method, converge to x(t) and u(t) when t → ∞. More specifically, we answer the following

questions. First, suppose that we know an admissible control u(t) = g(x(t)) and discretize this

admissible control (without the MDP policy iteration algorithm), what is the boundary of

|x(t)- xdis(t)| ? Second, without any knowledge of the admissible control, in which condition the

MDP solution could near-optimally stabilize the system? To simplify the analysis, in this section,

we assume that f is known. Although this assumption is not applicable for reinforcement learning,

19

this assumption is logical given that the neural network, as the functional approximator 𝑓𝑓, could

approximate any arbitrary function given sufficient training sample [15, 76, 77]. The main content

of the theoretical analysis is taken from my paper [78].

2.4.1 The autonomous system

When we linearize an autonomous system using Taylor series expansion

x(t+1) = f (x(t)) (2.18)

at point p in the domain of f, we have

f(x) ≈ f(p) + M(x-p) (2.19)

where M is the matrix of partial derivative of f on x at p

M =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

… 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩

… 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑑𝑑

�
𝐱𝐱=𝐩𝐩

⋮ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

⋱ ⋮
… 𝜕𝜕𝑓𝑓𝑑𝑑

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (2.20)

For the close region (xdis) (2.13) which includes the boundary and contains x, let Cη be the set of

all x(t+η) computed by tracking all points in (xdis) on f after η time points. Obviously Cη has to be

a close region because it is spanned from a close region by a continuous function. Therefore, there

exists two points x1(t+η) and x2(t+η) such that |x1(t+η) - x2(t+η)| is the maximum for all pairs of

points in Cη. There must exist two chains: { x1(t) , x1(t+1) , ..., x1(t+η-1) } and { x2(t) , x2(t+1) , ...,

x2(t+η-1) } such that x1(t+η) = f (x1(t+η-1)) = f (f (x1(t+η-2))) = ... = f η (x1(t)) and

x2(t+η) = f (x2(t+η-1)) = f (f (x2(t+η-2))) = ... = f η (x2(t)). Applying the Taylor series expansion,

we have

20

x1(t+η) - x2(t+η) = f η (x1(t)) - f η (x2(t)) =
𝜕𝜕𝑓𝑓η

𝜕𝜕�𝐱𝐱2(𝑡𝑡)�
 (x1(t) – x2(t)) + O(δ2) (2.21)

Apply the derivative chain rule for
𝜕𝜕𝑓𝑓η

𝜕𝜕�𝐱𝐱2(𝑡𝑡)�
, we have

x1(t+η) - x2(t+η) =
𝜕𝜕𝜕𝜕

𝜕𝜕�𝐱𝐱2(𝑡𝑡+η−1)�
× 𝜕𝜕𝜕𝜕

𝜕𝜕�𝐱𝐱2(𝑡𝑡+η−2)�
× … 𝜕𝜕𝜕𝜕

𝜕𝜕�𝐱𝐱2(𝑡𝑡)�
(x1(t) – x2(t)) + O(δ2)

= 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−1) × 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−2) × … × 𝐌𝐌𝐱𝐱2(𝑡𝑡)(x1(t) – x2(t)) + O(δ2) (2.22)

Therefore,

|| x1(t+η) - x2(t+η) || ≤ || 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−1) × 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−2) × … × 𝐌𝐌𝐱𝐱2(𝑡𝑡)(x1(t) – x2(t)) || (2.23)

where each matrix M is setup according to (2.20). From (2.20) and (2.23), we have the following

necessary conditions for the xdis(t+η) approaches to x(t+η).

2.4.1.1 Theorem 2.1

If all matrices M generated by (2.20) have no eigenvalue outside the unit circle on the complex

plane, then xdis(t+η) approaches to x(t+η) as G → ∞ .

The proof is as follow. Let λ be the most prominent eigenvalue of all matrices M with the largest

magnitude. Then from (2.23)

| x1(t+η) - x2(t+η) | ≤ | 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−1) × 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−2) × … × 𝐌𝐌𝐱𝐱2(𝑡𝑡)(x1(t) – x2(t)) |

≤ |λ|η | x1(t) – x2(t)| (2.24)

In (2.12), we showed that the distance between any two points in (xdis) cannot be larger than the

‘main diagonal’ √𝑁𝑁δ . Therefore,

| x1(t+η) - x2(t+η) | ≤ |λ|η | x1(t) – x2(t)| ≤ |λ|η √𝑁𝑁δ (2.25)

21

Since |λ| ≤ 1, |λ|η is finite, even with η → ∞. Therefore, with G→ ∞ ⇔ δ → 0, |λ|η δ → 0. From

the method we used in constructing the MDP, xdis(t+η) also falls in Cη. Thus

| x(t+η) - xdis(t+η) | ≤ | x1(t+η) - x2(t+η) | will also approaches 0.

2.4.1.2 Theorem 2.2

If the system (2.18) has an asymptotic equilibrium point p such that the linearized matrix Mp has

all eigenvalues inside the unit circle of the complex plane, then xdis(t+η) approaches to x(t+η) as

G → ∞.

The proof is as follow. Since the derivative of f is continuous, there must exist a region Cε with

size ε around p such that all of the derivative matrices M in that region have all eigenvalues within

the unit complex circle. Let λ be the eigenvalue with the largest magnitude among these matrices.

In addition, since (2.1) has an asymptotic equilibrium point, after a finite time T, x(t) must be inside

Cε. Then, from (2.23)

| x1(t+η) - x2(t+η) | ≤ | 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−1) × 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−2) × … × 𝐌𝐌𝐱𝐱2(𝑡𝑡)(x1(t) – x2(t)) |

= | 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−1) × 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−2) × … × 𝐌𝐌𝐱𝐱2(𝑇𝑇) × (this has η - T + 1 factors)

𝐌𝐌𝐱𝐱2(𝑇𝑇+1) × 𝐌𝐌𝐱𝐱2(𝑇𝑇+2) × … × 𝐌𝐌𝐱𝐱2(𝑡𝑡) (x1(t) – x2(t)) | (this has T factors)

≤ |λ|η-T+1 × |λT|×|λT-1|×...×|λ1| × | x1(t) – x2(t)|

≤ |λ|η-T+1 × |λT|×|λT-1|×...×|λ1| √𝑁𝑁δ (2.26)

Because λ is within the complex unit circle, |λ|η-T+1 is finite as η → ∞. |λT|×|λT-1|×...×|λ1| is also

finite since T is finite. Therefore, |λ|η-T+1 × |λT|×|λT-1|×...×|λ1| √𝑁𝑁δ approaches to 0 as G → ∞ (or

δ → 0), which leads to | x(t+η) - xdis(t+η) | approaching 0.

22

2.4.1.3 Theorem 2.3

For a special case: If the system is asymptotically stable at 0 (regardless of the linearization), then

xdis(t+η) approaches to x(t+η) as G→ ∞ (or δ → 0).

The proof for this statement is relatively simpler. For any discretization threshold δ, we can

guarantee that the state x(t) will fall inside the region [-δ,δ] at some finite time T, and remain in

[-δ, δ] ∀t >T. This fact implies that with discretization, the MDP will have an absorbing state

specified by the region [-δ, δ]. In addition, regardless of the starting state x(0) and xdis(0), there

must be a path toward the absorbing state/region. Therefore, the MDP will eventually bring xdis(t)

to the absorbing state after some finite time L. Thus, after max(T, L), both xdis(t) and x(t) will stay

inside [-δ,δ]. Therefore, | x(t) - xdis(t) | ≤ δ as t → ∞.

In Figure 2.2, we show some toy examples in one-dimensional system to demonstrate the first

necessary condition. The left side is the result of the system

x(t+1) = sin(x(t)) + 0.1𝑒𝑒−(𝒙𝒙(𝑡𝑡))2 (2.27)

and the right side is the result of the system

x(t+1) = sin(x(t)) + 1.1𝑒𝑒−(𝒙𝒙(𝑡𝑡))2 (2.28)

The state space in both of these systems is [-1.5, 1.5]; the initial x(0) is 0.5 for both of them; and

we discretize the entire state space into G = 100 regions (δ = 0.02). The derivative matrices (2.20)

for systems (2.27) and (2.28) are one-dimensional functions cos(x) – 0.2x𝑒𝑒−𝑥𝑥2 and cos(x) –

2.2x𝑒𝑒−𝑥𝑥2 , correspondingly. As in Figure 2.3, where we plot the derivative of (2.27) and (2.28) in

the domain [-1.5. 1.5], system (2.27) satisfies the first necessary condition; while system (2.28)

23

does not. We observe that x and xdis approach closely to each other in system (2.27) but not in

system (2.28).

Figure 2.2. The closeness between x(real system) and xdis (MDP). The left figure corresponds to

system (2.27). The right figure corresponds to system (2.28)

Figure 2.3. Derivative ∂f/∂x in autonomous system: (2.27) on the left and system (2.28) on the

right.

2.4.2 The non-autonomous system

When we linearize the general system (2.5) using Taylor series expansion on any point

<x, u> = [p, q], we have

f(x) ≈ f(p, q) + Mp(x-p) + Mq(u-q) (2.29)

where Mp and Mq are the partial derivative of f at [p, q]

0 10 20 30 400

0.5

1

1.5

t

x
an

d
x di

s

real system
MDP

0 10 20 30 400

0.5

1

1.5

t

x
an

d
x di

s

real system
MDP

-1.5 -1 -0.5 0 0.5 1 1.5

x

-0.5

0

0.5

1

1.5

2

f`(
x)

-1.5 -1 -0.5 0 0.5 1 1.5

x

-0.5

0

0.5

1

1.5

2

f`(
x)

24

Mp =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

… 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

… 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑑𝑑

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

⋮ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

⋱ ⋮
… 𝜕𝜕𝑓𝑓𝑑𝑑

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (2.30)

and

Mq =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜕𝜕𝑓𝑓1
𝜕𝜕𝑢𝑢1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑢𝑢2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

… 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑢𝑢𝑔𝑔
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

… 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢𝑔𝑔

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

⋮ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑢𝑢1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑢𝑢2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

⋱ ⋮
… 𝜕𝜕𝑓𝑓𝑑𝑑

𝜕𝜕𝑢𝑢𝑔𝑔
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.31)

Similar to the autonomous system, for the close region ([xdis, udis]) (2.10-2.11), including the

boundary, containing [x, u], let Cη be the set of all x(t+η) computed by tracking all points in

([xdis, udis]) on f after η time points. On the region Cη containing all possible x(t+η), there exists

two points x1(t+η) and x2(t+η) such that |x1(t+η) - x2(t+η)| is the maximum for all pairs of points

in Cη. There must exist two chains: { [x1(t), u1(t)] , [x1(t+1), u1(t+1)] , ..., [x1(t+η-1), u1(t+η-1 }

and { [x2(t), u2 (t)] , [x2(t+1), u2(t+1)] , ..., [x2(t+η-1), u2(t+η-1)] } such that

x1(t+η) = f (x1(t+η-1), u1(t+η-1)) = f (f (x1(t+η-2), u1(t+η-2))) = ... = f η (x1(t), u1(t)) and

x2(t+η) = f (x2(t+η-1), u2(t+η-1)) = f (f (x2(t+η-2), u2(t+η-2))) = ... = f η (x2(t), u2(t)). Applying

the Taylor series expansion, we have

x1(t+η) - x2(t+η) = f η (x1(t+η-1)) - f η (x2(t+η-1))

=
𝜕𝜕𝑓𝑓η

𝜕𝜕(𝐱𝐱2(𝑡𝑡+η−1),𝐮𝐮2(𝑡𝑡+η−1))
 ([x1(t+η-1), u1(t+η-1)] – [x2(t+η-1), u2(t+η-1)]) + O(δ2)

= Mp,x2(t+η-1) (x1(t+η-1) - x2(t+η-1)) + Mq,u2(t+η-1) (u1(t+η-1) - u2(t+η-1)) (2.32)

25

Suppose that we have an arbitrary control law u = k(x). Taking the derivative of the control rule,

we have

∆u = Mk∆x

Such that Mk =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑘𝑘1
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑘𝑘1
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑘𝑘2
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑘𝑘2
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

… 𝜕𝜕𝑘𝑘1

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩

… 𝜕𝜕𝑘𝑘2
𝜕𝜕𝑥𝑥𝑑𝑑

�
𝐱𝐱=𝐩𝐩

⋮ ⋮
𝜕𝜕𝑘𝑘𝑔𝑔
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑘𝑘𝑔𝑔
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

⋱ ⋮
… 𝜕𝜕𝑘𝑘𝑔𝑔

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (2.33)

Substitute (2.33) to (2.32), we have

|x1(t+η) - x2(t+η)| = | (Mp,x2(t+η-1) (x1(t+η-1) - x2(t+η-1)) + Mq,u2(t+η-1)) (u1(t+η-1) - u2(t+η-1)) |

≤ | (Mp,x2(t+η-1) + Mq,u2(t+η-1) Mk x2(t+η-1)) (x1(t+η-1) - x2(t+η-1)) | (2.34)

Recursively applying the derivative chain rule on (x1(t+η-1) - x2(t+η-1)) until [x(t), u(t)], with

the same argument from (2.32) to (2.34), we have

|x1(t+η) - x2(t+η)| ≤ | (Mp,x2(t+η-1) + Mq,u2(t+η-1) Mk x2(t+η-1)) ×

 (Mp,x2(t+η-2) + Mq,u2(t+η-2) Mk x2(t+η-2)) × ...

 (Mp,x2(t+1) + Mq,u2(t+1) Mk x2(t+1)) (x1(t) - x2(t)) | (2.35)

From this point, similar to the autonomous system, we have the necessary conditions for the

xdis(t+η) approaches to x(t+η).

2.4.2.1 Theorem 2.4

If the matrices Mp + MqMk generated by (2.30), (2.31) and (2.33) have no eigenvalue outside the

unit circle on the complex plane, then xdis(t+η) approaches to x(t+η) as δ → 0 with anyη.

26

2.4.2.2 Theorem 2.5

If the system (2.5) has an asymptotic equilibrium point p such that the linearized matrix

Mp + MqMk at the equilibrium point has all eigenvalues inside the unit circle of the complex plane,

then xdis(t+η) approaches x(t+η) as δ → 0 for anyη.

We omit the proof for these two statements since the proof is almost similar to the proof we already

showed in the autonomous system section

In Figure 2.4, we show some toy examples in one-dimensional system to demonstrate the first

necessary condition. The left side is the result of the system

x(t+1) = sin(x(t)) + u(t) and control law u(t) = -0.5x(t) (2.36)

and the right side is the result of the system

x(t+1) = sin(x(t)) + u(t) and control law u(t) = -2x(t) (2.37)

The state space in both of these systems is [-1, 1]; the initial x(0) is 0.5 for both of them; and we

discretize the entire state space into G = 100 regions (δ = 0.02). In (2.36), Mp + MqMk = cos(x(t))

– 0.5, which is within [0.0403, 0.5]. Therefore, (2.36) meets the first necessary condition. In (37),

Mp + MqMk = cos(x(t)) - 2, which is between [-1.5403, -1]. Therefore, (2.37) does not meet the

necessary condition. As in Figure 2.4, xdis(t) converges to x(t) in system (2.36), but not in system

(2.37).

27

Figure 2.4. The closeness between x(real system) and xdis (MDP) in non-autonomous system.
The left figure corresponds to system (2.36). The right figure corresponds to system (2.37).

 The existence of the MDP solution as to near-optimally stabilize the system

In this section, we show the existence of the MDP solution when the system (2.5) is stable at the

equilibrium point. The stability definition is defined as follow: there exist a positive small number

ε such that if |x| < ε then |f(x, 0)| < ε. With this assumption, when we choose G such that χ 𝐺𝐺⁄ < ε,

the MDP will have a special state x*dis = 0 with the following properties:

- The MDP’s optimal policy at x*dis is u*dis = 0.

- The later states in the MDP are also x*dis.

The proof for these properties are relatively simple due to the properties of the state and action

reward functions in (2.6) and (2.7), where the optima are at 0. From this stability assumption of f,

we prove the following statements.

2.5.1.1 Theorem 2.6

If the system (2.1) is stable and the HJB equation (2.5)-(2.10) has a finite solution as γ → 1, then

in the MDP, xdis(t) = 0 as t → ∞.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

t

x
an

d
x di

s

real system
MDP

0 10 20 30 40
-1

-0.5

0

0.5

1

real system
MDP

28

The proof for this statement is as follow. If the HJB equation (2.5)-(2.10) has a finite solution as γ

→ 1, then the control function u(t) has to be able to bring x(t) to 0 in finite time. Otherwise, the

state and action rewards are always negative and will approach infinite as γ → 1. Since x(t) is 0 in

finite time, there must exist a path in the MDP that can reach x*dis with positive probability.

Obviously one of these paths is the discretization of the HJB’s solution u(t). Since the policy

iteration in MDP has been proven to converge to the optimal policy [13], this policy cannot be

worse that the policy induced by discretizing the HJB equation’s solution. Therefore, in the MDP’s

optimal policy, there must exist a path from any state to x*dis with positive probability φ > 0. With

infinite number of visit t→ ∞, the maximum probability for not reaching x*dis is (1 − φ)∞ → 0.

2.5.1.2 Theorem 2.7

If all Mp matrices (2.30) have the most prominent eigenvalues within the unit circle ∀x,u and

xdis(t) = 0 as t → ∞ in the MDP solution for all starting xdis(0), then by applying the MDP’s

control unit udis(t) on x(t), |x(t)| ≤ √𝑁𝑁δ.

The proof of this statement is as follow. Since we apply udis(t) for all x(t) in (xdis(t)) region, the

difference of the control unit cancels. Thus, the equation (2.32) becomes

f(x) ≈ f(p, q) + Mp(x-p) (2.38)

Following the same argument from (2.30) to (2.35), we have

|x1(t+η) - x2(t+η)| ≤ | (Mp,x2(t+η-1)) × (Mp,x2(t+η-2)) × ... ×(Mp,x2(t+1)) (x1(t) - x2(t)) | (2.39)

Because the most prominent eigenvalues of Mp are within unit circle, from (2.39), we have

|xdis(t) – x(t)| ≤ |x1(t+η) - x2(t+η)| ≤ | (x1(t) - x2(t)) | ≤ √𝑁𝑁δ (2.40)

Therefore, if xdis(t) → 0, then |x(t)| ≤ √𝑁𝑁δ.

29

 Simulation results

In this example, we choose the system

𝐱𝐱(𝑡𝑡 + 1) = 𝑓𝑓(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)) = 𝑠𝑠𝑠𝑠𝑠𝑠�𝐀𝐀𝐀𝐀(𝑡𝑡) + 𝐮𝐮(𝑡𝑡)� (2.41)

where

𝐀𝐀 = �
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

�

For the ease of decentralization, we choose the system such that the dimensionalities of both x and

u are the same. The vector sin function is defined from each dimension as

sin(𝐱𝐱) = �
sin (𝐱𝐱1)
sin (𝐱𝐱2)
sin (𝐱𝐱3)

� (2.42)

In addition, each dimension of x and u is between -0.35 and 0.35. The initial state x(0) is a vector

of 0.2. For equation (2.2) and (2.3), we choose p(x) = - ||x||2 and q(u) = -||u||2. We set γ = 0.9. For

discretization, we divide each state and control dimension into G = 7 grids, which means δ = 0.1.

It is easy to see that system (2.40) satisfy the necessary conditions for the existence of the MDP

solution. Figure 2.5 shows that the MDP solution could drive the system (40) toward the stable

region.

30

Figure 2.5. Learning performance p(x) and q(u) in system (2.40) with MDP solution

0 100 200 300 400 500

iteration

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

b) q(u)

31

3. SELECTIVE DECENTRALIZATION

As mentioned in chapter 1 and chapter 2, the larger reinforcement learning problems is, the more

decentralized learning techniques should be. MDP is a typical example where the number of states

grows exponentially with the problem dimensionality [73], which explains why this technique may

be inapplicable for even average-size problem with dimensionality around 10. In chapter 1, we

already discuss the recent state-of-the-art methods in decentralized learning [44, 46, 48, 49, 51].

However, these techniques often require partial and prior knowledge about the communicative

structure among the learning agents. This assumption may not always hold in reinforcement

learning, given its unknown nature.

In this short chapter, we present the overview, problem statement and pseudo code for the selective

decentralization technique, which is the second key contribution in this thesis. The outcome of

selective decentralization would be presented in later chapters when selective decentralization is

used in combination with other well-known reinforcement learning techniques. From the

communication point of view, the selective decentralization belongs to multi-model switching

category [52-55]. The selective decentralization could not only improve the learning performance

but also learn the optimal communication scheme for the agents without any prior knowledge on

communicative structure.

 Problem statement of selective decentralization

Let the dynamical system (Σ) be described by the equation:

Σ: 𝒙𝒙(𝑡𝑡 + 1) = 𝑓𝑓[𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡),𝜃𝜃] (3.1)

32

where 𝑥𝑥 ∈ ℝ𝑁𝑁 where 𝑁𝑁 is a large number. It is assumed in this problem that the input 𝑢𝑢(𝑡𝑡) is

known. 𝜃𝜃 is an unknown parameter vector in ℝ𝑀𝑀 where the dimension 𝑀𝑀 is large. The objective

is to estimate 𝜃𝜃 using measurements of the overall system.

In the problem of interest to us, the system is assumed to consist of 𝑟𝑟 components of lower

dimension which are interconnected. If the state vectors of the subsystems Σ1,Σ2, … , Σ𝑟𝑟 are

respectively 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑟𝑟, it is assumed that each subsystem can be described by the difference

equation

Σ𝑖𝑖: 𝒙𝒙𝑖𝑖(𝑘𝑘 + 1) = 𝑓𝑓𝑖𝑖[𝒙𝒙𝑖𝑖(𝑘𝑘),𝑢𝑢𝑖𝑖(𝑘𝑘),𝜃𝜃𝑖𝑖] + 𝜎𝜎𝑖𝑖𝑔𝑔[𝒛𝒛𝒊𝒊(𝑘𝑘)] (3.2)

where the parameter 𝜎𝜎𝑖𝑖 is assumed to be small, and [𝒙𝒙𝑖𝑖, 𝒛𝒛𝑖𝑖] = 𝒙𝒙𝑇𝑇(i.e., the elements of 𝒛𝒛𝑖𝑖 are state

variables not contained in 𝒙𝒙𝑖𝑖).

A decentralized model can be set up as:

𝒙𝒙�𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓𝑖𝑖[𝒙𝒙𝑖𝑖(𝑡𝑡), 𝒛𝒛𝒊𝒊(𝑡𝑡),𝒖𝒖(𝑡𝑡),𝜃𝜃(𝑡𝑡)] (3.3)

At this stage, the knowledge that each agent has about the components of z that affect it, becomes

important. We distinguish between two distinct cases:

- Every agent knows all the state variables that affect its outputs (known decentralization

structure).

- Every agent Σ𝑖𝑖 knows the small set of variables in 𝒛𝒛𝑖𝑖 that might affect its outputs, but

does not know exactly which variables do affect them (unknown decentralization structure).

In the former case, Σ𝑖𝑖 uses a single model set up with the correct decentralization structure, but in

the latter case it uses multiple models corresponding to different possible decentralization

33

structures, and switches between them. The former is referred to as strict decentralization, and the

latter as selective decentralization.

The selective decentralized control examines all of the connection schemes (also called

decentralization scheme) among the agents and sets up criteria to select which scheme to help in

performing the learning, depending on the specific problem. In this thesis, we use system

identification error for model-based learning and cumulative Q-value [26] gained for model-free

learning. Since we assume that the agents do not know anything about communicative structure,

the possible of communication schemes follows the Bell’s number rule, which is the number of

partition in a set [59]. For example, with number of agents r = 3, we have B(r) = 5, which is the

third Bell’s number, possible decentralization schemes: {{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}},

{{1}, {2, 3}} and {{1}, {2}, {3}}, in which each scheme has 1, 2, 2, 2 and 3 subsystem(s),

correspondingly. An agent only uses its state and control variable to compute its own approximator.

For example, in the linear control-learning system (see chapter 2), with scheme {{1, 2}, {3}}, we

have the format 𝐀𝐀� = �
𝐀𝐀�1,2

𝐀𝐀�3
�. For identification phase, 𝐀𝐀�1,2(𝑡𝑡) is computed only using x1(t-1),

x2(t-1), u1(t-1) and u2(t-1), meanwhile 𝐀𝐀�3(𝑡𝑡) is computed only using x3(t-1) and u3(t-1). In the

decision phase, if scheme {{1, 2}, {3}} returns the lowest identification error, then from (12), we

compute the next control [u1(t), u2(t)] using only 𝐀𝐀�1,2(𝑡𝑡) and u3(t) using only 𝐀𝐀�3(𝑡𝑡).

 Pseudo code for selective decentralization

One important factor in selective decentralization is how often the central coordinator examines

and decides switching the decentralization schemes. Here, let Ω be the window size, which means

after how many iterations or learning instances the agent should examines and decides switching.

34

Let w be the window index. Then the window w covers the discrete time index from t = (w-1) Ω +

1 to t = wΩ. The central coordinator decides the switching criteria E for all communication scheme,

for example, identification error. Let Es(w) be the value of E for communication scheme s at

window w. Let ε and γ be two small thresholds for termination. The pseudo code for selective

decentralization is as follow:

initialize b: the best decentralization scheme

 E: criteria to select the best decentralization scheme,

 Es = 0 for all communication scheme s.

for w from 1 to the maximum window index

 perform the learning technique using b

 compute E(w) for B(r) decentralization schemes s (see B(r) in the previous section)

 Select the decentralization scheme with the lowest E(w) as b

 if w > 1 and (E(w) < ε or |E(w) - E(w-1)| / |E(w)| < γ)

 return

 end if

end for

35

4. SELECTIVELY DECENTRALIZED Q-LEARNING

In this chapter, we show the impact of selective decentralization to improve Q-learning, which is

one of the most well-known model-free reinforcement learning technique [27, 46, 79-81]. The key

contributions of selectively decentralized Q-learning are at three points. First, selectively

decentralized Q-learning would clearly show superior converging time, compared to centralized

Q-learning. As the dimensionality of the learning problem increases, the converging time of

selectively decentralized Q-learning is expected to be exponentially shorter than the converging

time of centralized Q-learning. Second, the results in this chapter suggest that decentralized Q-

learning could be practically applied as an alternative approach for unknown system control

problems. In these problems, the conventional Hamilton-Jacobi-Bellman equation approach may

not provide the close-form solution in general [15-18]. Third, selective decentralized Q-learning

is able to learn the optimal communication scheme among the learning agents, which many recent

decentralized Q-learning technique may not have.

Decentralization has been widely applied in Q-learning [26], especially when the systems are

naturally distributed [82, 83]. In Q-learning, the learning agent maintains the optimal values for

all state-action entries in its Q-table. In each state, the learning agent chooses the action by the

highest Q-table entry for the state. After each visit, the learning agent updates the former state-

action Q-value by the new state’s reward and highest Q-value. Most of the decentralized Q-

learning approaches adapt the partial communication idea: each subsystem manages its own

communication and utilizes these communications for updating own Q-table. Although

decentralized Q-learning has been well-established, there are still two open questions in this

approach. First, how well decentralized Q-learning tackle the slow rate of converging weakness in

36

Q-learning [84]? Second, how to use apply multi-model-switching in decentralized Q-learning?

There has been relatively small literature about multi-model-switching in decentralized Q-

learning.

In this chapter, I address these two questions above by solving an optimal control problem by Q-

learning paradigm. A brief review about Q-learning is presented in Chapter 1 with literatures [25-

27]. This chapter also proves some sufficient conditions such that the Q-learning policy is

guaranteed to stabilize the nonlinear system. I emphasize that in our control problems, we design

the state-reward function with linearity property such that the central state-reward value is

equivalent to the sum of all sub-state rewards. From this argument, I choose the cumulative gained

Q-value to decide the best communication scheme. However, due to the difficulty to provide

theoretical analysis for this question, I can only offer limited proofs that the Q-learning policy

could guarantee to stabilize the learning-control system for a single agent. Most of our results only

serve as confirmation studies, as I already published in [85]. While it is clear that the multi-agent

and selective decentralization could stabilize the learning-control system, it is still unclear how the

multi-agent policy could be, and how the multi-agent policy is similar to the centralized policy.

 Selectively decentralized Q-learning method

4.1.1 Problem statement

In this chapter, we are interested in the systems in the general form

x(t+1) = f (x(t), u(t)) (4.1)

where x ∈ ℜN is the joint state vector, u ∈ ℜM is the joint action (also called control) vector, f :

ℜN+M → ℜN is a general nonlinear unknown function. We assume that f has the stable equilibrium

point f (0, 0) = 0. The main objective is to learn the sequence of action units u(t) to stabilize x

37

x(t) → 0, u(t) → 0 as t → ∞ (4.2)

In order to apply Q-learning, we need to discretize the system (4.1). Therefore, to simplify the

discretization, we assume that the system (4.1) has the following properties

- Each dimension of x is symmetrically bounded by [-χ, χ], where χ > 0 is a known boundary

for x.

- Each dimension of u is symmetrically bounded by [-µ, µ], where µ > 0 is a known boundary

for u.

To apply selectively decentralized Q-learning, we restate the following assumptions for system

(4.1). First, the system could be decoupled in to K subsystems, where each subsystem could be

assigned to an independent learning agent. Each agent knows which components of x and u

belonging to it. Second, since f is unknown, each agent k does not know the relationship between

the current sub-state xk(t) and previous sub-state/sub-action [xk(t-1), uk(t-1)]. Each agent does not

know the interconnection among itself and the other agents. The central coordinator unit to decide

which decentralization structure could provide the best learning performance. In each scheme,

there are L ≤ K groups such that each group contains one or more subsystems/agents

communicating to execute Q-learning. In a group, inside agents do not communicate with any

outside agents.

4.1.2 System discretization and reward function

Let G be the number of intervals in each dimension of x and u for which we uniformly divide the

dimension into small grids. Therefore, the entire state space is divided into GN small hyper cubes

with edge θx = 2χ/G. The control space is divided into GM small hyper cubes with edge θu = 2µ/G.

All points inside a hyper cube are discretely represented by the center of the hyper cube. Points on

38

the border between two hyper cubes are represented by the center of the ‘left’ hypercube.

Mathematically, the discretization process is described by the following formulas

𝐱𝐱[𝑖𝑖] → 𝜃𝜃𝑥𝑥 + χ 𝐺𝐺⁄ ∀ 𝑖𝑖∈[1,𝑁𝑁] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐱𝐱[𝑖𝑖] ∈ [𝜃𝜃𝑥𝑥, 𝜃𝜃𝑥𝑥 + 2 χ 𝐺𝐺⁄) (4.3)

𝐮𝐮[𝑖𝑖] → 𝜃𝜃𝑢𝑢 + 𝜇𝜇 𝐺𝐺⁄ ∀ 𝑖𝑖∈[1,𝑀𝑀] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐮𝐮[𝑖𝑖] ∈ [𝜃𝜃𝑢𝑢,𝜃𝜃𝑢𝑢 + 2 𝜇𝜇 𝐺𝐺⁄) (4.4)

where θx ∈ {-χ, -χ + 2χ/G, -χ + 4χ/G, ..., χ- 2χ/G } and θu ∈ {-µ, -µ + 2µ/G, -µ + 4µ/G, ..., µ-

2µ/G }, which are the ‘left’ boundaries in the hyper cubes. We denote xdis and udis as the discrete

space and control vector of x and u, correspondingly.

With the discretization process in (4.3) and (4.4), it is important and easy to see that when M is

odd, the zero vector 0 is one of the discrete space/control vectors. Given this condition, we define

the state reward function q(x) as

𝑞𝑞(𝐱𝐱) = �𝑞𝑞(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

, where 𝑞𝑞(𝑖𝑖) = �−𝐱𝐱dis(𝑖𝑖)2 if 𝐱𝐱dis(𝑖𝑖) ≠ 0
𝑟𝑟 if 𝐱𝐱dis(𝑖𝑖) = 0 (4.5)

where r > 0 is a small bonus factor when the discrete xdis is 0, or x is within the hypercube

containing the equilibrium point. Since our main objective is to stabilize (4.1), with reward

function (4.5), the learning problem aims to maximize

𝐽𝐽(𝐱𝐱) = �𝛾𝛾𝑡𝑡𝑞𝑞�𝐱𝐱dis(𝑡𝑡)�
∞

𝑡𝑡=0

 (4.6)

where 0 < γ < 1 is the discount factor. The learning problem (4.3-4.6) is similar to a classical

exploration problem in [3], where there is only one terminated state with positive reward and all

of the other states show negative reward.

39

4.1.3 Selectively decentralized Q-learning formulation

First, we rewrite (4.5) and (4.6) for subsystem as follow. Let N1, N2, …NK be the dimensionality

of the K subsystems. Certainly, N1 + N2 + … + NK = N. Let {i1}, [86], … {iK} be the set of indexes

of x and u belonging to these subsystems. In subsystem k, we denote x{ik} and u{ik} as the sub-

state and sub-action vectors. Thus, (4.5) becomes

𝑞𝑞�𝐱𝐱({𝑖𝑖𝑘𝑘})� = � 𝑞𝑞(𝑖𝑖)
∀𝑖𝑖∈{𝑖𝑖𝑘𝑘}

, where 𝑞𝑞(𝑖𝑖) = �−𝐱𝐱dis(𝑖𝑖)2 if 𝐱𝐱dis(𝑖𝑖) ≠ 0
𝑟𝑟 if 𝐱𝐱dis(𝑖𝑖) = 0 (4.7)

In each subsystem, at each iteration, the Q-learning is executed according to [3]

𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1),𝐮𝐮dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1)] = (1 − 𝛼𝛼)𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1),𝐮𝐮dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1)] +

𝛼𝛼 �𝑞𝑞�𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1)� + 𝛾𝛾 max
𝐮𝐮′dis{𝑖𝑖𝑘𝑘}

𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡),𝐮𝐮′dis{𝑖𝑖𝑘𝑘}]� (4.8)

Where 𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘},𝐮𝐮dis{𝑖𝑖𝑘𝑘}] denotes the Q table in subsystem k and 0 < α < 1 is the learning rate.

Suppose that the decentralization scheme b partitions the entire system into L disjoint components

c1, c2, …, cL with dimensionality N1, N2, …, NL . Each component contains one or more subsystems.

For any component cl, let {Il} = ∪ {ik} be the union of indexes from all subsystems k belonging to

cl. In this component, the Q-learning is executed according to (4.7) and (4.8) with index set {Il}.

Since the number of possible decentralization schemes in a K-subsystem is BK [59], the main

question in selective decentralization is which scheme b is the ‘best’. In this work, we select the

scheme b returning the highest cumulative gained Q value, which is

 Ω(𝑏𝑏) = �𝛼𝛼�
𝑞𝑞�𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡 − 1)� +

𝛾𝛾 max
𝐮𝐮′dis{𝐼𝐼𝑙𝑙}

𝑄𝑄[𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡),𝐮𝐮′dis{𝐼𝐼𝑙𝑙}] −𝑄𝑄[𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡 − 1),𝐮𝐮dis{𝐼𝐼𝑙𝑙}(𝑡𝑡 − 1)]�
𝐿𝐿

𝑙𝑙=1

 (4.9)

40

Let w be the window index covering the time from t = (w-1) Ω + 1 to t = wΩ. In this window, we

choose the same decentralization scheme to decide the optimal action u’dis for

max
𝐮𝐮′dis

𝑄𝑄[𝐱𝐱dis(𝑡𝑡),𝐮𝐮′dis] . Larger window size implies less scheme switching. Pseudo code of

procedure QLearning_Window shows more details on how we execute selectively decentralized

Q-learning in each window.

Procedure QLearning_window (w)

 Persistent input: Q tables in all BK decentralization schemes

 S: array to store the cumulative gained Q-value

 b: best decentralization scheme

 if w = 1

 Initialize all Q tables as 0 in all decentralization schemes (4.10)

 Choose a random decentralization scheme as b

 Reset S to 0

 for t from (w-1) Ω + 1 to wΩ

 // use b to compute the action

 for all components l in b

 Compute 𝐮𝐮dis{𝐼𝐼𝑙𝑙}(𝑡𝑡) as max
𝐮𝐮′dis{𝐼𝐼𝑙𝑙}

𝑄𝑄[𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡),𝐮𝐮′dis{𝐼𝐼𝑙𝑙}] (4.11)

 Assembly 𝐮𝐮dis(𝑡𝑡)from all 𝐮𝐮dis{𝐼𝐼𝑙𝑙}(𝑡𝑡)

 // update the cumulative Q-value gained

 for all decentralization schemes β

 S[β] = S[β] + Ω(β) // formula (4.9)

 Update Q tables in all components according to (8), with 𝐮𝐮dis(𝑡𝑡)

41

 Choose b as argmax
𝛽𝛽

𝑆𝑆[𝛽𝛽]

In (4.11), if there are multiple 𝐮𝐮′dis{𝐼𝐼𝑙𝑙} returning the same optimal Q value (especially in (4.10)

when we initialize the Q-table as 0) for 𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡), we randomly select one instance. We choose

the cumulative gained Q-value as the choice of decentralization scheme. First, it is important to

note that the state-reward function (4.5), (4.7) satisfy the first linearity assumption: For any

decentralization b separating system (1) into L components such that these component are

completely disjoint, the sum of components’ state-rewards is equal to the centralized state-reward.

𝑞𝑞(𝐱𝐱) = �𝑞𝑞�𝐱𝐱({𝐼𝐼𝑙𝑙})�
𝐿𝐿

𝑙𝑙=1

 (4.12)

 Sufficient conditions for the Q-learning policy to stabilize the system

The discretization in (4.3) and (4.4) allows partitioning the state space into different layers as

follow:

 - The 0th layer contains only the hypercube with the 0-equilibrium point.

 - Recursively, the gth layer (g > 0) contains all hyper-cubes outer-neighboring the (g-1)th layer.

Figure 4.1 demonstrates the layer defined above in two-dimensional state space.

Figure 4.1. Demonstration of state-layers for discretization in two dimensions. : 0th layer, :
1st layer, : 2nd layer, : 3rd layer

42

In addition, by the continuity assumption and the choice of G to discretize the action state, for

every state of layer g > 0, there must exist discrete action transiting the next state toward the inner

layers.

From the discretization in (4.5) and (4.6) and the layer definition above, we setup the penalty

function as follow

q(x) = -𝛽𝛽g ||x|| (4.13)

in which g denotes the layer where x belongs to. βg are positive constants chosen as follow

⎩
⎪
⎨

⎪
⎧ 𝛽𝛽0 = 0

𝛽𝛽1 = 1

𝛽𝛽𝑔𝑔 =
𝛽𝛽𝑔𝑔−1√𝑁𝑁

1 − γ
 ∀𝑔𝑔 > 1

(4.14)

In this section, I demonstrate the theoretical result on sufficient conditions for the Q-learning

solution to stabilize the system (4.1). The analysis begins with well-known statements that with

the Q-learning executed as in [26]: It is guarantee that Q-learning converges the Q-table to the

optimal values. In addition, [87] shows that: The optimal Q-value is equivalent to the optimal

learning goal J(x). From this point, we have the following theorems.

4.2.1.1 Theorem 4.1

For all states x belonging to the 0th layer, the optimal Q-table for these states is Q(x, 0) = 0, which

implies that there is no need to take further action.

Proof: this theorem is trivial. Because system (4.1) is stable at the 0-equilibrium point such that

||x(t+1) = f(x(t), 0)|| ≤ δ ∀ t > 0 if ||x(0)|| ≤ δ (4.15)

43

and we choose δ = max(2χ/G, 2µ/G) to discretize the state space as in (4.3-4.4), by taking no action

u = 0, all subsequent states will stay within the 0th layer if x(0) is inside the 0th layer. Therefore,

the Q-table should be

𝐽𝐽(𝐱𝐱) = �𝛾𝛾𝑡𝑡𝑞𝑞�𝐱𝐱dis(𝑡𝑡)�
∞

𝑡𝑡=0

= �𝛾𝛾𝑡𝑡𝛼𝛼0||𝐱𝐱dis(𝑡𝑡)||
∞

𝑡𝑡=0

= 0 (4.16)

The other actions u ≠ 0 may bring the state outside the 0-equilibrium point and receive penalty. In

this case, the Q-table would be negative and certainly not optimal.

4.2.1.2 Theorem 4.2

With the partial derivative of system (1) respected to x at x = p and u = q as Mp,q

Mp,q =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

… 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

… 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑑𝑑

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

⋮ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

⋱ ⋮
… 𝜕𝜕𝑓𝑓𝑑𝑑

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (4.17)

if the largest (magnitude) eigenvalue of Mp,q ∀p, q is within the unit circle, then for every state

not inside the 0th layer, the optimal action must be able to transit the state toward the inner layer.

Proof: the proof starts by linearizing (1) using Taylor series expansion

f (x, q) = f (p, q) + Mp,q(x-p) (4.18)

When x and p are in the same hypercube, ||x-p|| < δ. Therefore, from (4.18)

|| f (x, q) - f (p, q) || = || Mp,q(x-p) || < λδ (4.19)

where λ stands for the largest eigenvalue of Mp,q. Therefore, if λ is within the unit circle,

|| f (x, q) - f (p, q) || < δ (4.20)

44

which imply that from every state in the same hypercube and executing the same action, the next

state will not span on more than two layers. Therefore, for any hypercube [xdis), if any action q

could transit a state x ∈ [xdis) toward the inner layers, then there exist no state in [xdis) such that

executing q could transit toward the outer layers.

In addition, it is easy to see that at the gth layer, ||xdis|| is bounded by

𝑔𝑔δ�|𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑|� = �� (𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑)2
𝑁𝑁

𝑖𝑖=1
< 𝑔𝑔δ√𝑁𝑁 (4.21)

From the definition of q(x) in (4.13) and (4.14), for every state at gth layer (g > 0), we have

�𝛾𝛾𝑡𝑡𝛽𝛽𝑔𝑔||𝐱𝐱dis(𝑡𝑡)||
∞

𝑡𝑡=0

< �𝛾𝛾𝑡𝑡𝛽𝛽𝑔𝑔𝑔𝑔δ√𝑁𝑁
∞

𝑡𝑡=0

=
𝛽𝛽𝑔𝑔𝑔𝑔δ√𝑁𝑁

1 − 𝛾𝛾
= 𝛽𝛽𝑔𝑔+1𝑔𝑔δ (4.22)

In (4.22), the left side is the upper bound of the Q-value (J(x)) by executing action such that the

state does not transit toward the outer layer. Here, the upper bound is calculated in the worst-case

scenario when the state simply stay in the gth layer. In addition, from (4.16) we can see that the

right side is the lower bound of Q-value by executing action such that the state transit toward the

outer layers. Therefore, for any state, the optimal policy should avoid actions, which could transit

toward the outer layers. Furthermore, from any state x, if there exist an action u transiting the next

state toward the inner layers, then the optimal policy should allow transiting the state toward the

inner layers.

4.2.1.3 Theorem 4.3

If the largest (magnitude) eigenvalue of Mp,q ∀p, q in (4.17) is within the unit circle, then the

optimal policy learned by Q-learning will bring the system state toward the 0th layer, thus stabilize

the system toward the 0-equilibrium point with δ error.

45

Proof: By the continuation assumption of system (1), we know that there exist actions allowing

transition from the outer-layer states toward the inner-layer states. Here, there may be some states

of the gth layer such that in order to transit toward the inner-layer, the transition must pass through

several other states of the same gth layer. The result from theorem 2 shows that the series of discrete

xdis(t) never lead to ‘outer’ direction, and must lead toward ‘inner’ direction if there exist a path

toward the inner layers. Therefore, from any discrete state, the optimal Q-learning policy must be

able to transit the state toward the most-inner layer, or the 0th layer. In other words, xdis(T) = 0, so

||x(T)|| < δ after some time T. By the stability assumption of (1), we know that ||x(t)|| < δ.

 Toy example results

4.3.1 Converging speed of selectively decentralized Q-learning

I perform experiments on several toy examples from the same class of system to show the superior

converging speed of selectively decentralized Q-learning, compared to centralized Q-learning. In

these examples, we examine the convergence from two points of view: the closeness of x(t) toward

0 and the magnitude of cumulative Q value increase. The difference in converging speed between

the selectively decentralized Q-learning and the centralized Q-learning may grow exponentially

with the number of subsystems.

The systems used in these examples are in the format

x(t) = sin(Ax(t-1)) + u(t) (4.23)

where A are N×N random Markov matrices such that all diagonal entries share the same value.

The vector sin function is defined from each dimension as

46

sin(𝐱𝐱) = �

sin (𝐱𝐱1)
sin (𝐱𝐱2)

⋮
sin (𝐱𝐱𝑛𝑛)

� (4.24)

The coupling parameter σ on the non-diagonal entries is defined as

𝜎𝜎 =
∑ 𝐀𝐀𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

∑𝐀𝐀𝑖𝑖𝑖𝑖
 ∀𝑖𝑖, 𝑗𝑗 ∈ [1,𝑁𝑁] (4.25)

In other words, σ is the ratio between the sum of non-diagonal entries in A and the sum of all

entries in A. With σ = 0, A becomes the identity matrix or the systems are completely decouple.

The systems are more couple when σ increases. For state and action variables, all state x and action

u components have the range between -0.5 and 0.5 and initial state vectors x(0) are uniformly

random numbers. For discretization (4.3-4.4), we choose G = 5. Therefore, θx = θu = 0.2. For Q-

learning parameters (4.5-4.8), we choose r = 0.01, α = 0.1 and γ = 0.9. I test system (4.24) with

number of subsystems N = 3, 4, 5 and 6 and window size w = 50. For each choice of n, we repeat

the experiments 100 times and report the average value due to the randomness of A and x(0).

Figures 4.2-4.5 highlight two significant advantages of selectively decentralized Q-learning,

compared to centralized Q-learning. First, selectively decentralized Q-learning converges faster in

both completely decouple systems and strongly couple systems. This fact suggests that selectively

decentralized technique could be applied to many systems with wide-range of interconnection.

Second, the converging time of selectively decentralized Q-learning grows much slower than the

convergence time in centralized Q-learning. Due to the lack of space, we only draw the result when

N = 3 and N = 6 to highlight the change in system dimensionality. As showed in figures 4.4 and

4.5, the centralized Q-learning does not converge within 100,000 iterations (or 2000 windows).

From the characteristics of figure 4.2, we could still conclude that the centralized Q-learning in

47

figure 4.4 would converge if we continue the experiment with much larger number of iterations.

Figures 4.6 and 4.7 show more details on how selectively decentralized Q-learning converges

within the first few tens of windows.

Figure 4.2. Comparison between centralized and selectively decentralized Q-learning in

completely decentralized 3-subsystems.

Figure 4.3. Comparison between centralized and selectively decentralized Q-learning in strongly

couple (σ = 0.5) 3-subsystems.

0 200 400 600 800 1000

window index

0

0.05

0.1

0.15

0.2

0.25

0.3

average ||x||

Centralized System

Selectively Decentralized System

0 200 400 600 800 1000

window index

-0.08

-0.06

-0.04

-0.02

0

0.02
average Q gained

Centralized System

Selectively Decentralized System

0 200 400 600 800 1000

window index

0

0.05

0.1

0.15

0.2

0.25

0.3

average ||x||

Centralized System

Selectively Decentralized System

0 200 400 600 800 1000

window index

-0.08

-0.06

-0.04

-0.02

0

0.02
average Q gained

Centralized System

Selectively Decentralized System

48

Figure 4.4. Comparison between centralized and selectively decentralized Q-learning in

completely decouple 6-subsystems.

Figure 4.5. Comparison between centralized and selectively decentralized Q-learning in strongly

couple (σ = 0.5) 6-subsystem.

0 500 1000 1500 2000

window index

0

0.2

0.4

0.6

0.8

1
average ||x||

Centralized System

Selectively Decentralized System

0 500 1000 1500 2000

window index

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
average Q gained

Centralized System

Selectively Decentralized System

0 500 1000 1500 2000

window index

0

0.2

0.4

0.6

0.8
average ||x||

Centralized System

Selectively Decentralized System

0 500 1000 1500 2000

window index

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
average Q gained

Centralized System

Selectively Decentralized System

49

Figure 4.6. Convergence of selectively decentralized Q-learning in the first few of tens windows
when the systems are completely decouple

Figure 4.7. Convergence of selectively decentralized Q-learning in the first few of tens windows

when the systems are strongly couple (σ = 0.5)

4.3.2 Switching among decentralization schemes

In Figure 4.8, we repeat all experiments in the previous section with w = 1 (the most frequent

switching scenario) to show that selectively decentralized Q-learning will stop switching the ‘best’

decentralization scheme. Here, in order to compare with figure 4.6, we draw the average number

of scheme switches for every 50 iterations/windows (to recall, in the previous section, we set w =

50). Comparing figure 4.6 and 4.7, in most of the cases, we observe that the point when number

of scheme switches drop to 0 is earlier than the point when the selectively decentralized Q-learning

0 10 20 30 40

window index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
average ||x||

3 subsystems

4 subsystems

5 subsystems

6 subsystems

0 10 20 30 40

window index

-0.4

-0.3

-0.2

-0.1

0

0.1
average Q gained

3 subsystems

4 subsystems

5 subsystems

6 subsystems

0 10 20 30 40

window index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
average ||x||

3 subsystems

4 subsystems

5 subsystems

6 subsystems

0 10 20 30 40

window index

-0.4

-0.3

-0.2

-0.1

0

0.1
average Q gained

3 subsystems

4 subsystems

5 subsystems

6 subsystems

50

converges. This result may suggest that selectively decentralized Q-learning may learn the optimal

communication policy during the optimal stabilization process.

Figure 4.8. Average number of switches in selectively decentralized Q-learning. Left: completely
decouple systems. Right: strongly couple (σ = 0.5) systems.

 Discussions

Since the theoretical analysis of Q-learning, decentralized and distributed Q-learning mostly

focuses on the existence of the optimal Q-value and the guarantee of reaching the optimal Q-value

[26, 46, 88], we lack the theoretical explanation for the drastic superior converging speed of

decentralized Q-learning. In this section, we explain the superior performance of selectively

decentralized Q-learning from two points of view. First, as stated in the foundation of Q-learning

[26], the convergence of Q-learning assumes that all of the state-action entries in the Q-table are

visited infinitely. Therefore, in order to converge to the optimal Q, the Q-learning systems are

supposed to spend time to explore the Q-table. In figures 4.2 and 4.3 where we show the

convergence of centralized Q-learning, there are long periods where ||x|| and accumulate Q-gained

change slowly. These periods may correspond to the exploration phases. Because the number of

states, actions, and state-action entries grow exponentially with system dimensionality,

decentralized Q-learning into smaller dimension may also improve the convergence exponentially

0 5 10 15 20

window (with w = 50)

0

10

20

30

40

average number of switches

3 subsystems

4 subsystems

5 subsystems

6 subsystems

0 5 10 15 20

window (with w = 50)

0

10

20

30

40

50
average number of switches

3 subsystems

4 subsystems

5 subsystems

6 subsystems

51

due to exponentially less search space. Second, selectively decentralized Q-learning proposes more

search options than centralized Q-learning, which is another factor to improve the converging

speed. In centralized Q-learning, a newly visited state has no prior information to estimate its Q-

table entries. With the same state, in selectively decentralized Q-learning, the components of the

state have higher chance to be visited by the subsystem learner (in different centralized states),

which may reduce the effort to compute the optimal Q-value.

There are two major open questions in this chapter. First, although selectively decentralized Q-

learning may offer exponential convergence measured by the number of data points/iterations, the

number of decentralization schemes also grows exponentially with the dimensionality. Therefore,

in practice, more refined techniques are needed to reduce the search of decentralization schemes.

At this point, we believe that selectively decentralized Q-learning is practically useful because the

best decentralization schemes stop switching after a few of tens windows (Figure 4.8). Second, we

choose best decentralization scheme by the sum of subsystems’ gained Q-values only because of

the linearity in state-reward function, which is the main driver for Q-value update. However, there

is no theoretical basis to support whether or not the different sum of subsystem gained Q-value in

different decentralization scheme is comparable. There may exist more solid options for choosing

the best decentralization scheme than cumulative gained Q-value.

52

5. SELECTIVELY DECENTRALIZED SYSTEM IDENTIFICATION

This chapter examines the impact of selective decentralization on system identification, which is

the first step in model-based reinforcement learning. The better performance in identification is

one of the fundamental reasons why selective decentralization improve the learning speed of the

overall reinforcement learning – adaptive control problem. I show that selective decentralization

can improve system identification in both linear and nonlinear system for most of the different

subsystems’ interconnection strength. I also address the identification converging speed, which

has not been comprehensively studied before, and show that selective decentralization also

outperforms the centralized system in converging speed. Overall, the improvement is more

significant in nonlinear system identification. In linear system identification, at least the selective

decentralization’s performance is close to the centralization’s performance.

In addition, compared to most of the state-of-the-art decentralized system identification techniques

[89-91], I claim that the advantage of selective decentralization is the adaptability in switching and

choosing the decentralization scheme to increase the identification performance. This advantage

is important especially when the domain knowledge to precisely separate the entire system into

subsystems is unknown or incomplete. By representing each dimension of the state vector as a

subsystem, selective decentralization is able to learn the optimal decentralization scheme for

identification, which may be used as an approximated method to detect the subsystems’

components without domain knowledge.

This chapter is organized as follow. First, I present the problem statement and the pseudo code of

selective decentralization for the system identification problem. Second, I review the identification

53

algorithms used in this chapter, for both linear and nonlinear cases. Third, I show some simulation

results to demonstrate how selective decentralization could improve system identification.

 Problem statement for selectively decentralized system-identification

5.1.1 Identification in unknown discrete-time invariant linear system

For linear system, we study the discrete-time invariant unknown system:

x(t) = Ax(t-1) + Bu(t-1) (5.1)

where x ∈ ℜN is the state vector, u ∈ ℜM is the control input , A ∈ ℜN×N is the state-transition

matrix, and B ∈ ℜN×M is the matrix of control unit. For identification problem, we assume that A

is unknown. The objective is to find the approximation matrix A� ∈ ℜN×M such that with the

predicted state vector:

𝐱𝐱� (t) = A�x(t-1) + Bu(t-1) (5.2)

the identification error

e(t) = |𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)|2 (5.3)

approaches 0 as t → ∞.

Let K be the number of subsystems in (5.1) with dimension N1, N2, … NK such that ∑ 𝑁𝑁𝑖𝑖𝐾𝐾
𝑖𝑖=1 = 𝑁𝑁.

Decentralized identification computes A� as the block-diagonal matrix

𝐀𝐀� =

⎣
⎢
⎢
⎡𝐀𝐀1
�

𝐀𝐀2�
⋱

𝐀𝐀𝐾𝐾� ⎦
⎥
⎥
⎤

In the unknown system, we assume that we know the component of the system by the domain

knowledge; but we do not know how the components interact with the others to form subsystems.

54

Therefore, we also aim to find the decentralized scheme of (5.1) in computing A� such that e(t)

converges to 0 as quickly as possible.

5.1.2 Identification in unknown discrete-time invariant nonlinear system

For nonlinear system, we study the discrete-time invariant unknown system:

x(t+1) = f (x(t) , u(t)) (5.4)

where x ∈ ℜN is the state vector, u ∈ ℜm is the control input and f ∈ ℜN+M → ℜN is the nonlinear

state transition function. We assume that f is completely unknown. The objective is to find the

approximated nonlinear function 𝑓𝑓 such that with the predicted state vector

𝐱𝐱� (t+1) = 𝑓𝑓(x(t), u(t)) (5.5)

the identification error e(t) approaches 0 as t → ∞. We define the converging identification error

and converging time concepts, which are the performance metrics, in section 5.3.

Similar to the linear system, let K be the number of subsystems in (5.5). Decentralized

identification models 𝑓𝑓 as follow

𝐱𝐱� (t+1) = �

𝐱𝐱�1 (𝑡𝑡 + 1)
𝐱𝐱�2 (𝑡𝑡 + 1)

⋮
𝐱𝐱�𝐾𝐾 (𝑡𝑡 + 1)

� = 𝑓𝑓(x(t), u(t)) =

⎣
⎢
⎢
⎡ 𝑓𝑓1 (𝐱𝐱1(𝑡𝑡),𝐮𝐮1(𝑡𝑡))
𝑓𝑓2 (𝐱𝐱2(𝑡𝑡),𝐮𝐮2(𝑡𝑡))

⋮
𝑓𝑓𝐾𝐾 (𝐱𝐱𝑘𝑘(𝑡𝑡),𝐮𝐮𝐾𝐾(𝑡𝑡)) ⎦

⎥
⎥
⎤
 (5.6)

5.1.3 Selective decentralization pseudo code

As a reminder in chapter 3, for the system of K component, BK, the Bell’s number of K [59],

decentralization schemes cover all possible number of subsystems from 1 to K. A subsystem only

uses its state and control variable to compute its own approximator. For example, with scheme

{{1, 2}, {3}}, we have the format 𝐀𝐀� = �
𝐀𝐀�1,2

𝐀𝐀�3
� for linear system and 𝑓𝑓 = �

𝑓𝑓1,2

𝑓𝑓3
� . In this

55

example, 𝐀𝐀�1,2 and 𝑓𝑓1,2 are computed only using x1,x2, u1 and u2 according to formula (11) and

backpropagation training algorithm, meanwhile 𝐀𝐀�3 and 𝑓𝑓3 are computed only using x3 and u3.

Let Ω be the time-window size and w be the window index. Then the window w covers the discrete

time index from t = (w-1) Ω + 1 to t = wΩ. Let E(w) be the window-identification error at window

w, which is the average of e(t) from t = (w-1) Ω + 1 to t = wΩ. Let ε and γ be two small numbers

for thresholds: ε decides the satisfactory identification error for termination and γ indicates whether

or not the identification error no longer decreases. The pseudo code for selective decentralization

is as follow

initialize b: the best decentralization scheme

for w from 1 to the maximum window index

 Train approximator and compute E(w) for B(k) decentralization schemes

 Select the decentralization scheme with the lowest E(w) as b

 if w > 1 and (E(w) < ε or |E(w) - E(w-1)| / |E(w)| < γ)

 return final identification error E(w) and converging time wΩ.

 end if

end for

56

 Reviews of system identification

5.2.1 Identification of linear time-invariant system

The theory for linear time-invariant system identification has been well-studied. The gradient

decent is one of the most robust methods as shown in [8], which is summarized in equations (5.7-

5.11). The gradient decent minimizes the second norm of the identification error

J = e(t)2 = �𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)�
𝑇𝑇
�𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)� =

�𝐱𝐱(𝑡𝑡) − 𝐀𝐀�𝐱𝐱(𝑡𝑡 − 1) − 𝐁𝐁𝐁𝐁(𝑡𝑡 − 1)�
𝑇𝑇
× �𝐱𝐱(𝑡𝑡) − 𝐀𝐀�𝐱𝐱(𝑡𝑡 − 1) − 𝐁𝐁𝐁𝐁(𝑡𝑡 − 1)� (5.7)

Taking the derivative of J respect to 𝐀𝐀� yields

𝜕𝜕𝜕𝜕
𝜕𝜕𝐀𝐀�

= −𝐱𝐱(𝑡𝑡 − 1) �𝐱𝐱(𝑡𝑡) − 𝐀𝐀�𝐱𝐱(𝑡𝑡 − 1) − 𝐁𝐁𝐁𝐁(𝑡𝑡 − 1)�
𝑇𝑇

 (5.8)

From the Newton-Raphson method, 𝐀𝐀� could be iteratively updated as

𝐀𝐀�(𝑡𝑡) = 𝐀𝐀�(𝑡𝑡 − 1) − 𝛼𝛼𝐇𝐇(𝐽𝐽,𝐀𝐀�)
𝜕𝜕𝜕𝜕
𝜕𝜕𝐀𝐀�

 (5.9)

where 𝐇𝐇(𝐽𝐽,𝐀𝐀�) is the Hessian matrix of J on 𝐀𝐀� and α is the learning rate. A reasonable

approximation of 𝐇𝐇(𝐽𝐽,𝐀𝐀�) is

𝐇𝐇�𝐽𝐽,𝐀𝐀�� = 𝐱𝐱(𝑡𝑡 − 1)𝐱𝐱(𝑡𝑡 − 1)𝑇𝑇 + 𝐈𝐈 (5.10)

where I is the identity matrix. Substituting (8) and (10) to (9) we have

𝐀𝐀�(𝑡𝑡) = 𝐀𝐀�(𝑡𝑡 − 1) − α
�𝐱𝐱(𝑡𝑡) − 𝐀𝐀�(t − 1)𝐱𝐱(𝑡𝑡 − 1) − 𝐁𝐁𝐁𝐁(𝑡𝑡 − 1)� 𝐱𝐱(𝑡𝑡 − 1)𝑻𝑻

1 + 𝐱𝐱(𝑡𝑡 − 1)𝑻𝑻𝐱𝐱(𝑡𝑡 − 1) =

𝐀𝐀�(𝑡𝑡 − 1) − 𝛼𝛼
�𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(t)�𝐱𝐱(𝑡𝑡 − 1)𝑻𝑻

1 + 𝐱𝐱(𝑡𝑡 − 1)𝑻𝑻𝐱𝐱(𝑡𝑡 − 1) (5.11)

Thus, (5.11) is could be executed iteratively, which is suitable for model identification and model-

based system control problems.

57

5.2.2 Identification of nonlinear time-invariant systems

We use the three-layer feedforward neural network to identify f in the nonlinear system. Neural

networks have been known for their capability to approximate a large and general class of

nonlinear functions over compact domains. Theoretical foundation and application of neural

network as such universal functional approximators in control systems can be found in [15, 76,

77]. We use the backpropagation training/learning algorithm for neural networks [92], in which

{x(t -1), u(t -1)} are presented at the input layer and 𝐱𝐱�(t) is computed at the output layer of the

neural network identification model. In each training sample, the target is x(t). The remaining of

this section is simply the recitation and more explanation for the neural network training presented

in [92].

Mathematically, i be the node index at the input layer of m + n nodes, h be the node index at the

hidden layer of d nodes and o be the node index at the output layer of m nodes. Let wIH(i, h) be the

input-hidden weight from input node i to hidden node h, Let wHO(h, o) be the input-hidden weight

from hidden node h to output node o. From the input {x(t -1), u(t -1)}, the values at the hidden

layer are computed as

𝐻𝐻(ℎ) = � 𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖,ℎ)𝐼𝐼(𝑖𝑖)
𝑚𝑚+𝑛𝑛

𝑖𝑖=1

 (5.12)

where H(h) denotes the hidden value at node h and I(i) denotes the input value at node i. The

estimated 𝐱𝐱�(t) at the output layer is computed as

𝑂𝑂(𝑜𝑜) = �𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜) × 𝜎𝜎(𝐻𝐻(ℎ))
𝑑𝑑

ℎ=1

 (5.13)

58

Where O(o) is the value at the oth component of 𝐱𝐱�(t). Function σ, also called activation function,

is defined as

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 (5.14)

At each iteration t, starting with identification error at (5.3), which is also the error at the output

layer, we use backpropagation [65] to train the neural network as follow. At the hidden layer

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜)

= 𝑒𝑒𝑜𝑜(𝑡𝑡)×𝜎𝜎�𝐻𝐻(ℎ)� (5.15)

in which eo(t) denotes the error at the oth component of the output layer

𝑒𝑒𝑜𝑜(𝑡𝑡) = 𝐱𝐱𝑜𝑜(𝑡𝑡) − 𝐱𝐱�𝑜𝑜(𝑡𝑡) (5.16)

The error at the hidden layer is carried from the error at the output layer by the hidden-output

weight as follow, according to the chain rule

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖,ℎ) = �𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)�

𝑇𝑇
𝐰𝐰𝐻𝐻𝐻𝐻(ℎ) ×

𝜕𝜕𝜕𝜕𝜕𝜕(ℎ)
𝜕𝜕𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖,ℎ)

= �𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)�
𝑇𝑇
𝐰𝐰𝐻𝐻𝐻𝐻(ℎ) × 𝜎𝜎𝜎𝜎(ℎ) × �1 − 𝜎𝜎𝜎𝜎(ℎ)� (5.17)

where wHO(h) denotes the vector of all the hidden-output weights at hidden node h and

�𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)� is the vector of error at the output layer.

Thus, with the learning rate α, we update wHO(h, o) from (15) and (16) as

𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜) = 𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜) + 𝛼𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜)
= 𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜) + 𝛼𝛼 × 𝑒𝑒𝑜𝑜(𝑡𝑡)×𝜎𝜎�𝐻𝐻(ℎ)� (5.18)

and the input-hidden weights are updated as

𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖, ℎ) = 𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖, ℎ) + 𝛼𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖,ℎ) =

𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖,ℎ) + 𝛼𝛼 × �𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)�
𝑇𝑇
𝐰𝐰𝐻𝐻𝐻𝐻(ℎ) × 𝜎𝜎𝜎𝜎(ℎ) × �1 − 𝜎𝜎𝜎𝜎(ℎ)� (5.19)

59

 Simulation results

5.3.1 Linear system identification

In this simulation, from (5.1), I setup systems of six dimensions for both x and u for the ease of

decentralization. I choose k = 3, which means each subsystem covers two dimensions. The

unknown transitional block matrix A is setup with real components {{1,2}, {3, 4}{5, 6}}, assumed

to be the domain knowledge, as follow

A =

⎣
⎢
⎢
⎢
⎢
⎢
⎡0.6 0.4 𝜌𝜌

0.4 0.6

𝜌𝜌

0.6 0.4
0.4 0.6

0.6 0.4
0.4 0.6⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (5.20)

where the non-block entries of A is a random number between 0 and ρ. I choose B as the identity

matrix. The control variables u(t), which is known by the system, is set randomly between -1 and

1. The initial x(0) is set to 1. As shown in (20), σ decides the interconnection strength among

system components. We call σ coupling parameter. For other parameters, we set α = 1.2, ε = 10-3,

γ = 10-6 and Ω = 10. We run the identification process for at most 10000 iterations. Due to the

randomness in A and u(t), we repeat the experimental process 100 times and report the average

outcome for converging time and identification error.

Figure 5.1 and Figure 5.2 show that selective decentralization has superior performance when the

coupling parameter is between 0 and 0.05, which may stand for the weakly coupled system. In

these cases, selectively decentralized identification not only converges faster but also converges

to lower identification error. The identification performance gap between selective

decentralization and centralization decreases when the coupling parameter increases to 0.05. When

60

the coupling parameter is greater than 0.05, centralized identification starts showing superior

performance. However, the selectively decentralized identification’s performance is close to the

centralized identification. To be more specific, Figure 5.3 and Figure 5.4 show more detail how

the identification error converges to 0 after 300 windows, with the initial state vector x1 = 1.

Figure 5.1. Comparison of converging time for identification between the centralized approach

and the selectively decentralized approach in linear system

0 0.05 0.1 0.15 0.2

coupling parameter

0

1000

2000

3000

4000

5000

ite
ra

tio
n

Converging time

Centralized system

Selectively decentralized system

61

Figure 5.2. Comparison of converging identification error between the centralized model and the

selectively decentralized model in linear system

Figure 5.3. An example of how identification error converges to 0 with initial state x(0) = 1 in

the completely decoupled and linear systems (σ = 0)

0 0.05 0.1 0.15 0.2

coupling parameter

6

7

8

9

10

11

12
10 -4 Converging identification error

Centralized system

Selectively decentralized system

62

Figure 5.4. An example of how identification error converges to 0 with initial state x(0) = 1 in

the strongly coupled and linear system (σ = 0.2)

5.3.2 Nonlinear system identification

In this simulation, we also setup systems of six dimensions for both x and u for the ease of

decentralization. We also choose K = 3. With the same A matrix in the linear system simulation,

we setup the nonlinear system as follow

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) =
2𝐀𝐀𝑖𝑖𝐱𝐱(𝑡𝑡) + 𝑢𝑢𝑖𝑖(𝑡𝑡)

1 + (𝐀𝐀𝑖𝑖𝐱𝐱(𝑡𝑡) + 𝑢𝑢𝑖𝑖(𝑡𝑡))2 ∀𝑖𝑖∈[1,6] (5.13)

where i is the state-control variable index, Ai is the ith row of A. Here, the real subsystem

components are {{1,2}, {3, 4},{5, 6}}. Similar to the linear system simulation, it can easily be

seen that the coupling parameter σ decides the interconnection strength among system components.

For identification, we setup three-layer neural networks in each group of subsystem {i1, i2, …, il}

with {xi1,i2,…il(t-1), ui1,i2,…il(t-1)} in the input layer, xi1,i2,…il (t) in the output layer and 50 nodes in

the hidden layer. The learning rate for the neural networks is set to 0.5. For other parameters, we

set ε = 0.05, γ = 10-6 and Ω = 50. Similar to the linear system case study, the initial state x(0) is set

63

to 1. We run the identification process for at most 10000 iterations. Due to the randomness in A

and u(t), we repeat the experimental process 100 times and report the average outcome for

converging time and identification error.

Figure 5.5 and Figure 5.6 show that for all of coupling parameters, selective decentralization

outperforms centralizations in both identification converging speed and identification error. For

all of the coupling parameters in our experiment, the centralized identification error does not reach

the satisfactory threshold ε = 0.05 (it may reach the threshold after more iterations). Therefore,

figure 5 shows the converging time of centralized identification close to 10000, which is the

maximum number of iterations in our experiment. Figure 5.7 and Figure 5.8 show more detail how

the identification error converges after 200 windows.

Figure 5.5. Comparison of converging time for system identification between the centralized

approach and the selectively decentralized approach in nonlinear system

0 0.05 0.1 0.15 0.2

coupling parameter

8000

8500

9000

9500

10000

10500

ite
ra

tio
n

Converging time

Centralized system

Selectively decentralized system

64

Figure 5.6. Comparison of converged identification error between the centralized model and the

selectively decentralized model in a nonlinear system

Figure 5.7. An example of how identification error converges with initial state x(0) = 1 in the

completely decoupled and nonlinear system case

0 0.05 0.1 0.15 0.2

coupling parameter

0.04

0.05

0.06

0.07

0.08

0.09
Converging identification error

Centralized system

Selectively decentralized system

0 50 100 150 200

window index

0

0.1

0.2

0.3

0.4

0.5
Indentification in completely decoupled system

Centralized system

Selectively decentralized system

65

Figure 5.8. An example of how identification error converges with initial state x(0) = 1 in the

strongly coupled and nonlinear system (σ = 0.2)

0 50 100 150 200

window index

0

0.1

0.2

0.3

0.4

0.5

ite
ra

tio
n

Indentification in strongly coupled system

Centralized system

Selectively decentralized system

66

6. SELECTIVELY DECENTRALIZED LEARNING AND CONTROL
WITH DISCRETIZED MDP

This chapter completes the impact of selective decentralization in improving model-based adaptive

and optimal control, which is also equivalent to reinforcement learning. This chapter combines the

success of selective decentralization in system identification, the well-known closed-form solution

of Riccati equation in linear system, the discrete-MDP approximation (presented in chapter 2). We

show that selective decentralization can improve the learning performance in both linear and

nonlinear systems with several levels of interconnection among subsystems. Here, we measure the

performance on the number of iterations, or samples, needed in learning. This measurement of

performance is useful for problems in which the number of training samples is limited. In addition,

we show that the discrete-MDP technique could help in learning nonlinear control problem in

general form.

The content in this chapter is organized as follow. First, we rewrite the problem statement for the

complete model-based reinforcement learning problem. Second, we present the two-phase

framework to solve this problem, which includes the content in the previous chapters: selective

decentralization, MDP, HJB equation and system identification. Third, we demonstrate the entire

framework in some toy examples.

 Problem statement for model-based reinforcement learning

In this chapter, we focus on discrete time, continuous-state, time-invariant system in the general

format

𝐱𝐱(𝑡𝑡 + 1) = 𝑓𝑓(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)) (6.1)

67

Where x ∈ ℜN stands for the N dimensional bounded state vector, u ∈ ℜM stands for the M

dimensional bounded control unit, t stands for the iteration number, x(0) is given and f : ℜN×ℜM

→ ℜN is an continuously differentiable unknown function. Here, the symmetric boundaries [-χ, χ]

and [-µ, µ] for all components of x and u are known. Let p: ℜN → ℜ and q: ℜM → ℜ be the two

continuously semi-definite negative and differentiable reward functions with the following

properties

𝑝𝑝(𝐱𝐱1) ≤ 𝑝𝑝(𝐱𝐱2) ⇔ ‖𝐱𝐱1‖ ≥ ‖𝐱𝐱2‖ and p(0) = 0 (6.2)

𝑞𝑞(𝐮𝐮1) ≤ 𝑞𝑞(𝐮𝐮2) ⇔ ‖𝐮𝐮1‖ ≥ ‖𝐮𝐮2‖ and q(0) = 0 (6.3)

where ||x|| denotes the second norm of x. The main objective is to learn the control unit u such that

x(t) → 0, u(t) → 0 as t → ∞ (6.4)

To formulate an adaptive optimal control, or reinforcement learning problem, we convert the

objective in (4) into a more formal control problem with discount factor 0 < γ → 1

𝐽𝐽(𝐱𝐱0) = ∑ 𝛾𝛾𝑡𝑡 �𝑝𝑝�𝐱𝐱(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮(𝑡𝑡)��∞
𝑡𝑡=0 (6.5)

Thus, the goal is to optimize J(x0). The function J(x) defined in (6.5) is called the state value

function. Since f is unknown, in the model-based approach, the intermediate goal is to find the

approximated nonlinear function 𝑓𝑓 such that with the predicted state vector

𝐱𝐱� (t+1) = 𝑓𝑓(x(t), u(t)) (6.6)

the identification error

e(t) = || 𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)|| (6.7)

approaches 0 as t → ∞.

68

 Two-phase selective decentralized control framework

Figure 6.1 shows the design of the learning control system in this work with two phases:

identification and control. In the identification phase, we train the neural networks to acquire the

function approximators 𝑓𝑓 from using <x(t), u(t)> as the input tuples and x(t+1) as the outputs. In

the control phase, to compute the near-optimal control, we use DARE algorithm [61], and policy

iteration algorithm for the nonlinear system after setting up the corresponding MDP [65]. Here,

the window size parameter Ω decides how frequently we call the identification phase. In other

words, Ω decides the number of <x(t), u(t), x(t+1)> tuples to train 𝑓𝑓.

Identification

Control

x(t)

u(t) f x(t+1)

u(t+1)

Train

Riccati equation (linear)
MDP (nonlinear)

t reaches another Ω
(window size)

Select the best
decentralization

Figure 6.1. The learning design for selective decentralized reinforcement learning.

Let w be the window index. Then the window w covers the discrete time index from t = (w-1) Ω +

1 to t = wΩ. Let E(w) be the window-identification error at window w, which is the average of e(t)

from t = (w-1) Ω + 1 to t = wΩ. Let ε and γ be two small numbers for thresholding. For the system

of r components/agents, the number of decentralization scheme is B(r), which is the rth Bell’s

number [59]. The pseudo code for selective decentralization is as follow:

initialize b: the best decentralization scheme

69

for w from 1 to the maximum window index

calculate control policy using b b (using Riccati equation for linear system and

 discrete-MDP for nonlinear system)

Train approximator and compute E(w) for B(r) decentralization schemes

 Select the decentralization scheme with the lowest E(w) as b

 if w > 1 and (E(w) < ε or |E(w) - E(w-1)| / |E(w)| < γ)

return

 end if

end for

 Simulation results

6.3.1 Linear system

In this simulation, we setup a system of 8-dimmension state and control variables with r = 4. The

unknown transitional block matrix A is setup with real subsystem components {{1,2}, {3, 4},{5,

6}, {7,8}}as follow. With raw matrix 𝐀𝐀� matrix as

𝐀𝐀� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡0.7 0.3
0.2 0.8

𝜎𝜎

0.23 0.77 𝜎𝜎
0.4 0.6

0.5 0.5
0.35 0.65

0.9 0.1
0.15 0.85⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6.8)

where the non-block entries of 𝐀𝐀� are a random numbers between 0 and σ. To avoid numerical

overflowing, we normalize 𝐀𝐀� into A such that A is a Markov matrix. The reward functions are p(x)

= -xTx and q(u) = -uTu. The discount reward factor in (5) is γ = 0.9. The initial control variables

u(0) and state variable x(0) are set randomly between -1 and 1. As shown in (6.8), σ decides the

70

interconnection strength among system components. We call σ coupling parameter. We setup the

completely decouple system by setting σ = 0 and the strongly couple system by σ = 0.1. We set

B as the identity matrix. For identification, we set α = 0.5. At the starting point, we set x(0) as a

vector of random numbers between -1 and 1. Because calculating 𝐀𝐀� using linear system

identification (see chapter 5) is relatively simple, we set the window size Ω = 1. We repeat this

setup 100 times since A and x(0) contains random parameters and report the mean statistics.

In Figures 6.2 and 6.3, we observe that the selectively decentralized system shows better control

performance than the completely decentralized system and the centralized system. In these figures,

we draw the y-axis in log scale since both x and u converges to 0 so quickly that the linear-scale

plot could not show the difference. We use norm(x) and norm(u) to denote the second-norm of x

and u, correspondingly. Clearly, after more than 30 iterations, both x and u in the completely

decentralized system converge to 0 faster than they are in the completely decentralized system and

the centralized system. At the first few iterations, the selectively decentralized system shows

slightly poorer control performance. This may due to the complexity of the selectively

decentralized system in identifying unknown A. In the other hands, as the systems are more

coupled, we see that the performance gap between the decentralized systems and the centralize

system is less.

71

Figure 6.2. Comparison of control performance among the centralized system, the completely
decentralized system and the selectively decentralized system when the system is linear and

completely decoupled.

Figure 6.3. Comparison of control performance among the centralized system, the completely
decentralized system and the selectively decentralized system when the system is linear and

strongly coupled.

6.3.2 Nonlinear system

In this example, we choose the system

𝐱𝐱(𝑡𝑡 + 1) = 𝑓𝑓(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)) = 𝑠𝑠𝑠𝑠𝑠𝑠�𝐀𝐀𝐀𝐀(𝑡𝑡) + 𝐮𝐮(𝑡𝑡)� (6.9)

where x, u ∈R4 , matrix A is defined by normalizing 𝐀𝐀� into a Markov matrix where

0 5 10 15 20 25 3010-10

10-5

100

105

iteration

norm(x) on completely decouple system

centralized system
completely decentralized system
selectively decentralized system

0 5 10 15 20 25 3010-10

10-5

100

105

iteration

norm(u) on completely decouple system

centralized system
completely decentralized system
selectively decentralized system

0 5 10 15 20 25 3010-15

10-10

10-5

100

105

iteration

norm(u) on strongly couple system

centralized system
completely decentralized system
selectively decentralized system

0 5 10 15 20 25 3010-15

10-10

10-5

100

105

iteration

norm(x) on strongly couple system

centralized system
completely decentralized system
selectively decentralized system

72

𝐀𝐀� = �

0.7 0.3 𝜎𝜎
0.2 0.8

1
𝜎𝜎 1

� (6.10)

and the sin function is defined as

𝑠𝑠𝑠𝑠𝑠𝑠(𝐱𝐱) = �
sin (𝑥𝑥1)

⋮
sin (𝑥𝑥𝑛𝑛)

� (6.11)

and x(0) = 0.2. Here, we assume that the boundary of x an u is known as -0.2 ≤ xi, ui ≤ 0.2 ∀i∈[1,4]

and the real subsystem component in (1) is {{1,2}, {3}, {4}}. The reward functions are p(x) = -

xTx and q(u) = -uTu. The discount reward factor in (6.5) is γ = 0.9.

For system approximation, we use a three-layer neural network with 30 hidden units, sigmoid

activation function and backpropagation to train the neural network for 𝑓𝑓. For each training step,

we pass the training sample set <x(t), u(t)> 2000 times. We set window size Ω = 50 (figure 6.1).

Similar to the linear system case study, we setup the completely decouple system by setting σ =

0 and the strongly couple system by σ = 0.1. In each state and control vector dimension, we divide

the dimension into G = 8 regions, which makes the resolution threshold (see chapter 2) 0.05.

In Figures 6.4, we observe that the selectively decentralized system shows better control

performance than the completely decentralized system and the centralized system. Similar to

figures 6.2 and 6.3, we use norm(x) to denote the second-norm of x. Here, we observe that when

the system is completely decouple, the centralized system converges to 0 significantly slower than

the selectively decentralized system does. In addition, when the system is strongly couple, the

centralized system fails to control.

73

Figure 6.4. Comparison of control performance among the centralized system, the completely

decentralized system and the selectively decentralized system when the system is nonlinear with
different coupling.

 Discussions

In this chapter, we show that selective decentralization can improve the learning performance in

both linear and nonlinear systems with several levels of interconnection among subsystems. Here,

we measure the performance on the number of iterations, or samples, needed in learning. This

measurement of performance is useful for problems in which the number of training samples is

limited. In addition, we show that the discrete-MDP technique could help in learning nonlinear

control problem in general form.

There are several limitation in this chapter. First, the discretization thresholds need the distribution

of the next state assuming that the current state and control vectors are uniformly distributed and

may require a number of ad-hoc steps. Third, in selective decentralization, we still explore all

possible decoupling scheme B(k), which grows exponentially. However, since the selectively

decentralized system converges faster than the centralized system in most of the cases, we believe

that the heavily computational model-switching phase in the selective decentralized system will

be relatively short. Therefore, the selectively decentralized system may be more computationally

0 100 200 300 400 5000

0.5

1

1.5

iteration

norm(x) on completely decouple system

centralized system
completely decentralized system
selectively decentrallized system

0 100 200 300 400 5000

0.2

0.4

0.6

0.8

1

iteration

norm(x) on strongly couple system

centralized system
completely decentralized system
selectively decentrallized system

74

efficient than the centralized system, which must run the learning algorithm in high dimensional

data for long term.

75

7. MULTIDISCIPLINARY OPTIMIZATION IN DECENTRALIZED
REINFORCEMENT LEARNING

In this chapter, we propose applying the multidisciplinary optimization (MDO) idea in solving

decentralized RL problems and demonstrates the capability of the MDO approach in several

learning adaptive control toy examples. Fundamentally, the MDO approach, which could be

categorized as a partial communication technique [48], is a compliment to the selective

decentralization. Here, we use nonlinear system identification to approximate the unknown

environment in the RL problem. Hence, in this chapter, we use the terms ‘environment’ and

‘system’ interchangeably. In the system identification step, each learning agent also identifies the

impact of other agent’s information on its learning performance, which is the central theme in

MDO. From the identified model, each learning agent setups Markov decision process (MDP) to

compute the action/control solution, which has been shown in [93]. In this step, we examine and

compare the control solutions computed using both the MF and the IDF options. In addition, we

examine the exchanged information among the agents, which is another characteristic to categorize

the recent state-of-the-art MDO techniques. We focus on the question: how much the learning

performance loss when the exchanged information among the agents is simplified. Then, we

compare the learning performance of the MDO approach with the strictly decentralized approach,

the selectively decentralized approach [93] and the centralized approach and discuss the advantage

of the MDO in our learning examples.

Mathematically, MDO [94, 95], which has been intensively researched and applied in aerospace

and engineering, could be a promising approach to tackle the first two challenges in decentralized

RL. In MDO, the computational agents are well-defined and decomposed according to the domain-

76

knowledge of each discipline in a jointed optimization problem. For example, in aero-elastic

optimization, there are two decentralized computational units: the aero dynamic units applies fluid

dynamics law to manage the air-pressure on the aircraft wing and the structure unit applies the

material law to manage the deflection and shape of the wing [38]. In the formulation step, there

are two typical options. First in the multidisciplinary feasible (MF) option (which may also called

‘boarder sense’ option), each computational agent incorporate the information from the other

agents in its own optimization function [38]. In addition, each agent only uses the optimization

constrains from its own discipline. In this option, because the each agent includes the information

from other agents in the optimization objective, the agent tends to approach closer to the global

optimal solution even though the global problem is much more complex than its own capacity.

Second, in the individual discipline feasible (IDF) option (which may also called the ‘selfish’

option), each computational agent only aims to optimize its own optimization function and uses

the other agents’ information as constrains. In this option, the agents tends to seek for local

optimization; and the constrains from other agents will drive the local solutions to the global

solution. The exchanged information among the agents could be preprocessed or transformed into

simpler forms to reduce the complexity of the optimization in each agent. More literature details

about MDO approach could be found in [96-98].

However, according to our best knowledge, MDO has not been widely applied in decentralized

RL. In our opinion, there are two factors limiting the capability of the MDO in RL. First, the

unknown nature and long-term goal of the RL problems implies that we could not get the

optimization function in closed-form J(x), where J denotes the optimization objectives in RL and

x denotes the variables in the RL problem. Since MDO techniques rely on numerical methods -

77

especially the gradient methods - to solve the optimization problem, without a closed-form of J(x)

[94], most of the state-of-the-art MDO techniques are inapplicable. Second, even when the

unknown nature of the RL problems could be solved by system identification methods [8], the

closed-form solution for many of the Hamilton-Jacobi-Bellman equation, which is the central

theory behind most of the RL problems, is very difficult to find.

This chapter is organized as follow. First, for the reading convenience, we restate the statements

of the learning - adaptive control problem, as already mentioned in chapter 6. Second, we carefully

state the assumption for the MDO learning agents. Third, we present the MDO learning agents

using the same two-phase paradigm to selectively decentralized learning agents: identification and

discrete-MDP control. And forth, we show the simulation results, which compare the performance

among several approaches, including centralized learning, completely decentralized learning,

selectively decentralized learning and MDO learning.

 Problem statements

7.1.1 The learning adaptive control problem

In this chapter, we focus on discrete time, continuous-state, time-invariant system in the general

format

𝐱𝐱(𝑡𝑡 + 1) = 𝑓𝑓(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)) (7.1)

where x ∈ ℜN stands for the N dimensional bounded state vector, u ∈ ℜM stands for the M

dimensional bounded control unit, t stands for the iteration number, x(0) is given and f : ℜN×ℜM

→ ℜN is an continuously differentiable unknown function. Here, the symmetric boundaries [-χ, χ]

and [-µ, µ] for all components of x and u are known. Given p: ℜN → ℜ and q: ℜM → ℜ as the two

78

continuously semi-definite negative and differentiable reward functions with the following

properties

𝑝𝑝(𝐱𝐱1) ≤ 𝑝𝑝(𝐱𝐱2) ⇔ ‖𝐱𝐱1‖ ≥ ‖𝐱𝐱2‖ and p(0) = 0 (7.2)

𝑞𝑞(𝐮𝐮1) ≤ 𝑞𝑞(𝐮𝐮2) ⇔ ‖𝐮𝐮1‖ ≥ ‖𝐮𝐮2‖ and q(0) = 0 (7.3)

where ||x|| denotes the second norm of x. The main objective is to learn the control unit u = u(x)

such that

x(t) → 0, u(t) → 0 as t → ∞ (7.4)

For optimally adaptive control, we convert the objective in (7.4) into the optimization objective

with discount factor 0 < γ → 1

𝐽𝐽(𝐱𝐱(0)) = ∑ 𝛾𝛾𝑡𝑡 �𝑝𝑝�𝐱𝐱(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮(𝑡𝑡)��∞
𝑡𝑡=0 (7.5)

The equations (7.1-7.5) defines a Hamilton-Jacobi-Bellman equation. Since (7.1) is in general

form, we assume that the closed-form solution for (7.1-7.5) is unknown.

7.1.2 The system identification problem statements

Since we use MDP, a model-based method, to compute u, we need an approximation of the

environment. The objective is to find the approximated nonlinear function 𝑓𝑓 such that with the

predicted state vector

𝐱𝐱� (t+1) = 𝑓𝑓(x(t), u(t)) (7.6)

the identification error

e(t) = |𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)|2 (7.7)

approaches 0 as t → ∞.

79

 Key assumptions for the MDO agents

To apply MDO, we assume that the system (7.1) could be decouple into multiple subsystems by

domain knowledge. Each subsystem correspond to one learning agent. More importantly, we

assume that each agent know precisely which components of x and u affecting its learning

performance. In addition, we assume that each agent’s control unit does not directly and instantly

affect the x components of the other agents. In the other words,

x(t+1) = �

𝐱𝐱1 (𝑡𝑡 + 1)
𝐱𝐱2 (𝑡𝑡 + 1)

⋮
𝐱𝐱𝐾𝐾 (𝑡𝑡 + 1)

� = f (x(t), u(t)) = �

𝑓𝑓1 (𝐱𝐱1(𝑡𝑡),𝐶𝐶1(𝐱𝐱𝑖𝑖≠1(𝑡𝑡)),𝐮𝐮1(𝑡𝑡))
𝑓𝑓2 (𝐱𝐱2(𝑡𝑡),𝐶𝐶2(𝐱𝐱𝑖𝑖≠2(𝑡𝑡)),𝐮𝐮2(𝑡𝑡))

⋮
𝑓𝑓𝐾𝐾 (𝐱𝐱𝑘𝑘(𝑡𝑡),𝐶𝐶𝐾𝐾(𝐱𝐱𝑖𝑖≠𝑘𝑘(𝑡𝑡)),𝐮𝐮𝐾𝐾(𝑡𝑡))

� (7.8)

where k is the number of learning agents, i stands for agent index and C is the bounded

communication function, which is known, among the agents. We assume that for all agents, C has

the following property

|| Cj(xi≠j(t)) || ≥ || Cj(x’i≠j(t)) || ⇔ || xi≠j(t) || ≥ || x’i≠j(t) || (7.9)

In general, for agent j, 𝐶𝐶𝑗𝑗(𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡)) should be simpler than xi≠j(t), such as having less dimension,

to reduce the computational cost. In this chapter, we assume that the agents can freely exchange

their state information. In the most complicated communication, one agent can send the exact state

information to the other agents. From these assumption, we can rewrite the identification problem

as

x(t+1) = �

𝐱𝐱1 (𝑡𝑡 + 1)
𝐱𝐱2 (𝑡𝑡 + 1)

⋮
𝐱𝐱𝐾𝐾 (𝑡𝑡 + 1)

� = f (x(t), u(t)) = �

𝑓𝑓1 (𝐱𝐱1(𝑡𝑡),𝐶𝐶1(𝐱𝐱𝑖𝑖≠1(𝑡𝑡)),𝐮𝐮1(𝑡𝑡))
𝑓𝑓2 (𝐱𝐱2(𝑡𝑡),𝐶𝐶2(𝐱𝐱𝑖𝑖≠2(𝑡𝑡)),𝐮𝐮2(𝑡𝑡))

⋮
𝑓𝑓𝐾𝐾 (𝐱𝐱𝐾𝐾(𝑡𝑡),𝐶𝐶𝐾𝐾(𝐱𝐱𝑖𝑖≠𝐾𝐾(𝑡𝑡)),𝐮𝐮𝐾𝐾(𝑡𝑡))

� (7.10)

80

The identification in (7.8) allowing solving the HJB equation (7.1)-(7.5) by both MDO’s MF

option and IDF option. For the MF option, each learning agent j has optimization function

according to (7.5)

𝐽𝐽�𝐱𝐱𝑗𝑗(0)� = ∑ 𝛾𝛾𝑡𝑡 �𝑝𝑝𝑗𝑗�𝐱𝐱𝑗𝑗(𝑡𝑡),𝐶𝐶𝑗𝑗(𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡))� + 𝑞𝑞𝑗𝑗 �𝐮𝐮𝑗𝑗(𝑡𝑡)��∞
𝑡𝑡=0 (7.11)

Therefore, the MDP for agent j in the MF option has the form [xj, Cj(xi≠j)] × [uj] → [xj, Cj(xi≠j)].

For the IDF option, each agent will optimize

𝐽𝐽�𝐱𝐱𝑗𝑗(0)� = ∑ 𝛾𝛾𝑡𝑡 �𝑝𝑝𝑗𝑗 �𝐱𝐱𝑗𝑗(𝑡𝑡)� + 𝑞𝑞𝑗𝑗 �𝐮𝐮𝑗𝑗(𝑡𝑡)��∞
𝑡𝑡=0 (7.12)

In this case, the MDP has the form [xj] × [uj] → [xj]. Because each MDP in IDF option does not

cover the entire knowledge gained by identification, each agent may have multiple MDPs

depending on the Cj(xi≠j). We assume that the agents’ reward functions pj and qj in (7.11) and (7.12)

have the same properties to (7.2) and (7.3).

Finally, we define the centralized approach and the completely decentralized approach, which will

be used to compare with the MDO approaches, as follow. The centralized approach is defined with

K = 1. The completely decentralized approach is defined as K > 1 but Cj(xi≠j) = 0, which implies

no communication among the agents. The definition of the selectively decentralized approach

could be found in [93].

 Design of MDO learning agents with two phases

Similar to Figure 6.1, Figure 7.1 shows the design of the learning agent in this work with two

phases: identification and control. In the identification phase, we train the neural networks to

81

acquire the function approximators 𝑓𝑓. In the control phase, we use the discrete MDP method to

compute u.

Figure 7. Two-phase design of the MDO learning agents.

7.3.1 MDO system identification

We use the three-layer feedforward neural network to approximate f as 𝑓𝑓 in nonlinear system

identification. Neural networks have been known for their capability to approximate a large and

general class of nonlinear functions over compact domains. Theoretical foundation and application

of neural network as such universal function approximators in control systems can be found in [15,

76, 77]. We use the backpropagation learning algorithm for neural networks [92]. For the MDO’s

MF option, {xj(t), Cj(xi≠j(t)), uj (t)}cis presented at the input layer, { 𝐱𝐱� j(t+1), 𝐶̂𝐶 (xi≠j(t+1))} is

computed at the output layer of the neural network, and { xj(t+1), Cj(xi≠j(t+1))} is the target. In the

other hand, for the IDF option, {xj(t), Cj(xi≠j(t)), uj (t)} is presented at the input layer, { 𝐱𝐱�j(t+1)} is

computed at the output layer of the neural network, and { xj(t+1)} is the target. Without MDO, the

neural network layers could be set up as in [93].

82

7.3.2 Discrete MDP for MDO agents

In this chapter, we further develop the discretization method and MDP construction from the

simulation in [93]. The theoretical assessment of the discrete MDP method to approximate the

HJB equation’s solution (2.1)-(2.5) has been presented in chapter 2. In this section, first, we would

briefly present the discrete MDP method to solve (7.1)-(7.5) by the centralized and completely

decentralized approach, which does not involve any MDO principles. Second, we would present

the modification of the discrete MDP method to apply MDO principles in both the MF and the

IDF options.

7.3.2.1 Discrete MDP for the centralized and completely decentralized approach

Fundamentally, the content of section 7.3.2.1 is the same to section 2.3 in chapter 2. For the

convenience of reading, especially for the mathematical symbols, I rewrite the section as follow.

7.3.2.1.1 Discretize the state and action vectors

As defined in the problem statements, in this section, we ignore all of the communication among

the agents C(xi≠j). Let G be the number of intervals in each dimension of x and u for which we

uniformly divide the dimension into small grids. Therefore, the entire state space is divided into

Gn small hyper cubes with edge θx = 2χ/G. The control space is divided into Gm small hyper cubes

with edge θu = 2µ/G. All points inside a hyper cube are discretely represented by the center of the

hyper cube. Points on the border between two hyper cubes are represented by the center of the

‘left’ hypercube. Mathematically, the discretization process is described by the following formulas

𝐱𝐱[𝑑𝑑] → 𝜃𝜃𝑥𝑥 + χ 𝐺𝐺⁄ ∀ 𝑑𝑑∈[1,𝑛𝑛] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐱𝐱[𝑑𝑑] ∈ [𝜃𝜃𝑥𝑥 ,𝜃𝜃𝑥𝑥 + 2 χ 𝐺𝐺⁄) (7.13)

𝐮𝐮[𝑑𝑑] → 𝜃𝜃𝑢𝑢 + 𝜇𝜇 𝐺𝐺⁄ ∀ 𝑑𝑑∈[1,𝑚𝑚] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐮𝐮[𝑑𝑑] ∈ [𝜃𝜃𝑢𝑢,𝜃𝜃𝑢𝑢 + 2 𝜇𝜇 𝐺𝐺⁄) (7.14)

83

where θx ∈ {-χ, -χ + 2χ/G, -χ + 4χ/G, ..., χ- 2χ/G } and θu ∈ {-µ, -µ + 2µ/G, -µ + 4µ/G, ..., µ-

2µ/G }, which are the ‘left’ boundaries in the hyper cubes. We denote xdis and udis as the discrete

space and control vector of x and u, correspondingly. We also denote (xdis) and (xdis) as the

set/supspace of points x and u whose discrete forms are xdis and udis, correspondingly.

With the discretization process in (7.11) and (7.12), it is important and easy to see that when G is

odd, the zero vector 0 is one of the discrete space/control vectors. In the centralized MDP problem,

the reward functions (7.2) and (7.3) become

𝑝𝑝(𝐱𝐱) = 𝑝𝑝(𝐱𝐱dis),𝑞𝑞(𝐮𝐮) = 𝑞𝑞(𝐮𝐮dis) (7.15)

And the optimization goal becomes the MDP goal (7.5)

𝐽𝐽(𝐱𝐱(0)) = ∑ 𝛾𝛾𝑡𝑡 �𝑝𝑝�𝐱𝐱dis(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮dis(𝑡𝑡)��∞
𝑡𝑡=0 (7.16)

where 0 < γ < 1 is the discount factor.

7.3.2.1.2 Setup the probabilistic transition function for the MDP

The MDP requires the probabilistic transition function as a matrix of P(x’dis | xdis, udis), which is

the probability of reaching discrete state x’dis when executing action udis at state xdis. We can apply

the Monte Carlo method [74] to approximate P(x’dis | xdis, udis) as follow.

- Generate a large number of S points (x, u) following the uniform distribution in

(xdis)×(udis).

- Count the number of points S1 such that 𝑓𝑓 (x, u) ∈ (x’dis).

- Then S1/S → P(x’dis | xdis, udis) as S → ∞.

We use the policy iteration algorithm [65] to compute the MDP solution. At every

iteration, the action udis(t) is calculated as

84

udis(t) = argmax
𝐮𝐮

∑ P(𝐱𝐱’dis | 𝐱𝐱dis (𝑡𝑡),𝐮𝐮)∀𝐱𝐱’dis (7.17)

And R(xdis) is updated after executing udis(t)

𝑅𝑅�𝐱𝐱dis(𝑡𝑡)� = 𝑝𝑝�𝐱𝐱dis(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮dis(𝑡𝑡)� +

𝛾𝛾 ∑ 𝑃𝑃�𝐱𝐱dis′(𝑡𝑡 + 1)|𝐱𝐱dis(𝑡𝑡),𝐮𝐮dis(𝑡𝑡)�𝑅𝑅�𝐱𝐱′dis(𝑡𝑡 + 1)�∀𝐱𝐱dis′ (7.18)

Formula (7.13)-(7.18) are written for the centralized approach. They can be applied to each

learning agent in the completely decentralized approach using the agent’s local state, local action,

local reward and local transition probability.

7.3.2.2 Discrete MDP method for the MDO approach

The central theme in this section is the discretization of communication Cj(xi≠j). Let us call Nj, Mj

and Ni≠j be the dimensionality of the xj, uj and Cj(xi≠j) in agent j. Since the system (7.1) and

communication function is bounded, each dimension of Cj(xi≠j) is bounded by [-λ, λ]. Since the

communication sent by agent i to agent j should not be more complex than xi, we discretize each

dimension of C(xi≠j) into L ≤ G grids using the same method described in (7.13) and (7.14). We

denote the discrete from of Cj(xi≠j) by Cj(xi≠j)dis.

For the MDO-MF option, since the identified model is in the form {xj(t), Cj(xi≠j(t)), uj (t)} →

{xj(t+1), Cj(xi≠j(t+1))}, each agent j has one MDP model with dimensionality (𝐺𝐺𝑁𝑁𝑗𝑗 × 𝑁𝑁) × 𝐺𝐺𝑀𝑀𝑗𝑗 ×

(𝐺𝐺𝑁𝑁𝑗𝑗 × 𝐿𝐿𝑁𝑁𝑖𝑖≠𝑗𝑗). The transition probability for the MDP could be setup similarly to the centralized

approach, except the Mote-Carlo sampling should be done on (xjdis)×(Cj(xi≠j)dis)× (ujdis) in the

whole space.

85

For the MDO-IDF option, since the identified model is in the form {xj(t), Cj(xi≠j(t)), uj (t)} →

{xj(t+1)}, the MDP in this option will have dimensionality (𝐺𝐺𝑁𝑁𝑗𝑗) × 𝐺𝐺𝑀𝑀𝑗𝑗 × (𝐺𝐺𝑁𝑁𝑗𝑗). By rewriting the

identification as

𝐱𝐱𝑗𝑗(𝑡𝑡 + 1) ≈ 𝑓𝑓 �𝐱𝐱𝑗𝑗(𝑡𝑡),𝐶𝐶𝑗𝑗 �𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡)� ,𝐮𝐮𝑗𝑗(𝑡𝑡)� =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑓𝑓𝐶𝐶𝑗𝑗�𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡)�=𝐜𝐜1

�𝐱𝐱𝑗𝑗(𝑡𝑡),𝐮𝐮𝑗𝑗(𝑡𝑡)�

𝑓𝑓𝐶𝐶𝑗𝑗�𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡)�=𝐜𝐜2
�𝐱𝐱𝑗𝑗(𝑡𝑡),𝐮𝐮𝑗𝑗(𝑡𝑡)�

⋮
𝑓𝑓𝐶𝐶𝑗𝑗�𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡)�=𝐜𝐜…

�𝐱𝐱𝑗𝑗(𝑡𝑡),𝐮𝐮𝑗𝑗(𝑡𝑡)�

 (7.19)

where c1, c2, c… are possible the discrete values of Cj(xi≠j(t)), it is easy to see that each agent j will

have 𝐿𝐿𝑁𝑁𝑖𝑖≠𝑗𝑗 MDP models, which could be indexed. When the agent receive {xj(t), Cj(xi≠j(t))}, it will

look up the index of Cj(xi≠j(t)) and choose the corresponding MDP to compute u(t).

7.3.3 The pseudo code for the MDO learning agent

Here, the window size parameter Ω decides how frequently we call the identification phase. The

pseudo code for each agent is as follow

Initialize: 𝑓𝑓 neural network with random weights.

 Predefine the discretization parameters as in (7.13)-(7.16).

 Construct the MDPs as showed in (7.17) and (7.19).

 uj({xj, Cj(xi≠j)}) / uj([xj]): solution of the MDPs by policy iteration for the

 MF / IDF options.

For t from 2 to the maximum number of iterations

 Receive and discretize {x(t), Cj(xi≠j(t))} as in (7.13).

 Compute u(t) = u({xj(t), Cj(xi≠j(t))}) / u(t) = u(x(t)) according to the policy.

 Add {x(t-1), Cj(xi≠j(t-1)), u(t-1) } and {xj(t), Cj(xi≠j(t))} into the training set for

future neural network training set.

86

 if t % Ω = 0 // reach the end of the window, update the identification

 Retrain 𝑓𝑓.

 Reconstruct the MDPs as showed in (7.17) and (7.19).

 Recompute uj({xj, Cj(xi≠j)}) / uj([xj]) by policy iteration.

 Clear the training set of the neural network.

Each agent could also keep track of the identification error to decide whether or not to keep

collecting data point for training neural network and skip the identification phase.

 Simulation results

In this section, we setup toy sinusoidal systems to demonstrate the capability of the MDO approach

in RL. These systems has the form

x(t) = sin(Ax(t-1)+u(t-1)) (7.20)

where A are 3×3 random Markov matrices such that all diagonal entries share the same value. For

the ease of decentralization, we choose the system such that the dimensionalities of both x and u

are the same. The vector sin function is defined from each dimension as

sin(𝐱𝐱) = �
sin (𝐱𝐱1)
sin (𝐱𝐱2)
sin (𝐱𝐱3)

� (7.21)

In addition, each dimension of x and u is between -0.35 and 0.35. The non-diagonal entries are

random numbers between 0 and coupling parameter σ. If the right side of (7.20) is beyond this

range, the result will be scaled back to the nearest bound. We define the coupling parameter σ as

𝜎𝜎 =
∑ 𝐀𝐀𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

∑𝐀𝐀𝑖𝑖𝑖𝑖
 ∀𝑖𝑖, 𝑗𝑗 ∈ [1,3] (7.22)

In other words, σ is the ratio between the sum of non-diagonal entries in A and the sum of all

entries in A. In our simulations σ ranges from 0 to 0.3. With σ = 0, A becomes the identity matrix

87

or the systems are completely decouple. The systems are more couple when σ increases. In this

design, we assign three learning agent such that each agent is responsible for one dimension of x

and u. The initial state x(0) is a vector of 0.2. For equation (7.2) and (7.3), we choose p(x) = - ||x||2

and q(u) = -||u||2 for both the centralized approach and the learning agents in the decentralized /

MDO approaches. For equation (7.5), γ = 0.9. As the reminder, each learning agent does not know

anything about A but may know all of the other information.

For identification, each agent has neural networks of 50 hidden layers. The input and output layer

is as in section II.2. We use the window size of Ω = 50 (figure 7.1). In each training round, the

training data set is reused at most 1000 times (epoch) [99] to improve identification. The maximum

number of iterations t is 5000.

For the MDO discretization, we suppose that each agent can send its full state information to the

other agents, which means Cj(xi≠j) = xi≠j ∀i, j. Each agent j divides its xj and uj dimension into G

= 7 grids (equation (7.13)-(7.14)). Therefore, the grid size in each dimension is 0.1. For the

discretization of Cj(xi≠j), we setup two scenarios:

- When the agents use the external information fully (with the same resolution) as it does

for the internal xj and uj, each dimension of Cj(xi≠j) is divided into G = L= 7 grids. Therefore, in

the MF option, each agent j has one MDP model of size (7×72) × 7 × (7×72). In the IDF option,

each agent j has 72 MDP models of size 7×7×7.

- When the agents use the external information less than (with less resolution) it does for

the internal xj and uj, each dimension of Cj(xi≠j) is divided into L = 5 and L = 3 grids. Therefore,

88

in the MF option, each agent j has one MDP model of size (7×52) × 7 × (7×52) and (7×32) × 7 ×

(7×32). In the IDF option, each agent j has 52 and 32 MDP models of size 7×7×7.

For the completely decentralized, selectively decentralized and the centralized approach, each

agent also divides each dimension of x and u into G = 7 grids.

7.4.1 The learning performance of MDO approach in stabilizing control system

Figure 7.2. learning performance in p(x) and q(u) of the MDO approaches in weakly coupled

system (σ = 0.05).

Figure 7.3. learning performance in p(x) and q(u) of the MDO approaches in strongly coupled

system (σ = 0.3).

0 10 20 30 40

window index

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
average p(X), weakly coupled system

MDO-MF

Centralized

Completely Decentralized

MDO-IDF

0 10 20 30 40

window index

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
average q(u), weakly coupled system

MDO-MF

Centralized

Completely Decentralized

MDO-IDF

0 5 10 15 20

window index

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
average p(X), strongly coupled system

MDO-MF

Centralized

Completely Decentralized

MDO-IDF

0 5 10 15 20

window index

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

average q(u), strongly coupled system

MDO-MF

Centralized

Completely Decentralized

MDO-IDF

89

Figures 7.2 and 7.3 compare the learning performance among the MDO, the complete

decentralization and the centralization approaches. Overall, the MDO-IDF outperforms both the

centralization and the complete decentralization approach. In figure 3, where the centralization is

expected to have advantage, the MDO-IDF minimize both p(x) and q(u) to 0. According to (7.2)

and (7.3), this result implies that both x and u converges to 0. Meanwhile the centralization is able

to minimize p(x) to 0, but shows small oscillation on q(u), which does not converge to 0. In the

other hand, the MDO-MF is better in learning when the system is strongly decoupled, as showed

in figure 7.2. However, even in this case, the MDO-MF still shows minor oscillation when both

p(x) and q(u) approach 0.

7.4.2 Performance loss MDO-IDF when using resolution-less communication

Figure 7.4. Converging time of the MDO-IDF approach with full and less resolution

In figure 7.4, we show that the learning performance of the MDO-IDF approach are similar when

the communication Cj(xi≠j) is used with less resolution, compared with the selective

decentralization approach. In this figure, we denote MDO-IDF-Full as applying the IDF approach

with G = L = 7, MDO-IDF-5 as G = 7 / L = 5 and MDO-IDF-3 as G = 7 / L = 3. Here, we address

the performance of these approach by converging time, which is defined as Ω×w, in which w is

0 0.05 0.1 0.15 0.2 0.25 0.3

coupling parameter

300

350

400

450

500

550
Converging time

selective decentralization

MDO-IDF-Full

MDO-IDF-5

MDO-IDF-3

0 0.05 0.1 0.15 0.2 0.25 0.3

coupling parameter

0

0.02

0.04

0.06

0.08

0.1

0.12
Converging performance

selective decentralization

MDO-IDF-Full

MDO-IDF-5

MDO-IDF-3

90

the window such that the average p(x) + q(u) at window w and w-1 are less than 0.001, or when

the change of average p(x) + q(u) at w and w-1 is less than 0.001. Overall, for converging time,

the selective decentralization converging time is still better than the MDO-IDF approach. However,

at the converging window, the average p(x) + q(u) is closer to 0 in the MDO-IDF approach.

 Discussions

In this chapter, we show the capability of MDO approaches in decentralized reinforcement

learning. It is clear that from our experiement, the MDO-IDF option could successfully in control-

and-stabilize learning problem; meanwhile, the MDO-MF option is not always successful.

Mathematically, this fact could be explained by the divergence of f (xj, Cj(xi≠j)). In the MF option,

Cj(xi≠j) participates in the MDP construction in such a way that the Monte Carlo randomize

samples of Cj(xi≠j) through its range. When the system is more coupled, f (xj, uj, Cj(xi≠j)) will be

more diverge, even when xj is already in the stable region. Therefore, the conditional probability

P(xj(t+1) | xj(t), uj(t)=0) such that both xj(t+1) and xj(t) are in the stable region is less when the

system is more coupled. Thus, the utility value of x in the stable region become less; therefore, the

agents see less ‘motivation’ to stablize. In the individual feasible option, the MDP is constructed

by f Cj(xi≠j)(xj, uj) where Cj(xi≠j) is fixed. Since the simulation examples satisfy that all of the agent

could stabilize their state to 0 together, we do not see the diverse of f Cj(xi≠j)(xj, uj) when both xj and

Cj(xi≠j) are in stable regions. In the other words, from philosophical perspective, in a cooperative

task, trusting the behavior of the collaborators often lead to better results than doubting the

incompetence or error from the collaborators.

91

Compared to the selective decentralization approach [93], which is also showed to outperform both

the centralization and the complete decentralization, the MDO-IDF offer a complimentary

technique to tackle the communication among the learning agents. In the selective decentralization

approach, there exist a central agent deciding which communication scheme to be used for the

agents to make decision. In the other words, selective decentralization is about model switching

and the communication among all of the agents are not always free. In the MDO-IDF, the agents

could freely send the state information to the others. In addition, each agent is responsible for its

own communication: how to use the communication to compute the best action. Both of these

methods show better performance than huge centralization and blind (completely) decentralization

approach in many cases of system decoupling.

92

8. DECENTRALIZED LEARNING IN NOISY ENVIRONMENT

This section adds the system noise as another dimension of complexity in the learning and control

problem for the selective decentralization framework. We want to answer the following questions.

First, to what extend the selective decentralization could improve the system identification,

compared to the centralized approach, given increasing level of noise? Second, to what extend the

selective decentralization could stabilize the system faster than the centralized approach could,

given increasing level of noise? Third, is there any trade-off among the learning performance, cost

and the converging speed given the occurrence of noise? In this chapter, we answer these questions

by experiments on all of the learning and control techniques presented in chapters 4-7. We also

assess the impact of noise filtering techniques, in addition to selective decentralization, in

improving the learning and control performance.

 Experimental results without noise-filtering techniques

8.1.1 Linear system

This section applies the learning and control technique presented in chapter VI for linear system.

For noise extension, we add the noise into the system as

x(t+1) = Ax(t) + Bu(t) + r(t) (8.1)

where x ∈ ℜN is the state vector, u ∈ ℜN is the action (also called control) vector, r ∈ ℜN is a

random unknown noise vector with expected value of 0, A ∈ ℜN×N is the state-transition matrix,

which is unknown, and B ∈ ℜN×M
 is a known semi positive-definite matrix. We assume that r are

under a multivariate normal distribution. Here, we set x and u to have the same dimensionality for

the ease of decentralization. For simulation, the matrix A is setup with underlying subsystem

components {{1,2}, {3, 4},{5, 6}, {7,8}, {9, 10}} as follow:

93

A =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.68 0.32
0.20 0.80

 0.25 0.75
0.44 0.56 𝜎𝜎

 0.50 0.50
0.41 0.59

𝜎𝜎

 0.85 0.15
0.15 0.85

 0.35 0.65
0.67 0.33⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (8.2)

where the non-block entries of A are a random numbers between 0 and σ, which is called coupling

parameters. The initial control variables u(0) and state variable x(0) are set randomly between -1

and 1. As shown in (8.2), σ represents the underlying interconnection among the subsystems. We

experiment with σ from 0 to 0.5; in the other word, from the completely decoupled system to the

strongly coupled system. To avoid numerical overflowing, we normalize A into a Markov matrix

in (8.1). We set B as the identity matrix. The learning objective is to maximize

� 𝛾𝛾𝑡𝑡(−𝐱𝐱(𝑡𝑡)𝑇𝑇𝐱𝐱(𝑡𝑡) − 𝐮𝐮(𝑡𝑡)𝑇𝑇𝐮𝐮(𝑡𝑡))
∞

𝑡𝑡=0

 (8.3)

Where γ = 0.9. For identification, we set α = 1 (formula 5.11). At the starting point, we set all

elements of x(0) as random numbers between -1 and 1. Each noise element is randomly generated

from normal distribution with mean of 0 and small standard deviation of from 0.01 to 0.05. Higher

standard deviation implies more noise. For statistical purposes, we repeat the experiment 50 times

for each choice of coupling parameter. We set the window size w = 1. For time index t, we

terminate the experiment at t = 500. This choice is made based on the observation in [93], when

the system is stabilized after the first tens iterations.

Figures 8.1 and 8.2 show that the selectively decentralized system shows better control

performance than the centralized system. In these figures, we draw the result when the noise

94

standard deviation is 0.01. Figure 8.1 shows the result when (1) is completely decoupled (σ=0).

Figure 8.2 shows the result when (1) is the most coupled in our experiments (σ=0.5). We use

norm(x) and norm(u) to denote the second-norm of x and u. In these figures, the numbers for

norm(x) and norm(u) are the average values of the 50 random repetitions. When the noise becomes

large, as showed in figures 3 and 4, both the state and the action variate around the noise standard

deviation. In this case, the difference between the centralized and selectively decentralized

learning performance is marginal.

Figure 8.1. Comparison of learning performance between the centralized systems and the

selectively decentralized systems when the systems are completely decoupled and linear (σ=0) in
small noise scenario.

0 5 10 15 20

iteration

0

1

2

3

4

5
norm(x), sigma = 0

Centralization

Selective Decentralization

0 5 10 15 20

iteration

0

1

2

3

4

5
norm(u), sigma = 0

Centralization

Selective Decentralization

95

Figure 8.2. Comparison of learning performance between the centralized systems and the

selectively decentralized systems when the systems are strongly coupled and linear (σ=0.5) in
small noise scenario.

Figure 8.3. Comparison of learning performance between the centralized systems and the

selectively decentralized systems when the systems is are completely decoupled and linear (σ=0)
in large noise scenario

0 5 10 15 20

iteration

0

1

2

3

4

5
norm(x), sigma = 0.5

Centralization

Selective Decentralization

0 5 10 15 20

iteration

0

1

2

3

4

5
norm(u), sigma = 0.5

Centralization

Selective Decentralization

0 5 10 15 20

iteration

0

1

2

3

4

5
norm(x), sigma = 0

Centralization

Selective Decentralization

0 5 10 15 20

iteration

0

1

2

3

4

5
norm(u), sigma = 0

Centralization

Selective Decentralization

96

Figure 8.4. Comparison of learning performance between the centralized systems and the

selectively decentralized systems when the systems is are strongly coupled and linear (σ=0.5) in
large noise scenario

Notably, the centralization and selective decentralization can learn how to stabilize (8.1) despite

the noise. However, we see significant gap between the performance of the centralization and the

performance of selective decentralization. Selective decentralization stabilizes (8.1) faster. This

gap tends to decrease when the systems are more coupled. Figure 8.5 shows the average number

of iteration for the centralization selective decentralization to bring norm(x) less than 0.05. We

observe that the selective decentralization always outperforms the other approaches regardless of

the coupling parameters.

0 5 10 15 20

iteration

0

1

2

3

4

5
norm(x), sigma = 0.5

Centralization

Selective Decentralization

0 5 10 15 20

iteration

0

1

2

3

4

5
norm(u), sigma = 0.5

Centralization

Selective Decentralization

97

Figure 8.5. Number of iterations needed to bring norm(x) < 0.05 in small noise - linear system

scenario

In figures 8.6 and 8.7, we show the learning performance of the selectively decentralized approach

and the centralized approach when the noise increases. As mentioned, since each noise element is

a random number with mean 0, higher noise standard deviation implies more noise. In figure 8.6,

we measure the average identification error (6.7) at the last 50 iterations during the experiments as

the ‘identification error at the end of the experiment’, and the largest identification error from t =

1 to t = 500 as the ‘worst identification error’. Similar to figure 8.6, in figure 8.7, we measure the

learning objective (6.5). Overall, after the experiment, we observe that the centralized approach is

robust against increasing level of noise. Here, the convergent identification error and learning

objective in the centralized approach do not degrade when more noise is introduced. Meanwhile,

these metrics in the selectively decentralized approach deteriorate linearly with the increasing

noise. However, the selectively decentralized approach still significantly outperforms the

centralized approach when we look at the worst identification error and learning objective.

0 0.1 0.2 0.3 0.4 0.5

coupling parameter

0

10

20

30

40

50

60

of

 it
er

at
io

ns
 s

uc
h

th
at

 |x
| <

 0
.0

5

Centralization

Selective Decentralization

98

Figure 8.6. Comparison of identification errors between the selectively decentralized approach

and the centralized approach given increasing noise level in linear system

Figure 8.7. Comparison of learning performance J(x) between the selectively decentralized

approach and the centralized approach given increasing noise level in linear system

8.1.2 Nonlinear system with discrete-MDP approach

Similar to the linear system, for nonlinear system with the discrete-MDP approach, selective

decentralization improves the learning performance in small noise scenario. The systems used in

this section is similar (4.23-4.25) in chapter 4.

x(t) = sin(Ax(t-1)) + u(t) + r(t) (8.4)

0.01 0.02 0.03 0.04 0.05

noise standard deviation

0

0.05

0.1

0.15

0.2

0.25

0.3
identification error at the end of the experiments

Centralization

Selective Decentralization

0.01 0.02 0.03 0.04 0.05

noise standard deviation

4

6

8

10

12

14

16
worst identification error during the experiment

Centralization

Selective Decentralization

0.01 0.02 0.03 0.04 0.05

noise standard deviation

0.05

0.1

0.15

0.2

0.25
learning objective at the end of the experiments

Centralization

Selective Decentralization

0.01 0.02 0.03 0.04 0.05

noise standard deviation

0

10

20

30

40

50

60

J(
x)

worst learning performance during the experiment

Centralization

Selective Decentralization

99

where A are 3×3 random Markov matrices such that all diagonal entries share the same value. The

non-diagonal entries are random number between 0 and the coupling parameter σ. The vector sin

function is defined from each dimension as

sin(𝐱𝐱) = �

sin (𝐱𝐱1)
sin (𝐱𝐱2)

sin (𝐱𝐱3)

� (8.5)

The coupling parameter σ for the non-diagonal entries is defined as

𝜎𝜎 =
∑ 𝐀𝐀𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

∑𝐀𝐀𝑖𝑖𝑖𝑖
 ∀𝑖𝑖, 𝑗𝑗 ∈ [1,3] (8.6)

With σ = 0, A becomes the identity matrix or the systems are completely decouple. The systems

are more couple when σ increases. The learning objective is to minimize (8.3). For state and action

variables, all state x and action u components have the range between -0.5 and 0.5 and initial state

vectors x(0) are vectors of 1. For discretization (2.10-2.11), we choose M = N = 5. Therefore, θx =

θu = 0.2. Each noise element r(t) is randomly generated from normal distribution with mean of 0

and small standard deviation of from 0.01 to 0.05. Higher standard deviation implies more noise.

For statistical purposes, we repeat the experiment 50 times for each choice of coupling parameter.

We set the window size w = 50. For time index t, we terminate the experiment at t = 10000.

 Figures 8.8 and 8.9 demonstrates the comparative performance between the selectively

decentralized and the centralized approaches when the Gaussian noise standard deviation is 0.01.

The selectively decentralized approach could bring both the state and the action vectors closer to

0, compared to the centralized approach could, when the systems are completely decoupled (figure

8.8) and strongly coupled (figure 8.9, with coupling parameter = 0.5).

100

However, when the noise increases, the gap of learning performance between the selectively

decentralized and the centralized approach are narrower. Figures 8.10 and 8.11 shows typical

example of the systems with large noise, when both x and u do not converge. In figure 8.12, we

draw the learning goal, which is minimization of J(x), when the experiments terminate. When the

noise standard deviation reaches 0.04, we no longer see the improvement of selective

decentralization, compared to centralization.

Figure 8.8. Comparison of learning performance between the discrete-MDP centralized systems

and the selectively decentralized systems when the systems are completely decoupled and
nonlinear in small noise scenario

Figure 8.9. Comparison of learning performance between the discrete-MDP centralized systems

and the selectively decentralized systems when the systems are strongly coupled and nonlinear in
small noise scenario

0 10 20 30 40 50

window index

0

0.05

0.1

0.15

0.2

0.25

0.3
x

Centralized System

Selective Decentralized System

0 10 20 30 40 50

window index

0

0.05

0.1

0.15

0.2

0.25

0.3
u

Centralized System

Selective Decentralized System

0 10 20 30 40 50

window index

0

0.05

0.1

0.15

0.2

0.25

0.3
x

Centralized System

Selective Decentralized System

0 10 20 30 40 50

window index

0

0.05

0.1

0.15

0.2

0.25

0.3
u

Centralized System

Selective Decentralized System

101

Figure 8.10. Comparison of learning performance between the discrete-MDP centralized systems

and the selectively decentralized systems when the systems are completely decoupled and
nonlinear in large noise scenario

Figure 8.11. Comparison of learning performance between the discrete-MDP centralized systems
and the selectively decentralized systems when the systems is are strongly coupled and nonlinear

in large noise scenario

0 10 20 30 40 50

window index

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32
x

Centralized System

Selective Decentralized System

0 10 20 30 40 50

window index

2

2.2

2.4

2.6

2.8

3
u

Centralized System

Selective Decentralized System

0 10 20 30 40 50

window index

0.05

0.1

0.15

0.2

0.25

0.3
x

Centralized System

Selective Decentralized System

0 10 20 30 40 50

window index

1.5

2

2.5

3
u

Centralized System

Selective Decentralized System

102

Figure 8.12. The converging learning performance of the selectively decentralized and the

centralized discrete-MDP when the noise standard deviation increases

8.1.3 Q learning

In Q-learning, we use the same simulated system as showed in section 8.1.2. For discretization

(4.3-4.4), we choose G = 5. Therefore, θx = θu = 0.2. For Q-learning parameters (4.5-4.8), we

choose r = 0.01, α = 0.1 and γ = 0.9. The window size is set as w = 50. For each choice of coupling

parameters, we repeat the experiment 100 times.

It is clear that selective decentralization significantly improves the learning performance,

compared to the centralized approach. This observation remains the same for all of the experiments.

Figures 8.13 and 8.14 show typical example of how selective decentralization outperforms

centralization. In figure 8.13, when the system is weakly coupled, selective decentralization could

still stabilize state and control vectors close to 0; meanwhile, centralization fails to do the same

task within the maximum number of allowed iteration. In figure 8.14, when the system are strongly

coupled, both centralized and selectively decentralized Q-learning could stabilize the system.

However, selective decentralization brings the system toward the zero-equilibrium point much

faster.

0 0.01 0.02 0.03 0.04 0.05

noise standard deviation

1

1.5

2

2.5

3

3.5

J(
x)

Converging learning performance

Centralized System

Selective Decentralized System

103

In figure 8.17, we plot the minimization objective J(x) for the learning process at the last 10

windows during the experiments. As expected, when the Gaussian noise standard deviation

increase, it is less likely that the system could be stabilized. Figures 8.15 and 8.16 show that both

x and u do not converge to 0 with large noise. In these two figures, the noise standard deviation is

0.1. Therefore, J(x) increases with the noise standard deviation. However, selective

decentralization achieves less J(x).

Figure 8.13. A typical example of how x and u converge in small-noise scenario in weakly

coupled system with Q-learning; here, the Gaussian noise standard deviation is 0.005 and σ =
0.05

Figure 8.14. A typical example of how x and u converge in small-noise scenario in strongly
coupled system Q-learning; here, the Gaussian noise standard deviation is 0.005 and σ = 0.5

5 10 15 20

window index

0

0.1

0.2

0.3

0.4
x

Centralized System

Selective Decentralized System

5 10 15 20

window index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
u

Centralized System

Selective Decentralized System

5 10 15 20

window index

0

0.05

0.1

0.15

0.2

0.25

0.3
x

Centralized System

Selective Decentralized System

5 10 15 20

window index

0

0.05

0.1

0.15

0.2

0.25

0.3
u

Centralized System

Selective Decentralized System

104

Figure 8.15. A typical example of how x and u converge in small-noise scenario in weakly

coupled system with Q-learning; here, the Gaussian noise standard deviation is 0.05 (large noise)
and σ = 0.05

Figure 8.16. A typical example of how x and u converge in small-noise scenario in strongly

coupled system with Q-learning; here, the Gaussian noise standard deviation is 0.05 (large noise)
and σ = 0.15

0 20 40 60 80 100

window index

0.15

0.2

0.25

0.3

0.35
x

Centralized System

Selective Decentralized System

0 20 40 60 80 100

window index

0.16

0.18

0.2

0.22

0.24

0.26

0.28
u

Centralized System

Selective Decentralized System

0 20 40 60 80 100

window index

0.15

0.2

0.25

0.3

0.35
x

Centralized System

Selective Decentralized System

0 20 40 60 80 100

window index

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28
u

Centralized System

Selective Decentralized System

105

Figure 8.17. The converging learning performance of the selectively decentralized and the

centralized Q-learning when the noise standard deviation increases

8.1.4 MDO

The systems used in MDO noise simulation is the same to the systems in sections 8.1.2 and 8.1.3

for discretized MDP and Q-learning. In MDO, we only implemented the MDO-IDF approach,

which is showed to outperform the MDO-IF approach in chapter 7. For MDO agent discretization

(chapter 7), all MDO agents discretize its state and action dimension into 7 regions. The other

parameters for MDO are identical to the simulation showed in section 7.4.

Compared to the centralized approach, the MDO shows less learning performance when the noise

level is low. However, when the noise level increases, MDO performance starts approaching and

eventually outperforms the centralized performance, as showed in Figure 8.22. Figures 8.18 and

8.19 show typical examples of the MDO performance in low-noise scenario. Interestingly, in these

figures, both MDO and the centralized approach could converge x to relatively similar levels. This

phenomena also appears when the noise level increases. Therefore, we conclude that the

performance of MDO is mostly decided by the action vector u. Figures 8.20 and 8.21 show that

0 0.01 0.02 0.03 0.04 0.05

noise standard deviation

0

0.1

0.2

0.3

0.4

0.5

J(
x)

Converging learning performance

Centralized System

Selective Decentralized System

106

with large noise, similar to the other approaches, both x and u do not converge. In these two figures,

the noise standard deviation is 0.1.

Figure 8.18. A typical example of how x and u converge in small-noise scenario in weakly coupled
system with MDO; here, the Gaussian noise standard deviation is 0.005 (small noise) and σ = 0.05

Figure 8.19. A typical example of how x and u converge in small-noise scenario in strongly
coupled system with MDO; here, the Gaussian noise standard deviation is 0.005 and σ = 0.5

0 10 20 30 40 50

window index

0

0.1

0.2

0.3

0.4
x

Centralized System

MDO System

0 10 20 30 40 50

window index

0

0.2

0.4

0.6

0.8

1
u

Centralized System

MDO System

0 10 20 30 40 50

window index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
x

Centralized System

MDO System

0 10 20 30 40 50

window index

0

0.2

0.4

0.6

0.8

1
u

Centralized System

MDO System

107

Figure 8.20. A typical example of how x and u do not converge in small-noise scenario in

weakly coupled system with MDO; here, the Gaussian noise standard deviation is 0.05 (large
noise) and σ = 0.05

Figure 8.21. A typical example of how x and u do not converge in small-noise scenario in

strongly coupled system with MDO; here, the Gaussian noise standard deviation is 0.05 (large
noise) and σ = 0.25

0 10 20 30 40 50

window index

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
x

Centralized System

MDO System

0 10 20 30 40 50

window index

0

0.5

1

1.5

2

2.5
u

Centralized System

MDO System

0 10 20 30 40 50

window index

0.05

0.1

0.15

0.2

0.25

0.3

0.35
x

Centralized System

MDO System

0 10 20 30 40 50

window index

0

0.5

1

1.5

2

2.5
u

Centralized System

MDO System

108

Figure 8.22. The converging learning performance of the MDO and the centralized system when

the noise standard deviation increases

 Discussions

This chapter confirms the robustness of the decentralized approaches, including selective

decentralization and MDO, in learning and control noisy systems. For all of the experiments

showed in section I, we observe that by the end of the experiment, the decentralized approaches

reach lower value of the minimization objective J(x). In addition, we still see that selective

decentralization has better converging speed, compared to the centralized approach, as showed in

the linear and Q-learning systems. These finding are accordant to the claim that the decentralized

approaches are less susceptible to uncertain system parameters [40], which is the noise in this

chapter.

For model-based technique, our result suggests that the learning performance J(x) is worse when

the noise level increase primarily due to the higher system identification error. Figures 8.4 and 8.5

strongly demonstrates this fact in the linear system case. Therefore, noise-filtering techniques

should be applied in combination with the selective decentralization approach to reduce system

identification error.

0 0.01 0.02 0.03 0.04 0.05

noise standard deviation

0

0.5

1

1.5

2

2.5

J(
x)

Converging learning performance

Centralized System

MDO System

109

9. CASE-STUDIES

This chapter demonstrates the application of selectively decentralized reinforcement learning in

two real-world case-studies. In the first case, I apply the linear-quadratic-regulator algorithm

(chapter 6) in stabilizing the mass-spring system [100], which is the building block for automatic

braking system. Here, each mass is a subsystem characterized by its location and velocity, which

compose the mass state. Each mass could move horizontally on both direction, and could apply

force horizontally to speed up or slow down its motion (control). These masses connect to each

other by several springs. When some mass drifts away from its default resting position, the springs’

elastic forces trigger all masses moving. In this case, the objective is to compute each mass’

controlling force needed to stop the masses’ motion and bring them back to the resting positions,

with consideration of conserving the controlling forces. In the second case, we hypothesize that

the gene expression in cancer is directed by a model-able biological system, which could be

formulated and solve by existing control system technologies. In complex diseases, such as cancer,

we observe that many genes express abnormally, either overexpression or underexpression.

Therefore, the common practice in drug and treatment design is to reverse the expression of

abnormally expressed genes so that the gene expressions return back to the balance, or 0 level.

This practice could be easily formulated by existing reinforcement learning and control system

theory. The treatment, such as drug, could be considered as a sub-optimal solution to control the

biological system. In all of these case-studies, we show that the selectively decentralized

approaches could improve the overall learning-and-controlling performance, compared to the

centralized approach.

110

 Learning to control the mass-spring system

9.1.1 System formulation

Figure 9.1 demonstrates the mass-spring system of three masses landing and moving horizontally.

Masses (measured by kg) m1 and m3 connect to the fixed wall by springs (measured by elasticity

constant unit kg/m2) k1 and k3. Mass m2 stands between m1 and m3, and connects to the other masses

by springs k12 and k23. The resting positions of m1, m2 and m3 are p1, p2 and p3, correspondingly.

Without the loss of generalization in the theory and result, suppose that m1, m2 and m3 stay at q1,q2

and q3 such that k1, k3 are compressed and k12, k23 are stretched as the Figure 9.1 (lower) show.

Figure 9.1. The 3-mass mass-spring system: (upper) at the resting positions; (lower) the forces

applying on these masses (in bold and black arrows) when the masses are not at the resting
positions

Analyzing the forces action on each mass, we have

- Mass m1 has: force 𝐹𝐹1,1������⃗ caused by the compressed k1 pushing to the right, force 𝐹𝐹12,1��������⃗

caused by the stretched k12 pushing to the right, and individual control force 𝑢𝑢1����⃗ pushing to

the right in order to return to the resting point p1.

- Mass m2 has: force 𝐹𝐹12,2��������⃗ caused by the stretched k12 pushing to the left, force 𝐹𝐹23,2��������⃗ caused

by the stretched k23 pushing to the right, and individual control force 𝑢𝑢2����⃗ pushing to the right

111

in order to return to the resting point p2.

Mass m3 has: force 𝐹𝐹3,3������⃗ caused by the compressed k3 pushing to the left, force 𝐹𝐹23,3��������⃗ caused by the

stretched k23 pushing to the left, and individual control force 𝑢𝑢3����⃗ pushing to the left in order to

return to the resting point p3.

Writing the second Newton’s law vector-equations [101] for these masses, we have

�
𝑚𝑚1𝑎𝑎1����⃗ = 𝐹𝐹1,1������⃗ + 𝐹𝐹12,1 ���������⃗ + 𝑢𝑢1����⃗
𝑚𝑚2𝑎𝑎2����⃗ = 𝐹𝐹12,2��������⃗ + 𝐹𝐹23,2 ����������⃗ + 𝑢𝑢2����⃗
𝑚𝑚3𝑎𝑎3����⃗ = 𝐹𝐹3,3������⃗ + 𝐹𝐹23,3 ����������⃗ + 𝑢𝑢3����⃗

 (9.1)

Where 𝑎𝑎1����⃗ ,𝑎𝑎2����⃗ and 𝑎𝑎13������⃗ stand for the accelerations of m1, m2 and m3, correspondingly of. Applying

Hooke’s law for elastic spring [102], we can write (9.1) as

�
𝑚𝑚1𝑎𝑎1����⃗ = −𝑘𝑘1(𝑞𝑞1���⃗ − 𝑝𝑝1���⃗) − 𝑘𝑘12[(𝑞𝑞1���⃗ − 𝑝𝑝1���⃗) − (𝑞𝑞2����⃗ − 𝑝𝑝2����⃗)] + 𝑢𝑢1����⃗

𝑚𝑚2𝑎𝑎2����⃗ = −𝑘𝑘12[(𝑞𝑞1���⃗ − 𝑝𝑝1���⃗) − (𝑞𝑞2����⃗ − 𝑝𝑝2����⃗)] + −𝑘𝑘23[(𝑞𝑞3����⃗ − 𝑝𝑝3����⃗) − (𝑞𝑞2����⃗ − 𝑝𝑝2����⃗)] + 𝑢𝑢2����⃗
𝑚𝑚3𝑎𝑎3����⃗ = −𝑘𝑘3(𝑞𝑞3����⃗ − 𝑝𝑝13������⃗) − 𝑘𝑘23[(𝑞𝑞3����⃗ − 𝑝𝑝31������⃗) − (𝑞𝑞2����⃗ − 𝑝𝑝2����⃗)] + 𝑢𝑢3����⃗

 (9.2)

We can denote the displacement vectors as 𝑥𝑥1���⃗ = (𝑞𝑞1���⃗ − 𝑝𝑝1���⃗),𝑥𝑥2����⃗ = (𝑞𝑞2����⃗ − 𝑝𝑝2����⃗), 𝑥𝑥3����⃗ = (𝑞𝑞3����⃗ − 𝑝𝑝3����⃗). Also,

choosing the reference axis horizontally from left to right, we have

�
𝑚𝑚1𝑎𝑎1 = −𝑘𝑘1𝑥𝑥1 + 𝑘𝑘12(𝑥𝑥2 − 𝑥𝑥1) + 𝑢𝑢1

𝑚𝑚2𝑎𝑎2 = 𝑘𝑘12(𝑥𝑥2 − 𝑥𝑥1) + 𝑘𝑘23(𝑥𝑥2 − 𝑥𝑥3) +
𝑚𝑚3𝑎𝑎3 = −𝑘𝑘3𝑥𝑥3 + 𝑘𝑘23(𝑥𝑥2 − 𝑥𝑥3) + 𝑢𝑢3

𝑢𝑢2 (9.3)

In (9.3), the positive value x implies that vector 𝑥⃗𝑥 has direction from left to right, and the negative

value x implies that vector 𝑥⃗𝑥 has direction from right to left. Let v1, v2 and v3 denote the velocity

of m1, m2 and m3, correspondingly. From (9.3), we can write

112

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑚𝑚1

𝑑𝑑(𝑣𝑣1)
𝑑𝑑𝑑𝑑

= −𝑘𝑘1𝑥𝑥1 + 𝑘𝑘12(𝑥𝑥2 − 𝑥𝑥1) + 𝑢𝑢1

𝑣𝑣1 =
𝑑𝑑(𝑥𝑥1)
𝑑𝑑𝑑𝑑

𝑚𝑚2
𝑑𝑑(𝑣𝑣2)
𝑑𝑑𝑑𝑑

= 𝑘𝑘12(𝑥𝑥2 − 𝑥𝑥1) + 𝑘𝑘23(𝑥𝑥2 − 𝑥𝑥3) + 𝑢𝑢2

𝑣𝑣2 =
𝑑𝑑(𝑥𝑥2)
𝑑𝑑𝑑𝑑

𝑚𝑚3
𝑑𝑑(𝑣𝑣3)
𝑑𝑑𝑑𝑑

= −𝑘𝑘3𝑥𝑥3 + 𝑘𝑘23(𝑥𝑥2 − 𝑥𝑥3) + 𝑢𝑢3

𝑣𝑣3 =
𝑑𝑑(𝑥𝑥3)
𝑑𝑑𝑑𝑑

 (9.4)

Discretize (9.4) by small interval ∆t, we have

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑚𝑚1

𝑣𝑣1(𝑡𝑡 + 1) − 𝑣𝑣1(𝑡𝑡)
∆𝑡𝑡

= −𝑘𝑘1𝑥𝑥1(𝑡𝑡) + 𝑘𝑘12(𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)) + 𝑢𝑢1(𝑡𝑡)

𝑣𝑣1(𝑡𝑡) =
𝑥𝑥1(𝑡𝑡 + 1) − 𝑥𝑥1(𝑡𝑡)

∆𝑡𝑡

𝑚𝑚2
𝑣𝑣2(𝑡𝑡 + 1) − 𝑣𝑣2(𝑡𝑡)

∆𝑡𝑡
= 𝑘𝑘12(𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)) + 𝑘𝑘23(𝑥𝑥2(𝑡𝑡) − 𝑥𝑥3(𝑡𝑡)) + 𝑢𝑢2(𝑡𝑡)

𝑣𝑣2(𝑡𝑡) =
𝑥𝑥2(𝑡𝑡 + 1) − 𝑥𝑥2(𝑡𝑡)

∆𝑡𝑡

𝑚𝑚3
𝑣𝑣3(𝑡𝑡 + 1) − 𝑣𝑣3(𝑡𝑡)

∆𝑡𝑡
= −𝑘𝑘3𝑥𝑥3(𝑡𝑡) + 𝑘𝑘23(𝑥𝑥2(𝑡𝑡) − 𝑥𝑥3(𝑡𝑡)) + 𝑢𝑢3(𝑡𝑡)

𝑣𝑣3(𝑡𝑡) =
𝑥𝑥3(𝑡𝑡 + 1) − 𝑥𝑥3(𝑡𝑡)

∆𝑡𝑡

 ⇔

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝑥𝑥1(𝑡𝑡 + 1) = 𝑥𝑥1(𝑡𝑡) + ∆𝑡𝑡 × 𝑣𝑣1(𝑡𝑡)

𝑣𝑣1(𝑡𝑡 + 1) = −
∆𝑡𝑡
𝑚𝑚1

(𝑘𝑘1 + 𝑘𝑘12) × 𝑥𝑥1(𝑡𝑡) + 𝑣𝑣1(𝑡𝑡) + 𝑘𝑘12
∆𝑡𝑡
𝑚𝑚1

𝑥𝑥2(𝑡𝑡) +
∆𝑡𝑡
𝑚𝑚1

𝑢𝑢1(𝑡𝑡)

𝑥𝑥2(𝑡𝑡 + 1) = 𝑥𝑥2(𝑡𝑡) + ∆𝑡𝑡 × 𝑣𝑣2(𝑡𝑡)

𝑣𝑣2(𝑡𝑡 + 1) =
−𝑘𝑘12∆𝑡𝑡
𝑚𝑚2

× 𝑥𝑥1(𝑡𝑡) +
(𝑘𝑘12 + 𝑘𝑘23)∆𝑡𝑡

𝑚𝑚2
× 𝑥𝑥2(𝑡𝑡)

 +𝑣𝑣2(𝑡𝑡) −
𝑘𝑘23∆𝑡𝑡
𝑚𝑚2

× 𝑥𝑥3(𝑡𝑡) +
∆𝑡𝑡
𝑚𝑚2

𝑢𝑢2(𝑡𝑡)

𝑥𝑥3(𝑡𝑡 + 1) = 𝑥𝑥3(𝑡𝑡) + ∆𝑡𝑡 × 𝑣𝑣3(𝑡𝑡)

𝑣𝑣3(𝑡𝑡 + 1) = 𝑘𝑘23
∆𝑡𝑡
𝑚𝑚3

𝑥𝑥2(𝑡𝑡) −
∆𝑡𝑡
𝑚𝑚3

(𝑘𝑘3 + 𝑘𝑘23) × 𝑥𝑥3(𝑡𝑡) + 𝑣𝑣3(𝑡𝑡) +
∆𝑡𝑡
𝑚𝑚3

𝑢𝑢3(𝑡𝑡)

 (9.5)

113

Therefore, with x =

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑣𝑣1
𝑥𝑥2
𝑣𝑣2
𝑥𝑥3
𝑣𝑣3⎦
⎥
⎥
⎥
⎥
⎤

 and u = �
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�, system (9.1) is linearly equivalent to

𝐱𝐱(𝑡𝑡 + 1) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 ∆𝑡𝑡 0 0 0 0

−
∆𝑡𝑡
𝑚𝑚1

(𝑘𝑘1 + 𝑘𝑘12) 1 𝑘𝑘12
∆𝑡𝑡
𝑚𝑚1

0 0 0

0 0 1 ∆𝑡𝑡 0 0
−𝑘𝑘12∆𝑡𝑡
𝑚𝑚2

0
(𝑘𝑘12 + 𝑘𝑘23)∆𝑡𝑡

𝑚𝑚2
1 −

𝑘𝑘23∆𝑡𝑡
𝑚𝑚2

0

0 0 0 0 1 ∆𝑡𝑡

0 0 𝑘𝑘23
∆𝑡𝑡
𝑚𝑚3

0 −
∆𝑡𝑡
𝑚𝑚3

(𝑘𝑘3 + 𝑘𝑘23) 1
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐱𝐱(𝑡𝑡)

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0
∆𝑡𝑡
𝑚𝑚1

0 0

0 0 0

0
∆𝑡𝑡
𝑚𝑚2

0

0 0 0

0 0
∆𝑡𝑡
𝑚𝑚3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐮𝐮(𝑡𝑡) (9.6)

Bringing these masses toward the resting position implies that v1 = v2 = v3 = 0 and displacement x1

= x2 = x3 = 0, or x = 0. In addition, by conserving the control unit, we have the learning goal by

minimizing

�𝛾𝛾𝑡𝑡�𝐱𝐱(𝑡𝑡)𝑻𝑻𝐏𝐏𝐏𝐏(𝑡𝑡) + 𝐮𝐮(𝑡𝑡)𝑻𝑻𝐐𝐐𝐐𝐐(𝑡𝑡)�
∞

𝑡𝑡=1

 (9.7)

Where P and Q are positive definite matrices. From (9.6) and (9.7), we can compute the control

unit to (9.1) by applying the algorithms showed in chapter 6.

114

9.1.2 Experiment

I setup the experiment with the following parameters. The masses are m1 = m2 = m3 = 1 (kg). The

spring elastic constants are k1 = k3 = 1 (kg/m2), k12 = k23 = 0.5 (kg/m2). The small time interval for

linearization is ∆t = 0.01 (s). The discount factor in equation (9.7) is 0.9. P and Q are identity

matrices with 6 and 3 dimensions, correspondingly. Initially, the displacements are x1 = -0.5 (m),

x2 = -0.3 (m) and x3 = 0.2 (m), and the initial velocities for these masses are v1 = v2 = v3 = 0 (m/s).

The learning algorithm is the same to section 6.3.1 (chapter 6), with learning rate α = 0.05.

115

Figure 9.2. Learning and control performance of the approaches: centralized reinforcement

learning (RL), completely decentralized RL and selectively decentralized RL; top figure: state
trajectory; bottom figure: control trajectory

Figure 9.2 shows that the selectively decentralized approach outperforms the centralized and the

completely decentralized approaches in stabilizing the system. Both the completely decentralized

0 1 2 3 4 5 6 7

second

0

5

10

15

20
norm(X)

Centralized RL

Completely decentralized RL

Selectively decentralized RL

0 1 2 3 4 5 6 7

second

0

5

10

15

20
norm(U)

Centralized RL

Completely decentralized RL

Selectively decentralized RL

116

RL and the centralized RL fails to stabilize the system. The completely decentralized RL could

bring the masses closer to the resting point. In the other hands, the selectively decentralized RL

stabilizes the system within 3 seconds, by bringing the masses toward the resting positions and

stop the masses movement.

 Potential application in drug discovery / repositioning

9.2.1 Motivation of applying reinforcement learning in drug repositioning

Drug repurposing (also called drug repositioning) has become one of the most active areas in

pharmacology since last decade [103] because this approach could significantly reduce the cost

and time to invent a new treatment. One of the key reasons for low productivity in traditional drug

development is the lack of systematic evaluation of additional indications [104], which may lead

to unexpected side effects and low efficacy. Briefly, drug repurposing finds new indications for

known drugs and compounds [105] to reduce the risk of failure and shorten time of discovery,

because it does not need the time to discover and test the new chemical compounds. Drug

repurposing applies modern computational techniques to digitalize genomic [106], bioinformatics,

chemical informatics [107] and patients’ individual health records [108] to offer more systematic

evaluation of the chemical compound before entering the laboratory testing and clinical trial steps.

Prominent successful examples for drug repurposing include Viagra, Avastin and Rituxan [104].

The application of reinforcement learning into system biology and drug repurposing is promising

from the following points. From the mathematical system-model-control-based point of view,

there exist a mechanism regulating the gene expression profile. In the healthy condition, the gene

expression stays in the stable equilibrium region such that x(t) = f (x(t-1)) ≈ x(t-1), where f indicates

the expression-regulating mechanism computed from data integration, x stands for expression and

117

t stands for time. The essential components of the mechanism could be retrieved, although

containing uncompleted and possibly wrong and conflicting information, from the system biology

data sources [109-115]. In the disease state, the critical gene expression strays outside the stable

region. In this case, without a control (treatment), the expression will be unbounded. The system

control algorithms aim to find the sequence of control-treatment that optimally stabilize the

expression back to the original equilibrium point, such as linear control [116, 117], nonlinear

control [118, 119], adaptive neural network [120, 121]. By comparing the real drug treatments

with the optimal control-treatment (also called hypo-treatment), we can evaluate the potential

efficacy of the drug before being repurposed. These points demonstrate three reasons why

decentralized reinforcement learning could become a solution in drug repurposing. First, the

repurposing problem could be transformed to an adaptive learning and control problem. Second,

the repurposing problem contains the unknown nature, which is the fundamental nature of

reinforcement learning. Third, the system biology itself is large if count by number of genes

involving in a disease or process, and contains underlying modules for decentralization.

However, applying mathematical system modeling and control in drug repurposing is still in very

early steps. There are three key challenges in applying system control approach. First, it is difficult

to quantify the gene expression and real drug treatment, as there is very little literature discussing

the ‘normal range’ of each gene’s expression. Second, constructing a comprehensive and accurate

mathematical model to simulate the gene expression change is complicated due to the diversity of

gene-gene interaction mechanisms, mutation, and under-discovered data. Third, the biological

systems are known for large scale for system control: there may be from hundreds to thousands of

genes of interest in a specific disease or biological process. These challenges are similar to the

118

challenges which selectively decentralized reinforcement learning aims for. Therefore, I would

like to take explore applying selectively decentralized reinforcement learning and control in drug

repurposing. Most of the content in section 9.2 has been presented my paper at [122], with details

on data set, system setup and biological insights in Appendix A.

9.2.2 Overall ideas of drug repositioning based on reinforcement learning and control

Figure 9.3 shows the overall ideas on repurposing framework from the system modelling and

control points. The framework integrates three types of data. First, from the Disease-specific

expression profile, I quantified the expression as the system initial condition vector, where each

vector elements specified whether the corresponding gene gene was overexpressed (red),

underexpressed (green) or normally expressed (white). Second, from the protein-protein

interaction database, I built the mathematical system model in order to apply the system-control

algorithm. The red arrows implies activative; and the green arrow implies inhibitive interactions.

Third, from the chemical-protein interaction data, I quantified the treatment vector for each drug

for later ranking. Using the initial condition vector and the mathematical model, I computed the

optimal hypo-treatment. By mapping the pattern of the optimal hypo-treatment and the drugs’

treatment vectors, I could rank the drugs and suggest repurposed drugs.

119

Figure 9.3. Overview of RL-system control-based drug repurposing frameworks. Red squares:

overexpressed genes/ drug’s activation. Green squares: under expressed genes / drug’s inhibition.
Red arrow: activated protein-protein interaction. Green arrows: inhibited protein-protein

interaction.

The key principle in applying system control to evaluate drugs’ therapy relies in the following

assumption: in disease condition, the gene expressions are derived away from the balanced level

of 0. Therefore, a good treatment should reverse the gene expressions in disease condition and

stabilize the expressions to the balance level. In addition, based on system biology literature [123],

I assume that there exists a model governing the gene expressions, which allows us to model the

expression using time-series perspective

x(t) = f (x(t-1), u(t-1)) (9.8)

where x ∈ ℜN stands for the quantified gene expression of N genes, u ∈ ℜN stands for the

quantified treatment and t is the iteration and f is the arbitrary function controlling the expression

change. The initial x(0) is the quantified gene expression in disease condition. In this thesis, I

choose a linear model for f.

x(t) = Ax(t-1) + u(t-1) (9.9)

120

I chose the linear model because not only it is simple but also it has equilibrium point at the origin:

if x(t-1) = u(t-1) = 0 then x(t) = 0. This fact implies that when the gene expressions are already at

the balance level, treatment is no longer needed. In addition, it is easier to setup a linear system

with stability [124]

If ||x(0)|| < ε and u = 0 then ||x(t)|| < ε ∀t (9.10)

where ||x|| stands for the second norm of x and ε is an arbitrary small number. This fact implies the

self-adjustment of the gene expression at the control level. I setup matrix A from quantification of

protein-protein mechanism of interactions (section 9.II.3). With temporal matrix A* as the result

of section III.1

A*(i,j) = �
−1 if protein 𝑖𝑖 inhibits protein 𝑗𝑗
1 if protein 𝑖𝑖 activates protein 𝑗𝑗

0 otherwise
 (9.11)

Let λ be the eigenvalue of A* with the largest magnitude. By setting up A as

A = (1/λ)A* (9.12)

We can guarantee the stability of system (9.12) [124]. From this point, we can see that the problem

could be solved by applying the algorithms for linear system showed in chapter 6.

In system control practice, since u(t) often converges to 0 quickly [125], the first treatment vector

u(0) often plays the most important role in optimally stabilizing the system (9.9). Therefore, we

can consider u(0) as the optimal hypo-treatment. We compare the similarity between the real drug

treatment and the hypo-treatment as the therapeutic score T(d) for each drug d as follow

𝑇𝑇𝑑𝑑 =
�𝐮𝐮𝑑𝑑𝑇𝑇sign�𝐮𝐮(0)��

�abs(𝐮𝐮𝑑𝑑)𝑇𝑇abs �sign�𝐮𝐮(0)���
 (9.13)

121

where abs stand for the absolute value function. The numerator |𝐮𝐮𝑑𝑑𝑇𝑇sign(𝐮𝐮(0))| is the matching

function between drug d and the optimal hypo-treatment, which is incremented when ud(i) and

u(0)(i) are non-zero analog, and decremented when ud(i) and u(0)(i) are opposite.

9.2.3 Setup the system for drug repositioning from Breast Cancer-omics data

This section briefly summarizes one example on my collaborators and I could integrate multi-types

of omics data to setup the learning and control system for drug repositioning, with Breast Cancer

as the case-study disease. More details related to this section could be found at Appendix A.

We built an integrated breast cancer specific pathway model that accelerates drug discovery by

having more disease specific proteins and coverage than any other breast cancer specific pathway.

This completes the fully curated pathway model (M), which is verified on WikiPathway

(http://www.wikipathways.org/index.php/Pathway:WP1984). We optimized the pathway M to

increase the simulation quality based on domain knowledge drug-protein interaction data (M*).

For general information, our breast cancer pathway model M* contains 228 proteins and 481

protein-protein interactions and enables repurposing 63 drugs [122].

For drug-target information, we used the drug list suggested by Huang et al [126] as the initial

drug list. With this initial drug list, we us shared target, shared side effect and similar chemical

structure method to expand the drug list using the following databases [127-129]. The drug list

after this expansion contained 82 drugs. We manually curated the target information for these 82

drugs and removed drugs having none or ambiguous target information. There are 68 drugs having

clear target information as can be seen in [122]. Among these 68 drugs, 63 drugs reach more than

20 effectors via the pathway model and are selected in the experiment. Among these 63 drugs, in

122

this chapter, I only focus on 23 drugs from the following two categories. The first category (D1)

includes 16 drugs approved by the FDA for breast cancer, which are considered as ‘positive’ drugs.

The second category (or D2’) contains 7 drug withdrawn from Breast Cancer treatment, which are

considered as ‘negative’ drugs.

For gene expression profile, we chose significantly expressed gene genes after applying expression

analysis on dataset GSE10886 from Gene Expression Omnibus (GEO) database. GSE10886 is

among the largest and most comprehensive Breast Cancer microarray in GEO. After the latest

update in January 2013, GSE10886 has 226 samples and includes samples from both ER+ and ER-

subtypes. We discretize the gene expression into +1 for overexpression, -1 for underexpression

and 0 otherwise. The discrete gene expression will be used as the initial state vector x(0) in the

control algorithm later.

9.2.4 Selectively decentralized approach improve the capability of detecting therapeutic
drugs for Breast Cancer

In this section, I focus on the computational results of the centralized and selectively decentralized

RL in a simpler task: classifying the drugs that are approved or rejected/withdrawn from Breast

Cancer treatment. For any drug repositioning technique, this is the fundamental task to validate

the potential capability of the technique. Only when the repositioning technique achieves good

performance in classifying approved versus rejected/withdrawn drugs, the technique could be

confidently used in suggesting new treatment. As showed in section 9.2.2, the Td score in formula

(9.13), derived from RL techniques (chapter 6), is the metric for scoring the drugs. More results,

especially on biological and pharmacological impacts, could be found in Appendix A. The

methodological details, which contains mostly the techniques in data collection and preprocessing,

123

could be found at [122]. I omit these methodological details because they are long and irrelevant

to the main contribution of this thesis.

Figures 9.4 and 9.5 shows that the selectively decentralized approach significantly improved the

performance in classifying drugs. Here, to partition the system (10-12) to subsystem, we use the

fast modularity clustering algorithm [130] to detect 9 subsystems. The improvement is significant

in Breast Cancer ER+ subtype (10% AUC increase).

Figure 9.4. Comparison between the selectively decentralized and the centralized RL approach in

classifying drugs for Breast Cancer ER+ subtype disease.

124

Figure 9.5. Comparison between the selectively decentralized and the centralized RL approach in

classifying drugs for Breast Cancer ER- subtype disease.

125

10. CONCLUSIONS

In this thesis, we have proposed a new approach for decentralized reinforcement learning: selective

decentralization, and showed how this approach improves the learning performance, compared to

the centralized and completely decentralized approaches. The selectively decentralized approach

tackle the four major challenges in decentralized learning as follow. For the first two questions of

‘when’ and ‘to whom’ a single agent should communicate, a central coordinator would answer

these questions based on maximizing the learning fitness (i.e. the best identification error, the

fastest cumulative learning Q-value) instead of maximizing the learning goal. For the third

question of ‘sharing information’, the agents are assumed to freely send its whole state and action

to the others. For the fourth question of ‘using shared information’, the agents could discretize the

shared information to reduce the computational resources for this information. In addition, the

selective decentralization is also able to learn the optimal communication scheme among the

learning agents without any prior knowledge of communicative structure. This learning capability

is also another innovation of the selectively decentralized approach.

The thesis also tackle some challenges in single-agent and general reinforcement learning. First,

the selectively decentralized approach could easily incorporate a large number of well-known

reinforcement learning techniques, from model-based learning to model-free learning. This

flexibility is one of the innovation in the thesis, compared to most of the state-of-the-art

decentralized learning, according to the best of our knowledge. Second, the thesis shows that

applying MDP could solve larger scope of nonlinear reinforcement learning problems, compared

to most of the state-of-the-art techniques focusing on problems in feedback-linearizable format. In

addition, we first explore and verify the impact of the MDO approach in reinforcement learning.

126

Since the theoretical analysis of reinforcement learning and decentralized and distributed Q-

learning mostly focuses on the existence of the optimal policy, we lack the theoretical explanation

for the superior converging speed of selectively decentralized learning. Therefore, taking Q-

learning as a typical example, [26, 46, 88], we try to explain the superior performance of selectively

decentralized learning from two points of view. First, as stated in the foundation of Q-learning

[26], the convergence of Q-learning assumes that all of the state-action entries in the Q-table are

visited infinitely. Therefore, in order to converge to the optimal Q, the Q-learning systems are

supposed to spend time to explore the Q-table. In figures 1 and 2 of chapter 4 where we show the

convergence of centralized Q-learning, there are long periods where ||x|| and accumulate Q-gained

change slowly. These periods may correspond to the exploration phases. Because the number of

states, actions, and state-action entries grow exponentially with system dimensionality,

decentralized Q-learning into smaller dimension may also improve the convergence exponentially

due to exponentially less search space. Second, selectively decentralized Q-learning proposes more

search options than centralized Q-learning, which is another factor to improve the converging

speed. In centralized Q-learning, a newly visited state has no prior information to estimate its Q-

table entries. With the same state, in selectively decentralized Q-learning, the components of the

state have higher chance to be visited by the subsystem learner (in different centralized states),

which may reduce the effort to compute the optimal Q-value.

The ‘art’ in this thesis is choosing the criteria for switching communication scheme. From our

points of view, as showed in this thesis, the criteria should be specific to the problems and

techniques which selective decentralization incorporates. For model-bases learning techniques,

since the estimation of the dynamic changes in the environment is critical for the learning

127

performance, we choose system identification as the only criterion. For Q-learning, which is a

model-free technique, we choose best decentralization scheme by the sum of subsystems’ gained

Q-values only because of the linearity in state-reward function, which is the main driver for Q-

value update. However, there is no theoretical basis to support whether or not the different sum of

subsystem gained Q-value in different decentralization scheme is comparable. There may exist

more solid options for choosing the best decentralization scheme than cumulative gained Q-value.

Similar to Q-learning, due to the difficulty to theoretically prove the switching criteria, this

important point should be carefully examined by the scientist performing the experiment.

The outcomes in this thesis reflex and could be easily understood from the philosophical points of

view. First, the ‘trial and error’ paradigm is showed in learning the optimal communication scheme.

At the beginning, the central coordinator frequently switches among different communication

schemes. Then, as the overall learning performance improves, the central coordinator decides less

switching and eventually stops switching the communication scheme before all of the learning

agents learn the stable policy. This ‘trial and error’ paradigm is typically demonstrated in

selectively decentralized Q-learning. Second, at least in a cooperative task, trusting the behavior

of the collaborators often lead to better results than doubting the incompetence or error from the

collaborators. As showed in the MDO results, when a learning agent ‘doubts’ the performance

other agents and makes the decision considering all of the possible scenarios from the others, the

learning agent may not be able to learn the optimal policy. However, when an agent believes that

the others at least do not do worse, if not doing better, the agent eventually learn the optimal policy

faster than a centralized agent does.

128

There are several limitations in this thesis. First, for MDP approximation, the discretization

thresholds need the distribution of the next state assuming that the current state and control vectors

are uniformly distributed and may require a number of ad-hoc steps. Third, in selective

decentralization, we still explore all possible decoupling scheme B(k), which grows exponentially.

However, since the selectively decentralized system converges faster than the centralized system

in most of the cases, we believe that the heavily computational model-switching phase in the

selective decentralized system will be relatively short. Therefore, the selectively decentralized

system may be more computationally efficient than the centralized system, which must run the

learning algorithm in high dimensional data for long term. Forth, due to the lack of collaboration

opportunities, the case-studies presented in this thesis are limited to a well-known problem, which

has been thoroughly studied, and to an unexplored problem of pharmacology, where the domain

knowledge may or may not sufficient to ensure the quality of the modelling and controlling the

system.

From the innovations and limitations in this thesis, we believe that the following points are still

opened to explore in future works

1. The theoretical converging time for reinforcement learning and decentralized learning

should be fully addressed.

2. The converging policy of decentralized learning should be further studied. What are

the relationships, or mappings, between the decentralized policy and the centralized policy, and

do they converge to the same point?

3. Techniques to reduce the search place for optimal communication schemes should be

applied to avoid exponential computational time.

129

4. The selective decentralization should be applied in more real-world learning problems.

Two promising areas for application are bioinformatics - system biology: personalized medicine

and automatic vehicle control. Automatic vehicle control and robotics have been among the main

applications for reinforcement learning for decades. System biology with large number of gene

and undiscovered biological knowledge suggests that decentralized reinforcement learning could

be a promising approach.

130

APPENDIX. DECOST FRAMEWORK: REINFORCEMENT LEARNING –
CONTROL SYSTEM APPLICATION IN DRUG REPURPOSING

This appendix contains more details on the dataset, system setup and biological insights for section

9.2, where I present applying Reinforcement learning and control system in drug repurposing.

Biological insights

Therapeutic scores for Breast Cancer Drugs

From the Integrated Breast Cancer Pathway [131] on Wikipathway (section III.1) and the Breast

Cancer drug list, we queried 222 drug-protein interactions for the drugs’ treatment vectors

(Supplemental Table S2). Supplemental Table S3 contains the initial condition vector from

GEO2R expression analysis.

Figure A1 shows that the Td score is able to give appropriate ranking for most of the well-known

therapeutic drugs and suggest candidate drugs for repurposing in Breast Cancer ER-positive case.

Td score reflexes the difference between the D1 and D2 drugs with receiver operator characteristic

[132] area under the curve (AUC) of 0.76. We did not setup training set and test set for

classification because the model construction and Td calculation does not need the drug categories.

The Td scores for D1 drugs in Breast Cancer ER-negative case are relatively lower than the scores

for ER-positive case (Figure A2). Using Td for classifying D1 and D2 drugs yields AUC of 0.68.

In fact, clinical trials and literature have showed several drugs which are effective in ER-positive

treatment but show little or no impact in ER-negative treatment. For example, Tamoxifen (Td ER-

positive: 0.294, Td ER-negative: 0.176), which is a selective estrogen receptor modulator, does not

prevent ER-negative Breast Cancer, when the estrogen receptor genes do not express [133, 134].

131

Figure A1. Td score in Breast Cancer, ER-positive subtype; the horizontal bars in each group
stand for median value of Td

Figure A2. Td score in Breast Cancer, ER-negative subtype; the horizontal bars in each group
stand for median value of Td

132

Potential drugs for Breast Cancer studies and biological insights

From the Td scores for D3 drugs, our framework suggests 8 drugs (Erbitux, Flutamide, Medrysone,

Methylprednisolone, Norethindrone, Prednisolone, Prednisonea and Vandetanib) with high

potential efficacy in Breast Cancer ER+ drug repurposing. Significantly, these drugs do not

directly target Estrogen receptor, which is the most well-known approach in Breast Cancer ER+

drug design. Tamoxifen is a typical example of Breast Cancer drugs which slows cancer process

by blocking estrogen hormone receptors, preventing hormones from binding to them. About 80%

of all breast cancers are ER+: the cancer cells grow in response to the hormone estrogen [135].

About 65% of the ER+ cases grow in response to another hormone, progesterone [136]. Tumors

in ER/PR-positive cases are much more likely to respond to hormone therapy than tumors that are

ER/PR-negative. ER+ breast cancer entirely depends on the estrogen for growth and propagation

involving genomic and non-genomic pathways. Epidermal growth factor receptor (EGFR) is a

receptor found on both normal and tumor cells that is important for cell growth [137]. ER-positive

(ER+) drugs recommended for repurposing in this framework block the activities and growth of

EGFR. These drugs show different mechanism of action with the common objective of the

inhibition of the growth of cancerous cells. By adjusting and modifying the known biases of the

interactomic networks, our procedure would help to reveal the therapeutic effect of drugs along

with effective treatments.

For Breast Cancer ER- case, our framework suggests Daunorubicin and Donepezil as the

repurposing candidates. These drugs are independent of estrogen and usually inhibit the cell

growth by either interacting with DNA or inhibiting Cholinesterases. Daunorubicin interacts with

DNA by intercalation and inhibition of macromolecular biosynthesis [138]. This inhibits the

progression of the enzyme topoisomerase II, and thereby stopping the process of replication.

133

Donepezil is in a class of cholinesterase inhibitor that improves mental function and fatigue in

cancer. The current research focused on recent large-scale efforts to systematically find

repositioning candidates and elucidate individual disease mechanisms in cancer [139].

Personalized medicine and repositioning both aim to improve the productivity of current drug

discovery pipelines. Standard drug discovery strategies can also lead to repositioning opportunities.

D1, D2, and D3 drugs found to potently modulate the desired activity are repositioning candidates.

134

REFERENCES

1. Fujio, F.F., Doraemon (Episode 1). 1999, Hanoi: Kimdong Publishing House.
2. Kozo, K., Doreamon: Scary Rice Cake, in Doreamon. 2005, TV Asahi: Tokyo.
3. Russell, S. and P. Norvig, Artificial Intelligence: A Modern Approach, Third Edition. 2010,

New Jersey: Pearson.
4. Anomyous. Ozma (Final Fantasy IX). 2017; Available from:

http://finalfantasy.wikia.com/wiki/Ozma_(Final_Fantasy_IX).
5. Kmoch, H., The Game of the Century. Chess Review, 1956: p. 374.
6. Bradtke, S.J. and M.O. Duff, Reinforcement learning methods for continuous-time Markov

decision problems. Advances in neural information processing systems, 1995: p. 393-400.
7. Kaelbling, L.P., M.L. Littman, and A.W. Moore, Reinforcement learning: A survey. Journal

of artificial intelligence research, 1996. 4: p. 237-285.
8. Keesman, K.J., System Identification: an Introduction. Advanced Textbooks in Control

and Signal Processing, ed. M.J. Grimble and M.A. Johnson. 2011, London: Springer-
Verlag.

9. Nelles, O., Nonlinear system identification: from classical approaches to neural networks
and fuzzy models. 2013: Springer Science & Business Media.

10. Pillonetto, G., et al., Kernel methods in system identification, machine learning and
function estimation: A survey. Automatica, 2014. 50(3): p. 657-682.

11. Werbos, P.J. Neural networks for control and system identification. in Decision and Control,
1989., Proceedings of the 28th IEEE Conference on. 1989. IEEE.

12. Sutton, R.S., A.G. Barto, and R.J. Williams, Reinforcement learning is direct adaptive
optimal control. IEEE Control Systems, 1992. 12(2): p. 19-22.

13. Bertsekas, D.P., Dynamic programming and optimal control 3rd edition, volume II.
Belmont, MA: Athena Scientific, 2011.

14. Bellon, J., Riccati Equations in Optimal Control Theory. 2008.
15. Abu-Khalaf, M. and F.L. Lewis, Nearly optimal control laws for nonlinear systems with

saturating actuators using a neural network HJB approach. Automatica, 2005. 41(5): p.
779-791.

16. Saridis, G.N. and C.-S.G. Lee, An approximation theory of optimal control for trainable
manipulators. Systems, Man and Cybernetics, IEEE Transactions on, 1979. 9(3): p. 152-
159.

17. Beard, R.W., G.N. Saridis, and J.T. Wen, Galerkin approximations of the generalized
Hamilton-Jacobi-Bellman equation. Automatica, 1997. 33(12): p. 2159-2177.

18. Huang, C.-S., S. Wang, and K. Teo, Solving Hamilton—Jacobi—Bellman equations by a
modified method of characteristics. Nonlinear Analysis: Theory, Methods & Applications,
2000. 40(1): p. 279-293.

19. Al-Tamimi, A., F.L. Lewis, and M. Abu-Khalaf, Discrete-time nonlinear HJB solution
using approximate dynamic programming: convergence proof. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2008. 38(4): p. 943-949.

20. Liu, D. and Q. Wei, Policy iteration adaptive dynamic programming algorithm for discrete-
time nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems,
2014. 25(3): p. 621-634.

http://finalfantasy.wikia.com/wiki/Ozma_(Final_Fantasy_IX

135

21. Seiffertt, J., S. Sanyal, and D.C. Wunsch, Hamilton–Jacobi–Bellman equations and
approximate dynamic programming on time scales. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 2008. 38(4): p. 918-923.

22. Sutton, L.K.R. Model-based reinforcement learning with an approximate, learned model.
in Proc. Yale Workshop Adapt. Learn. Syst. 1996.

23. Kamalapurkar, R., P. Walters, and W.E. Dixon, Model-based reinforcement learning for
approximate optimal regulation. Automatica, 2016. 64: p. 94-104.

24. Polydoros, A.S. and L. Nalpantidis, Survey of Model-Based Reinforcement Learning:
Applications on Robotics. Journal of Intelligent & Robotic Systems, 2017: p. 1-21.

25. Strehl, A.L., et al. PAC model-free reinforcement learning. in Proceedings of the 23rd
international conference on Machine learning. 2006. ACM.

26. Watkins, C.J. and P. Dayan, Q-learning. Machine learning, 1992. 8(3-4): p. 279-292.
27. Kiumarsi, B., et al., Reinforcement Q-learning for optimal tracking control of linear

discrete-time systems with unknown dynamics. Automatica, 2014. 50(4): p. 1167-1175.
28. Albus, J.S., A new approach to manipulator control: The cerebellar model articulation

controller (CMAC). Journal of dynamic systems, measurement and control, 1975. 97(3): p.
220-227.

29. Ormoneit, D. and Ś. Sen, Kernel-based reinforcement learning. Machine learning, 2002.
49(2): p. 161-178.

30. Berry, D.A. and B. Fristedt, Bandit problems: sequential allocation of experiments
(Monographs on statistics and applied probability). 1985: Springer.

31. Sallans, B. and G.E. Hinton, Reinforcement learning with factored states and actions.
Journal of Machine Learning Research, 2004. 5(Aug): p. 1063-1088.

32. Crawford, D., et al., Reinforcement Learning Using Quantum Boltzmann Machines. arXiv
preprint arXiv:1612.05695, 2016.

33. Ammar, H.B., et al. Automatically mapped transfer between reinforcement learning tasks
via three-way restricted boltzmann machines. in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. 2013. Springer.

34. Lerman, L., et al. Template attacks vs. machine learning revisited (and the curse of
dimensionality in side-channel analysis). in International Workshop on Constructive Side-
Channel Analysis and Secure Design. 2015. Springer.

35. Powell, W.B., Approximate Dynamic Programming: Solving the curses of dimensionality.
Vol. 703. 2007: John Wiley & Sons.

36. Szepesvári, C. The asymptotic convergence-rate of Q-learning. in Proceedings of the 10th
International Conference on Neural Information Processing Systems. 1997. MIT Press.

37. Wender, S., Integrating Reinforcement Learning into Strategy Games. 2009: Diplomarbeit,
The University of Auckland, New Zealand.

38. Cramer, E.J., et al., Problem formulation for multidisciplinary optimization. SIAM Journal
on Optimization, 1994. 4(4): p. 754-776.

39. Busoniu, L., B. De Schutter, and R. Babuska. Decentralized reinforcement learning control
of a robotic manipulator. in 2006 9th International Conference on Control, Automation,
Robotics and Vision. 2006. IEEE.

40. Ioannou, P.A., Decentralized adaptive control of interconnected systems. Automatic
Control, IEEE Transactions on, 1986. 31(4): p. 291-298.

41. Dillenbourg, P., Collaborative learning: Cognitive and computational approaches.
advances in learning and instruction series. 1999: ERIC.

136

42. Friedrich, H., et al., Learning and communication in multi-agent systems. Distributed
Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environments,
1997: p. 259-275.

43. Bui, H.H., D. Kieronska, and S. Venkatesh. Learning other agents' preferences in
multiagent negotiation. in Proceedings of the national conference on artificial intelligence.
1996.

44. Narendra, K., N. Oleng, and S. Mukhopadhyay, Decentralised adaptive control with partial
communication. IEE Proceedings-Control Theory and Applications, 2006. 153(5): p. 546-
555.

45. Arslan, G. and S. Yüksel, Decentralized Q-Learning for Weakly Acyclic Stochastic
Dynamic Games.

46. Arslan, G. and S. Yuksel, Decentralized Q-Learning for Stochastic Teams and Games.
IEEE Transactions on Automatic Control, 2016.

47. Teacy, W.L., et al. Decentralized Bayesian reinforcement learning for online agent
collaboration. in Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1. 2012. International Foundation for Autonomous Agents
and Multiagent Systems.

48. Shah, P. and P.A. Parrilo, H2-Optimal Decentralized Control Over Posets: A State-Space
Solution for State-Feedback. IEEE Transactions on Automatic Control, 2013. 58(12): p.
3084-3096.

49. Hua, C. and S.X. Ding, Decentralized networked control system design using T–S fuzzy
approach. IEEE Transactions on fuzzy systems, 2012. 20(1): p. 9-21.

50. Ranjbar-Sahraei, B., et al., A novel robust decentralized adaptive fuzzy control for swarm
formation of multiagent systems. IEEE Transactions on Industrial Electronics, 2012. 59(8):
p. 3124-3134.

51. Mahajan, A., Optimal decentralized control of coupled subsystems with control sharing.
IEEE Transactions on Automatic Control, 2013. 58(9): p. 2377-2382.

52. Han, Z. and K.S. Narendra, New concepts in adaptive control using multiple models.
Automatic Control, IEEE Transactions on, 2012. 57(1): p. 78-89.

53. Narendra, K.S. and J. Balakrishnan, Improving transient response of adaptive control
systems using multiple models and switching. Automatic Control, IEEE Transactions on,
1994. 39(9): p. 1861-1866.

54. Narendra, K.S. and S. Mukhopadhyay, To communicate or not to communicate: A decision-
theoretic approach to decentralized adaptive control, in American Control Conference
(ACC), 2010. 2010, IEEE.

55. Battistelli, G., et al., Model-free adaptive switching control of time-varying plants. IEEE
Transactions on Automatic Control, 2013. 58(5): p. 1208-1220.

56. Liu, W., et al., Decentralized multi-agent system-based cooperative frequency control for
autonomous microgrids with communication constraints. IEEE Transactions on
Sustainable Energy, 2014. 5(2): p. 446-456.

57. Bian, T., Y. Jiang, and Z.-P. Jiang, Decentralized adaptive optimal control of large-scale
systems with application to power systems. IEEE Transactions on Industrial Electronics,
2015. 62(4): p. 2439-2447.

58. Gao, J., L. Dou, and P. Su. Multi-model switching control of hypersonic vehicle with
variable scramjet inlet based on adaptive neural network. in Intelligent Control and
Automation (WCICA), 2016 12th World Congress on. 2016. IEEE.

137

59. Rota, G.-C., The number of partitions of a set. The American Mathematical Monthly, 1964.
71(5): p. 498-504.

60. Bellman, R., Dynamic programming. princeton, nj: Princeton universitypress.
BellmanDynamic Programming, 1957.

61. Lancaster, P. and L. Rodman, Algebraic riccati equations. 1995: Clarendon press.
62. Ben-Israel, A., Dynamic Programming & Optimal Control.
63. Liberzon, D., Calculus of variations and optimal control theory: a concise introduction.

2012: Princeton University Press.
64. Lewis, F.L. and V.L. Syrmos, Optimal control. 1995: John Wiley & Sons.
65. Russell;, S. and P. Norvig, Artificial Intelligence A Modern Approach. 3rd ed. 2010, New

Jersey: Prentice Hall.
66. Munos, R. and A.W. Moore, Variable resolution discretization for high-accuracy solutions

of optimal control problems. Robotics Institute, 1999: p. 256.
67. Munos, R. and A. Moore, Variable resolution discretization in optimal control. Machine

learning, 2002. 49(2-3): p. 291-323.
68. Kharroubi, I., N. Langrené, and H. Pham, A numerical algorithm for fully nonlinear HJB

equations: an approach by control randomization. Monte Carlo Methods and Applications,
2014. 20(2): p. 145-165.

69. Puterman, M.L., Markov decision processes: discrete stochastic dynamic programming.
2014: John Wiley & Sons.

70. Lovejoy, W.S., A survey of algorithmic methods for partially observed Markov decision
processes. Annals of Operations Research, 1991. 28(1): p. 47-65.

71. Chang, H.S., Decentralized learning in finite Markov chains: revisited. IEEE Transactions
on Automatic Control, 2009. 54(7): p. 1648-1653.

72. Vrancx, P., K. Verbeeck, and A. Nowé, Decentralized learning in markov games. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008. 38(4): p. 976-
981.

73. Ng, A.Y., Shaping and policy search in reinforcement learning. 2003, University of
California, Berkeley.

74. Bishop, C.M., Pattern Recognition. Machine Learning, 2006: p. 537-541.
75. Bellman, R., On the theory of dynamic programming. Proceedings of the National

Academy of Sciences, 1952. 38(8): p. 716-719.
76. Funahashi, K.-I., On the approximate realization of continuous mappings by neural

networks. Neural networks, 1989. 2(3): p. 183-192.
77. Miller, W.T., P.J. Werbos, and R.S. Sutton, Neural networks for control. 1995: MIT press.
78. Nguyen, T. and S. Mukhopadhyay, Two-phase selective decentralization to improve

reinforcement learning systems with MDP. AI Communications, (31): p. 319-337.
79. Liu, K. and Q. Zhao, Distributed learning in multi-armed bandit with multiple players.

IEEE Transactions on Signal Processing, 2010. 58(11): p. 5667-5681.
80. Matignon, L., G.J. Laurent, and N. Le Fort-Piat. Hysteretic q-learning: an algorithm for

decentralized reinforcement learning in cooperative multi-agent teams. in Intelligent
Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on. 2007. IEEE.

81. Lauer, M. and M. Riedmiller. An algorithm for distributed reinforcement learning in
cooperative multi-agent systems. in In Proceedings of the Seventeenth International
Conference on Machine Learning. 2000. Citeseer.

138

82. Galindo-Serrano, A. and L. Giupponi, Distributed Q-learning for aggregated interference
control in cognitive radio networks. IEEE Transactions on Vehicular Technology, 2010.
59(4): p. 1823-1834.

83. Morozs, N., et al. Distributed Q-learning based dynamic spectrum management in
cognitive cellular systems: Choosing the right learning rate. in Computers and
Communication (ISCC), 2014 IEEE Symposium on. 2014. IEEE.

84. Narayanan, V. and S. Jagannathan, Distributed adaptive optimal regulation of uncertain
large-scale interconnected systems using hybrid Q-learning approach. IET Control Theory
& Applications, 2016. 10(12): p. 1448-1457.

85. Nguyen, T. and S. Mukhopadhyay, Selectively Decentralized Q-Learning, in IEEE
International Conference on Systems, Man, and Cybernetics. 2017: Bannf, Canada.

86. team, I.B. I2B2 Overview. 2016; Available from: https://www.i2b2.org/about/index.html.
87. Melo, F.S., Convergence of Q-learning: A simple proof. Institute Of Systems and Robotics,

Tech. Rep, 2001: p. 1-4.
88. Sastry, P., V. Phansalkar, and M. Thathachar, Decentralized learning of Nash equilibria in

multi-person stochastic games with incomplete information. IEEE Transactions on systems,
man, and cybernetics, 1994. 24(5): p. 769-777.

89. Karakaşoğlu, A., S.I. Sudharsanan, and M.K. Sundareshan, Identification and
decentralized adaptive control using dynamical neural networks with application to
robotic manipulators. Neural Networks, IEEE Transactions on, 1993. 4(6): p. 919-930.

90. Kim, J. and J.P. Lynch, Autonomous decentralized system identification by Markov
parameter estimation using distributed smart wireless sensor networks. Journal of
Engineering Mechanics, 2011. 138(5): p. 478-490.

91. Ucinski, D., Optimal measurement methods for distributed parameter system identification.
2004: CRC Press.

92. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Learning representations by back-
propagating errors. Cognitive modeling, 1988. 5(3): p. 1.

93. Nguyen, T. and S. Mukhopadhyay, Identification and Optimal Control of Large-scale
System Using Selective Decentralization, in IEEE International Conference on Systems.
Man and Cybernetics. 2016: Budapest.

94. Martins, J.R. and A.B. Lambe, Multidisciplinary design optimization: a survey of
architectures. AIAA journal, 2013. 51(9): p. 2049-2075.

95. Alexandrov, N.M. and M.Y. Hussaini, Multidisciplinary design optimization: State of the
art. Vol. 80. 1997: SIAM.

96. Deb, K., Current trends in evolutionary multi-objective optimization. International Journal
for Simulation and Multidisciplinary Design Optimization, 2007. 1(1): p. 1-8.

97. Alexandrov, N.M. and R.M. Lewis, Analytical and computational aspects of collaborative
optimization for multidisciplinary design. AIAA journal, 2002. 40(2): p. 301-309.

98. Balling, R.J. and J. Sobieszczanski-Sobieski, Optimization of coupled systems-a critical
overview of approaches. AIAA journal, 1996. 34(1): p. 6-17.

99. INC, M. Train: Train Neural Network. 2017 [cited 2017.
100. Young, H.D., R.A. Freedman, and A.L. Ford, Elastic Potential Energy, in University

Physics. 2008, Pearson Education Inc.: San Francisco. p. 222-230.
101. Kleppner, D. and R. Kolenkow, An introduction to mechanics. 2013: Cambridge University

Press.

https://www.i2b2.org/about/index.html

139

102. Hooke, R., De Potentia Restitutiva, or of Spring Explaining the Power of Springing Bodies,
vol. 1678. London, UK: John Martyn: p. 23.

103. Oprea, T.I., et al., Drug Repurposing from an Academic Perspective. Drug Discov Today
Ther Strateg, 2011. 8(3-4): p. 61-69.

104. Dudley, J.T., T. Deshpande, and A.J. Butte, Exploiting drug-disease relationships for
computational drug repositioning. Brief Bioinform, 2011. 12(4): p. 303-11.

105. Gupta, S.C., et al., Cancer drug discovery by repurposing: teaching new tricks to old dogs.
Trends Pharmacol Sci, 2013. 34(9): p. 508-17.

106. Power, A., A.C. Berger, and G.S. Ginsburg, Genomics-enabled drug repositioning and
repurposing: insights from an IOM Roundtable activity. JAMA, 2014. 311(20): p. 2063-4.

107. Bisson, W.H., Drug repurposing in chemical genomics: can we learn from the past to
improve the future? Curr Top Med Chem, 2012. 12(17): p. 1883-8.

108. Xu, H., et al., Validating drug repurposing signals using electronic health records: a case
study of metformin associated with reduced cancer mortality. Journal of the American
Medical Informatics Association, 2014: p. amiajnl-2014-002649.

109. Law, V., et al., DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res,
2013.

110. Andersson, M.L., et al., Evaluation of usage patterns and user perception of the drug-drug
interaction database SFINX. Int J Med Inform, 2015. 84(5): p. 327-33.

111. Kuhn, M., et al., STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids
Res, 2012. 40(Database issue): p. D876-80.

112. Chen, J., R. Pandey, and T.M. Nguyen, HAPPI-2: a Comprehensive and High-quality Map
of Human Annotated and Predicted Protein Interactions. BMC Genomics, 2017.

113. Szklarczyk, D., et al., STRING v10: protein-protein interaction networks, integrated over
the tree of life. Nucleic Acids Res, 2015. 43(Database issue): p. D447-52.

114. Baxevanis, A.D., Searching Online Mendelian Inheritance in Man (OMIM) for information
on genetic loci involved in human disease. Curr Protoc Hum Genet, 2012. Chapter 9: p.
Unit 9 13 1-10.

115. Barrett, T., et al., NCBI GEO: archive for functional genomics data sets--update. Nucleic
Acids Res, 2013. 41(Database issue): p. D991-5.

116. Willems, J., Least squares stationary optimal control and the algebraic Riccati equation.
IEEE Transactions on Automatic Control, 1971. 16(6): p. 621-634.

117. Chen, M.Z., et al., Stabilizing solution and parameter dependence of modified algebraic
Riccati equation with application to discrete-time network synchronization. IEEE
Transactions on Automatic Control, 2016. 61(1): p. 228-233.

118. Bardi, M. and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-
Jacobi-Bellman equations. 2008: Springer Science & Business Media.

119. Falcone, M. and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and
Hamilton—Jacobi Equations. 2013: SIAM.

120. Rovithakis, G.A. and M.A. Christodoulou, Adaptive control of unknown plants using
dynamical neural networks. Systems, Man and Cybernetics, IEEE Transactions on, 1994.
24(3): p. 400-412.

121. Tong, S., et al., Adaptive neural network output feedback control for stochastic nonlinear
systems with unknown dead-zone and unmodeled dynamics. IEEE transactions on
cybernetics, 2014. 44(6): p. 910-921.

140

122. Nguyen, T.M., et al., DeCoSTT: A New Approach in Drug Repurposing from Control
System Theory. Frontiers in Pharmacology, 2018. 9: p. 583.

123. Alberghina, L., Systems biology: definitions and perspectives. Vol. 13. 2007: Springer
Science & Business Media.

124. Chui, C.K. and G. Chen, Linear Systems and optimal control. Vol. 18. 2012: Springer
Science & Business Media.

125. Bemporad, A., et al., The explicit linear quadratic regulator for constrained systems.
Automatica, 2002. 38(1): p. 3-20.

126. Huang, H., et al., Predicting Drug Efficacy Based on the Integrated Breast Cancer Pathway
Model, in 2011 IEEE International Workshop on Genomic Signal Processing and Statistics
(GENSIPS). 2011: San Antonio, TX p. 42-45.

127. Zhu, F., et al., Update of TTD: Therapeutic Target Database. Nucleic Acids Res, 2010.
38(Database issue): p. D787-91.

128. Gunther, S., et al., SuperTarget and Matador: resources for exploring drug-target
relationships. Nucleic Acids Res, 2008. 36(Database issue): p. D919-22.

129. Campillos, M., et al., Drug target identification using side-effect similarity. Science, 2008.
321(5886): p. 263-6.

130. Newman, M.E., Fast algorithm for detecting community structure in networks. Physical
review E, 2004. 69(6): p. 066133.

131. Ibrahim, S., et al., Integrated Breast Cancer Pathway (Homo sapiens). 2015,
Wikipathway.org: Wikipathway.org.

132. Hanley, J.A. and B.J. McNeil, The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology, 1982. 143(1): p. 29-36.

133. Uray, I.P. and P.H. Brown, Chemoprevention of hormone receptor-negative breast cancer:
new approaches needed. Recent Results Cancer Res, 2011. 188: p. 147-62.

134. Fabian, C.J., The what, why and how of aromatase inhibitors: hormonal agents for
treatment and prevention of breast cancer. Int J Clin Pract, 2007. 61(12): p. 2051-63.

135. Bulut, N. and K. Altundag, Does estrogen receptor determination affect prognosis in early
stage breast cancers? Int J Clin Exp Med, 2015. 8(11): p. 21454-9.

136. Hefti, M.M., et al., Estrogen receptor negative/progesterone receptor positive breast
cancer is not a reproducible subtype. Breast Cancer Res, 2013. 15(4): p. R68.

137. Herbst, R.S., Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol
Phys, 2004. 59(2 Suppl): p. 21-6.

138. Momparler, R.L., et al., Effect of adriamycin on DNA, RNA, and protein synthesis in cell-
free systems and intact cells. Cancer Res, 1976. 36(8): p. 2891-5.

139. Bruera, E., et al., Donepezil for cancer fatigue: a double-blind, randomized, placebo-
controlled trial. J Clin Oncol, 2007. 25(23): p. 3475-81.

141

VITA

Thanh Nguyen received his B.S. in Computer Science from Indiana University Purdue University

Indianapolis (IUPUI) in 2012. He started his PhD in Computer Science at IUPUI in 2013 and

completed the PhD degree in 2018. After graduation, he joined the Informatics Institute at the

University of Alabama at Birmingham (UAB) as a research fellow.

Education

- 2011: Minor in Mathematics, IUPUI.

- 2012: B.S. in Computer Science, IUPUI.

- 2018: Ph.D in Computer Science, IUPUI

Honors, Awards, Fellowships

- 2007: Vietnam 4th rank honor for excellent student in History (top 150 of the nation).

- 2008: Hanoi 4th rank honor for excellent student in Chemistry (top 100 of the province).

- 2009: Vietnamese governmental scholarship for undergraduate studying oversea.

- 2010-2012: IUPUI School of Science Scholar’s List Recipients.

- 2011-2012: IUPUI Multidisciplinary Undergraduate Research Institute Recipients.

- 2013: IUPUI Dept. of Computer Science Gersting Award.

Research and Training Experience

- 2011-2012: IUPUI Multidisciplinary Undergraduate Research Institute: Image processing

and Bioinformatics.

- 2011-2012: Undergraduate research (independent study): Intelligent Systems.

142

- 2012-2015: Volunteer researcher at Indiana Center for System Biology and Personalized

Medicine.

- 2013-2016: Research Assistant in Computer Science, IUPUI Department of Computer and

Information Science.

- 2014-2017: Visiting Scholar in Bio-Health Informatics, Wenzhou Medical University,

Zhejiang, China (summer internship).

- 2017: Teaching Assistant, IUPUI Department of Computer and Information Science.

- 2017-2018: Visiting Scholar, the Informatics Institute at UAB.

Professional Experience

- 2010-2012: Math Tutor, IUPUI Mathematics Assistant Center.
- 2015-2016: Consultant, MedeoLinx LLC, Nanjing, China (summer).

Skills

- Computer science

 + primary areas: artificial intelligence, machine learning, data mining, algorithm

development.

 + secondary areas: database management, distributed computing, bioinformatics.

- Programming efficiency: C++, Java, Python, Matlab.

- Math: linear algebra, optimization, system modeling and control.

- Fast learning speed.

- Leadership in both academic and industry environment.

- Mentoring.

- Suitable for multi-disciplinary and translational research.

143

PUBLICATIONS

The following papers are the direct results from this thesis

1. Nguyen, T. and S. Mukhopadhyay, Identification and Optimal Control of Large-scale
System Using Selective Decentralization, in IEEE International Conference on Systems.
Man and Cybernetics. 2016: Budapest.

2. Nguyen, T. and S. Mukhopadhyay. Selective decentralization to improve reinforcement
learning in unknown linear noisy systems. in Intelligent and Evolutionary Systems (IES),
2017 21st Asia Pacific Symposium on. 2017. IEEE.

3. Nguyen, T. and S. Mukhopadhyay, Selectively Decentralized Q-Learning, in IEEE
International Conference on Systems, Man, and Cybernetics. 2017: Bannf, Canada.

4. Nguyen, T. and S. Mukhopadhyay, Multidisciplinary Optimization in Decentralized
Reinforcement Learning, in 16th IEEE International Conference On Machine Learning
And Applications (ICMLA). 2017: Cancun, Mexico.

5. Nguyen, T. and S. Mukhopadhyay, Two-phase selective decentralization to improve
reinforcement learning systems with MDP. AI Communications, (31): p. 319-337..

6. Nguyen, T., Muhammad , S.A., Ibrahim , S., Ma L., Guo , J. and Bai, B., DeCoST: A New
Approach in Drug Repurposing from Control System Theory, Frontiers in Pharmacology,
2018. 9: p. 583.

The other works published during the graduate program

7. Chen, J., R. Pandey, and T.M. Nguyen, HAPPI-2: a Comprehensive and High-quality Map
of Human Annotated and Predicted Protein Interactions. BMC Genomics, 2017.

8. Huang, H., et al., DMAP: a connectivity map database to enable identification of novel
drug repositioning candidates. BMC Bioinformatics, 2015. 16 Suppl 13: p. S4.

9. Yue, Z., et al., PAGER: constructing PAGs and new PAG-PAG relationships for network
biology. Bioinformatics, 2015. 31(12): p. i250-7.

10. Fang, X., et al. Use Cases for Public Health Data Visualization. in 2013 Workshop on
Visual Analytics in Healthcare. 2013. Washington, DC.

11. Xia, Y., et al. Data Exploration of a Notifiable Condition Detector System. in 2013
Workshop on Visual Analytics in Healthcare. 2013. Washington, DC.

12. Palakai, M., et al. Detecting Comorbidity of Chlamydia from Clinical Reports. in 2013
Workshop on Visual Analytics in Healthcare. 2013. Washington, DC.

13. Nguyen, T., et al., An integrated machine learning and network analysis to discover marker
clinical measurement in lung cancer, in Genomic Medicine. 2015: Ho Chi Minh City.

14. Cao, N., et al., Predictive and Preventive Models for Diabetes Prevention using Clinical
Information in Electronic Health Record, in IEEE International Conference on
Bioinformatics and Biomedicine. 2015: Washington DC.

144

15. Muhammad, S.A., et al., Cellular Signaling Pathways in Insulin Resistance-Systems
Biology Analyses of Microarray Dataset Reveals New Drug Target Gene Signatures of Type
2 Diabetes Mellitus. Frontiers in physiology, 2017. 8: p. 13.

16. Chen, J.Y., et al. Towards constructing “Super Gene Sets” regulatory networks. in
Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference on. 2016.
IEEE.

17. Muhammad, S.A., et al., Simulation Study of cDNA Dataset to Investigate Possible
Association of Differentially Expressed Genes of Human THP1-Monocytic Cells in Cancer
Progression Affected by Bacterial Shiga Toxins Frontiers in Microbiology, 2018.

18. Yue, Z., et al., “Super Gene Set” Causal Relationship Discovery from Functional
Genomics Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2018.

	TABLE OF CONTENTS
	LIST OF FIGURES
	ABSTRACT
	1. Introduction
	1.1 Reinforcement Learning: overview
	1.2 Decentralized reinforcement learning
	1.3 Principles of Hamilton-Jacobi-Bellman equation

	2. Markov decision process
	2.1 Overview of the MDP problem
	2.2 Problem statement: HJB equation to optimally stabilize the system
	2.3 Discretization to setup the MDP problem
	2.3.1 Discretizing the state and control vector space
	2.3.2 Setting up the state transition matrix for the MDP problem
	2.3.3 State value function in MDP problem

	2.4 The closeness of the MDP’s states toward the HJB’s states
	2.4.1 The autonomous system
	2.4.1.1 Theorem 2.1
	2.4.1.2 Theorem 2.2
	2.4.1.3 Theorem 2.3

	2.4.2 The non-autonomous system
	2.4.2.1 Theorem 2.4
	2.4.2.2 Theorem 2.5

	2.5 The existence of the MDP solution as to near-optimally stabilize the system
	2.5.1.1 Theorem 2.6
	2.5.1.2 Theorem 2.7

	2.6 Simulation results

	3. Selective Decentralization
	3.1 Problem statement of selective decentralization
	3.2 Pseudo code for selective decentralization

	4. Selectively Decentralized Q-learning
	4.1 Selectively decentralized Q-learning method
	4.1.1 Problem statement
	4.1.2 System discretization and reward function
	4.1.3 Selectively decentralized Q-learning formulation

	4.2 Sufficient conditions for the Q-learning policy to stabilize the system
	4.2.1.1 Theorem 4.1
	4.2.1.2 Theorem 4.2
	4.2.1.3 Theorem 4.3

	4.3 Toy example results
	4.3.1 Converging speed of selectively decentralized Q-learning
	4.3.2 Switching among decentralization schemes

	4.4 Discussions

	5. Selectively Decentralized System Identification
	5.1 Problem statement for selectively decentralized system-identification
	5.1.1 Identification in unknown discrete-time invariant linear system
	5.1.2 Identification in unknown discrete-time invariant nonlinear system
	5.1.3 Selective decentralization pseudo code

	5.2 Reviews of system identification
	5.2.1 Identification of linear time-invariant system
	5.2.2 Identification of nonlinear time-invariant systems

	5.3 Simulation results
	5.3.1 Linear system identification
	5.3.2 Nonlinear system identification

	6. Selectively Decentralized Learning and Control with Discretized MDP
	6.1 Problem statement for model-based reinforcement learning
	6.2 Two-phase selective decentralized control framework
	6.3 Simulation results
	6.3.1 Linear system
	6.3.2 Nonlinear system

	6.4 Discussions

	7. Multidisciplinary Optimization in Decentralized Reinforcement Learning
	7.1 Problem statements
	7.1.1 The learning adaptive control problem
	7.1.2 The system identification problem statements

	7.2 Key assumptions for the MDO agents
	7.3 Design of MDO learning agents with two phases
	7.3.1 MDO system identification
	7.3.2 Discrete MDP for MDO agents
	7.3.2.1 Discrete MDP for the centralized and completely decentralized approach
	7.3.2.1.1 Discretize the state and action vectors
	7.3.2.1.2 Setup the probabilistic transition function for the MDP

	7.3.2.2 Discrete MDP method for the MDO approach

	7.3.3 The pseudo code for the MDO learning agent

	7.4 Simulation results
	7.4.1 The learning performance of MDO approach in stabilizing control system
	7.4.2 Performance loss MDO-IDF when using resolution-less communication

	7.5 Discussions

	8. Decentralized Learning in Noisy Environment
	8.1 Experimental results without noise-filtering techniques
	8.1.1 Linear system
	8.1.2 Nonlinear system with discrete-MDP approach
	8.1.3 Q learning
	8.1.4 MDO

	8.2 Discussions

	9. Case-Studies
	9.1 Learning to control the mass-spring system
	9.1.1 System formulation
	9.1.2 Experiment

	9.2 Potential application in drug discovery / repositioning
	9.2.1 Motivation of applying reinforcement learning in drug repositioning
	9.2.2 Overall ideas of drug repositioning based on reinforcement learning and control
	9.2.3 Setup the system for drug repositioning from Breast Cancer-omics data
	9.2.4 Selectively decentralized approach improve the capability of detecting therapeutic drugs for Breast Cancer

	10. Conclusions
	APPENDIX. DeCOST framework: reinforcement learning – control system application in drug repurposing
	Biological insights
	Therapeutic scores for Breast Cancer Drugs
	Potential drugs for Breast Cancer studies and biological insights

	REFERENCES
	VITA
	PUBLICATIONS

