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The main contributions in this thesis include the selectively decentralized method in solving multi-

agent reinforcement learning problems and the discretized Markov-decision-process (MDP) 

algorithm to compute the sub-optimal learning policy in completely unknown learning and control 

problems. These contributions tackle several challenges in multi-agent reinforcement learning: the 

unknown and dynamic nature of the learning environment, the difficulty in computing the closed-

form solution of the learning problem, the slow learning performance in large-scale systems, and 

the questions of how/when/to whom the learning agents should communicate among themselves. 

Through this thesis, the selectively decentralized method, which evaluates all of the possible 

communicative strategies, not only increases the learning speed, achieves better learning goals but 

also could learn the communicative policy for each learning agent. Compared to the other state-

of-the-art approaches, this thesis’s contributions offer two advantages. First, the selectively 

decentralized method could incorporate a wide range of well-known algorithms, including the 

discretized MDP, in single-agent reinforcement learning; meanwhile, the state-of-the-art 

approaches usually could be applied for one class of algorithms. Second, the discretized MDP 

algorithm could compute the sub-optimal learning policy when the environment is described in 

general nonlinear format; meanwhile, the other state-of-the-art approaches often assume that the 

environment is in limited format, particularly in feedback-linearization form. This thesis also 

discusses several alternative approaches for multi-agent learning, including Multidisciplinary 

Optimization. In addition, this thesis shows how the selectively decentralized method could 

successfully solve several real-worlds problems, particularly in mechanical and biological systems. 
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1. INTRODUCTION 

This thesis is devoted to reinforcement learning, which is one of the most attractive areas in 

Computer Science, and probably in Philosophy. In this thesis, I propose, explore, and discuss 

selective decentralization as a new approach in decentralized reinforcement learning, which is also 

cited in the literature as distributed learning or multi-agent learning. Briefly, this thesis answers 

the questions: how the computational agent learn how to act optimally when it does not know the 

learning environment, and how multiple agents collaborate to learn faster in large-scale learning 

problems. Here, the notion of ‘large’ is problem-specific instead of just number of dimensions. 

For example, in aircraft smart control, a system of more than ten state parameter would be 

considered as large, while ten is still a small number in big data area. 

 

Let us begin with an infamous Japanese cartoon named ‘Doraemon’, a science-fiction gadget cat 

who has been motivating many Asian children to love and pursue robotic and artificial intelligence 

career [1]. In the series of the same name, Doraemon is a robot coming from the 22nd century to 

take care of Nobita, a weak, under-performed and somewhat lazy child. Doraemon is extremely 

fond of Japanese rice cake; therefore, the child Nobita usually offer Doraemon cakes to reward his 

service or to ask for help. In section titled ‘Scary rice cake’ [2], again, the lazy Nobita shows 

Doraemon many rice cakes; however, the condition is that Doraemon must complete Nobita’s 60 

homework on the last night of the due date. Given such a large amount of work in short time and 

unfamiliarity with primary school homework, Doraemon knows that he needs extra help. Then, he 

uses his special ability to travel across the time to ask his copies living in several hours later in the 

future to come back to his time and help. The multiple Doraemons divide the work among 

themselves, try to learn and solve primary school homework, and exchange opinions on right or 
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wrong solutions. Will the Doreamons succeed in this heavy task to enjoy the rice cake or will they 

fail and fighting each other? At the end, both of these outcomes occur: the gadget cats do not agree 

many times during the work, sometimes fighting each other, but they manage to finish the work 

and enjoy the cakes. 

 

The short story above demonstrate many points in this thesis. First, the gadget cats have a mission 

in which he does not know the domain knowledge; therefore, they must learn and act concurrently. 

Second, his task is to provide homework solutions but there is no precise feedback telling him 

whether or not his solutions are right or wrong. These two points are essential in reinforcement 

learning. Third, the task is too large to complete by one gadget; therefore, the task needs the 

distributed execution. Forth, the outcome of the task depends on the communication and 

collaboration among the Doreamon copies, which is also the essential element in decentralized 

learning.  

 

From these points above, the remaining of the introduction will be divided into three sections. The 

first section reviews the concepts and state-of-the-art techniques in reinforcement learning. The 

second section reviews decentralized learning and multi-agent learning systems. The third section 

briefly reviews Hamilton-Jacobi-Bellman equation, which is the universal mathematical 

description in many reinforcement learning problems. 

 Reinforcement Learning: overview 

Reinforcement learning, briefly, is how the agents learn what to do when there is no instruction 

telling what the agent should do [3]. The lack of instruction could be in many scenarios. First, 

when the problem is naturally exploratory, there is usually neither guidance nor domain knowledge 
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for the agent to make the decision. This usually happens when the problem is relatively new for 

human. A typical example in this scenario was fighting Ozma boss in Final Fantasy IX game; this 

super boss took hundreds or thousands of players to play multiple rounds to discover the winning 

strategy [4] in 2000. In another scenario, the learning outome could only be seen after so many 

phases that the ‘good’ action in an early moment may fail later, or a ‘bad’ action in an early moment 

could bring favorable outcome. This scenario often occurs in chess game or searching missions. 

An example of this scenario is The Game of the Century chess, where Bobby Fischer made a queen 

scarification move, which appeared to be a suicide at turn 17, but at the end claimed the victory 

[5] at turn 38. In addition, when the environment is known to be uncertain, there is no guarantee 

of optimality in every action. We see this scenario when Markov decision process [6] is applied.  

 

In general, reinforcement learning is about trial-and-error interactions with a dynamic environment 

[7]. The reinforcement learning problem includes the following elements 

- The agent who can perceive and perform action u ∈ A, where A is the set of all actions. 

- The environment where the agent operates in. The agent can perceive information from 

the environment, which is also called state x. In this thesis, we assume that the environment is fully 

accessible for the agent, which means the agent can obtain complete, accurate and up-to-date 

information from the environment [3]. 

- The dynamic transition of the environment: the mapping x(t+1) = f (x(t), u(t)), in which 

x(t+1) is the new state, x(t) is the exiting state and u(t) is the agent’s action at time t. In 

reinforcement learning, the agent initially does not know the transition. 

- The reinforcement feedback R(x(t), u(t)), which the agent knows in order to determine 

how well it performs at time t. This is the agent’s learning goal. 
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The reinforcement learning agent, also called the intelligent agent, aims to maximize the 

cumulative feedback R(x(t), u(t)) for the long time. For this objective, the agent tries to find the 

policy function u = v(x), which tells the agent which action it should perform in a given state. 

 

In general, the reinforcement learning techniques need to solve two major challenges to optimize 

the reinforcement feedback: the unknown nature of the environment and computing the action u 

as a function of state x. For the first challenges, system identification has been widely used to 

approximate the dynamic environment [8-11]. For the second challenge, as it is claimed that 

reinforcement learning is the direct adaptive optimal control problem [12], in theory, solving a 

reinforcement learning problem is solving the equivalent Hamilton-Jacobi-Bellman (HJB) 

equation, which is the fundamental of optimal control [13]. However, the closed-form solution of 

the HJB equation is very difficult to find in general. In the special case of linear system, the HJB 

equation becomes the well-known Riccati equation with the complete closed-form solution [14]. 

In nonlinear systems, researchers have been focusing on approximation methods to tackle 

nonlinear HJB equation problem such as [15-18]. However, these methods are only limited for the 

systems in feedback-linearizable forms. 

 

Reinforcement learning techniques could be categorized based on how the techniques compute the 

action u. In one category, the reinforcement learning techniques, inspired by the theory of dynamic 

programming and HJB equation [19-21], try to estimate the expected long-time reward at every 

state x, also called state utility, given the most updated policy the agent has. After executing each 

action and seeing new reward, the agent updates the estimation of state utility, and updates its 

policy to maximize the chance of getting higher utility based on the new estimation. In this 
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category, the agent usually needs to employ the dynamic transition of the environment for its state 

utility estimation. Therefore, this category is called model-based methods [22-24]. In another 

category, the learning agent keeps a history of reward for all state-action pairs and increments the 

history of reward after executing each action in a given state. In this type of approach, the agent 

does not need the transition of the environment since the update is only done incrementally on a 

short term. Therefore, this category is called model-free methods, in which Q-learning is a typical 

example [25-27]. Another category of reinforcement learning approaches is called reflex design, 

in which the agent directly represent policy function in some form, especially in differentiable 

form. After seeing the new reward, the agent directly adjusts the parameters of the policy function, 

usually by the gradient methods [28, 29]. Overall, only the model-based category could directly 

estimate the solution for the HJB equation; while the other two categories do not. 

 

From another perspective, reinforcement learning techniques need to balance the trade-off between 

exploration and exploitation [3]. Exploration refers to the amount of learning samples that the 

agent should experience to find the optimal policy. Exploitation refers to the maximization of 

reward at any instance. Due to unknown nature of reinforcement learning, maximization of the 

short-term reward with insufficient knowledge may not lead to the optimal policy in long term. A 

typical example of this trade-off could be found in the multi-bandit-arm problem [30]. Similar to 

the multi-bandit-arm problem, most of the reinforcement learning algorithm has a learning rate 

parameters to control how fast the learning is. In addition, some reinforcement learning techniques 

apply the Boltzmann distribution, which directs how likely the agent chooses alternative options 

rather than the most updated policy as it knows [31-33]. 
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 Decentralized reinforcement learning 

As reinforcement learning has been applied in more complex real-world problems, the interest in 

multi-agent, also called distributed or decentralized, learning has been increasing for the recent 

years. There are many scenarios in which single-agent, or centralized learning, is not suitable. 

First, when the learning problem is large, especially when the environment is represented by high-

dimensional vectors, the single agent may not have sufficient computational power to solve such 

a problem. In addition, even if the single/centralized agent have sufficient computational power, it 

still has to tackle the curse of dimensionality [34, 35], which may obstruct the agent learning 

optimal policy, or the slow exploration [36], which makes the learning impractical. In these 

scenarios, decentralized learning may be a more practical approach. Second, when the learning 

problem is naturally distributed, such as coordinating multiple players in the infamous Civilization 

game series [37] where each artificial agent may control one nation collaborating-competing with 

the others in the world-map, it may be more suitable to apply multi-agent learning. Third, even 

when the problem is neither high-dimension nor naturally distributed but composed from multiple 

disciplinary, it is more feasible to apply distributed learning, in which each learning agent is an 

expert in single disciplinary. One typical example of this problem in aircraft control, where the 

aero dynamic agent applies fluid dynamics law to manage the air-pressure on the aircraft wing and 

the structure agent applies the material law to manage the deflection and shape of the wing [38]. 

 

It has been shown that decentralized reinforcement learning shows several advantages, compared 

to centralized learning. First, as expected, decentralized learning allows the agents to operate on 

less dimension, which could avoid the curse of dimensionality an improve the learning speed [39]. 

Second, decentralized learning offers more robustness and improves fault-tolerance: if one agent 

fails in learning, the other agents could compensate for it in the overall learning problem resulting 
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in only graceful degradation of performance. Third, decentralized learning is less susceptible to 

uncertain system parameters [40]. 

 

In order to avoid instability and show these advantages, the decentralized reinforcement learning 

has to overcome four major challenges. First, when the agents should communicate with the others? 

Second, to whom should a single agent communicate? Third, which types of information should 

the single agent share with the others? Forth, how does a single agent use the information to 

improve its own learning performance and contribute to the overall performance? Adding to the 

complexity of decentralized learning, the answers for these questions must consider the learning 

environment: collaborative (when all of the agents work together to achieve a common goal), 

competitive (when the agents compete with the others to decide a winner), or mixed (including 

both collaboration and competition). Thus, the ‘communication’ questions are still opened. More 

details about these questions could be found in [41-43]. 

 

To the extent of our knowledge, the state-of-the-art decentralized learning could be divided into 

two categories: partial communication and multi-model switching. In partial communication, each 

agent is responsible to for its own communication: when, to whom, which to share and how to use 

information, depending on the agent’s state variables and communication costs [44]. Some of the 

recent state-of-the-art techniques in partial communication demonstrate how each agent decide the 

communication in Q-learning problems [45-47], partially ordered subsystems [48], fuzzy logic 

systems [49, 50] and probabilistic control sharing systems [51]. In multi-model-switching, the 

entire system has K policies to allow the agents to communicate, and the entire system has a central 

communicator who is responsible to switch the communication policy depending on the resulting 
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performance [52-55]. Also, criteria to decide policy switch may depends on the domain-specific 

optimization of the problem, such as power efficiency function in energy system [56, 57] and 

aerodynamic performance in hypersonic vehicle systems [58]. Our thesis focus on the multi-

model-switching approach, whose complexity is, at most, as of Bell’s number [59]. It is known 

that the Bell’s number grows more than exponentially. 

 Principles of Hamilton-Jacobi-Bellman equation 

The Hamilton-Jacobi-Bellman (HJB) equation, proposed by Richard Bellman in 1950s [60], is the 

general theory for optimal control and reinforcement learning. The equation includes two 

fundamental elements: a cost function C(x, u) (the reinforcement feedback), which forms the long-

term optimization objective, and the system function F(x, u), which forms the thresholds of the 

optimization. The continuous HJB equation [60] is as follow: find u(t) as a function of (x(t)) to 

minimize 

𝐽𝐽 = � 𝐶𝐶(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)
𝑇𝑇

0
+ 𝐷𝐷(𝐱𝐱(𝑇𝑇)) (1.1) 

In which T is the period which the optimization applies and D(x(T)) is the specific cost function at 

the end of the period. When T → ∞, the optimization criteria becomes 

𝐽𝐽 = � 𝐶𝐶(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)
∞

0
(1.2) 

The optimization constrains is represented as 

x’(t) = F(x(t), u(t))  (1.3) 

in which x’(t) stands for the first derivative of x. The HJB equation in discrete-time form is: 

minimize 

𝐽𝐽 = �𝐶𝐶�𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)�
𝑇𝑇

𝑡𝑡=0

+ 𝐷𝐷�𝐱𝐱(𝑇𝑇)�  (1.4) 
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or  

𝐽𝐽 = �𝐶𝐶�𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)�
∞

𝑡𝑡=0

 (1.5) 

when T → ∞. The constrains is 

x(t+1) = F(x(t), u(t))  (1.6) 

In the special case of linear system, the HJB equation becomes the well-known Riccati equation 

[61]: minimizing 

𝐽𝐽 = �𝐱𝐱(𝑡𝑡)𝑻𝑻𝐐𝐐𝐐𝐐(𝑡𝑡) + 𝐮𝐮(𝑡𝑡)𝑇𝑇𝐑𝐑𝐑𝐑(𝑡𝑡)
∞

0

  (1.7) 

subject to 

x(t+1) = Ax(t) + Bu(t)  (1.8) 

where Q and R are semi-positive-definite square matrixes. 

 

The most important principle of the HJB equation is the dynamic optimization, which includes 

two characteristics. First, the solution u(t) for equation starting at time t (t = 0) should be also the 

solution at time t+1 (t = 1) [13]. Therefore, in discrete-time system with finite T , the HJB equation 

could be solved by inverse dynamic programming [62]: use the solution at time t to find the 

solution at t-1. Second, due to the inter-dependence of u(t) and the optimization objective J, these 

two factor could be iteratively estimated [19]. 

 

Theoretically, the solution of the HJB equation follows calculus of variation [63]. For the linear 

system, the HJB equation becomes the well-known Riccati equation with complete solution [14]. 

However, in most of the real-world cases, the system is nonlinear where the closed-form solution 

for HJB equation is very difficult to find. Therefore, researchers have been focusing on 

approximation methods to tackle nonlinear HJB equation problem such as [15-18]. Generally, 
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these efforts focus on the nonlinear feedback-linearization system, in which the closed-form 

solution for the approximation of HJB equation has been found [64]. In the other hand , a simple 

idea is to discretize the nonlinear system to convert it into a Markov-Decision-Process (MDP) and 

solve it by the policy iteration algorithm [65]. Such discretization of continuous-state nonlinear 

control systems has been examined in [66-68]. However, according to the best of our knowledge, 

the sufficient and the closeness of the MDP approximation to the real solution of the HJB equation 

has not been well-established. 

 

Overall, the introduction highlights two major areas which will be answered by this thesis: 

- How to approximate the solution of the HJB equation by the MDP approach? What are 

the necessary condition for the MDP’s approximated solution to approach the HJB equation’s 

solution? How closed these two solutions are? 

- The communication among the agents: when? To whom? What to share? And how to use 

the sharing information? 

 

The remaining chapters of this thesis are organized as follow. In chapter 2, I show the grid-based 

discretization method to convert the HJB equation into a MDP problem. In addition, I prove some 

necessary condition for the MDP’s solution toward the HJB’s solution. In chapter 3, I propose the 

selective decentralization approach for the communication among the agent. In chapter 4, I show 

that the selective decentralization approach outperforms the centralized approach in Q-learning, 

which is a typical model-free reinforcement learning technique. In chapter 5, I show the 

performance of selective decentralization in system identification, which is the first sub-problem 

in model-based reinforcement learning. In chapter 6, I show that the selective decentralization also 

improves the learning performance, in combination with the MDP approximation for HJB 
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equation. In chapter 7, I explore the capability of multidisciplinary optimization (MDO), which is 

a popular technique in aircraft control to coordinate multiple subsystems, in reinforcement 

learning. In chapter 8, I add the system noise into the learning problems and see how the learning 

techniques above would perform in the noisy cases. Chapter 9 demonstrates how the proposed 

selective decentralization improves the learning performance in real-world problems of mechanics 

and system biology. Chapter 10 concludes the thesis on how well it tackles the major challenges 

in general and decentralized reinforcement learning. 
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2. MARKOV DECISION PROCESS 

As mentioned in the introduction, the HJB equation’s solution has the dynamic programming 

principles, which is also shared by the Markov Decision Process’s (MDP) solution [69]. Therefore, 

a simple idea is to discretize the nonlinear system to convert it into a Markov-Decision-Process 

(MDP) and solved it by well-known MDP algorithms [70]. Such discretization of continuous-state 

nonlinear control systems have been studied in [66-68]. In addition, convergence results for 

decentralized learning in Markov systems have been derived in [71, 72]. However, from our 

knowledge, the theoretical proof about the existence and closeness of the MDP’s solution in the 

general form HJB equation has not been widely explored. 

 

The main challenge in approximating the HJB equation’s solution by MDP is the transformation 

from the HJB’s continuity to MDP’s discreteness. Therefore, the proof of MDP’s existence and 

closeness toward the HJB depends on how to discretize the HJB equation. From this argument, 

this chapter is organized as followed. First, I briefly review the MDP problem. Second, I describe 

the problem statement of the HJB equation in adaptive control, which has be claimed to be 

equivalent to reinforcement learning [12]. Third, I demonstrate the discretization to transform the 

continuous HJB equation toward the discrete MDP problem, in which I define the ‘discretized 

resolution’ concept (further details could be found in publications [78, 85]). Forth, I prove some 

sufficient conditions for the discrete MDP’s states to approach the discrete the continuous HJB’s 

states in the long-term, which guarantee the closeness of these two problems toward each other 

[78]. Fifth, I prove the existence of the MDP’s solution which can be used as a ‘stabilizer’ for the 

HJB – adaptive control equation. Finally, I show some simulation experiments in which the MDP’s 

solution could stabilize the system as the HJB equation aims for [78]. 
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 Overview of the MDP problem 

Formally, an MDP problem, which is discrete-time, has the following elements [73] 

- A set of discrete states S, which is assumed to be fully accessible for the learning agent. 

- A set of actions A, which the agent could do at every time step. 

- The state transition distributions P, also written P(x2 | x1, u) in which x1, x2 ∈ S and u ∈ 

A, tell how likely to reach a new state next time when executing a specific action at a specific state. 

- A reward function R: S → ℜ or S×A → ℜ to tell how good a specific state (or state-

action) is instantly. This is the reinforcement feedback for the agent. 

- A discount factor γ < 1 to define the long-term learning objective of the agent. The closer 

γ to 1, the more long-term the agent needs to aim for.  

The learning objective is  

� 𝛾𝛾𝑡𝑡𝑅𝑅(𝐱𝐱(𝑡𝑡)) 
∞

𝑡𝑡=0
 (2.1) 

and the agent needs to find a policy function u = v(x) to optimize (2.1). 

 

Compared to the HJB equation, we can see that most of the elements in the MDP problem are the 

same to the corresponding ones in the discrete-time HJB equation, except the state transition. In 

the HJB equation, the state transition is deterministic 

𝐱𝐱2 = 𝑓𝑓(𝐱𝐱1,𝐮𝐮)  (2.2) 

Meaning that at state x1, executing action u only lead to one specific state x2. In the other hands, 

the MDP is non-deterministic, which means executing the same action u at state x1 may lead to 

other states rather than x2. In addition, it is easy to see that if the MDP state-transition is less 

diverge: P(x2 | x1, u) → 1, then the discrete-state and non-deterministic MDP behaves closer to the 

continuous and deterministic HJB equation. 
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From the dynamic programming perspective, the MDP problem could be solved by policy iteration 

algorithm [65]. The main idea is to maintain an estimation of the learning objective, called utility 

function, and iteratively update the policy / utility function. To be more specific, given an arbitrary 

policy u = v’(x), we can always compute the utility function Vv’ (x) for every initial state x 

𝑉𝑉𝑣𝑣’(𝑥𝑥) = � 𝛾𝛾𝑡𝑡𝑅𝑅�𝐱𝐱(𝑡𝑡)� 
∞

𝑡𝑡=0
, 𝐱𝐱(0) = 𝐱𝐱  

or 𝑉𝑉𝑣𝑣’(𝑥𝑥) = � 𝛾𝛾𝑡𝑡𝑅𝑅�𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)� 
∞

𝑡𝑡=0
, 𝐱𝐱(0) = 𝐱𝐱 (2.3) 

depending on how the function R is defined. Then, at time t, the agent may review all of the 

possible actions and choose the action maximizing the expected next utility 

argmax
𝐮𝐮

�𝑅𝑅(𝐱𝐱(𝑡𝑡)) + � 𝑷𝑷(𝐱𝐱′|𝐱𝐱(𝑡𝑡),𝐮𝐮)
∀𝐱𝐱′

𝑉𝑉𝑣𝑣’(𝐱𝐱′)�   (2.4) 

Equation (2.4) shows that the policy is updated. Then, the new policy in (2.4) is used to re-compute 

(2.3). Theoretically, the iterative processes (2.3-2.4) has been proved to converge [71, 72], where 

both the policy no longer change in (2.4) and the state utility reaches the maximum. 

 Problem statement: HJB equation to optimally stabilize the system 

In this thesis, we focus on discrete time, continuous-state, time-invariant system in the general 

format [78, 85] 

𝐱𝐱(𝑡𝑡 + 1) = 𝑓𝑓(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡))  (2.5) 

Where x ∈ ℜN stands for the N dimensional bounded state vector, u ∈ ℜM stands for the M 

dimensional bounded control unit, t stands for the iteration number, x(0) is given and f : ℜN×ℜM 

→ ℜN is an continuously differentiable unknown function. Here, the symmetric boundaries [-χ, χ] 

and [-µ, µ] for all components of x and u are known. Let p: ℜN → ℜ and q: ℜM → ℜ be the two 
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continuously semi-definite negative and differentiable reward functions with the following 

properties 

𝑝𝑝(𝐱𝐱1) ≤ 𝑝𝑝(𝐱𝐱2) ⇔ ‖𝐱𝐱1‖ ≥ ‖𝐱𝐱2‖ and p(0) = 0 (2.6) 

𝑞𝑞(𝐮𝐮1) ≤ 𝑞𝑞(𝐮𝐮2) ⇔ ‖𝐮𝐮1‖ ≥ ‖𝐮𝐮2‖ and q(0) = 0 (2.7) 

where ||x|| denotes the second norm of x. The main objective is to learn the control unit u such that 

x(t) → 0, u(t) → 0 as t → ∞ (2.8) 

To formulate an optimal control or learning problem, we convert the objective in (2.8) into a more 

formal control problem with discount factor 0 < γ → 1 

𝐽𝐽(𝐱𝐱0) = �𝛾𝛾𝑡𝑡 �𝑝𝑝�𝐱𝐱(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮(𝑡𝑡)��
∞

𝑡𝑡=0

  (2.9) 

It is easy to see that p(x) and q(u) is designed such that the learning objective is optimal only when 

the system is stabilized. 

 Discretization to setup the MDP problem 

2.3.1 Discretizing the state and control vector space 

Let G be the number of intervals in each dimension of x and u for which we uniformly divide the 

dimension into small grids. Therefore, the entire state space is divided into GN small hyper cubes 

and the control space is divided into GM small hyper cubes. All points inside a hyper cube are 

discretely represented by the center of the hyper cube. Points on the borders between two hyper 

cubes are represented by the center of the ‘left’ hypercube. Mathematically, the discretization 

process is described by the following formulas 

𝐱𝐱[𝑖𝑖] → 𝜃𝜃𝑥𝑥 + χ 𝐺𝐺⁄  ∀ 𝑖𝑖∈[1,𝑁𝑁]  𝑎𝑎𝑎𝑎𝑎𝑎 𝐱𝐱[𝑖𝑖] ∈ [𝜃𝜃𝑥𝑥, 𝜃𝜃𝑥𝑥 + 2 χ 𝐺𝐺⁄ )  (2.10) 

𝐮𝐮[𝑖𝑖] → 𝜃𝜃𝑢𝑢 + 𝜇𝜇 𝐺𝐺⁄  ∀ 𝑖𝑖∈[1,𝑀𝑀]  𝑎𝑎𝑎𝑎𝑎𝑎 𝐮𝐮[𝑖𝑖] ∈ [𝜃𝜃𝑢𝑢,𝜃𝜃𝑢𝑢 + 2 𝜇𝜇 𝐺𝐺⁄ )   (2.11) 
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where θx ∈ {-χ, -χ + 2χ/G, -χ + 4χ/G, ..., χ- 2χ/G } and θu ∈ {-µ, -µ + 2µ/G, -µ + 4µ/G, ..., µ- 

2µ/G }, which are the ‘left’ boundaries in the hyper cubes. 

 

Let δ = max(2χ/G, 2µ/G). It is easy to see that inside each small hyper cube, the largest distance 

between any two points, or the ‘main diagonal’, is bounded by 

√𝛿𝛿2 + 𝛿𝛿2 + ⋯+ 𝛿𝛿2 = √𝑁𝑁𝛿𝛿2 = √𝑁𝑁δ  (2.12) 

in the state space and by √𝑀𝑀δ in the control space. The left side of (2.12) has N terms for x 

dimension or M terms for u dimension. Trivially, G → ∞ ⇔ δ → 0, or the discretization is more 

precise. 

 

From this point, for any state vector x, we denote xdis as x’s discretized form; for any control vector 

u, we denote udis as u’s discretized form. We also denote (xdis) and (udis) as the hypercube where 

every x’s and u’s discretization is xdis and udis, correspondingly. Formally, from (2.10) and (2.11), 

we have 

(𝐱𝐱dis) = [𝐱𝐱dis(𝑖𝑖) − χ 𝐺𝐺⁄ , 𝐱𝐱dis(𝑖𝑖) + χ 𝐺𝐺⁄ ) ]  ∀𝑖𝑖 ∈ {1,2,3 …𝑁𝑁}  (2.13) 

and 

(𝐮𝐮dis) = [𝐮𝐮dis(𝑖𝑖) − 𝜇𝜇 𝐺𝐺⁄ ,𝐮𝐮dis(𝑖𝑖) + 𝜇𝜇 𝐺𝐺⁄ ) ]  ∀𝑖𝑖 ∈ {1,2,3 …𝑀𝑀}  (2.14) 

2.3.2 Setting up the state transition matrix for the MDP problem 

The state transition matrix for the MDP problem, which contains all conditional probability 

P(x’dis | xdis, udis), has the dimension of GN×GM×GN. It is easy to observe that for each triple (x’dis, 

xdis, udis) the conditional probability P(x’dis | xdis, udis) is 

P(x’dis | xdis, udis) =   
∭ 𝑑𝑑𝐱𝐱𝑑𝑑𝐮𝐮𝑑𝑑𝐱𝐱′�𝐱𝐱dis�×�𝐮𝐮dis�×�𝐱𝐱’dis�

∭ 𝑑𝑑𝐱𝐱𝑑𝑑𝐮𝐮𝑑𝑑𝐱𝐱′�𝐱𝐱dis�×�𝐮𝐮dis�×C
  (2.15) 
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where C is the subspace containing all possible value of f (x, u) ∀x,u∈(xdis)×(udis). In our problem 

statement, since f is unknown, we replace f by𝑓𝑓, which is approximated by the neural network. 

Figure 2.1 illustrates a simple case of this conditional probability when N = 1. Although the integral 

could be approximated by the Monte Carlo method [74], the simpler method to approximate P(x’dis 

| xdis, udis) is as follow. 

- Generate a large number of S points (x, u) following the uniform distribution in 

(xdis)×(udis). Here, we emphasize that the computation of P(x’dis | xdis, udis) does not use any sample 

(x(t), u(t)). These S points are randomly generated without any prior knowledge of f to avoid bias. 

- Count the number of points T such that 𝑓𝑓 (x, u) ∈ (x’dis). 

- Then T/S → P(x’dis | xdis, udis) when S → ∞. 

 

Figure 2.1. An example of (2.15) in one-dimension state space. <1>, the dash surface, is the 
numerator in (2.15). <2>, the bold surface, is the denominator of (2.15). 
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2.3.3 State value function in MDP problem 

In (2.9), from Bellman’s principle of optimality [75], for the solution u(t) of the HJB equation 

(2.5)-(2.9), we have 

𝐽𝐽�𝐱𝐱(𝑡𝑡)� = 𝑝𝑝�𝐱𝐱(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮(𝑡𝑡)� + �𝛾𝛾𝑡𝑡 �𝑝𝑝�𝐱𝐱(𝜏𝜏)� + 𝑞𝑞�𝐮𝐮(𝜏𝜏)��
∞

𝜏𝜏=1

 

= 𝑝𝑝�𝐱𝐱(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮(𝑡𝑡)� + 𝐽𝐽�𝐱𝐱(𝑡𝑡 + 1)�  (2.16) 

Because f is stable at the origin, from (2.2) and (2.3), J(0) = 0. Since the state value function in the 

HJB equation (2.5)-(2.9) contains a discount factor, we define the corresponding value function in 

the MDP as 

𝑅𝑅�𝐱𝐱dis(𝑡𝑡)� = 𝑝𝑝�𝐱𝐱dis(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮dis(𝑡𝑡)�

+ �𝛾𝛾𝑡𝑡 � 𝑃𝑃�𝐱𝐱dis′(𝜏𝜏)|𝐱𝐱dis(𝜏𝜏 − 1),𝐮𝐮dis(𝜏𝜏 − 1)� �𝑝𝑝�𝐱𝐱dis′(𝜏𝜏)� + 𝑞𝑞�𝐮𝐮dis′(𝜏𝜏)��
∀𝐱𝐱dis′

∞

𝜏𝜏=1

 

= 𝑝𝑝�𝐱𝐱dis(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮dis(𝑡𝑡)� + 𝛾𝛾 ∑ 𝑃𝑃�𝐱𝐱dis′(𝑡𝑡 + 1)|𝐱𝐱dis(𝑡𝑡),𝐮𝐮dis(𝑡𝑡)�𝑅𝑅�𝐱𝐱′dis(𝑡𝑡 + 1)�∀𝐱𝐱dis′  (2.17) 

And R(xdis) = 0 if (xdis) contains 0 or  has 0 on the boundary. 

 The closeness of the MDP’s states toward the HJB’s states 

In this section, we examine several conditions for xdis(t) and udis(t), acquired by the discretized 

MDP method, converge to x(t) and u(t) when t → ∞. More specifically, we answer the following 

questions. First, suppose that we know an admissible control u(t) = g(x(t)) and discretize this 

admissible control (without the MDP policy iteration algorithm), what is the boundary of  

|x(t)- xdis(t)| ? Second, without any knowledge of the admissible control, in which condition the 

MDP solution could near-optimally stabilize the system? To simplify the analysis, in this section, 

we assume that f is known. Although this assumption is not applicable for reinforcement learning, 
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this assumption is logical given that the neural network, as the functional approximator 𝑓𝑓, could 

approximate any arbitrary function given sufficient training sample [15, 76, 77]. The main content 

of the theoretical analysis is taken from my paper [78]. 

2.4.1 The autonomous system 

When we linearize an autonomous system using Taylor series expansion 

x(t+1) = f (x(t)) (2.18) 

at point p in the domain of f, we have  

f(x) ≈ f(p) + M(x-p) (2.19) 

where M is the matrix of partial derivative of f on x at p 

M = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

    
… 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩

… 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑑𝑑

�
𝐱𝐱=𝐩𝐩

⋮ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

    
⋱ ⋮
… 𝜕𝜕𝑓𝑓𝑑𝑑

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (2.20) 

For the close region (xdis) (2.13) which includes the boundary and contains x, let Cη be the set of 

all x(t+η) computed by tracking all points in (xdis) on f after η time points. Obviously Cη has to be 

a close region because it is spanned from a close region by a continuous function. Therefore, there 

exists two points x1(t+η) and x2(t+η) such that |x1(t+η) - x2(t+η)| is the maximum for all pairs of 

points in Cη. There must exist two chains: { x1(t) , x1(t+1) , ..., x1(t+η-1) } and { x2(t) , x2(t+1) , ..., 

x2(t+η-1) } such that x1(t+η) = f (x1(t+η-1)) = f ( f (x1(t+η-2)) ) = ... = f η (x1(t)) and  

x2(t+η) = f (x2(t+η-1)) = f ( f (x2(t+η-2)) ) = ... = f η (x2(t)). Applying the Taylor series expansion, 

we have 
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x1(t+η) - x2(t+η)  = f η (x1(t)) - f η (x2(t)) = 
𝜕𝜕𝑓𝑓η

𝜕𝜕�𝐱𝐱2(𝑡𝑡)�
 ( x1(t) – x2(t)) + O(δ2) (2.21) 

Apply the derivative chain rule for 
𝜕𝜕𝑓𝑓η

𝜕𝜕�𝐱𝐱2(𝑡𝑡)�
, we have 

x1(t+η) - x2(t+η)  = 
𝜕𝜕𝜕𝜕

𝜕𝜕�𝐱𝐱2(𝑡𝑡+η−1)�
× 𝜕𝜕𝜕𝜕

𝜕𝜕�𝐱𝐱2(𝑡𝑡+η−2)�
× … 𝜕𝜕𝜕𝜕

𝜕𝜕�𝐱𝐱2(𝑡𝑡)�
( x1(t) – x2(t)) + O(δ2) 

= 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−1) × 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−2) × … × 𝐌𝐌𝐱𝐱2(𝑡𝑡)( x1(t) – x2(t)) + O(δ2)  (2.22) 

Therefore,  

|| x1(t+η) - x2(t+η) || ≤ || 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−1) × 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−2) × … × 𝐌𝐌𝐱𝐱2(𝑡𝑡)( x1(t) – x2(t))  || (2.23) 

where each matrix M is setup according to (2.20). From (2.20) and (2.23), we have the following 

necessary conditions for the xdis(t+η) approaches to x(t+η). 

2.4.1.1 Theorem 2.1  

If all matrices M generated by (2.20) have no eigenvalue outside the unit circle on the complex 

plane, then xdis(t+η) approaches to x(t+η) as G → ∞ . 

 

The proof is as follow. Let λ be the most prominent eigenvalue of all matrices M with the largest 

magnitude. Then from (2.23) 

| x1(t+η) - x2(t+η) | ≤ | 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−1) × 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−2) × … × 𝐌𝐌𝐱𝐱2(𝑡𝑡)(x1(t) – x2(t))  | 

≤  |λ|η | x1(t) – x2(t)|   (2.24) 

In (2.12), we showed that the distance between any two points in (xdis) cannot be larger than the 

‘main diagonal’  √𝑁𝑁δ . Therefore,  

| x1(t+η) - x2(t+η) | ≤  |λ|η | x1(t) – x2(t)|  ≤ |λ|η √𝑁𝑁δ   (2.25) 
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Since |λ| ≤ 1, |λ|η is finite, even with η → ∞. Therefore, with G→ ∞ ⇔ δ → 0, |λ|η δ → 0. From 

the method we used in constructing the MDP, xdis(t+η) also falls in Cη. Thus  

| x(t+η) - xdis(t+η)  | ≤ | x1(t+η) - x2(t+η) | will also approaches 0. 

2.4.1.2 Theorem 2.2  

If the system (2.18) has an asymptotic equilibrium point p such that the linearized matrix Mp has 

all eigenvalues inside the unit circle of the complex plane, then xdis(t+η) approaches to x(t+η) as 

G → ∞. 

 

The proof is as follow. Since the derivative of f is continuous, there must exist a region Cε with 

size ε around p such that all of the derivative matrices M in that region have all eigenvalues within 

the unit complex circle. Let λ be the eigenvalue with the largest magnitude among these matrices. 

In addition, since (2.1) has an asymptotic equilibrium point, after a finite time T, x(t) must be inside 

Cε. Then, from (2.23) 

| x1(t+η) - x2(t+η) | ≤ | 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−1) × 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−2) × … × 𝐌𝐌𝐱𝐱2(𝑡𝑡)( x1(t) – x2(t))  | 

=  | 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−1) × 𝐌𝐌𝐱𝐱2(𝑡𝑡+η−2) × … × 𝐌𝐌𝐱𝐱2(𝑇𝑇) ×     (this has η - T + 1 factors) 

𝐌𝐌𝐱𝐱2(𝑇𝑇+1) × 𝐌𝐌𝐱𝐱2(𝑇𝑇+2) × … × 𝐌𝐌𝐱𝐱2(𝑡𝑡)  ( x1(t) – x2(t)) |   (this has T factors) 

≤ |λ|η-T+1 × |λT|×|λT-1|×...×|λ1| × | x1(t) – x2(t)| 

≤ |λ|η-T+1 × |λT|×|λT-1|×...×|λ1| √𝑁𝑁δ    (2.26) 

Because λ is within the complex unit circle, |λ|η-T+1 is finite as η → ∞. |λT|×|λT-1|×...×|λ1| is also 

finite since T is finite. Therefore, |λ|η-T+1 × |λT|×|λT-1|×...×|λ1| √𝑁𝑁δ  approaches to 0 as G → ∞ (or 

δ → 0), which leads to | x(t+η) - xdis(t+η) | approaching 0. 
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2.4.1.3 Theorem 2.3  

For a special case: If the system is asymptotically stable at 0 (regardless of the linearization), then 

xdis(t+η) approaches to x(t+η) as G→ ∞ (or δ → 0). 

 

The proof for this statement is relatively simpler. For any discretization threshold δ, we can 

guarantee that the state x(t) will fall inside the region [-δ,δ] at some finite time T, and remain in  

[-δ, δ] ∀t >T. This fact implies that with discretization, the MDP will have an absorbing state 

specified by the region [-δ, δ]. In addition, regardless of the starting state x(0) and xdis(0), there 

must be a path toward the absorbing state/region. Therefore, the MDP will eventually bring xdis(t) 

to the absorbing state after some finite time L. Thus, after max(T, L), both xdis(t) and x(t) will stay 

inside [-δ,δ]. Therefore, | x(t) - xdis(t)  | ≤ δ as t → ∞.  

 

In Figure 2.2, we show some toy examples in one-dimensional system to demonstrate the first 

necessary condition. The left side is the result of the system  

x(t+1) = sin(x(t)) + 0.1𝑒𝑒−(𝒙𝒙(𝑡𝑡))2    (2.27) 

and the right side is the result of the system 

x(t+1) = sin(x(t)) + 1.1𝑒𝑒−(𝒙𝒙(𝑡𝑡))2 (2.28) 

The state space in both of these systems is [-1.5, 1.5]; the initial x(0) is 0.5 for both of them; and 

we discretize the entire state space into G = 100 regions (δ = 0.02). The derivative matrices (2.20) 

for systems (2.27) and (2.28) are one-dimensional functions cos(x) – 0.2x𝑒𝑒−𝑥𝑥2 and cos(x) – 

2.2x𝑒𝑒−𝑥𝑥2 , correspondingly. As in Figure 2.3, where we plot the derivative of (2.27) and (2.28) in 

the domain [-1.5. 1.5], system (2.27) satisfies the first necessary condition; while system (2.28) 
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does not. We observe that x and xdis approach closely to each other in system (2.27) but not in 

system (2.28). 

 
Figure 2.2. The closeness between x(real system) and xdis (MDP). The left figure corresponds to 

system (2.27). The right figure corresponds to system (2.28) 
 

 
Figure 2.3. Derivative ∂f/∂x in autonomous system: (2.27) on the left and system (2.28) on the 

right. 

2.4.2 The non-autonomous system 

When we linearize the general system (2.5) using Taylor series expansion on any point  

<x, u> = [p, q], we have 

f(x) ≈ f(p, q) + Mp(x-p) + Mq(u-q) (2.29) 

where Mp and Mq are the partial derivative of f at [p, q] 

0 10 20 30 400

0.5

1

1.5

t

x 
an

d 
x di

s

 

 

real system
MDP

0 10 20 30 400

0.5

1

1.5

t

x 
an

d 
x di

s

 

 

real system
MDP

-1.5 -1 -0.5 0 0.5 1 1.5

x

-0.5

0

0.5

1

1.5

2

f`(
x)

-1.5 -1 -0.5 0 0.5 1 1.5

x

-0.5

0

0.5

1

1.5

2

f`(
x)



24 
 

Mp = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

    
… 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

… 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑑𝑑

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

⋮ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

    
⋱ ⋮
… 𝜕𝜕𝑓𝑓𝑑𝑑

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (2.30) 

and 

Mq = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜕𝜕𝑓𝑓1
𝜕𝜕𝑢𝑢1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑢𝑢2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

    
… 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑢𝑢𝑔𝑔
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

… 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢𝑔𝑔

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

⋮ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑢𝑢1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑢𝑢2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

    
⋱ ⋮
… 𝜕𝜕𝑓𝑓𝑑𝑑

𝜕𝜕𝑢𝑢𝑔𝑔
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (2.31) 

Similar to the autonomous system, for the close region ([xdis, udis]) (2.10-2.11), including the 

boundary, containing [x, u], let Cη be the set of all x(t+η) computed by tracking all points in  

([xdis, udis])  on f after η time points. On the region Cη containing all possible x(t+η), there exists 

two points x1(t+η) and x2(t+η) such that |x1(t+η) - x2(t+η)| is the maximum for all pairs of points 

in Cη. There must exist two chains: { [x1(t), u1(t)] , [x1(t+1), u1(t+1)] , ..., [x1(t+η-1), u1(t+η-1 } 

and { [x2(t), u2 (t)] , [x2(t+1), u2(t+1)] , ..., [x2(t+η-1), u2(t+η-1)] }  such that   

x1(t+η) = f (x1(t+η-1), u1(t+η-1)) = f ( f (x1(t+η-2), u1(t+η-2)) ) = ... = f η (x1(t), u1(t)) and  

x2(t+η) = f (x2(t+η-1), u2(t+η-1)) = f ( f (x2(t+η-2), u2(t+η-2)) ) = ... = f η (x2(t), u2(t)). Applying 

the Taylor series expansion, we have 

x1(t+η) - x2(t+η)  = f η (x1(t+η-1)) - f η (x2(t+η-1)) 

= 
𝜕𝜕𝑓𝑓η

𝜕𝜕(𝐱𝐱2(𝑡𝑡+η−1),𝐮𝐮2(𝑡𝑡+η−1) )
 ( [x1(t+η-1), u1(t+η-1)] – [x2(t+η-1), u2(t+η-1)]) + O(δ2)  

= Mp,x2(t+η-1) (x1(t+η-1) - x2(t+η-1)) + Mq,u2(t+η-1) (u1(t+η-1) - u2(t+η-1))     (2.32) 
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Suppose that we have an arbitrary control law u = k(x). Taking the derivative of the control rule, 

we have 

∆u = Mk∆x 

Such that Mk = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑘𝑘1
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑘𝑘1
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑘𝑘2
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑘𝑘2
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

    
… 𝜕𝜕𝑘𝑘1

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩

… 𝜕𝜕𝑘𝑘2
𝜕𝜕𝑥𝑥𝑑𝑑

�
𝐱𝐱=𝐩𝐩

⋮ ⋮
𝜕𝜕𝑘𝑘𝑔𝑔
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩

𝜕𝜕𝑘𝑘𝑔𝑔
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩

    
⋱ ⋮
… 𝜕𝜕𝑘𝑘𝑔𝑔

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩⎦

⎥
⎥
⎥
⎥
⎥
⎤

    (2.33) 

Substitute (2.33) to (2.32), we have 

|x1(t+η) - x2(t+η)| = | (Mp,x2(t+η-1) (x1(t+η-1) - x2(t+η-1)) + Mq,u2(t+η-1)) (u1(t+η-1) - u2(t+η-1)) | 

≤ | (Mp,x2(t+η-1)  + Mq,u2(t+η-1)  Mk x2(t+η-1))  (x1(t+η-1) - x2(t+η-1)) |  (2.34) 

Recursively applying the derivative chain rule on (x1(t+η-1) - x2(t+η-1)) until [x(t), u(t)], with 

the same argument from (2.32) to (2.34), we have 

|x1(t+η) - x2(t+η)| ≤ | (Mp,x2(t+η-1)  + Mq,u2(t+η-1)  Mk x2(t+η-1)) × 

                              (Mp,x2(t+η-2)  + Mq,u2(t+η-2)  Mk x2(t+η-2))  × ... 

                                         (Mp,x2(t+1)  + Mq,u2(t+1)  Mk x2(t+1)) (x1(t) - x2(t)) |  (2.35) 

 

From this point, similar to the autonomous system, we have the necessary conditions for the 

xdis(t+η) approaches to x(t+η). 

2.4.2.1 Theorem 2.4  

If the matrices Mp + MqMk generated by (2.30), (2.31) and (2.33) have no eigenvalue outside the 

unit circle on the complex plane, then xdis(t+η) approaches to x(t+η) as δ → 0 with anyη. 
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2.4.2.2 Theorem 2.5  

If the system (2.5) has an asymptotic equilibrium point p such that the linearized matrix  

Mp + MqMk at the equilibrium point has all eigenvalues inside the unit circle of the complex plane, 

then xdis(t+η) approaches x(t+η) as δ → 0 for anyη. 

We omit the proof for these two statements since the proof is almost similar to the proof we already 

showed in the autonomous system section 

 

In Figure 2.4, we show some toy examples in one-dimensional system to demonstrate the first 

necessary condition. The left side is the result of the system  

x(t+1) = sin(x(t)) + u(t)  and control law u(t) = -0.5x(t) (2.36) 

and the right side is the result of the system 

x(t+1) = sin(x(t)) + u(t)  and control law u(t) = -2x(t) (2.37) 

The state space in both of these systems is [-1, 1]; the initial x(0) is 0.5 for both of them; and we 

discretize the entire state space into G = 100 regions (δ = 0.02). In (2.36), Mp + MqMk = cos(x(t)) 

– 0.5, which is within [0.0403, 0.5]. Therefore, (2.36) meets the first necessary condition. In (37), 

Mp + MqMk = cos(x(t)) - 2, which is between [-1.5403, -1]. Therefore, (2.37) does not meet the 

necessary condition. As in Figure 2.4, xdis(t) converges to x(t) in system (2.36), but not in system 

(2.37). 
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Figure 2.4. The closeness between x(real system) and xdis (MDP) in non-autonomous system. 
The left figure corresponds to system (2.36). The right figure corresponds to system (2.37). 

 The existence of the MDP solution as to near-optimally stabilize the system 

In this section, we show the existence of the MDP solution when the system (2.5) is stable at the 

equilibrium point. The stability definition is defined as follow: there exist a positive small number 

ε such that if |x| < ε then |f(x, 0)| < ε. With this assumption, when we choose G such that χ 𝐺𝐺⁄  < ε, 

the MDP will have a special state x*dis = 0 with the following properties:  

- The MDP’s optimal policy at x*dis is u*dis = 0. 

- The later states in the MDP are also x*dis. 

The proof for these properties are relatively simple due to the properties of the state and action 

reward functions in (2.6) and (2.7), where the optima are at 0. From this stability assumption of f, 

we prove the following statements. 

2.5.1.1 Theorem 2.6  

If the system (2.1) is stable and the HJB equation (2.5)-(2.10) has a finite solution as γ → 1, then 

in the MDP, xdis(t) = 0 as t → ∞. 
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The proof for this statement is as follow. If the HJB equation (2.5)-(2.10) has a finite solution as γ 

→ 1, then the control function u(t) has to be able to bring x(t) to 0 in finite time. Otherwise, the 

state and action rewards are always negative and will approach infinite as γ → 1. Since x(t) is 0 in 

finite time, there must exist a path in the MDP that can reach x*dis with positive probability. 

Obviously one of these paths is the discretization of the HJB’s solution u(t). Since the policy 

iteration in MDP has been proven to converge to the optimal policy [13], this policy cannot be 

worse that the policy induced by discretizing the HJB equation’s solution. Therefore, in the MDP’s 

optimal policy, there must exist a path from any state to x*dis with positive probability φ > 0. With 

infinite number of visit t→ ∞, the maximum probability for not reaching x*dis is (1 − φ)∞ → 0. 

2.5.1.2 Theorem 2.7  

If all Mp matrices (2.30) have the most prominent eigenvalues within the unit circle ∀x,u and 

xdis(t) = 0 as t → ∞ in the MDP solution for all starting xdis(0), then by applying the MDP’s 

control unit udis(t) on x(t), |x(t)|  ≤ √𝑁𝑁δ. 

 

The proof of this statement is as follow. Since we apply udis(t) for all x(t) in (xdis(t)) region, the 

difference of the control unit cancels. Thus, the equation (2.32) becomes 

f(x) ≈ f(p, q) + Mp(x-p) (2.38) 

Following the same argument from (2.30) to (2.35), we have 

|x1(t+η) - x2(t+η)| ≤ | (Mp,x2(t+η-1)  ) × (Mp,x2(t+η-2)  )  × ... ×(Mp,x2(t+1)  ) (x1(t) - x2(t)) |  (2.39) 

Because the most prominent eigenvalues of Mp are within unit circle, from (2.39), we have 

|xdis(t) – x(t)| ≤ |x1(t+η) - x2(t+η)| ≤ | (x1(t) - x2(t)) | ≤ √𝑁𝑁δ (2.40) 

Therefore, if xdis(t) → 0, then |x(t)|  ≤ √𝑁𝑁δ. 
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 Simulation results 

In this example, we choose the system 

𝐱𝐱(𝑡𝑡 + 1) = 𝑓𝑓(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)) = 𝑠𝑠𝑠𝑠𝑠𝑠�𝐀𝐀𝐀𝐀(𝑡𝑡) + 𝐮𝐮(𝑡𝑡)�  (2.41) 

where  

𝐀𝐀 = �
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

�  

For the ease of decentralization, we choose the system such that the dimensionalities of both x and 

u are the same. The vector sin function is defined from each dimension as 

sin(𝐱𝐱) = �
sin (𝐱𝐱1)
sin (𝐱𝐱2)
sin (𝐱𝐱3)

�  (2.42) 

In addition, each dimension of x and u is between -0.35 and 0.35. The initial state x(0) is a vector 

of 0.2. For equation (2.2) and (2.3), we choose p(x) = - ||x||2 and q(u) = -||u||2. We set γ = 0.9. For 

discretization, we divide each state and control dimension into G = 7 grids, which means δ = 0.1. 

It is easy to see that system (2.40) satisfy the necessary conditions for the existence of the MDP 

solution. Figure 2.5 shows that the MDP solution could drive the system (40) toward the stable 

region. 
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Figure 2.5. Learning performance p(x) and q(u) in system (2.40) with MDP solution 
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3. SELECTIVE DECENTRALIZATION 

As mentioned in chapter 1 and chapter 2, the larger reinforcement learning problems is, the more 

decentralized learning techniques should be. MDP is a typical example where the number of states 

grows exponentially with the problem dimensionality [73], which explains why this technique may 

be inapplicable for even average-size problem with dimensionality around 10. In chapter 1, we 

already discuss the recent state-of-the-art methods in decentralized learning [44, 46, 48, 49, 51]. 

However, these techniques often require partial and prior knowledge about the communicative 

structure among the learning agents. This assumption may not always hold in reinforcement 

learning, given its unknown nature. 

 

In this short chapter, we present the overview, problem statement and pseudo code for the selective 

decentralization technique, which is the second key contribution in this thesis. The outcome of 

selective decentralization would be presented in later chapters when selective decentralization is 

used in combination with other well-known reinforcement learning techniques. From the 

communication point of view, the selective decentralization belongs to multi-model switching 

category [52-55]. The selective decentralization could not only improve the learning performance 

but also learn the optimal communication scheme for the agents without any prior knowledge on 

communicative structure. 

 Problem statement of selective decentralization 

Let the dynamical system (Σ) be described by the equation: 

Σ: 𝒙𝒙(𝑡𝑡 + 1) = 𝑓𝑓[𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡),𝜃𝜃]  (3.1) 
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where 𝑥𝑥 ∈  ℝ𝑁𝑁 where 𝑁𝑁 is a large number. It is assumed in this problem that the input 𝑢𝑢(𝑡𝑡) is 

known.  𝜃𝜃 is an unknown parameter vector in ℝ𝑀𝑀 where the dimension 𝑀𝑀 is large. The objective 

is to estimate 𝜃𝜃 using measurements of the overall system. 

 

In the problem of interest to us, the system is assumed to consist of 𝑟𝑟  components of lower 

dimension which are interconnected. If the state vectors of the subsystems Σ1,Σ2, … , Σ𝑟𝑟  are 

respectively 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑟𝑟, it is assumed that each subsystem can be described by the difference 

equation 

Σ𝑖𝑖: 𝒙𝒙𝑖𝑖(𝑘𝑘 + 1) = 𝑓𝑓𝑖𝑖[𝒙𝒙𝑖𝑖(𝑘𝑘),𝑢𝑢𝑖𝑖(𝑘𝑘),𝜃𝜃𝑖𝑖] +  𝜎𝜎𝑖𝑖𝑔𝑔[𝒛𝒛𝒊𝒊(𝑘𝑘)] (3.2) 

where the parameter 𝜎𝜎𝑖𝑖  is assumed to be small, and [𝒙𝒙𝑖𝑖, 𝒛𝒛𝑖𝑖] = 𝒙𝒙𝑇𝑇(i.e., the elements of 𝒛𝒛𝑖𝑖 are state 

variables not contained in 𝒙𝒙𝑖𝑖). 

 

A decentralized model can be set up as: 

𝒙𝒙�𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓𝑖𝑖[𝒙𝒙𝑖𝑖(𝑡𝑡), 𝒛𝒛𝒊𝒊(𝑡𝑡),𝒖𝒖(𝑡𝑡),𝜃𝜃(𝑡𝑡)] (3.3) 

At this stage, the knowledge that each agent has about the components of z that affect it, becomes 

important. We distinguish between two distinct cases: 

- Every agent knows all the state variables that affect its outputs (known decentralization 

structure). 

- Every agent Σ𝑖𝑖 knows the small set of variables in 𝒛𝒛𝑖𝑖 that might affect its outputs, but 

does not know exactly which variables do affect them (unknown decentralization structure). 

In the former case, Σ𝑖𝑖  uses a single model set up with the correct decentralization structure, but in 

the latter case it uses multiple models corresponding to different possible decentralization 
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structures, and switches between them. The former is referred to as strict decentralization, and the 

latter as selective decentralization. 

 

The selective decentralized control examines all of the connection schemes (also called 

decentralization scheme) among the agents and sets up criteria to select which scheme to help in 

performing the learning, depending on the specific problem. In this thesis, we use system 

identification error for model-based learning and cumulative Q-value [26] gained for model-free 

learning. Since we assume that the agents do not know anything about communicative structure, 

the possible of communication schemes follows the Bell’s number rule, which is the number of 

partition in a set [59]. For example, with number of agents r = 3, we have B(r) = 5, which is the 

third Bell’s number, possible decentralization schemes:  {{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, 

{{1}, {2, 3}} and {{1}, {2}, {3}}, in which each scheme has 1, 2, 2, 2 and 3 subsystem(s), 

correspondingly. An agent only uses its state and control variable to compute its own approximator. 

For example, in the linear control-learning system (see chapter 2), with scheme {{1, 2}, {3}}, we 

have the format 𝐀𝐀� = �
𝐀𝐀�1,2

𝐀𝐀�3
�. For identification phase, 𝐀𝐀�1,2(𝑡𝑡) is computed only using x1(t-1), 

x2(t-1), u1(t-1) and u2(t-1), meanwhile 𝐀𝐀�3(𝑡𝑡) is computed only using x3(t-1) and u3(t-1). In the 

decision phase, if scheme {{1, 2}, {3}} returns the lowest identification error, then from (12), we 

compute the next control [u1(t), u2(t)] using only 𝐀𝐀�1,2(𝑡𝑡) and u3(t) using only 𝐀𝐀�3(𝑡𝑡). 

 Pseudo code for selective decentralization 

One important factor in selective decentralization is how often the central coordinator examines 

and decides switching the decentralization schemes. Here, let Ω be the window size, which means 

after how many iterations or learning instances the agent should examines and decides switching. 
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Let w be the window index. Then the window w covers the discrete time index from t = (w-1) Ω + 

1 to t = wΩ. The central coordinator decides the switching criteria E for all communication scheme, 

for example, identification error. Let Es(w) be the value of E for communication scheme s at 

window w. Let ε and γ be two small thresholds for termination. The pseudo code for selective 

decentralization is as follow: 

 

initialize b: the best decentralization scheme 

                E: criteria to select the best decentralization scheme,  

                Es = 0 for all communication scheme s. 

for w from 1 to the maximum window index 

      perform the learning technique using b  

             compute E(w) for B(r) decentralization schemes s (see B(r) in the previous section) 

     Select the decentralization scheme with the lowest E(w) as b 

      if w > 1 and (E(w) < ε or |E(w) - E(w-1)| / |E(w)| < γ ) 

            return  

      end if 

end for 

  



35 
 

4. SELECTIVELY DECENTRALIZED Q-LEARNING 

In this chapter, we show the impact of selective decentralization to improve Q-learning, which is 

one of the most well-known model-free reinforcement learning technique [27, 46, 79-81]. The key 

contributions of selectively decentralized Q-learning are at three points. First, selectively 

decentralized Q-learning would clearly show superior converging time, compared to centralized 

Q-learning. As the dimensionality of the learning problem increases, the converging time of 

selectively decentralized Q-learning is expected to be exponentially shorter than the converging 

time of centralized Q-learning. Second, the results in this chapter suggest that decentralized Q-

learning could be practically applied as an alternative approach for unknown system control 

problems. In these problems, the conventional Hamilton-Jacobi-Bellman equation approach may 

not provide the close-form solution in general [15-18]. Third, selective decentralized Q-learning 

is able to learn the optimal communication scheme among the learning agents, which many recent 

decentralized Q-learning technique may not have. 

 

Decentralization has been widely applied in Q-learning [26], especially when the systems are 

naturally distributed [82, 83]. In Q-learning, the learning agent maintains the optimal values for 

all state-action entries in its Q-table. In each state, the learning agent chooses the action by the 

highest Q-table entry for the state. After each visit, the learning agent updates the former state-

action Q-value by the new state’s reward and highest Q-value. Most of the decentralized Q-

learning approaches adapt the partial communication idea: each subsystem manages its own 

communication and utilizes these communications for updating own Q-table. Although 

decentralized Q-learning has been well-established, there are still two open questions in this 

approach. First, how well decentralized Q-learning tackle the slow rate of converging weakness in 
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Q-learning [84]? Second, how to use apply multi-model-switching in decentralized Q-learning? 

There has been relatively small literature about multi-model-switching in decentralized Q-

learning. 

 

In this chapter, I address these two questions above by solving an optimal control problem by Q-

learning paradigm. A brief review about Q-learning is presented in Chapter 1 with literatures [25-

27]. This chapter also proves some sufficient conditions such that the Q-learning policy is 

guaranteed to stabilize the nonlinear system. I emphasize that in our control problems, we design 

the state-reward function with linearity property such that the central state-reward value is 

equivalent to the sum of all sub-state rewards. From this argument, I choose the cumulative gained 

Q-value to decide the best communication scheme. However, due to the difficulty to provide 

theoretical analysis for this question, I can only offer limited proofs that the Q-learning policy 

could guarantee to stabilize the learning-control system for a single agent. Most of our results only 

serve as confirmation studies, as I already published in [85]. While it is clear that the multi-agent 

and selective decentralization could stabilize the learning-control system, it is still unclear how the 

multi-agent policy could be, and how the multi-agent policy is similar to the centralized policy. 

 Selectively decentralized Q-learning method 

4.1.1 Problem statement 

In this chapter, we are interested in the systems in the general form 

x(t+1) = f ( x(t), u(t) ) (4.1) 

where x ∈ ℜN is the joint state vector, u ∈ ℜM is the joint action (also called control) vector, f : 

ℜN+M → ℜN is a general nonlinear unknown function. We assume that f has the stable equilibrium 

point f (0, 0) = 0. The main objective is to learn the sequence of action units u(t) to stabilize x 
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x(t) → 0, u(t) → 0 as t → ∞ (4.2) 

In order to apply Q-learning, we need to discretize the system (4.1). Therefore, to simplify the 

discretization, we assume that the system (4.1) has the following properties 

- Each dimension of x is symmetrically bounded by [-χ, χ], where χ  > 0 is a known boundary 

for x.  

- Each dimension of u is symmetrically bounded by [-µ, µ], where µ > 0 is a known boundary 

for u. 

 

To apply selectively decentralized Q-learning, we restate the following assumptions for system 

(4.1). First, the system could be decoupled in to K subsystems, where each subsystem could be 

assigned to an independent learning agent. Each agent knows which components of x and u 

belonging to it. Second, since f is unknown, each agent k does not know the relationship between 

the current sub-state xk(t) and previous sub-state/sub-action [xk(t-1), uk(t-1)]. Each agent does not 

know the interconnection among itself and the other agents. The central coordinator unit to decide 

which decentralization structure could provide the best learning performance. In each scheme, 

there are L ≤ K groups such that each group contains one or more subsystems/agents 

communicating to execute Q-learning. In a group, inside agents do not communicate with any 

outside agents. 

4.1.2 System discretization and reward function 

Let G be the number of intervals in each dimension of x and u for which we uniformly divide the 

dimension into small grids. Therefore, the entire state space is divided into GN small hyper cubes 

with edge θx = 2χ/G. The control space is divided into GM small hyper cubes with edge θu = 2µ/G. 

All points inside a hyper cube are discretely represented by the center of the hyper cube. Points on 
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the border between two hyper cubes are represented by the center of the ‘left’ hypercube. 

Mathematically, the discretization process is described by the following formulas 

𝐱𝐱[𝑖𝑖] → 𝜃𝜃𝑥𝑥 + χ 𝐺𝐺⁄  ∀ 𝑖𝑖∈[1,𝑁𝑁]  𝑎𝑎𝑎𝑎𝑎𝑎 𝐱𝐱[𝑖𝑖] ∈ [𝜃𝜃𝑥𝑥, 𝜃𝜃𝑥𝑥 + 2 χ 𝐺𝐺⁄ )  (4.3) 

𝐮𝐮[𝑖𝑖] → 𝜃𝜃𝑢𝑢 + 𝜇𝜇 𝐺𝐺⁄  ∀ 𝑖𝑖∈[1,𝑀𝑀]  𝑎𝑎𝑎𝑎𝑎𝑎 𝐮𝐮[𝑖𝑖] ∈ [𝜃𝜃𝑢𝑢,𝜃𝜃𝑢𝑢 + 2 𝜇𝜇 𝐺𝐺⁄ )   (4.4) 

where θx ∈ {-χ, -χ + 2χ/G, -χ + 4χ/G, ..., χ- 2χ/G } and θu ∈ {-µ, -µ + 2µ/G, -µ + 4µ/G, ..., µ- 

2µ/G }, which are the ‘left’ boundaries in the hyper cubes. We denote xdis and udis as the discrete 

space and control vector of x and u, correspondingly.  

 

With the discretization process in (4.3) and (4.4), it is important and easy to see that when M is 

odd, the zero vector 0 is one of the discrete space/control vectors. Given this condition, we define 

the state reward function q(x) as 

𝑞𝑞(𝐱𝐱) = �𝑞𝑞(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

, where 𝑞𝑞(𝑖𝑖) = �−𝐱𝐱dis(𝑖𝑖)2 if 𝐱𝐱dis(𝑖𝑖)  ≠ 0
𝑟𝑟 if 𝐱𝐱dis(𝑖𝑖) = 0     (4.5) 

where r > 0 is a small bonus factor when the discrete xdis is 0, or x is within the hypercube 

containing the equilibrium point. Since our main objective is to stabilize (4.1), with reward 

function (4.5), the learning problem aims to maximize 

𝐽𝐽(𝐱𝐱) = �𝛾𝛾𝑡𝑡𝑞𝑞�𝐱𝐱dis(𝑡𝑡)�
∞

𝑡𝑡=0

  (4.6) 

where 0 < γ < 1 is the discount factor. The learning problem (4.3-4.6) is similar to a classical 

exploration problem in [3], where there is only one terminated state with positive reward and all 

of the other states show negative reward. 



39 
 

4.1.3 Selectively decentralized Q-learning formulation 

First, we rewrite (4.5) and (4.6) for subsystem as follow. Let N1, N2, …NK be the dimensionality 

of the K subsystems. Certainly, N1 + N2 + … + NK = N. Let {i1}, [86], … {iK} be the set of indexes 

of x and u belonging to these subsystems. In subsystem k, we denote x{ik} and u{ik} as the sub-

state and sub-action vectors. Thus, (4.5) becomes 

𝑞𝑞�𝐱𝐱({𝑖𝑖𝑘𝑘})� = � 𝑞𝑞(𝑖𝑖)
∀𝑖𝑖∈{𝑖𝑖𝑘𝑘}

, where 𝑞𝑞(𝑖𝑖) = �−𝐱𝐱dis(𝑖𝑖)2 if 𝐱𝐱dis(𝑖𝑖)  ≠ 0
𝑟𝑟 if 𝐱𝐱dis(𝑖𝑖) = 0    (4.7) 

In each subsystem, at each iteration, the Q-learning is executed according to [3] 

𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1),𝐮𝐮dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1)] =  (1 − 𝛼𝛼)𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1),𝐮𝐮dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1)] + 

𝛼𝛼 �𝑞𝑞�𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1)� + 𝛾𝛾 max
𝐮𝐮′dis{𝑖𝑖𝑘𝑘}

𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡),𝐮𝐮′dis{𝑖𝑖𝑘𝑘}]�     (4.8) 

Where 𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘},𝐮𝐮dis{𝑖𝑖𝑘𝑘}] denotes the Q table in subsystem k and 0 < α < 1 is the learning rate. 

 

Suppose that the decentralization scheme b partitions the entire system into L disjoint components 

c1, c2, …, cL with dimensionality N1, N2, …, NL . Each component contains one or more subsystems. 

For any component cl, let {Il} = ∪ {ik} be the union of indexes from all subsystems k belonging to 

cl. In this component, the Q-learning is executed according to (4.7) and (4.8) with index set {Il}. 

Since the number of possible decentralization schemes in a K-subsystem is BK [59], the main 

question in selective decentralization is which scheme b is the ‘best’. In this work, we select the 

scheme b returning the highest cumulative gained Q value, which is 

 Ω(𝑏𝑏) = �𝛼𝛼�
𝑞𝑞�𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡 − 1)� +

𝛾𝛾 max
𝐮𝐮′dis{𝐼𝐼𝑙𝑙}

𝑄𝑄[𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡),𝐮𝐮′dis{𝐼𝐼𝑙𝑙}] −𝑄𝑄[𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡 − 1),𝐮𝐮dis{𝐼𝐼𝑙𝑙}(𝑡𝑡 − 1)]�
𝐿𝐿

𝑙𝑙=1

   (4.9) 
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Let w be the window index covering the time from t = (w-1) Ω + 1 to t = wΩ. In this window, we 

choose the same decentralization scheme to decide the optimal action u’dis for 

max
𝐮𝐮′dis

𝑄𝑄[𝐱𝐱dis(𝑡𝑡),𝐮𝐮′dis] . Larger window size implies less scheme switching. Pseudo code of 

procedure QLearning_Window shows more details on how we execute selectively decentralized 

Q-learning in each window. 

 

Procedure QLearning_window (w) 

 Persistent input: Q tables in all BK decentralization schemes 

   S: array to store the cumulative gained Q-value 

   b: best decentralization scheme 

 if w = 1  

  Initialize all Q tables as 0 in all decentralization schemes (4.10) 

  Choose a random decentralization scheme as b 

 Reset S to 0 

 for t from (w-1) Ω + 1 to wΩ 

  // use b to compute the action  

  for all components l in b 

   Compute 𝐮𝐮dis{𝐼𝐼𝑙𝑙}(𝑡𝑡) as max
𝐮𝐮′dis{𝐼𝐼𝑙𝑙}

𝑄𝑄[𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡),𝐮𝐮′dis{𝐼𝐼𝑙𝑙}] (4.11) 

  Assembly 𝐮𝐮dis(𝑡𝑡)from all 𝐮𝐮dis{𝐼𝐼𝑙𝑙}(𝑡𝑡) 

  // update the cumulative Q-value gained 

  for all decentralization schemes β 

   S[β] = S[β] + Ω(β) // formula (4.9) 

   Update Q tables in all components according to (8), with 𝐮𝐮dis(𝑡𝑡) 
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 Choose b as argmax
𝛽𝛽

𝑆𝑆[𝛽𝛽] 

In (4.11), if there are multiple 𝐮𝐮′dis{𝐼𝐼𝑙𝑙} returning the same optimal Q value (especially in (4.10) 

when we initialize the Q-table as 0) for 𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡), we randomly select one instance. We choose 

the cumulative gained Q-value as the choice of decentralization scheme. First, it is important to 

note that the state-reward function (4.5), (4.7) satisfy the first linearity assumption: For any 

decentralization b separating system (1) into L components such that these component are 

completely disjoint, the sum of components’ state-rewards is equal to the centralized state-reward. 

𝑞𝑞(𝐱𝐱) = �𝑞𝑞�𝐱𝐱({𝐼𝐼𝑙𝑙})�
𝐿𝐿

𝑙𝑙=1

   (4.12) 

 Sufficient conditions for the Q-learning policy to stabilize the system 

The discretization in (4.3) and (4.4) allows partitioning the state space into different layers as 

follow: 

      - The 0th layer contains only the hypercube with the 0-equilibrium point. 

      - Recursively, the gth layer (g > 0) contains all hyper-cubes outer-neighboring the (g-1)th layer. 

Figure 4.1 demonstrates the layer defined above in two-dimensional state space. 

 

Figure 4.1. Demonstration of state-layers for discretization in two dimensions.     : 0th layer,     : 
1st layer,     : 2nd layer,    : 3rd layer 
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In addition, by the continuity assumption and the choice of G to discretize the action state, for 

every state of layer g > 0, there must exist discrete action transiting the next state toward the inner 

layers. 

 

From the discretization in (4.5) and (4.6) and the layer definition above, we setup the penalty 

function as follow 

q(x) = -𝛽𝛽g ||x|| (4.13) 

in which g denotes the layer where x belongs to. βg are positive constants chosen as follow 

⎩
⎪
⎨

⎪
⎧ 𝛽𝛽0 = 0

𝛽𝛽1 = 1

𝛽𝛽𝑔𝑔 =
𝛽𝛽𝑔𝑔−1√𝑁𝑁

1 − γ
  ∀𝑔𝑔 > 1

(4.14) 

 

In this section, I demonstrate the theoretical result on sufficient conditions for the Q-learning 

solution to stabilize the system (4.1). The analysis begins with well-known statements that with 

the Q-learning executed as in [26]: It is guarantee that Q-learning converges the Q-table to the 

optimal values. In addition, [87] shows that: The optimal Q-value is equivalent to the optimal 

learning goal J(x). From this point, we have the following theorems. 

4.2.1.1 Theorem 4.1 

For all states x belonging to the 0th layer, the optimal Q-table for these states is Q(x, 0) = 0, which 

implies that there is no need to take further action. 

 

Proof: this theorem is trivial. Because system (4.1) is stable at the 0-equilibrium point such that  

||x(t+1) = f(x(t), 0)|| ≤ δ ∀ t > 0 if ||x(0)|| ≤  δ (4.15) 
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and we choose δ = max(2χ/G, 2µ/G) to discretize the state space as in (4.3-4.4), by taking no action 

u = 0, all subsequent states will stay within the 0th layer if x(0) is inside the 0th layer. Therefore, 

the Q-table should be  

𝐽𝐽(𝐱𝐱) = �𝛾𝛾𝑡𝑡𝑞𝑞�𝐱𝐱dis(𝑡𝑡)�
∞

𝑡𝑡=0

= �𝛾𝛾𝑡𝑡𝛼𝛼0||𝐱𝐱dis(𝑡𝑡)||
∞

𝑡𝑡=0

= 0 (4.16) 

The other actions u ≠ 0 may bring the state outside the 0-equilibrium point and receive penalty. In 

this case, the Q-table would be negative and certainly not optimal. 

4.2.1.2 Theorem 4.2 

With the partial derivative of system (1) respected to x at x = p  and u = q as Mp,q  

 

Mp,q = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

    
… 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

… 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑑𝑑

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

⋮ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥1

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑥𝑥2

�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪

    
⋱ ⋮
… 𝜕𝜕𝑓𝑓𝑑𝑑

𝜕𝜕𝑥𝑥𝑑𝑑
�
𝐱𝐱=𝐩𝐩,𝐮𝐮=𝐪𝐪⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (4.17) 

if the largest (magnitude) eigenvalue of Mp,q ∀p, q is within the unit circle, then for every state 

not inside the 0th layer, the optimal action must be able to transit the state toward the inner layer. 

 

Proof: the proof starts by linearizing (1) using Taylor series expansion 

f (x, q) = f (p, q) + Mp,q(x-p) (4.18) 

When x and p are in the same hypercube, ||x-p|| < δ. Therefore, from (4.18) 

|| f (x, q) - f (p, q) || = || Mp,q(x-p) || < λδ    (4.19) 

where λ stands for the largest eigenvalue of Mp,q. Therefore, if λ is within the unit circle,  

|| f (x, q) - f (p, q) || < δ (4.20) 
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which imply that from every state in the same hypercube and executing the same action, the next 

state will not span on more than two layers. Therefore, for any hypercube [xdis), if any action q 

could transit a state x ∈ [xdis) toward the inner layers, then there exist no state in [xdis) such that 

executing q could transit toward the outer layers. 

 

In addition, it is easy to see that at the gth layer, ||xdis|| is bounded by  

𝑔𝑔δ�|𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑|� = �� (𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑)2
𝑁𝑁

𝑖𝑖=1
< 𝑔𝑔δ√𝑁𝑁  (4.21) 

From the definition of q(x) in (4.13) and (4.14), for every state at gth layer (g > 0), we have 

�𝛾𝛾𝑡𝑡𝛽𝛽𝑔𝑔||𝐱𝐱dis(𝑡𝑡)||
∞

𝑡𝑡=0

< �𝛾𝛾𝑡𝑡𝛽𝛽𝑔𝑔𝑔𝑔δ√𝑁𝑁
∞

𝑡𝑡=0

=
𝛽𝛽𝑔𝑔𝑔𝑔δ√𝑁𝑁

1 − 𝛾𝛾
= 𝛽𝛽𝑔𝑔+1𝑔𝑔δ (4.22) 

In (4.22), the left side is the upper bound of the Q-value ( J(x) ) by executing action such that the 

state does not transit toward the outer layer. Here, the upper bound is calculated in the worst-case 

scenario when the state simply stay in the gth layer. In addition, from (4.16) we can see that the 

right side is the lower bound of Q-value by executing action such that the state transit toward the 

outer layers. Therefore, for any state, the optimal policy should avoid actions, which could transit 

toward the outer layers. Furthermore, from any state x, if there exist an action u transiting the next 

state toward the inner layers, then the optimal policy should allow transiting the state toward the 

inner layers. 

4.2.1.3 Theorem 4.3 

If the largest (magnitude) eigenvalue of Mp,q ∀p, q in (4.17) is within the unit circle, then the 

optimal policy learned by Q-learning will bring the system state toward the 0th layer, thus stabilize 

the system toward the 0-equilibrium point with δ error. 
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Proof: By the continuation assumption of system (1), we know that there exist actions allowing 

transition from the outer-layer states toward the inner-layer states. Here, there may be some states 

of the gth layer such that in order to transit toward the inner-layer, the transition must pass through 

several other states of the same gth layer. The result from theorem 2 shows that the series of discrete 

xdis(t) never lead to ‘outer’ direction, and must lead toward ‘inner’ direction if there exist a path 

toward the inner layers. Therefore, from any discrete state, the optimal Q-learning policy must be 

able to transit the state toward the most-inner layer, or the 0th layer. In other words, xdis(T) = 0, so 

||x(T)|| < δ after some time T. By the stability assumption of (1), we know that ||x(t)|| < δ. 

 Toy example results 

4.3.1 Converging speed of selectively decentralized Q-learning 

I perform experiments on several toy examples from the same class of system to show the superior 

converging speed of selectively decentralized Q-learning, compared to centralized Q-learning. In 

these examples, we examine the convergence from two points of view: the closeness of x(t) toward 

0 and the magnitude of cumulative Q value increase. The difference in converging speed between 

the selectively decentralized Q-learning and the centralized Q-learning may grow exponentially 

with the number of subsystems. 

 

The systems used in these examples are in the format 

x(t) = sin(Ax(t-1)) + u(t)  (4.23) 

where A are N×N random Markov matrices such that all diagonal entries share the same value. 

The vector sin function is defined from each dimension as 
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sin(𝐱𝐱) = �

sin (𝐱𝐱1)
sin (𝐱𝐱2)

⋮
sin (𝐱𝐱𝑛𝑛)

�  (4.24) 

The coupling parameter σ on the non-diagonal entries is defined as 

𝜎𝜎 =
∑ 𝐀𝐀𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

∑𝐀𝐀𝑖𝑖𝑖𝑖
  ∀𝑖𝑖, 𝑗𝑗 ∈ [1,𝑁𝑁]  (4.25) 

In other words, σ is the ratio between the sum of non-diagonal entries in A and the sum of all 

entries in A. With σ = 0, A becomes the identity matrix or the systems are completely decouple. 

The systems are more couple when σ increases. For state and action variables, all state x and action 

u components have the range between -0.5 and 0.5 and initial state vectors x(0) are uniformly 

random numbers. For discretization (4.3-4.4), we choose G = 5. Therefore, θx = θu = 0.2. For Q-

learning parameters (4.5-4.8), we choose r = 0.01, α = 0.1 and γ = 0.9. I test system (4.24) with 

number of subsystems N = 3, 4, 5 and 6 and window size w = 50. For each choice of n, we repeat 

the experiments 100 times and report the average value due to the randomness of A and x(0). 

 

Figures 4.2-4.5 highlight two significant advantages of selectively decentralized Q-learning, 

compared to centralized Q-learning. First, selectively decentralized Q-learning converges faster in 

both completely decouple systems and strongly couple systems. This fact suggests that selectively 

decentralized technique could be applied to many systems with wide-range of interconnection. 

Second, the converging time of selectively decentralized Q-learning grows much slower than the 

convergence time in centralized Q-learning. Due to the lack of space, we only draw the result when 

N = 3 and N = 6 to highlight the change in system dimensionality. As showed in figures 4.4 and 

4.5, the centralized Q-learning does not converge within 100,000 iterations (or 2000 windows). 

From the characteristics of figure 4.2, we could still conclude that the centralized Q-learning in 
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figure 4.4 would converge if we continue the experiment with much larger number of iterations. 

Figures 4.6 and 4.7 show more details on how selectively decentralized Q-learning converges 

within the first few tens of windows. 

 
Figure 4.2. Comparison between centralized and selectively decentralized Q-learning in 

completely decentralized 3-subsystems. 
 

 
Figure 4.3. Comparison between centralized and selectively decentralized Q-learning in strongly 

couple (σ = 0.5) 3-subsystems. 
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Figure 4.4. Comparison between centralized and selectively decentralized Q-learning in 

completely decouple 6-subsystems. 
 

 
Figure 4.5. Comparison between centralized and selectively decentralized Q-learning in strongly 

couple (σ = 0.5) 6-subsystem. 
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Figure 4.6. Convergence of selectively decentralized Q-learning in the first few of tens windows 
when the systems are completely decouple 

 

  
Figure 4.7. Convergence of selectively decentralized Q-learning in the first few of tens windows 

when the systems are strongly couple (σ = 0.5) 
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50). Comparing figure 4.6 and 4.7, in most of the cases, we observe that the point when number 
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converges. This result may suggest that selectively decentralized Q-learning may learn the optimal 

communication policy during the optimal stabilization process. 

  

Figure 4.8. Average number of switches in selectively decentralized Q-learning. Left: completely 
decouple systems. Right: strongly couple (σ = 0.5) systems. 
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due to exponentially less search space. Second, selectively decentralized Q-learning proposes more 

search options than centralized Q-learning, which is another factor to improve the converging 

speed. In centralized Q-learning, a newly visited state has no prior information to estimate its Q-

table entries. With the same state, in selectively decentralized Q-learning, the components of the 

state have higher chance to be visited by the subsystem learner (in different centralized states), 

which may reduce the effort to compute the optimal Q-value. 

 

There are two major open questions in this chapter. First, although selectively decentralized Q-

learning may offer exponential convergence measured by the number of data points/iterations, the 

number of decentralization schemes also grows exponentially with the dimensionality. Therefore, 

in practice, more refined techniques are needed to reduce the search of decentralization schemes. 

At this point, we believe that selectively decentralized Q-learning is practically useful because the 

best decentralization schemes stop switching after a few of tens windows (Figure 4.8). Second, we 

choose best decentralization scheme by the sum of subsystems’ gained Q-values only because of 

the linearity in state-reward function, which is the main driver for Q-value update. However, there 

is no theoretical basis to support whether or not the different sum of subsystem gained Q-value in 

different decentralization scheme is comparable. There may exist more solid options for choosing 

the best decentralization scheme than cumulative gained Q-value. 
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5. SELECTIVELY DECENTRALIZED SYSTEM IDENTIFICATION 

This chapter examines the impact of selective decentralization on system identification, which is 

the first step in model-based reinforcement learning. The better performance in identification is 

one of the fundamental reasons why selective decentralization improve the learning speed of the 

overall reinforcement learning – adaptive control problem. I show that selective decentralization 

can improve system identification in both linear and nonlinear system for most of the different 

subsystems’ interconnection strength. I also address the identification converging speed, which 

has not been comprehensively studied before, and show that selective decentralization also 

outperforms the centralized system in converging speed. Overall, the improvement is more 

significant in nonlinear system identification. In linear system identification, at least the selective 

decentralization’s performance is close to the centralization’s performance. 

 

In addition, compared to most of the state-of-the-art decentralized system identification techniques 

[89-91], I claim that the advantage of selective decentralization is the adaptability in switching and 

choosing the decentralization scheme to increase the identification performance. This advantage 

is important especially when the domain knowledge to precisely separate the entire system into 

subsystems is unknown or incomplete. By representing each dimension of the state vector as a 

subsystem, selective decentralization is able to learn the optimal decentralization scheme for 

identification, which may be used as an approximated method to detect the subsystems’ 

components without domain knowledge. 

 

This chapter is organized as follow. First, I present the problem statement and the pseudo code of 

selective decentralization for the system identification problem. Second, I review the identification 
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algorithms used in this chapter, for both linear and nonlinear cases. Third, I show some simulation 

results to demonstrate how selective decentralization could improve system identification. 

 Problem statement for selectively decentralized system-identification 

5.1.1 Identification in unknown discrete-time invariant linear system 

For linear system, we study the discrete-time invariant unknown system: 

x(t) = Ax(t-1) + Bu(t-1)  (5.1) 

where x ∈ ℜN is the state vector, u ∈ ℜM is the control input , A ∈ ℜN×N is the state-transition 

matrix, and B ∈ ℜN×M is the matrix of control unit. For identification problem, we assume that A 

is unknown. The objective is to find the approximation matrix A�  ∈ ℜN×M such that with the 

predicted state vector: 

𝐱𝐱� (t) = A�x(t-1) + Bu(t-1) (5.2) 

the identification error 

e(t) = |𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)|2   (5.3) 

approaches 0 as t → ∞. 

 

Let K be the number of subsystems in (5.1) with dimension N1, N2, … NK such that ∑ 𝑁𝑁𝑖𝑖𝐾𝐾
𝑖𝑖=1 = 𝑁𝑁. 

Decentralized identification computes A� as the block-diagonal matrix 

𝐀𝐀� =

⎣
⎢
⎢
⎡𝐀𝐀1
�

𝐀𝐀2�
⋱

𝐀𝐀𝐾𝐾� ⎦
⎥
⎥
⎤
 

In the unknown system, we assume that we know the component of the system by the domain 

knowledge; but we do not know how the components interact with the others to form subsystems. 
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Therefore, we also aim to find the decentralized scheme of (5.1) in computing A� such that e(t) 

converges to 0 as quickly as possible. 

5.1.2 Identification in unknown discrete-time invariant nonlinear system 

For nonlinear system, we study the discrete-time invariant unknown system: 

x(t+1) = f (x(t) , u(t))  (5.4) 

where x ∈ ℜN is the state vector, u ∈ ℜm is the control input and f ∈ ℜN+M → ℜN is the nonlinear 

state transition function. We assume that f is completely unknown. The objective is to find the 

approximated nonlinear function 𝑓𝑓 such that with the predicted state vector 

𝐱𝐱� (t+1) = 𝑓𝑓(x(t), u(t))  (5.5) 

the identification error e(t) approaches 0 as t → ∞. We define the converging identification error 

and converging time concepts, which are the performance metrics, in section 5.3. 

 

Similar to the linear system, let K be the number of subsystems in (5.5). Decentralized 

identification models 𝑓𝑓 as follow 

𝐱𝐱� (t+1) = �

𝐱𝐱�1 (𝑡𝑡 + 1) 
𝐱𝐱�2 (𝑡𝑡 + 1)

⋮
𝐱𝐱�𝐾𝐾 (𝑡𝑡 + 1)

� = 𝑓𝑓(x(t), u(t)) =  

⎣
⎢
⎢
⎡ 𝑓𝑓1 (𝐱𝐱1(𝑡𝑡),𝐮𝐮1(𝑡𝑡)) 
𝑓𝑓2 (𝐱𝐱2(𝑡𝑡),𝐮𝐮2(𝑡𝑡))  

⋮
𝑓𝑓𝐾𝐾 (𝐱𝐱𝑘𝑘(𝑡𝑡),𝐮𝐮𝐾𝐾(𝑡𝑡)) ⎦

⎥
⎥
⎤
  (5.6) 

5.1.3 Selective decentralization pseudo code 

As a reminder in chapter 3, for the system of K component, BK, the Bell’s number of K [59], 

decentralization schemes cover all possible number of subsystems from 1 to K. A subsystem only 

uses its state and control variable to compute its own approximator. For example, with scheme  

{{1, 2}, {3}}, we have the format 𝐀𝐀� = �
𝐀𝐀�1,2

𝐀𝐀�3
�  for linear system and 𝑓𝑓 = �

𝑓𝑓1,2

𝑓𝑓3
� . In this 
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example, 𝐀𝐀�1,2 and 𝑓𝑓1,2 are computed only using x1,x2, u1 and u2 according to formula (11) and 

backpropagation training algorithm, meanwhile 𝐀𝐀�3 and 𝑓𝑓3 are computed only using x3 and u3. 

 

Let Ω be the time-window size and w be the window index. Then the window w covers the discrete 

time index from t = (w-1) Ω + 1 to t = wΩ. Let E(w) be the window-identification error at window 

w, which is the average of e(t) from t = (w-1) Ω + 1 to t = wΩ. Let ε and γ be two small numbers 

for thresholds: ε decides the satisfactory identification error for termination and γ indicates whether 

or not the identification error no longer decreases. The pseudo code for selective decentralization 

is as follow 

 

initialize b: the best decentralization scheme 

for w from 1 to the maximum window index 

      Train approximator and compute E(w) for B(k) decentralization schemes 

     Select the decentralization scheme with the lowest E(w) as b 

      if w > 1 and (E(w) < ε or |E(w) - E(w-1)| / |E(w)| < γ ) 

             return final identification error E(w) and converging time wΩ. 

      end if 

end for 
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 Reviews of system identification 

5.2.1 Identification of linear time-invariant system 

The theory for linear time-invariant system identification has been well-studied. The gradient 

decent is one of the most robust methods as shown in [8], which is summarized in equations (5.7-

5.11). The gradient decent minimizes the second norm of the identification error 

J = e(t)2 = �𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)�
𝑇𝑇
�𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)� = 

�𝐱𝐱(𝑡𝑡) − 𝐀𝐀�𝐱𝐱(𝑡𝑡 − 1) − 𝐁𝐁𝐁𝐁(𝑡𝑡 − 1)�
𝑇𝑇
× �𝐱𝐱(𝑡𝑡) − 𝐀𝐀�𝐱𝐱(𝑡𝑡 − 1) − 𝐁𝐁𝐁𝐁(𝑡𝑡 − 1)� (5.7) 

Taking the derivative of J respect to 𝐀𝐀� yields 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐀𝐀�

= −𝐱𝐱(𝑡𝑡 − 1) �𝐱𝐱(𝑡𝑡) − 𝐀𝐀�𝐱𝐱(𝑡𝑡 − 1) − 𝐁𝐁𝐁𝐁(𝑡𝑡 − 1)�
𝑇𝑇

   (5.8) 

From the Newton-Raphson method, 𝐀𝐀� could be iteratively updated as 

𝐀𝐀�(𝑡𝑡) = 𝐀𝐀�(𝑡𝑡 − 1) − 𝛼𝛼𝐇𝐇(𝐽𝐽,𝐀𝐀�)
𝜕𝜕𝜕𝜕
𝜕𝜕𝐀𝐀�

   (5.9) 

where 𝐇𝐇(𝐽𝐽,𝐀𝐀�)  is the Hessian matrix of J on 𝐀𝐀�  and α is the learning rate. A reasonable 

approximation of 𝐇𝐇(𝐽𝐽,𝐀𝐀�) is 

𝐇𝐇�𝐽𝐽,𝐀𝐀�� = 𝐱𝐱(𝑡𝑡 − 1)𝐱𝐱(𝑡𝑡 − 1)𝑇𝑇 + 𝐈𝐈   (5.10) 

where I is the identity matrix. Substituting (8) and (10) to (9) we have 

𝐀𝐀�(𝑡𝑡) = 𝐀𝐀�(𝑡𝑡 − 1) − α
�𝐱𝐱(𝑡𝑡) − 𝐀𝐀�(t − 1)𝐱𝐱(𝑡𝑡 − 1) − 𝐁𝐁𝐁𝐁(𝑡𝑡 − 1)� 𝐱𝐱(𝑡𝑡 − 1)𝑻𝑻

1 + 𝐱𝐱(𝑡𝑡 − 1)𝑻𝑻𝐱𝐱(𝑡𝑡 − 1) = 

𝐀𝐀�(𝑡𝑡 − 1) − 𝛼𝛼
�𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(t)�𝐱𝐱(𝑡𝑡 − 1)𝑻𝑻

1 + 𝐱𝐱(𝑡𝑡 − 1)𝑻𝑻𝐱𝐱(𝑡𝑡 − 1)    (5.11) 

Thus, (5.11) is could be executed iteratively, which is suitable for model identification and model-

based system control problems. 
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5.2.2 Identification of nonlinear time-invariant systems 

We use the three-layer feedforward neural network to identify f in the nonlinear system. Neural 

networks have been known for their capability to approximate a large and general class of 

nonlinear functions over compact domains. Theoretical foundation and application of neural 

network as such universal functional approximators in control systems can be found in [15, 76, 

77]. We use the backpropagation training/learning algorithm for neural networks [92], in which 

{x(t -1), u(t -1)} are presented  at the input layer and 𝐱𝐱�(t)  is computed at the output layer of the 

neural network identification model. In each training sample, the target is x(t). The remaining of 

this section is simply the recitation and more explanation for the neural network training presented 

in [92]. 

 

Mathematically, i be the node index at the input layer of m + n nodes, h be the node index at the 

hidden layer of d nodes and o be the node index at the output layer of m nodes. Let wIH(i, h) be the 

input-hidden weight from input node i to hidden node h, Let wHO(h, o) be the input-hidden weight 

from hidden node h to output node o. From the input {x(t -1), u(t -1)}, the values at the hidden 

layer are computed as 

𝐻𝐻(ℎ) = � 𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖,ℎ)𝐼𝐼(𝑖𝑖)
𝑚𝑚+𝑛𝑛

𝑖𝑖=1

    (5.12) 

where H(h) denotes the hidden value at node h and I(i) denotes the input value at node i. The 

estimated 𝐱𝐱�(t) at the output layer is computed as 

𝑂𝑂(𝑜𝑜) = �𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜) × 𝜎𝜎(𝐻𝐻(ℎ))
𝑑𝑑

ℎ=1

    (5.13) 
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Where O(o) is the value at the oth component of 𝐱𝐱�(t). Function σ, also called activation function, 

is defined as 

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
    (5.14) 

At each iteration t, starting with identification error at (5.3), which is also the error at the output 

layer, we use backpropagation [65] to train the neural network as follow. At the hidden layer 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜)

= 𝑒𝑒𝑜𝑜(𝑡𝑡)×𝜎𝜎�𝐻𝐻(ℎ)�  (5.15) 

in which eo(t) denotes the error at the oth component of the output layer 

𝑒𝑒𝑜𝑜(𝑡𝑡) = 𝐱𝐱𝑜𝑜(𝑡𝑡) − 𝐱𝐱�𝑜𝑜(𝑡𝑡)  (5.16) 

The error at the hidden layer is carried from the error at the output layer by the hidden-output 

weight as follow, according to the chain rule 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖,ℎ) = �𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)�

𝑇𝑇
𝐰𝐰𝐻𝐻𝐻𝐻(ℎ) ×

𝜕𝜕𝜕𝜕𝜕𝜕(ℎ)
𝜕𝜕𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖,ℎ) 

= �𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)�
𝑇𝑇
𝐰𝐰𝐻𝐻𝐻𝐻(ℎ) × 𝜎𝜎𝜎𝜎(ℎ) × �1 − 𝜎𝜎𝜎𝜎(ℎ)�   (5.17) 

where wHO(h) denotes the vector of all the hidden-output weights at hidden node h and 

�𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)� is the vector of error at the output layer. 

Thus, with the learning rate α, we update wHO(h, o) from (15) and (16) as 

𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜) = 𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜) + 𝛼𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜)
= 𝑤𝑤𝐻𝐻𝐻𝐻(ℎ, 𝑜𝑜) + 𝛼𝛼 × 𝑒𝑒𝑜𝑜(𝑡𝑡)×𝜎𝜎�𝐻𝐻(ℎ)�  (5.18) 

and the input-hidden weights are updated as 

𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖, ℎ) = 𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖, ℎ) + 𝛼𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖,ℎ) = 

𝑤𝑤𝐼𝐼𝐼𝐼(𝑖𝑖,ℎ) + 𝛼𝛼 × �𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)�
𝑇𝑇
𝐰𝐰𝐻𝐻𝐻𝐻(ℎ) × 𝜎𝜎𝜎𝜎(ℎ) × �1 − 𝜎𝜎𝜎𝜎(ℎ)�  (5.19) 
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 Simulation results 

5.3.1 Linear system identification 

In this simulation, from (5.1), I setup systems of six dimensions for both x and u for the ease of 

decentralization. I choose k = 3, which means each subsystem covers two dimensions. The 

unknown transitional block matrix A is setup with real components {{1,2}, {3, 4}{5, 6}}, assumed 

to be the domain knowledge, as follow 

A = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡0.6 0.4 𝜌𝜌

0.4 0.6

𝜌𝜌

0.6 0.4
0.4 0.6

0.6 0.4
0.4 0.6⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (5.20) 

where the non-block entries of A is a random number between 0 and ρ. I choose B as the identity 

matrix. The control variables u(t), which is known by the system, is set randomly between -1 and 

1. The initial x(0) is set to 1. As shown in (20), σ decides the interconnection strength among 

system components. We call σ coupling parameter. For other parameters, we set α = 1.2, ε = 10-3, 

γ = 10-6 and Ω = 10. We run the identification process for at most 10000 iterations. Due to the 

randomness in A and u(t), we repeat the experimental process 100 times and report the average 

outcome for converging time and identification error. 

 

Figure 5.1 and Figure 5.2 show that selective decentralization has superior performance when the 

coupling parameter is between 0 and 0.05, which may stand for the weakly coupled system. In 

these cases, selectively decentralized identification not only converges faster but also converges 

to lower identification error. The identification performance gap between selective 

decentralization and centralization decreases when the coupling parameter increases to 0.05. When 
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the coupling parameter is greater than 0.05, centralized identification starts showing superior 

performance. However, the selectively decentralized identification’s performance is close to the 

centralized identification. To be more specific, Figure 5.3 and Figure 5.4 show more detail how 

the identification error converges to 0 after 300 windows, with the initial state vector x1 = 1. 

 
Figure 5.1. Comparison of converging time for identification between the centralized approach 

and the selectively decentralized approach in linear system  
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Figure 5.2. Comparison of converging identification error between the centralized model and the 

selectively decentralized model in linear system  
 

 
Figure 5.3. An example of how identification error converges to 0 with initial state x(0) = 1 in 

the completely decoupled and linear systems  (σ = 0)  
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Figure 5.4. An example of how identification error converges to 0 with initial state x(0)  = 1 in 

the strongly coupled and linear system (σ = 0.2)  

5.3.2 Nonlinear system identification 

In this simulation, we also setup systems of six dimensions for both x and u for the ease of 

decentralization. We also choose K = 3. With the same A matrix in the linear system simulation, 

we setup the nonlinear system as follow 

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) =
2𝐀𝐀𝑖𝑖𝐱𝐱(𝑡𝑡) + 𝑢𝑢𝑖𝑖(𝑡𝑡)

1 + (𝐀𝐀𝑖𝑖𝐱𝐱(𝑡𝑡) + 𝑢𝑢𝑖𝑖(𝑡𝑡))2    ∀𝑖𝑖∈[1,6]   (5.13) 

where i is the state-control variable index, Ai is the ith row of A. Here, the real subsystem 

components are {{1,2}, {3, 4},{5, 6}}. Similar to the linear system simulation, it can easily be 

seen that the coupling parameter σ decides the interconnection strength among system components. 

For identification, we setup three-layer neural networks in each group of subsystem {i1, i2, …, il} 

with {xi1,i2,…il(t-1), ui1,i2,…il(t-1)} in the input layer, xi1,i2,…il (t) in the output layer and 50 nodes in 

the hidden layer. The learning rate for the neural networks is set to 0.5. For other parameters, we 

set ε = 0.05, γ = 10-6 and Ω = 50. Similar to the linear system case study, the initial state x(0) is set 
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to 1. We run the identification process for at most 10000 iterations. Due to the randomness in A 

and u(t), we repeat the experimental process 100 times and report the average outcome for 

converging time and identification error. 

 

Figure 5.5 and Figure 5.6 show that for all of coupling parameters, selective decentralization 

outperforms centralizations in both identification converging speed and identification error. For 

all of the coupling parameters in our experiment, the centralized identification error does not reach 

the satisfactory threshold ε = 0.05 (it may reach the threshold after more iterations). Therefore, 

figure 5 shows the converging time of centralized identification close to 10000, which is the 

maximum number of iterations in our experiment. Figure 5.7 and Figure 5.8 show more detail how 

the identification error converges after 200 windows. 

 
Figure 5.5. Comparison of converging time for system identification between the centralized 

approach and the selectively decentralized approach in nonlinear system 
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Figure 5.6. Comparison of converged identification error between the centralized model and the 

selectively decentralized model in a nonlinear system 
 

 
Figure 5.7. An example of how identification error converges with initial state x(0) = 1 in the 

completely decoupled and nonlinear system case  
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Figure 5.8. An example of how identification error converges with initial state x(0) = 1 in the 

strongly coupled and nonlinear system (σ = 0.2) 
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6. SELECTIVELY DECENTRALIZED LEARNING AND CONTROL 
WITH DISCRETIZED MDP 

This chapter completes the impact of selective decentralization in improving model-based adaptive 

and optimal control, which is also equivalent to reinforcement learning. This chapter combines the 

success of selective decentralization in system identification, the well-known closed-form solution 

of Riccati equation in linear system, the discrete-MDP approximation (presented in chapter 2). We 

show that selective decentralization can improve the learning performance in both linear and 

nonlinear systems with several levels of interconnection among subsystems. Here, we measure the 

performance on the number of iterations, or samples, needed in learning. This measurement of 

performance is useful for problems in which the number of training samples is limited. In addition, 

we show that the discrete-MDP technique could help in learning nonlinear control problem in 

general form. 

 

The content in this chapter is organized as follow. First, we rewrite the problem statement for the 

complete model-based reinforcement learning problem. Second, we present the two-phase 

framework to solve this problem, which includes the content in the previous chapters: selective 

decentralization, MDP, HJB equation and system identification. Third, we demonstrate the entire 

framework in some toy examples. 

 Problem statement for model-based reinforcement learning 

In this chapter, we focus on discrete time, continuous-state, time-invariant system in the general 

format 

𝐱𝐱(𝑡𝑡 + 1) = 𝑓𝑓(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡))  (6.1) 
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Where x ∈ ℜN stands for the N dimensional bounded state vector, u ∈ ℜM stands for the M 

dimensional bounded control unit, t stands for the iteration number, x(0) is given and f : ℜN×ℜM 

→ ℜN is an continuously differentiable unknown function. Here, the symmetric boundaries [-χ, χ] 

and [-µ, µ] for all components of x and u are known. Let p: ℜN → ℜ and q: ℜM → ℜ be the two 

continuously semi-definite negative and differentiable reward functions with the following 

properties 

𝑝𝑝(𝐱𝐱1) ≤ 𝑝𝑝(𝐱𝐱2) ⇔ ‖𝐱𝐱1‖ ≥ ‖𝐱𝐱2‖ and p(0) = 0 (6.2) 

𝑞𝑞(𝐮𝐮1) ≤ 𝑞𝑞(𝐮𝐮2) ⇔ ‖𝐮𝐮1‖ ≥ ‖𝐮𝐮2‖ and q(0) = 0 (6.3) 

where ||x|| denotes the second norm of x. The main objective is to learn the control unit u such that 

x(t) → 0, u(t) → 0 as t → ∞ (6.4) 

 

To formulate an adaptive optimal control, or reinforcement learning problem, we convert the 

objective in (4) into a more formal control problem with discount factor 0 < γ → 1 

𝐽𝐽(𝐱𝐱0) = ∑ 𝛾𝛾𝑡𝑡 �𝑝𝑝�𝐱𝐱(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮(𝑡𝑡)��∞
𝑡𝑡=0   (6.5) 

Thus, the goal is to optimize J(x0). The function J(x) defined in (6.5) is called the state value 

function. Since f is unknown, in the model-based approach, the intermediate goal is to find the 

approximated nonlinear function 𝑓𝑓 such that with the predicted state vector 

𝐱𝐱� (t+1) = 𝑓𝑓(x(t), u(t))  (6.6) 

the identification error 

e(t) = || 𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)||  (6.7) 

approaches 0 as t → ∞. 
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 Two-phase selective decentralized control framework 

Figure 6.1 shows the design of the learning control system in this work with two phases: 

identification and control. In the identification phase, we train the neural networks to acquire the 

function approximators 𝑓𝑓 from using <x(t), u(t)> as the input tuples and x(t+1) as the outputs. In 

the control phase, to compute the near-optimal control, we use DARE algorithm [61], and policy 

iteration algorithm for the nonlinear system after setting up the corresponding MDP [65]. Here, 

the window size parameter Ω  decides how frequently we call the identification phase. In other 

words, Ω  decides the number of <x(t), u(t), x(t+1)> tuples to train 𝑓𝑓. 

Identification

Control

x(t)

u(t) f x(t+1)

u(t+1)

Train             

Riccati equation (linear)
MDP (nonlinear)

t reaches another Ω 
(window size)

Select the best 
decentralization

 

Figure 6.1. The learning design for selective decentralized reinforcement learning. 
 

Let w be the window index. Then the window w covers the discrete time index from t = (w-1) Ω + 

1 to t = wΩ. Let E(w) be the window-identification error at window w, which is the average of e(t) 

from t = (w-1) Ω + 1 to t = wΩ. Let ε and γ be two small numbers for thresholding. For the system 

of r components/agents, the number of decentralization scheme is B(r), which is the rth Bell’s 

number [59]. The pseudo code for selective decentralization is as follow: 

initialize b: the best decentralization scheme 
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for w from 1 to the maximum window index 

calculate control policy using b b (using Riccati equation for linear system and  

                                  discrete-MDP for nonlinear system) 

Train approximator and compute E(w) for B(r) decentralization schemes 

     Select the decentralization scheme with the lowest E(w) as b 

      if w > 1 and (E(w) < ε or |E(w) - E(w-1)| / |E(w)| < γ ) 

return  

      end if 

end for 

 Simulation results 

6.3.1 Linear system 

In this simulation, we setup a system of 8-dimmension state and control variables with r = 4. The 

unknown transitional block matrix A is setup with real subsystem components {{1,2}, {3, 4},{5, 

6}, {7,8}}as follow. With raw matrix 𝐀𝐀� matrix as 

𝐀𝐀� = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡0.7 0.3
0.2 0.8

𝜎𝜎

0.23 0.77 𝜎𝜎
0.4 0.6

0.5 0.5
0.35 0.65

0.9 0.1
0.15 0.85⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (6.8) 

where the non-block entries of 𝐀𝐀� are a random numbers between 0 and σ. To avoid numerical 

overflowing, we normalize 𝐀𝐀� into A such that A is a Markov matrix. The reward functions are p(x) 

= -xTx and q(u) = -uTu. The discount reward factor in (5) is γ = 0.9. The initial control variables 

u(0) and state variable x(0) are set randomly between -1 and 1. As shown in (6.8), σ decides the 
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interconnection strength among system components. We call σ coupling parameter. We setup the 

completely decouple system by setting σ  = 0 and the strongly couple system by σ = 0.1.  We set 

B as the identity matrix. For identification, we set α  = 0.5. At the starting point, we set x(0) as a 

vector of random numbers between -1 and 1. Because calculating 𝐀𝐀�  using linear system 

identification (see chapter 5) is relatively simple, we set the window size Ω = 1. We repeat this 

setup 100 times since A and x(0) contains random parameters and report the mean statistics. 

 

In Figures 6.2 and 6.3, we observe that the selectively decentralized system shows better control 

performance than the completely decentralized system and the centralized system. In these figures, 

we draw the y-axis in log scale since both x and u converges to 0 so quickly that the linear-scale 

plot could not show the difference. We use norm(x) and norm(u) to denote the second-norm of x 

and u, correspondingly. Clearly, after more than 30 iterations, both x and u in the completely 

decentralized system converge to 0 faster than they are in the completely decentralized system and 

the centralized system. At the first few iterations, the selectively decentralized system shows 

slightly poorer control performance. This may due to the complexity of the selectively 

decentralized system in identifying unknown A. In the other hands, as the systems are more 

coupled, we see that the performance gap between the decentralized systems and the centralize 

system is less. 
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Figure 6.2. Comparison of control performance among the centralized system, the completely 
decentralized system and the selectively decentralized system when the system is linear and 

completely decoupled. 
 

  
 

Figure 6.3. Comparison of control performance among the centralized system, the completely 
decentralized system and the selectively decentralized system when the system is linear and 

strongly coupled. 

6.3.2 Nonlinear system 

In this example, we choose the system 

𝐱𝐱(𝑡𝑡 + 1) = 𝑓𝑓(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)) = 𝑠𝑠𝑠𝑠𝑠𝑠�𝐀𝐀𝐀𝐀(𝑡𝑡) + 𝐮𝐮(𝑡𝑡)�  (6.9) 

where x, u ∈R4 , matrix A is defined by normalizing 𝐀𝐀� into a Markov matrix where 
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𝐀𝐀� = �

0.7 0.3 𝜎𝜎
0.2 0.8

1
𝜎𝜎 1

� (6.10) 

and the sin function is defined as 

𝑠𝑠𝑠𝑠𝑠𝑠(𝐱𝐱) = �
sin (𝑥𝑥1)

⋮
sin (𝑥𝑥𝑛𝑛)

�  (6.11) 

and x(0) = 0.2. Here, we assume that the boundary of x an u is known as -0.2 ≤ xi, ui ≤ 0.2 ∀i∈[1,4] 

and the real subsystem component in (1) is {{1,2}, {3}, {4}}. The reward functions are p(x) = -

xTx and q(u) = -uTu. The discount reward factor in (6.5) is γ = 0.9. 

 

For system approximation, we use a three-layer neural network with 30 hidden units, sigmoid 

activation function and backpropagation to train the neural network for 𝑓𝑓. For each training step, 

we pass the training sample set <x(t), u(t)> 2000 times. We set window size  Ω = 50 (figure 6.1). 

Similar to the linear system case study, we setup the completely decouple system by setting σ  = 

0 and the strongly couple system by σ = 0.1. In each state and control vector dimension, we divide 

the dimension into G = 8 regions, which makes the resolution threshold (see chapter 2) 0.05. 

 

In Figures 6.4, we observe that the selectively decentralized system shows better control 

performance than the completely decentralized system and the centralized system. Similar to 

figures 6.2 and 6.3, we use norm(x) to denote the second-norm of x. Here, we observe that when 

the system is completely decouple, the centralized system converges to 0 significantly slower than 

the selectively decentralized system does. In addition, when the system is strongly couple, the 

centralized system fails to control. 
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Figure 6.4. Comparison of control performance among the centralized system, the completely 

decentralized system and the selectively decentralized system when the system is nonlinear with 
different coupling. 

 Discussions 

In this chapter, we show that selective decentralization can improve the learning performance in 

both linear and nonlinear systems with several levels of interconnection among subsystems. Here, 

we measure the performance on the number of iterations, or samples, needed in learning. This 

measurement of performance is useful for problems in which the number of training samples is 

limited. In addition, we show that the discrete-MDP technique could help in learning nonlinear 

control problem in general form.  

 

There are several limitation in this chapter. First, the discretization thresholds need the distribution 

of the next state assuming that the current state and control vectors are uniformly distributed and 

may require a number of ad-hoc steps. Third, in selective decentralization, we still explore all 

possible decoupling scheme B(k), which grows exponentially. However, since the selectively 

decentralized system converges faster than the centralized system in most of the cases, we believe 

that the heavily computational model-switching phase in the selective decentralized system will 

be relatively short. Therefore, the selectively decentralized system may be more computationally 
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efficient than the centralized system, which must run the learning algorithm in high dimensional 

data for long term. 

  



75 
 

7. MULTIDISCIPLINARY OPTIMIZATION IN DECENTRALIZED 
REINFORCEMENT LEARNING 

In this chapter, we propose applying the multidisciplinary optimization (MDO) idea in solving 

decentralized RL problems and demonstrates the capability of the MDO approach in several 

learning adaptive control toy examples. Fundamentally, the MDO approach, which could be 

categorized as a partial communication technique [48], is a compliment to the selective 

decentralization. Here, we use nonlinear system identification to approximate the unknown 

environment in the RL problem. Hence, in this chapter, we use the terms ‘environment’ and 

‘system’ interchangeably. In the system identification step, each learning agent also identifies the 

impact of other agent’s information on its learning performance, which is the central theme in 

MDO. From the identified model, each learning agent setups Markov decision process (MDP) to 

compute the action/control solution, which has been shown in [93]. In this step, we examine and 

compare the control solutions computed using both the MF and the IDF options. In addition, we 

examine the exchanged information among the agents, which is another characteristic to categorize 

the recent state-of-the-art MDO techniques. We focus on the question: how much the learning 

performance loss when the exchanged information among the agents is simplified. Then, we 

compare the learning performance of the MDO approach with the strictly decentralized approach, 

the selectively decentralized approach [93] and the centralized approach and discuss the advantage 

of the MDO in our learning examples. 

 

Mathematically, MDO [94, 95], which has been intensively researched and applied in aerospace 

and engineering, could be a promising approach to tackle the first two challenges in decentralized 

RL. In MDO, the computational agents are well-defined and decomposed according to the domain-
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knowledge of each discipline in a jointed optimization problem. For example, in aero-elastic 

optimization, there are two decentralized computational units: the aero dynamic units applies fluid 

dynamics law to manage the air-pressure on the aircraft wing and the structure unit applies the 

material law to manage the deflection and shape of the wing [38]. In the formulation step, there 

are two typical options. First in the multidisciplinary feasible (MF) option (which may also called 

‘boarder sense’ option), each computational agent incorporate the information from the other 

agents in its own optimization function [38]. In addition, each agent only uses the optimization 

constrains from its own discipline. In this option, because the each agent includes the information 

from other agents in the optimization objective, the agent tends to approach closer to the global 

optimal solution even though the global problem is much more complex than its own capacity. 

Second, in the individual discipline feasible (IDF) option (which may also called the ‘selfish’ 

option), each computational agent only aims to optimize its own optimization function and uses 

the other agents’ information as constrains. In this option, the agents tends to seek for local 

optimization; and the constrains from other agents will drive the local solutions to the global 

solution. The exchanged information among the agents could be preprocessed or transformed into 

simpler forms to reduce the complexity of the optimization in each agent. More literature details 

about MDO approach could be found in [96-98]. 

 

However, according to our best knowledge, MDO has not been widely applied in decentralized 

RL. In our opinion, there are two factors limiting the capability of the MDO in RL. First, the 

unknown nature and long-term goal of the RL problems implies that we could not get the 

optimization function in closed-form J(x), where J denotes the optimization objectives in RL and 

x denotes the variables in the RL problem. Since MDO techniques rely on numerical methods - 
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especially the gradient methods - to solve the optimization problem, without a closed-form of J(x) 

[94], most of the state-of-the-art MDO techniques are inapplicable. Second, even when the 

unknown nature of the RL problems could be solved by system identification methods [8], the 

closed-form solution for many of the Hamilton-Jacobi-Bellman equation, which is the central 

theory behind most of the RL problems, is very difficult to find. 

 

This chapter is organized as follow. First, for the reading convenience, we restate the statements 

of the learning - adaptive control problem, as already mentioned in chapter 6. Second, we carefully 

state the assumption for the MDO learning agents. Third, we present the MDO learning agents 

using the same two-phase paradigm to selectively decentralized learning agents: identification and 

discrete-MDP control. And forth, we show the simulation results, which compare the performance 

among several approaches, including centralized learning, completely decentralized learning, 

selectively decentralized learning and MDO learning. 

 Problem statements 

7.1.1 The learning adaptive control problem 

In this chapter, we focus on discrete time, continuous-state, time-invariant system in the general 

format 

𝐱𝐱(𝑡𝑡 + 1) = 𝑓𝑓(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡))  (7.1) 

where x ∈ ℜN stands for the N dimensional bounded state vector, u ∈ ℜM stands for the M 

dimensional bounded control unit, t stands for the iteration number, x(0) is given and f : ℜN×ℜM 

→ ℜN is an continuously differentiable unknown function. Here, the symmetric boundaries [-χ, χ] 

and [-µ, µ] for all components of x and u are known. Given p: ℜN → ℜ and q: ℜM → ℜ as the two 
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continuously semi-definite negative and differentiable reward functions with the following 

properties 

𝑝𝑝(𝐱𝐱1) ≤ 𝑝𝑝(𝐱𝐱2) ⇔ ‖𝐱𝐱1‖ ≥ ‖𝐱𝐱2‖ and p(0) = 0 (7.2) 

𝑞𝑞(𝐮𝐮1) ≤ 𝑞𝑞(𝐮𝐮2) ⇔ ‖𝐮𝐮1‖ ≥ ‖𝐮𝐮2‖ and q(0) = 0 (7.3) 

where ||x|| denotes the second norm of x. The main objective is to learn the control unit u =  u(x) 

such that 

x(t) → 0, u(t) → 0 as t → ∞ (7.4) 

 

For optimally adaptive control, we convert the objective in (7.4) into the optimization objective 

with discount factor 0 < γ → 1 

𝐽𝐽(𝐱𝐱(0)) = ∑ 𝛾𝛾𝑡𝑡 �𝑝𝑝�𝐱𝐱(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮(𝑡𝑡)��∞
𝑡𝑡=0   (7.5) 

The equations (7.1-7.5) defines a Hamilton-Jacobi-Bellman equation. Since (7.1) is in general 

form, we assume that the closed-form solution for (7.1-7.5) is unknown. 

7.1.2 The system identification problem statements  

Since we use MDP, a model-based method, to compute u, we need an approximation of the 

environment. The objective is to find the approximated nonlinear function 𝑓𝑓 such that with the 

predicted state vector 

𝐱𝐱� (t+1) = 𝑓𝑓(x(t), u(t))  (7.6) 

the identification error 

e(t) = |𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)|2  (7.7) 

approaches 0 as t → ∞. 
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 Key assumptions for the MDO agents 

To apply MDO, we assume that the system (7.1) could be decouple into multiple subsystems by 

domain knowledge. Each subsystem correspond to one learning agent. More importantly, we 

assume that each agent know precisely which components of x and u affecting its learning 

performance. In addition, we assume that each agent’s control unit does not directly and instantly 

affect the x components of the other agents. In the other words, 

x(t+1) = �

𝐱𝐱1 (𝑡𝑡 + 1) 
𝐱𝐱2 (𝑡𝑡 + 1)

⋮
𝐱𝐱𝐾𝐾 (𝑡𝑡 + 1)

� = f (x(t), u(t)) =  �

𝑓𝑓1 (𝐱𝐱1(𝑡𝑡),𝐶𝐶1(𝐱𝐱𝑖𝑖≠1(𝑡𝑡)),𝐮𝐮1(𝑡𝑡)) 
𝑓𝑓2 (𝐱𝐱2(𝑡𝑡),𝐶𝐶2(𝐱𝐱𝑖𝑖≠2(𝑡𝑡)),𝐮𝐮2(𝑡𝑡))

⋮
𝑓𝑓𝐾𝐾  (𝐱𝐱𝑘𝑘(𝑡𝑡),𝐶𝐶𝐾𝐾(𝐱𝐱𝑖𝑖≠𝑘𝑘(𝑡𝑡)),𝐮𝐮𝐾𝐾(𝑡𝑡)) 

�  (7.8) 

where k is the number of learning agents, i stands for agent index and C is the bounded 

communication function, which is known, among the agents. We assume that for all agents, C has 

the following property 

|| Cj(xi≠j(t)) || ≥ || Cj(x’i≠j(t)) || ⇔ || xi≠j(t) || ≥ || x’i≠j(t) || (7.9) 

In general, for agent j, 𝐶𝐶𝑗𝑗(𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡)) should be simpler than xi≠j(t), such as having less dimension, 

to reduce the computational cost. In this chapter, we assume that the agents can freely exchange 

their state information. In the most complicated communication, one agent can send the exact state 

information to the other agents. From these assumption, we can rewrite the identification problem 

as 

x(t+1) = �

𝐱𝐱1 (𝑡𝑡 + 1) 
𝐱𝐱2 (𝑡𝑡 + 1)

⋮
𝐱𝐱𝐾𝐾 (𝑡𝑡 + 1)

� = f (x(t), u(t)) =  �

𝑓𝑓1 (𝐱𝐱1(𝑡𝑡),𝐶𝐶1(𝐱𝐱𝑖𝑖≠1(𝑡𝑡)),𝐮𝐮1(𝑡𝑡)) 
𝑓𝑓2 (𝐱𝐱2(𝑡𝑡),𝐶𝐶2(𝐱𝐱𝑖𝑖≠2(𝑡𝑡)),𝐮𝐮2(𝑡𝑡))

⋮
𝑓𝑓𝐾𝐾  (𝐱𝐱𝐾𝐾(𝑡𝑡),𝐶𝐶𝐾𝐾(𝐱𝐱𝑖𝑖≠𝐾𝐾(𝑡𝑡)),𝐮𝐮𝐾𝐾(𝑡𝑡)) 

�  (7.10) 
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The identification in (7.8) allowing solving the HJB equation (7.1)-(7.5) by both MDO’s MF 

option and IDF option. For the MF option, each learning agent j has optimization function 

according to (7.5) 

𝐽𝐽�𝐱𝐱𝑗𝑗(0)� = ∑ 𝛾𝛾𝑡𝑡 �𝑝𝑝𝑗𝑗�𝐱𝐱𝑗𝑗(𝑡𝑡),𝐶𝐶𝑗𝑗(𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡))� + 𝑞𝑞𝑗𝑗 �𝐮𝐮𝑗𝑗(𝑡𝑡)��∞
𝑡𝑡=0   (7.11) 

Therefore, the MDP for agent j in the MF option has the form [xj, Cj(xi≠j)] × [uj] → [xj, Cj(xi≠j)]. 

For the IDF option, each agent will optimize  

𝐽𝐽�𝐱𝐱𝑗𝑗(0)� = ∑ 𝛾𝛾𝑡𝑡 �𝑝𝑝𝑗𝑗 �𝐱𝐱𝑗𝑗(𝑡𝑡)� + 𝑞𝑞𝑗𝑗 �𝐮𝐮𝑗𝑗(𝑡𝑡)��∞
𝑡𝑡=0   (7.12) 

In this case, the MDP has the form [xj] × [uj] → [xj]. Because each MDP in IDF option does not 

cover the entire knowledge gained by identification, each agent may have multiple MDPs 

depending on the Cj(xi≠j). We assume that the agents’ reward functions pj and qj in (7.11) and (7.12) 

have the same properties to (7.2) and (7.3). 

 

Finally, we define the centralized approach and the completely decentralized approach, which will 

be used to compare with the MDO approaches, as follow. The centralized approach is defined with 

K = 1. The completely decentralized approach is defined as K > 1 but Cj(xi≠j) = 0, which implies 

no communication among the agents. The definition of the selectively decentralized approach 

could be found in [93]. 

 Design of MDO learning agents with two phases 

Similar to Figure 6.1, Figure 7.1 shows the design of the learning agent in this work with two 

phases: identification and control. In the identification phase, we train the neural networks to 
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acquire the function approximators 𝑓𝑓. In the control phase, we use the discrete MDP method to 

compute u. 

 

Figure 7. Two-phase design of the MDO learning agents. 
 

7.3.1 MDO system identification 

We use the three-layer feedforward neural network to approximate f as 𝑓𝑓 in nonlinear system 

identification. Neural networks have been known for their capability to approximate a large and 

general class of nonlinear functions over compact domains. Theoretical foundation and application 

of neural network as such universal function approximators in control systems can be found in [15, 

76, 77]. We use the backpropagation learning algorithm for neural networks [92]. For the MDO’s 

MF option, {xj(t), Cj(xi≠j(t)), uj (t)}cis presented at the input layer, { 𝐱𝐱� j(t+1), 𝐶̂𝐶 (xi≠j(t+1))} is 

computed at the output layer of the neural network, and { xj(t+1), Cj(xi≠j(t+1))} is the target. In the 

other hand, for the IDF option, {xj(t), Cj(xi≠j(t)), uj (t)} is presented at the input layer, { 𝐱𝐱�j(t+1)} is 

computed at the output layer of the neural network, and { xj(t+1)} is the target. Without MDO, the 

neural network layers could be set up as in [93]. 
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7.3.2 Discrete MDP for MDO agents 

In this chapter, we further develop the discretization method and MDP construction from the 

simulation in [93]. The theoretical assessment of the discrete MDP method to approximate the 

HJB equation’s solution (2.1)-(2.5) has been presented in chapter 2. In this section, first, we would 

briefly present the discrete MDP method to solve (7.1)-(7.5) by the centralized and completely 

decentralized approach, which does not involve any MDO principles. Second, we would present 

the modification of the discrete MDP method to apply MDO principles in both the MF and the 

IDF options. 

7.3.2.1 Discrete MDP for the centralized and completely decentralized approach 

Fundamentally, the content of section 7.3.2.1 is the same to section 2.3 in chapter 2. For the 

convenience of reading, especially for the mathematical symbols, I rewrite the section as follow. 

7.3.2.1.1 Discretize the state and action vectors 

As defined in the problem statements, in this section, we ignore all of the communication among 

the agents C(xi≠j). Let G be the number of intervals in each dimension of x and u for which we 

uniformly divide the dimension into small grids. Therefore, the entire state space is divided into 

Gn small hyper cubes with edge θx = 2χ/G. The control space is divided into Gm small hyper cubes 

with edge θu = 2µ/G. All points inside a hyper cube are discretely represented by the center of the 

hyper cube. Points on the border between two hyper cubes are represented by the center of the 

‘left’ hypercube. Mathematically, the discretization process is described by the following formulas 

𝐱𝐱[𝑑𝑑] → 𝜃𝜃𝑥𝑥 + χ 𝐺𝐺⁄  ∀ 𝑑𝑑∈[1,𝑛𝑛]  𝑎𝑎𝑎𝑎𝑎𝑎 𝐱𝐱[𝑑𝑑] ∈ [𝜃𝜃𝑥𝑥 ,𝜃𝜃𝑥𝑥 + 2 χ 𝐺𝐺⁄ )  (7.13) 

𝐮𝐮[𝑑𝑑] → 𝜃𝜃𝑢𝑢 + 𝜇𝜇 𝐺𝐺⁄  ∀ 𝑑𝑑∈[1,𝑚𝑚]  𝑎𝑎𝑎𝑎𝑎𝑎 𝐮𝐮[𝑑𝑑] ∈ [𝜃𝜃𝑢𝑢,𝜃𝜃𝑢𝑢 + 2 𝜇𝜇 𝐺𝐺⁄ )   (7.14) 
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where θx ∈ {-χ, -χ + 2χ/G, -χ + 4χ/G, ..., χ- 2χ/G } and θu ∈ {-µ, -µ + 2µ/G, -µ + 4µ/G, ..., µ- 

2µ/G }, which are the ‘left’ boundaries in the hyper cubes. We denote xdis and udis as the discrete 

space and control vector of x and u, correspondingly. We also denote (xdis) and (xdis) as the 

set/supspace of points x and u whose discrete forms are xdis and udis, correspondingly. 

 

With the discretization process in (7.11) and (7.12), it is important and easy to see that when G is 

odd, the zero vector 0 is one of the discrete space/control vectors. In the centralized MDP problem, 

the reward functions (7.2) and (7.3) become 

𝑝𝑝(𝐱𝐱) = 𝑝𝑝(𝐱𝐱dis),𝑞𝑞(𝐮𝐮) = 𝑞𝑞(𝐮𝐮dis)  (7.15) 

And the optimization goal becomes the MDP goal (7.5) 

𝐽𝐽(𝐱𝐱(0)) = ∑ 𝛾𝛾𝑡𝑡 �𝑝𝑝�𝐱𝐱dis(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮dis(𝑡𝑡)��∞
𝑡𝑡=0   (7.16) 

where 0 < γ < 1 is the discount factor. 

7.3.2.1.2 Setup the probabilistic transition function for the MDP 

The MDP requires the probabilistic transition function as a matrix of P(x’dis | xdis, udis), which is 

the probability of reaching discrete state x’dis when executing action udis at state xdis. We can apply 

the Monte Carlo method [74] to approximate P(x’dis | xdis, udis) as follow. 

- Generate a large number of S points (x, u) following the uniform distribution in 

(xdis)×(udis).  

- Count the number of points S1 such that 𝑓𝑓 (x, u) ∈ (x’dis). 

- Then S1/S → P(x’dis | xdis, udis) as S → ∞. 

We use the policy iteration algorithm [65] to compute the MDP solution. At every 

iteration, the action udis(t) is calculated as 
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udis(t) = argmax
𝐮𝐮

∑ P(𝐱𝐱’dis | 𝐱𝐱dis (𝑡𝑡),𝐮𝐮)∀𝐱𝐱’dis  (7.17) 

And R(xdis) is updated after executing udis(t) 

𝑅𝑅�𝐱𝐱dis(𝑡𝑡)� = 𝑝𝑝�𝐱𝐱dis(𝑡𝑡)� + 𝑞𝑞�𝐮𝐮dis(𝑡𝑡)� + 

𝛾𝛾 ∑ 𝑃𝑃�𝐱𝐱dis′(𝑡𝑡 + 1)|𝐱𝐱dis(𝑡𝑡),𝐮𝐮dis(𝑡𝑡)�𝑅𝑅�𝐱𝐱′dis(𝑡𝑡 + 1)�∀𝐱𝐱dis′   (7.18) 

Formula (7.13)-(7.18) are written for the centralized approach. They can be applied to each 

learning agent in the completely decentralized approach using the agent’s local state, local action, 

local reward and local transition probability. 

7.3.2.2 Discrete MDP method for the MDO approach 

The central theme in this section is the discretization of communication Cj(xi≠j). Let us call Nj, Mj 

and Ni≠j be the dimensionality of the xj, uj and Cj(xi≠j) in agent j. Since the system (7.1) and 

communication function is bounded, each dimension of Cj(xi≠j) is bounded by [-λ, λ]. Since the 

communication sent by agent i to agent j should not be more complex than xi, we discretize each 

dimension of C(xi≠j) into L ≤ G grids using the same method described in (7.13) and (7.14). We 

denote the discrete from of Cj(xi≠j) by Cj(xi≠j)dis. 

 

For the MDO-MF option, since the identified model is in the form {xj(t), Cj(xi≠j(t)), uj (t)} → 

{xj(t+1), Cj(xi≠j(t+1))}, each agent j has one MDP model with dimensionality (𝐺𝐺𝑁𝑁𝑗𝑗 × 𝑁𝑁) × 𝐺𝐺𝑀𝑀𝑗𝑗  × 

(𝐺𝐺𝑁𝑁𝑗𝑗 × 𝐿𝐿𝑁𝑁𝑖𝑖≠𝑗𝑗). The transition probability for the MDP could be setup similarly to the centralized 

approach, except the Mote-Carlo sampling should be done on (xjdis)×( Cj(xi≠j)dis)× (ujdis) in the 

whole space. 
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For the MDO-IDF option, since the identified model is in the form {xj(t), Cj(xi≠j(t)), uj (t)} → 

{xj(t+1)}, the MDP in this option will have dimensionality (𝐺𝐺𝑁𝑁𝑗𝑗) × 𝐺𝐺𝑀𝑀𝑗𝑗  × (𝐺𝐺𝑁𝑁𝑗𝑗). By rewriting the 

identification as 

𝐱𝐱𝑗𝑗(𝑡𝑡 + 1) ≈ 𝑓𝑓 �𝐱𝐱𝑗𝑗(𝑡𝑡),𝐶𝐶𝑗𝑗 �𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡)� ,𝐮𝐮𝑗𝑗(𝑡𝑡)� =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑓𝑓𝐶𝐶𝑗𝑗�𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡)�=𝐜𝐜1

�𝐱𝐱𝑗𝑗(𝑡𝑡),𝐮𝐮𝑗𝑗(𝑡𝑡)�

𝑓𝑓𝐶𝐶𝑗𝑗�𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡)�=𝐜𝐜2
�𝐱𝐱𝑗𝑗(𝑡𝑡),𝐮𝐮𝑗𝑗(𝑡𝑡)�

⋮
𝑓𝑓𝐶𝐶𝑗𝑗�𝐱𝐱𝑖𝑖≠𝑗𝑗(𝑡𝑡)�=𝐜𝐜…

�𝐱𝐱𝑗𝑗(𝑡𝑡),𝐮𝐮𝑗𝑗(𝑡𝑡)�

 (7.19) 

where c1, c2, c… are possible the discrete values of Cj(xi≠j(t)), it is easy to see that each agent j will 

have 𝐿𝐿𝑁𝑁𝑖𝑖≠𝑗𝑗  MDP models, which could be indexed. When the agent receive {xj(t), Cj(xi≠j(t))}, it will 

look up the index of Cj(xi≠j(t)) and choose the corresponding MDP to compute u(t). 

7.3.3 The pseudo code for the MDO learning agent 

Here, the window size parameter Ω  decides how frequently we call the identification phase. The 

pseudo code for each agent is as follow 

Initialize: 𝑓𝑓 neural network with random weights. 

                 Predefine the discretization parameters as in (7.13)-(7.16). 

                 Construct the MDPs as showed in (7.17) and (7.19). 

                 uj({xj, Cj(xi≠j)}) / uj([xj]): solution of the MDPs by policy iteration for the  

         MF / IDF options. 

For t from 2 to the maximum number of iterations 

   Receive and discretize {x(t), Cj(xi≠j(t))} as in (7.13). 

  Compute u(t) = u({xj(t), Cj(xi≠j(t))}) / u(t) = u(x(t)) according to the policy. 

  Add {x(t-1), Cj(xi≠j(t-1)), u(t-1) } and {xj(t), Cj(xi≠j(t))} into the training set for  

future neural network training set. 
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  if t % Ω = 0 // reach the end of the window, update the identification 

   Retrain 𝑓𝑓. 

   Reconstruct the MDPs as showed in (7.17) and (7.19). 

   Recompute uj({xj, Cj(xi≠j)}) / uj([xj]) by policy iteration. 

   Clear the training set of the neural network. 

Each agent could also keep track of the identification error to decide whether or not to keep 

collecting data point for training neural network and skip the identification phase. 

 Simulation results 

In this section, we setup toy sinusoidal systems to demonstrate the capability of the MDO approach 

in RL. These systems has the form 

x(t) = sin(Ax(t-1)+u(t-1)) (7.20) 

where A are 3×3 random Markov matrices such that all diagonal entries share the same value. For 

the ease of decentralization, we choose the system such that the dimensionalities of both x and u 

are the same. The vector sin function is defined from each dimension as 

sin(𝐱𝐱) = �
sin (𝐱𝐱1)
sin (𝐱𝐱2)
sin (𝐱𝐱3)

�  (7.21) 

In addition, each dimension of x and u is between -0.35 and 0.35. The non-diagonal entries are 

random numbers between 0 and coupling parameter σ. If the right side of (7.20) is beyond this 

range, the result will be scaled back to the nearest bound. We define the coupling parameter σ as 

𝜎𝜎 =
∑ 𝐀𝐀𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

∑𝐀𝐀𝑖𝑖𝑖𝑖
  ∀𝑖𝑖, 𝑗𝑗 ∈ [1,3] (7.22) 

In other words, σ is the ratio between the sum of non-diagonal entries in A and the sum of all 

entries in A. In our simulations σ ranges from 0 to 0.3. With σ = 0, A becomes the identity matrix 



87 
 

or the systems are completely decouple. The systems are more couple when σ increases. In this 

design, we assign three learning agent such that each agent is responsible for one dimension of x 

and u. The initial state x(0) is a vector of 0.2. For equation (7.2) and (7.3), we choose p(x) = - ||x||2 

and q(u) = -||u||2 for both the centralized approach and the learning agents in the decentralized / 

MDO approaches. For equation (7.5), γ = 0.9. As the reminder, each learning agent does not know 

anything about A but may know all of the other information. 

 

For identification, each agent has neural networks of 50 hidden layers. The input and output layer 

is as in section II.2. We use the window size of Ω = 50 (figure 7.1). In each training round, the 

training data set is reused at most 1000 times (epoch) [99] to improve identification. The maximum 

number of iterations t is 5000. 

 

For the MDO discretization, we suppose that each agent can send its full state information to the 

other agents, which means Cj(xi≠j) = xi≠j ∀i, j. Each agent j divides its xj and uj dimension into G 

= 7 grids (equation (7.13)-(7.14)). Therefore, the grid size in each dimension is 0.1. For the 

discretization of Cj(xi≠j), we setup two scenarios: 

- When the agents use the external information fully (with the same resolution) as it does 

for the internal xj and uj, each dimension of Cj(xi≠j) is divided into G = L= 7 grids. Therefore, in 

the MF option, each agent j has one MDP model of size (7×72) × 7 × (7×72). In the IDF option, 

each agent j has 72 MDP models of size 7×7×7. 

- When the agents use the external information less than (with less resolution) it does for 

the internal xj and uj, each dimension of Cj(xi≠j) is divided into L = 5 and L = 3 grids. Therefore, 
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in the MF option, each agent j has one MDP model of size (7×52) × 7 × (7×52) and (7×32) × 7 × 

(7×32). In the IDF option, each agent j has 52 and 32 MDP models of size 7×7×7. 

For the completely decentralized, selectively decentralized and the centralized approach, each 

agent also divides each dimension of x and u into G = 7 grids. 

7.4.1 The learning performance of MDO approach in stabilizing control system 

 
Figure 7.2. learning performance in p(x) and q(u) of the MDO approaches in weakly coupled 

system (σ = 0.05).  
 

  
Figure 7.3. learning performance in p(x) and q(u) of the MDO approaches in strongly coupled 

system (σ = 0.3).  
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Figures 7.2 and 7.3 compare the learning performance among the MDO, the complete 

decentralization and the centralization approaches. Overall, the MDO-IDF outperforms both the 

centralization and the complete decentralization approach. In figure 3, where the centralization is 

expected to have advantage, the MDO-IDF minimize both p(x) and q(u) to 0. According to (7.2) 

and (7.3), this result implies that both x and u converges to 0. Meanwhile the centralization is able 

to minimize p(x) to 0, but shows small oscillation on q(u), which does not converge to 0. In the 

other hand, the MDO-MF is better in learning when the system is strongly decoupled, as showed 

in figure 7.2. However, even in this case, the MDO-MF still shows minor oscillation when both 

p(x) and q(u) approach 0. 

7.4.2 Performance loss MDO-IDF when using resolution-less communication 

 
Figure 7.4. Converging time of the MDO-IDF approach with full and less resolution 
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the window such that the average p(x) + q(u) at window w and w-1 are less than 0.001, or when 

the change of average p(x) + q(u) at w and w-1 is less than 0.001. Overall, for converging time, 

the selective decentralization converging time is still better than the MDO-IDF approach. However, 

at the converging window, the average p(x) + q(u) is closer to 0 in the MDO-IDF approach. 

 Discussions 

In this chapter, we show the capability of MDO approaches in decentralized reinforcement 

learning. It is clear that from our experiement, the MDO-IDF option could successfully in control-

and-stabilize learning problem; meanwhile, the MDO-MF option is not always successful. 

Mathematically, this fact could be explained by the divergence of f (xj, Cj(xi≠j)). In the MF option, 

Cj(xi≠j) participates in the MDP construction in such a way that the Monte Carlo randomize 

samples of Cj(xi≠j) through its range. When the system is more coupled, f (xj, uj, Cj(xi≠j)) will be 

more diverge, even when xj is already in the stable region. Therefore, the conditional probability 

P(xj(t+1) | xj(t), uj(t)=0) such that both xj(t+1) and xj(t) are in the stable region is less when the 

system is more coupled. Thus, the utility value of x in the stable region become less; therefore, the 

agents see less ‘motivation’ to stablize. In the individual feasible option, the MDP is constructed 

by f Cj(xi≠j)(xj, uj) where Cj(xi≠j) is fixed. Since the simulation examples satisfy that all of the agent 

could stabilize their state to 0 together, we do not see the diverse of f Cj(xi≠j)(xj, uj) when both xj and 

Cj(xi≠j) are in stable regions. In the other words, from philosophical perspective, in a cooperative 

task, trusting the behavior of the collaborators often lead to better results than doubting the 

incompetence or error from the collaborators. 
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Compared to the selective decentralization approach [93], which is also showed to outperform both 

the centralization and the complete decentralization, the MDO-IDF offer a complimentary 

technique to tackle the communication among the learning agents. In the selective decentralization 

approach, there exist a central agent deciding which communication scheme to be used for the 

agents to make decision. In the other words, selective decentralization is about model switching 

and the communication among all of the agents are not always free. In the MDO-IDF, the agents 

could freely send the state information to the others. In addition, each agent is responsible for its 

own communication: how to use the communication to compute the best action. Both of these 

methods show better performance than huge centralization and blind (completely) decentralization 

approach in many cases of system decoupling. 
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8. DECENTRALIZED LEARNING IN NOISY ENVIRONMENT 

This section adds the system noise as another dimension of complexity in the learning and control 

problem for the selective decentralization framework. We want to answer the following questions. 

First, to what extend the selective decentralization could improve the system identification, 

compared to the centralized approach, given increasing level of noise? Second, to what extend the 

selective decentralization could stabilize the system faster than the centralized approach could, 

given increasing level of noise? Third, is there any trade-off among the learning performance, cost 

and the converging speed given the occurrence of noise? In this chapter, we answer these questions 

by experiments on all of the learning and control techniques presented in chapters 4-7. We also 

assess the impact of noise filtering techniques, in addition to selective decentralization, in 

improving the learning and control performance. 

 Experimental results without noise-filtering techniques 

8.1.1 Linear system 

This section applies the learning and control technique presented in chapter VI for linear system. 

For noise extension, we add the noise into the system as 

x(t+1) = Ax(t) + Bu(t) + r(t) (8.1) 

where x ∈ ℜN is the state vector, u ∈ ℜN is the action (also called control) vector, r ∈ ℜN is a 

random unknown noise vector with expected value of 0, A ∈ ℜN×N is the state-transition matrix, 

which is unknown, and B ∈ ℜN×M
 is a known semi positive-definite matrix. We assume that r are 

under a multivariate normal distribution. Here, we set x and u to have the same dimensionality for 

the ease of decentralization. For simulation, the matrix A is setup with underlying subsystem 

components {{1,2}, {3, 4},{5, 6}, {7,8}, {9, 10}} as follow: 
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A = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.68 0.32
0.20 0.80                

    0.25 0.75
0.44 0.56        𝜎𝜎     

        0.50 0.50
0.41 0.59        

    
𝜎𝜎

        0.85 0.15
0.15 0.85    

                0.35 0.65
0.67 0.33⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (8.2) 

where the non-block entries of A are a random numbers between 0 and σ, which is called coupling 

parameters. The initial control variables u(0) and state variable x(0) are set randomly between -1 

and 1. As shown in (8.2), σ represents the underlying interconnection among the subsystems. We 

experiment with σ  from 0 to 0.5; in the other word, from the completely decoupled system to the 

strongly coupled system.  To avoid numerical overflowing, we normalize A into a Markov matrix  

in (8.1). We set B as the identity matrix. The learning objective is to maximize 

�  𝛾𝛾𝑡𝑡(−𝐱𝐱(𝑡𝑡)𝑇𝑇𝐱𝐱(𝑡𝑡) − 𝐮𝐮(𝑡𝑡)𝑇𝑇𝐮𝐮(𝑡𝑡))
∞

𝑡𝑡=0

 (8.3) 

Where γ = 0.9. For identification, we set α  = 1 (formula 5.11). At the starting point, we set all 

elements of x(0) as random numbers between -1 and 1. Each noise element is randomly generated 

from normal distribution with mean of 0 and small standard deviation of from 0.01 to 0.05. Higher 

standard deviation implies more noise.  For statistical purposes, we repeat the experiment 50 times 

for each choice of coupling parameter. We set the window size w = 1. For time index t, we 

terminate the experiment at t = 500. This choice is made based on the observation in [93], when 

the system is stabilized after the first tens iterations. 

 

Figures 8.1 and 8.2 show that the selectively decentralized system shows better control 

performance than the centralized system. In these figures, we draw the result when the noise 
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standard deviation is 0.01. Figure 8.1 shows the result when (1) is completely decoupled (σ=0). 

Figure 8.2 shows the result when (1) is the most coupled in our experiments (σ=0.5). We use 

norm(x) and norm(u) to denote the second-norm of x and u. In these figures, the numbers for 

norm(x) and norm(u) are the average values of the 50 random repetitions. When the noise becomes 

large, as showed in figures 3 and 4, both the state and the action variate around the noise standard 

deviation. In this case, the difference between the centralized and selectively decentralized 

learning performance is marginal. 

  
Figure 8.1. Comparison of learning performance between the centralized systems and the 

selectively decentralized systems when the systems are completely decoupled and linear (σ=0) in 
small noise scenario. 
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Figure 8.2. Comparison of learning performance between the centralized systems and the 

selectively decentralized systems when the systems are strongly coupled and linear (σ=0.5) in 
small noise scenario. 

 

 
Figure 8.3. Comparison of learning performance between the centralized systems and the 

selectively decentralized systems when the systems is are completely decoupled and linear (σ=0) 
in large noise scenario 
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Figure 8.4. Comparison of learning performance between the centralized systems and the 

selectively decentralized systems when the systems is are strongly coupled and linear (σ=0.5) in 
large noise scenario 
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Figure 8.5. Number of iterations needed to bring norm(x) < 0.05 in small noise - linear system 

scenario 
 

In figures 8.6 and 8.7, we show the learning performance of the selectively decentralized approach 
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Figure 8.6. Comparison of identification errors between the selectively decentralized approach 

and the centralized approach given increasing noise level in linear system 
 

  
Figure 8.7. Comparison of learning performance J(x) between the selectively decentralized 

approach and the centralized approach given increasing noise level in linear system 
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where A are 3×3 random Markov matrices such that all diagonal entries share the same value. The 

non-diagonal entries are random number between 0 and the coupling parameter σ. The vector sin 

function is defined from each dimension as 

sin(𝐱𝐱) = �

sin (𝐱𝐱1)
sin (𝐱𝐱2)

sin (𝐱𝐱3)

�  (8.5) 

The coupling parameter σ for the non-diagonal entries is defined as 

𝜎𝜎 =
∑ 𝐀𝐀𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

∑𝐀𝐀𝑖𝑖𝑖𝑖
  ∀𝑖𝑖, 𝑗𝑗 ∈ [1,3]  (8.6) 

With σ = 0, A becomes the identity matrix or the systems are completely decouple. The systems 

are more couple when σ increases. The learning objective is to minimize (8.3). For state and action 

variables, all state x and action u components have the range between -0.5 and 0.5 and initial state 

vectors x(0) are vectors of 1. For discretization (2.10-2.11), we choose M = N = 5. Therefore, θx = 

θu = 0.2. Each noise element r(t) is randomly generated from normal distribution with mean of 0 

and small standard deviation of from 0.01 to 0.05. Higher standard deviation implies more noise.  

For statistical purposes, we repeat the experiment 50 times for each choice of coupling parameter. 

We set the window size w = 50. For time index t, we terminate the experiment at t = 10000. 

 

 Figures 8.8 and 8.9 demonstrates the comparative performance between the selectively 

decentralized and the centralized approaches when the Gaussian noise standard deviation is 0.01. 

The selectively decentralized approach could bring both the state and the action vectors closer to 

0, compared to the centralized approach could, when the systems are completely decoupled (figure 

8.8) and strongly coupled (figure 8.9, with coupling parameter = 0.5).  
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However, when the noise increases, the gap of learning performance between the selectively 

decentralized and the centralized approach are narrower. Figures 8.10 and 8.11 shows typical 

example of the systems with large noise, when both x and u do not converge. In figure 8.12, we 

draw the learning goal, which is minimization of J(x), when the experiments terminate. When the 

noise standard deviation reaches 0.04, we no longer see the improvement of selective 

decentralization, compared to centralization.  

  
Figure 8.8. Comparison of learning performance between the discrete-MDP centralized systems 

and the selectively decentralized systems when the systems are completely decoupled and 
nonlinear in small noise scenario 

 

  
Figure 8.9. Comparison of learning performance between the discrete-MDP centralized systems 

and the selectively decentralized systems when the systems are strongly coupled and nonlinear in 
small noise scenario 
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Figure 8.10. Comparison of learning performance between the discrete-MDP centralized systems 

and the selectively decentralized systems when the systems are completely decoupled and 
nonlinear in large noise scenario 

 

  
Figure 8.11. Comparison of learning performance between the discrete-MDP centralized systems 
and the selectively decentralized systems when the systems is are strongly coupled and nonlinear 

in large noise scenario 
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Figure 8.12. The converging learning performance of the selectively decentralized and the 

centralized discrete-MDP when the noise standard deviation increases 

8.1.3 Q learning 

In Q-learning, we use the same simulated system as showed in section 8.1.2. For discretization 

(4.3-4.4), we choose G = 5. Therefore, θx = θu = 0.2. For Q-learning parameters (4.5-4.8), we 

choose r = 0.01, α = 0.1 and γ = 0.9. The window size is set as w = 50. For each choice of coupling 

parameters, we repeat the experiment 100 times. 

 

It is clear that selective decentralization significantly improves the learning performance, 

compared to the centralized approach. This observation remains the same for all of the experiments. 

Figures 8.13 and 8.14 show typical example of how selective decentralization outperforms 

centralization. In figure 8.13, when the system is weakly coupled, selective decentralization could 

still stabilize state and control vectors close to 0; meanwhile, centralization fails to do the same 

task within the maximum number of allowed iteration. In figure 8.14, when the system are strongly 

coupled, both centralized and selectively decentralized Q-learning could stabilize the system. 

However, selective decentralization brings the system toward the zero-equilibrium point much 

faster.  
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In figure 8.17, we plot the minimization objective J(x) for the learning process at the last 10 

windows during the experiments. As expected, when the Gaussian noise standard deviation 

increase, it is less likely that the system could be stabilized. Figures 8.15 and 8.16 show that both 

x and u do not converge to 0 with large noise. In these two figures, the noise standard deviation is 

0.1. Therefore, J(x) increases with the noise standard deviation. However, selective 

decentralization achieves less J(x). 

 
Figure 8.13. A typical example of how x and u converge in small-noise scenario in weakly 

coupled system with Q-learning; here, the Gaussian noise standard deviation is 0.005 and σ = 
0.05 

 

 
Figure 8.14. A typical example of how x and u converge in small-noise scenario in strongly 
coupled system Q-learning; here, the Gaussian noise standard deviation is 0.005 and σ = 0.5 
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Figure 8.15. A typical example of how x and u converge in small-noise scenario in weakly 

coupled system with Q-learning; here, the Gaussian noise standard deviation is 0.05 (large noise) 
and σ = 0.05 

 

  
Figure 8.16. A typical example of how x and u converge in small-noise scenario in strongly 

coupled system with Q-learning; here, the Gaussian noise standard deviation is 0.05 (large noise) 
and σ = 0.15 
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Figure 8.17. The converging learning performance of the selectively decentralized and the 

centralized Q-learning when the noise standard deviation increases 

8.1.4 MDO 

The systems used in MDO noise simulation is the same to the systems in sections 8.1.2 and 8.1.3 

for discretized MDP and Q-learning. In MDO, we only implemented the MDO-IDF approach, 

which is showed to outperform the MDO-IF approach in chapter 7. For MDO agent discretization 

(chapter 7), all MDO agents discretize its state and action dimension into 7 regions. The other 

parameters for MDO are identical to the simulation showed in section 7.4. 

 

Compared to the centralized approach, the MDO shows less learning performance when the noise 

level is low. However, when the noise level increases, MDO performance starts approaching and 

eventually outperforms the centralized performance, as showed in Figure 8.22. Figures 8.18 and 

8.19 show typical examples of the MDO performance in low-noise scenario. Interestingly, in these 

figures, both MDO and the centralized approach could converge x to relatively similar levels. This 

phenomena also appears when the noise level increases. Therefore, we conclude that the 

performance of MDO is mostly decided by the action vector u. Figures 8.20 and 8.21 show that 
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with large noise, similar to the other approaches, both x and u do not converge. In these two figures, 

the noise standard deviation is 0.1. 

  
Figure 8.18. A typical example of how x and u converge in small-noise scenario in weakly coupled 
system with MDO; here, the Gaussian noise standard deviation is 0.005 (small noise) and σ = 0.05 
 

  
Figure 8.19. A typical example of how x and u converge in small-noise scenario in strongly 
coupled system with MDO; here, the Gaussian noise standard deviation is 0.005 and σ = 0.5 
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Figure 8.20. A typical example of how x and u do not converge in small-noise scenario in 

weakly coupled system with MDO; here, the Gaussian noise standard deviation is 0.05 (large 
noise) and σ = 0.05 

 

  
Figure 8.21. A typical example of how x and u do not converge in small-noise scenario in 

strongly coupled system with MDO; here, the Gaussian noise standard deviation is 0.05 (large 
noise) and σ = 0.25 
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Figure 8.22. The converging learning performance of the MDO and the centralized system when 

the noise standard deviation increases 

 Discussions 

This chapter confirms the robustness of the decentralized approaches, including selective 

decentralization and MDO, in learning and control noisy systems. For all of the experiments 

showed in section I, we observe that by the end of the experiment, the decentralized approaches 

reach lower value of the minimization objective J(x). In addition, we still see that selective 

decentralization has better converging speed, compared to the centralized approach, as showed in 

the linear and Q-learning systems. These finding are accordant to the claim that the decentralized 

approaches are  less susceptible to uncertain system parameters [40], which is the noise in this 

chapter. 

 

For model-based technique, our result suggests that the learning performance J(x) is worse when 

the noise level increase primarily due to the higher system identification error. Figures 8.4 and 8.5 

strongly demonstrates this fact in the linear system case. Therefore, noise-filtering techniques 

should be applied in combination with the selective decentralization approach to reduce system 

identification error.  
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9. CASE-STUDIES 

This chapter demonstrates the application of selectively decentralized reinforcement learning in 

two real-world case-studies. In the first case, I apply the linear-quadratic-regulator algorithm 

(chapter 6) in stabilizing the mass-spring system [100], which is the building block for automatic 

braking system. Here, each mass is a subsystem characterized by its location and velocity, which 

compose the mass state. Each mass could move horizontally on both direction, and could apply 

force horizontally to speed up or slow down its motion (control). These masses connect to each 

other by several springs. When some mass drifts away from its default resting position, the springs’ 

elastic forces trigger all masses moving. In this case, the objective is to compute each mass’ 

controlling force needed to stop the masses’ motion and bring them back to the resting positions, 

with consideration of conserving the controlling forces. In the second case, we hypothesize that 

the gene expression in cancer is directed by a model-able biological system, which could be 

formulated and solve by existing control system technologies. In complex diseases, such as cancer, 

we observe that many genes express abnormally, either overexpression or underexpression. 

Therefore, the common practice in drug and treatment design is to reverse the expression of 

abnormally expressed genes so that the gene expressions return back to the balance, or 0 level. 

This practice could be easily formulated by existing reinforcement learning and control system 

theory. The treatment, such as drug, could be considered as a sub-optimal solution to control the 

biological system. In all of these case-studies, we show that the selectively decentralized 

approaches could improve the overall learning-and-controlling performance, compared to the 

centralized approach. 
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 Learning to control the mass-spring system 

9.1.1 System formulation 

Figure 9.1 demonstrates the mass-spring system of three masses landing and moving horizontally. 

Masses (measured by kg) m1 and m3 connect to the fixed wall by springs (measured by elasticity 

constant unit kg/m2) k1 and k3. Mass m2 stands between m1 and m3, and connects to the other masses 

by springs k12 and k23. The resting positions of m1, m2 and m3 are p1, p2 and p3, correspondingly. 

Without the loss of generalization in the theory and result, suppose that m1, m2 and m3 stay at q1,q2 

and q3 such that k1, k3 are compressed and k12, k23 are stretched as the Figure 9.1 (lower) show. 

 

 
Figure 9.1. The 3-mass mass-spring system: (upper) at the resting positions; (lower) the forces 

applying on these masses (in bold and black arrows) when the masses are not at the resting 
positions 

 

Analyzing the forces action on each mass, we have 

- Mass m1 has: force  𝐹𝐹1,1������⃗  caused by the compressed k1 pushing to the right, force 𝐹𝐹12,1��������⃗  

caused by the stretched k12 pushing to the right, and individual control force 𝑢𝑢1����⃗  pushing to 

the right in order to return to the resting point p1. 

- Mass m2 has: force  𝐹𝐹12,2��������⃗  caused by the stretched k12 pushing to the left, force  𝐹𝐹23,2��������⃗  caused 

by the stretched k23 pushing to the right, and individual control force 𝑢𝑢2����⃗  pushing to the right 
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in order to return to the resting point p2. 

Mass m3 has: force  𝐹𝐹3,3������⃗  caused by the compressed k3 pushing to the left, force 𝐹𝐹23,3��������⃗  caused by the 

stretched k23 pushing to the left, and individual control force 𝑢𝑢3����⃗  pushing to the left in order to 

return to the resting point p3. 

 

Writing the second Newton’s law vector-equations [101] for these masses, we have 

�
𝑚𝑚1𝑎𝑎1����⃗ = 𝐹𝐹1,1������⃗ + 𝐹𝐹12,1 ���������⃗ + 𝑢𝑢1����⃗  
𝑚𝑚2𝑎𝑎2����⃗ = 𝐹𝐹12,2��������⃗ + 𝐹𝐹23,2 ����������⃗ + 𝑢𝑢2����⃗
𝑚𝑚3𝑎𝑎3����⃗ = 𝐹𝐹3,3������⃗ + 𝐹𝐹23,3 ����������⃗ + 𝑢𝑢3����⃗

   (9.1) 

Where 𝑎𝑎1����⃗ ,𝑎𝑎2����⃗  and 𝑎𝑎13������⃗  stand for the accelerations of m1, m2 and m3, correspondingly of. Applying 

Hooke’s law for elastic spring [102], we can write (9.1) as 

�
𝑚𝑚1𝑎𝑎1����⃗ = −𝑘𝑘1(𝑞𝑞1���⃗ − 𝑝𝑝1���⃗ ) − 𝑘𝑘12[(𝑞𝑞1���⃗ − 𝑝𝑝1���⃗ ) − (𝑞𝑞2����⃗ − 𝑝𝑝2����⃗ )] + 𝑢𝑢1����⃗  

𝑚𝑚2𝑎𝑎2����⃗ = −𝑘𝑘12[(𝑞𝑞1���⃗ − 𝑝𝑝1���⃗ ) − (𝑞𝑞2����⃗ − 𝑝𝑝2����⃗ )] + −𝑘𝑘23[(𝑞𝑞3����⃗ − 𝑝𝑝3����⃗ ) − (𝑞𝑞2����⃗ − 𝑝𝑝2����⃗ )] + 𝑢𝑢2����⃗
𝑚𝑚3𝑎𝑎3����⃗ = −𝑘𝑘3(𝑞𝑞3����⃗ − 𝑝𝑝13������⃗ ) − 𝑘𝑘23[(𝑞𝑞3����⃗ − 𝑝𝑝31������⃗ ) − (𝑞𝑞2����⃗ − 𝑝𝑝2����⃗ )] + 𝑢𝑢3����⃗

   (9.2) 

We can denote the displacement vectors as 𝑥𝑥1���⃗ = (𝑞𝑞1���⃗ − 𝑝𝑝1���⃗ ),𝑥𝑥2����⃗ = (𝑞𝑞2����⃗ − 𝑝𝑝2����⃗ ), 𝑥𝑥3����⃗ = (𝑞𝑞3����⃗ − 𝑝𝑝3����⃗ ). Also, 

choosing the reference axis horizontally from left to right, we have 

�
𝑚𝑚1𝑎𝑎1 = −𝑘𝑘1𝑥𝑥1 + 𝑘𝑘12(𝑥𝑥2 − 𝑥𝑥1) + 𝑢𝑢1

𝑚𝑚2𝑎𝑎2 = 𝑘𝑘12(𝑥𝑥2 − 𝑥𝑥1) + 𝑘𝑘23(𝑥𝑥2 − 𝑥𝑥3) +
𝑚𝑚3𝑎𝑎3 = −𝑘𝑘3𝑥𝑥3 + 𝑘𝑘23(𝑥𝑥2 − 𝑥𝑥3) + 𝑢𝑢3

𝑢𝑢2   (9.3) 

In (9.3), the positive value x implies that vector 𝑥⃗𝑥 has direction from left to right, and the negative 

value x implies that vector 𝑥⃗𝑥 has direction from right to left. Let v1, v2 and v3 denote the velocity 

of m1, m2 and m3, correspondingly. From (9.3), we can write 
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⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑚𝑚1

𝑑𝑑(𝑣𝑣1)
𝑑𝑑𝑑𝑑

= −𝑘𝑘1𝑥𝑥1 + 𝑘𝑘12(𝑥𝑥2 − 𝑥𝑥1) + 𝑢𝑢1

𝑣𝑣1 =
𝑑𝑑(𝑥𝑥1)
𝑑𝑑𝑑𝑑

𝑚𝑚2
𝑑𝑑(𝑣𝑣2)
𝑑𝑑𝑑𝑑

= 𝑘𝑘12(𝑥𝑥2 − 𝑥𝑥1) + 𝑘𝑘23(𝑥𝑥2 − 𝑥𝑥3) + 𝑢𝑢2

𝑣𝑣2 =
𝑑𝑑(𝑥𝑥2)
𝑑𝑑𝑑𝑑

𝑚𝑚3
𝑑𝑑(𝑣𝑣3)
𝑑𝑑𝑑𝑑

= −𝑘𝑘3𝑥𝑥3 + 𝑘𝑘23(𝑥𝑥2 − 𝑥𝑥3) + 𝑢𝑢3

𝑣𝑣3 =
𝑑𝑑(𝑥𝑥3)
𝑑𝑑𝑑𝑑

    (9.4) 

Discretize (9.4) by small interval ∆t, we have 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑚𝑚1

𝑣𝑣1(𝑡𝑡 + 1) − 𝑣𝑣1(𝑡𝑡)
∆𝑡𝑡

= −𝑘𝑘1𝑥𝑥1(𝑡𝑡) + 𝑘𝑘12(𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)) + 𝑢𝑢1(𝑡𝑡)

𝑣𝑣1(𝑡𝑡) =
𝑥𝑥1(𝑡𝑡 + 1) − 𝑥𝑥1(𝑡𝑡)

∆𝑡𝑡

𝑚𝑚2
𝑣𝑣2(𝑡𝑡 + 1) − 𝑣𝑣2(𝑡𝑡)

∆𝑡𝑡
= 𝑘𝑘12(𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)) + 𝑘𝑘23(𝑥𝑥2(𝑡𝑡) − 𝑥𝑥3(𝑡𝑡)) + 𝑢𝑢2(𝑡𝑡)

𝑣𝑣2(𝑡𝑡) =
𝑥𝑥2(𝑡𝑡 + 1) − 𝑥𝑥2(𝑡𝑡)

∆𝑡𝑡

𝑚𝑚3
𝑣𝑣3(𝑡𝑡 + 1) − 𝑣𝑣3(𝑡𝑡)

∆𝑡𝑡
= −𝑘𝑘3𝑥𝑥3(𝑡𝑡) + 𝑘𝑘23(𝑥𝑥2(𝑡𝑡) − 𝑥𝑥3(𝑡𝑡)) + 𝑢𝑢3(𝑡𝑡)

𝑣𝑣3(𝑡𝑡) =
𝑥𝑥3(𝑡𝑡 + 1) − 𝑥𝑥3(𝑡𝑡)

∆𝑡𝑡

 

 ⇔

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝑥𝑥1(𝑡𝑡 + 1) = 𝑥𝑥1(𝑡𝑡) + ∆𝑡𝑡 × 𝑣𝑣1(𝑡𝑡)

𝑣𝑣1(𝑡𝑡 + 1) = −
∆𝑡𝑡
𝑚𝑚1

(𝑘𝑘1 + 𝑘𝑘12) × 𝑥𝑥1(𝑡𝑡) + 𝑣𝑣1(𝑡𝑡) + 𝑘𝑘12
∆𝑡𝑡
𝑚𝑚1

𝑥𝑥2(𝑡𝑡) +
∆𝑡𝑡
𝑚𝑚1

𝑢𝑢1(𝑡𝑡)

𝑥𝑥2(𝑡𝑡 + 1) = 𝑥𝑥2(𝑡𝑡) + ∆𝑡𝑡 × 𝑣𝑣2(𝑡𝑡)

𝑣𝑣2(𝑡𝑡 + 1) =
−𝑘𝑘12∆𝑡𝑡
𝑚𝑚2

× 𝑥𝑥1(𝑡𝑡) +
(𝑘𝑘12 + 𝑘𝑘23)∆𝑡𝑡

𝑚𝑚2
× 𝑥𝑥2(𝑡𝑡)

               +𝑣𝑣2(𝑡𝑡) −
𝑘𝑘23∆𝑡𝑡
𝑚𝑚2

× 𝑥𝑥3(𝑡𝑡) +
∆𝑡𝑡
𝑚𝑚2

𝑢𝑢2(𝑡𝑡)

𝑥𝑥3(𝑡𝑡 + 1) = 𝑥𝑥3(𝑡𝑡) + ∆𝑡𝑡 × 𝑣𝑣3(𝑡𝑡)

𝑣𝑣3(𝑡𝑡 + 1) = 𝑘𝑘23
∆𝑡𝑡
𝑚𝑚3

𝑥𝑥2(𝑡𝑡) −
∆𝑡𝑡
𝑚𝑚3

(𝑘𝑘3 + 𝑘𝑘23) × 𝑥𝑥3(𝑡𝑡) + 𝑣𝑣3(𝑡𝑡) +
∆𝑡𝑡
𝑚𝑚3

𝑢𝑢3(𝑡𝑡)

   (9.5) 
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Therefore, with x = 

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑣𝑣1
𝑥𝑥2
𝑣𝑣2
𝑥𝑥3
𝑣𝑣3⎦
⎥
⎥
⎥
⎥
⎤

 and u = �
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�, system (9.1) is linearly equivalent to 

𝐱𝐱(𝑡𝑡 + 1) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 ∆𝑡𝑡 0 0 0 0

−
∆𝑡𝑡
𝑚𝑚1

(𝑘𝑘1 + 𝑘𝑘12) 1 𝑘𝑘12
∆𝑡𝑡
𝑚𝑚1

0 0 0

0 0 1 ∆𝑡𝑡 0 0
−𝑘𝑘12∆𝑡𝑡
𝑚𝑚2

0
(𝑘𝑘12 + 𝑘𝑘23)∆𝑡𝑡

𝑚𝑚2
1 −

𝑘𝑘23∆𝑡𝑡
𝑚𝑚2

0

0 0 0 0 1 ∆𝑡𝑡

0 0 𝑘𝑘23
∆𝑡𝑡
𝑚𝑚3

0 −
∆𝑡𝑡
𝑚𝑚3

(𝑘𝑘3 + 𝑘𝑘23) 1
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐱𝐱(𝑡𝑡) 

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0
∆𝑡𝑡
𝑚𝑚1

0 0

0 0 0

0
∆𝑡𝑡
𝑚𝑚2

0

0 0 0

0 0
∆𝑡𝑡
𝑚𝑚3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐮𝐮(𝑡𝑡)   (9.6) 

 

Bringing these masses toward the resting position implies that v1 = v2 = v3 = 0 and displacement x1 

= x2 = x3 = 0, or x = 0. In addition, by conserving the control unit, we have the learning goal by 

minimizing 

�𝛾𝛾𝑡𝑡�𝐱𝐱(𝑡𝑡)𝑻𝑻𝐏𝐏𝐏𝐏(𝑡𝑡) + 𝐮𝐮(𝑡𝑡)𝑻𝑻𝐐𝐐𝐐𝐐(𝑡𝑡)�
∞

𝑡𝑡=1

   (9.7) 

Where P and Q are positive definite matrices. From (9.6) and (9.7), we can compute the control 

unit to (9.1) by applying the algorithms showed in chapter 6. 
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9.1.2 Experiment 

I setup the experiment with the following parameters. The masses are m1 = m2 = m3 = 1 (kg). The 

spring elastic constants are k1 = k3 = 1 (kg/m2), k12 = k23 = 0.5 (kg/m2). The small time interval for 

linearization is ∆t = 0.01 (s). The discount factor in equation (9.7) is 0.9. P and Q are identity 

matrices with 6 and 3 dimensions, correspondingly. Initially, the displacements are x1 = -0.5 (m), 

x2 = -0.3 (m) and x3 = 0.2 (m), and the initial velocities for these masses are v1 = v2 = v3 = 0 (m/s). 

The learning algorithm is the same to section 6.3.1 (chapter 6), with learning rate α = 0.05. 
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Figure 9.2. Learning and control performance of the approaches: centralized reinforcement 

learning (RL), completely decentralized RL and selectively decentralized RL; top figure: state 
trajectory; bottom figure: control trajectory 

 

Figure 9.2 shows that the selectively decentralized approach outperforms the centralized and the 

completely decentralized approaches in stabilizing the system. Both the completely decentralized 
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RL and the centralized RL fails to stabilize the system. The completely decentralized RL could 

bring the masses closer to the resting point. In the other hands, the selectively decentralized RL 

stabilizes the system within 3 seconds, by bringing the masses toward the resting positions and 

stop the masses movement.  

 Potential application in drug discovery / repositioning  

9.2.1 Motivation of applying reinforcement learning in drug repositioning 

Drug repurposing (also called drug repositioning) has become one of the most active areas in 

pharmacology since last decade [103] because this approach could significantly reduce the cost 

and time to invent a new treatment. One of the key reasons for low productivity in traditional drug 

development is the lack of systematic evaluation of additional indications [104], which may lead 

to unexpected side effects and low efficacy. Briefly, drug repurposing finds new indications for 

known drugs and compounds [105] to reduce the risk of failure and shorten time of discovery, 

because it does not need the time to discover and test the new chemical compounds. Drug 

repurposing applies modern computational techniques to digitalize genomic [106], bioinformatics, 

chemical informatics [107] and patients’ individual health records [108] to offer more systematic 

evaluation of the chemical compound before entering the laboratory testing and clinical trial steps. 

Prominent successful examples for drug repurposing include Viagra, Avastin and Rituxan [104]. 

 

The application of reinforcement learning into system biology and drug repurposing is promising 

from the following points. From the mathematical system-model-control-based point of view, 

there exist a mechanism regulating the gene expression profile. In the healthy condition, the gene 

expression stays in the stable equilibrium region such that x(t) = f (x(t-1)) ≈ x(t-1), where f indicates 

the expression-regulating mechanism computed from data integration, x stands for expression and 
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t stands for time. The essential components of the mechanism could be retrieved, although 

containing uncompleted and possibly wrong and conflicting information, from the system biology 

data sources [109-115]. In the disease state, the critical gene expression strays outside the stable 

region. In this case, without a control (treatment), the expression will be unbounded. The system 

control algorithms aim to find the sequence of control-treatment that optimally stabilize the 

expression back to the original equilibrium point, such as linear control [116, 117], nonlinear 

control [118, 119], adaptive neural network [120, 121]. By comparing the real drug treatments 

with the optimal control-treatment (also called hypo-treatment), we can evaluate the potential 

efficacy of the drug before being repurposed. These points demonstrate three reasons why 

decentralized reinforcement learning could become a solution in drug repurposing. First, the 

repurposing problem could be transformed to an adaptive learning and control problem. Second, 

the repurposing problem contains the unknown nature, which is the fundamental nature of 

reinforcement learning. Third, the system biology itself is large if count by number of genes 

involving in a disease or process, and contains underlying modules for decentralization. 

 

However, applying mathematical system modeling and control in drug repurposing is still in very 

early steps. There are three key challenges in applying system control approach. First, it is difficult 

to quantify the gene expression and real drug treatment, as there is very little literature discussing 

the ‘normal range’ of each gene’s expression. Second, constructing a comprehensive and accurate 

mathematical model to simulate the gene expression change is complicated due to the diversity of 

gene-gene interaction mechanisms, mutation, and under-discovered data. Third, the biological 

systems are known for large scale for system control: there may be from hundreds to thousands of 

genes of interest in a specific disease or biological process. These challenges are similar to the 
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challenges which selectively decentralized reinforcement learning aims for. Therefore, I would 

like to take explore applying selectively decentralized reinforcement learning and control in drug 

repurposing. Most of the content in section 9.2 has been presented my paper at [122], with details 

on data set, system setup and biological insights in Appendix A. 

9.2.2 Overall ideas of drug repositioning based on reinforcement learning and control  

Figure 9.3 shows the overall ideas on repurposing framework from the system modelling and 

control points. The framework integrates three types of data. First, from the Disease-specific 

expression profile, I quantified the expression as the system initial condition vector, where each 

vector elements specified whether the corresponding gene gene was overexpressed (red), 

underexpressed (green) or normally expressed (white). Second, from the protein-protein 

interaction database, I built the mathematical system model in order to apply the system-control 

algorithm. The red arrows implies activative; and the green arrow implies inhibitive interactions. 

Third, from the chemical-protein interaction data, I quantified the treatment vector for each drug 

for later ranking. Using the initial condition vector and the mathematical model, I computed the 

optimal hypo-treatment. By mapping the pattern of the optimal hypo-treatment and the drugs’ 

treatment vectors, I could rank the drugs and suggest repurposed drugs. 
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Figure 9.3. Overview of RL-system control-based drug repurposing frameworks. Red squares: 

overexpressed genes/ drug’s activation. Green squares: under expressed genes / drug’s inhibition. 
Red arrow: activated protein-protein interaction. Green arrows: inhibited protein-protein 

interaction. 
 

The key principle in applying system control to evaluate drugs’ therapy relies in the following 

assumption: in disease condition, the gene expressions are derived away from the balanced level 

of 0. Therefore, a good treatment should reverse the gene expressions in disease condition and 

stabilize the expressions to the balance level. In addition, based on system biology literature [123], 

I assume that there exists a model governing the gene expressions, which allows us to model the 

expression using time-series perspective 

x(t) = f (x(t-1), u(t-1)) (9.8) 

where x  ∈ ℜN stands for the quantified gene expression of N genes, u ∈ ℜN stands for the 

quantified treatment and t is the iteration and f is the arbitrary function controlling the expression 

change. The initial x(0) is the quantified gene expression in disease condition. In this thesis, I 

choose a linear model for f. 

x(t) = Ax(t-1) + u(t-1) (9.9) 
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I chose the linear model because not only it is simple but also it has equilibrium point at the origin: 

if x(t-1) = u(t-1) = 0 then x(t) = 0. This fact implies that when the gene expressions are already at 

the balance level, treatment is no longer needed. In addition, it is easier to setup a linear system 

with stability [124] 

If ||x(0)|| < ε and u = 0 then ||x(t)|| < ε ∀t (9.10) 

where ||x|| stands for the second norm of x and ε is an arbitrary small number. This fact implies the 

self-adjustment of the gene expression at the control level. I setup matrix A from quantification of 

protein-protein mechanism of interactions (section 9.II.3). With temporal matrix A* as the result 

of section III.1 

A*(i,j) = �
−1 if protein 𝑖𝑖 inhibits protein 𝑗𝑗
1 if protein 𝑖𝑖 activates protein 𝑗𝑗

0 otherwise
 (9.11) 

Let λ be the eigenvalue of A* with the largest magnitude. By setting up A as 

A = (1/λ)A* (9.12) 

We can guarantee the stability of system (9.12) [124]. From this point, we can see that the problem 

could be solved by applying the algorithms for linear system showed in chapter 6. 

 

In system control practice, since u(t) often converges to 0 quickly [125], the first treatment vector 

u(0) often plays the most important role in optimally stabilizing the system (9.9). Therefore, we 

can consider u(0) as the optimal hypo-treatment. We compare the similarity between the real drug 

treatment and the hypo-treatment as the therapeutic score T(d) for each drug d as follow 

𝑇𝑇𝑑𝑑 =
�𝐮𝐮𝑑𝑑𝑇𝑇sign�𝐮𝐮(0)��

�abs(𝐮𝐮𝑑𝑑)𝑇𝑇abs �sign�𝐮𝐮(0)���
  (9.13) 
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where abs stand for the absolute value function. The numerator |𝐮𝐮𝑑𝑑𝑇𝑇sign(𝐮𝐮(0))| is the matching 

function between drug d and the optimal hypo-treatment, which is incremented when ud(i) and 

u(0)(i) are non-zero analog, and decremented when ud(i) and u(0)(i) are opposite. 

9.2.3 Setup the system for drug repositioning from Breast Cancer-omics data 

This section briefly summarizes one example on my collaborators and I could integrate multi-types 

of omics data to setup the learning and control system for drug repositioning, with Breast Cancer 

as the case-study disease. More details related to this section could be found at Appendix A.  

 

We built an integrated breast cancer specific pathway model that accelerates drug discovery by 

having more disease specific proteins and coverage than any other breast cancer specific pathway. 

This completes the fully curated pathway model (M), which is verified on WikiPathway 

(http://www.wikipathways.org/index.php/Pathway:WP1984). We optimized the pathway M to 

increase the simulation quality based on domain knowledge drug-protein interaction data (M*). 

For general information, our breast cancer pathway model M* contains 228 proteins and 481 

protein-protein interactions and enables repurposing 63 drugs [122].  

 

For drug-target information, we used the drug list suggested by Huang et al [126] as the initial 

drug list. With this initial drug list, we us shared target, shared side effect and similar chemical 

structure method to expand the drug list using the following databases [127-129]. The drug list 

after this expansion contained 82 drugs. We manually curated the target information for these 82 

drugs and removed drugs having none or ambiguous target information. There are 68 drugs having 

clear target information as can be seen in [122]. Among these 68 drugs, 63 drugs reach more than 

20 effectors via the pathway model and are selected in the experiment. Among these 63 drugs, in 
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this chapter, I only focus on 23 drugs from the following two categories. The first category (D1) 

includes 16 drugs approved by the FDA for breast cancer, which are considered as ‘positive’ drugs. 

The second category (or D2’) contains 7 drug withdrawn from Breast Cancer treatment, which are 

considered as ‘negative’ drugs. 

 

For gene expression profile, we chose significantly expressed gene genes after applying expression 

analysis on dataset GSE10886 from Gene Expression Omnibus (GEO) database. GSE10886 is 

among the largest and most comprehensive Breast Cancer microarray in GEO. After the latest 

update in January 2013, GSE10886 has 226 samples and includes samples from both ER+ and ER- 

subtypes. We discretize the gene expression into +1 for overexpression, -1 for underexpression 

and 0 otherwise. The discrete gene expression will be used as the initial state vector x(0) in the 

control algorithm later. 

9.2.4 Selectively decentralized approach improve the capability of detecting therapeutic 
drugs for Breast Cancer  

In this section, I focus on the computational results of the centralized and selectively decentralized 

RL in a simpler task: classifying the drugs that are approved or rejected/withdrawn from Breast 

Cancer treatment. For any drug repositioning technique, this is the fundamental task to validate 

the potential capability of the technique. Only when the repositioning technique achieves good 

performance in classifying approved versus rejected/withdrawn drugs, the technique could be 

confidently used in suggesting new treatment. As showed in section 9.2.2, the Td score in formula 

(9.13), derived from RL techniques (chapter 6), is the metric for scoring the drugs. More results, 

especially on biological and pharmacological impacts, could be found in Appendix A. The 

methodological details, which contains mostly the techniques in data collection and preprocessing, 
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could be found at [122]. I omit these methodological details because they are long and irrelevant 

to the main contribution of this thesis. 

 

Figures 9.4 and 9.5 shows that the selectively decentralized approach significantly improved the 

performance in classifying drugs. Here, to partition the system (10-12) to subsystem, we use the 

fast modularity clustering algorithm [130] to detect 9 subsystems. The improvement is significant 

in Breast Cancer ER+ subtype (10% AUC increase).  

 
Figure 9.4. Comparison between the selectively decentralized and the centralized RL approach in 

classifying drugs for Breast Cancer ER+ subtype disease. 
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Figure 9.5. Comparison between the selectively decentralized and the centralized RL approach in 

classifying drugs for Breast Cancer ER- subtype disease. 
  



125 
 

10. CONCLUSIONS 

In this thesis, we have proposed a new approach for decentralized reinforcement learning: selective 

decentralization, and showed how this approach improves the learning performance, compared to 

the centralized and completely decentralized approaches. The selectively decentralized approach 

tackle the four major challenges in decentralized learning as follow. For the first two questions of 

‘when’ and ‘to whom’ a single agent should communicate, a central coordinator would answer 

these questions based on maximizing the learning fitness (i.e. the best identification error, the 

fastest cumulative learning Q-value) instead of maximizing the learning goal. For the third 

question of ‘sharing information’, the agents are assumed to freely send its whole state and action 

to the others. For the fourth question of ‘using shared information’, the agents could discretize the 

shared information to reduce the computational resources for this information. In addition, the 

selective decentralization is also able to learn the optimal communication scheme among the 

learning agents without any prior knowledge of communicative structure. This learning capability 

is also another innovation of the selectively decentralized approach. 

 

The thesis also tackle some challenges in single-agent and general reinforcement learning. First, 

the selectively decentralized approach could easily incorporate a large number of well-known 

reinforcement learning techniques, from model-based learning to model-free learning. This 

flexibility is one of the innovation in the thesis, compared to most of the state-of-the-art 

decentralized learning, according to the best of our knowledge. Second, the thesis shows that 

applying MDP could solve larger scope of nonlinear reinforcement learning problems, compared 

to most of the state-of-the-art techniques focusing on problems in feedback-linearizable format. In 

addition, we first explore and verify the impact of the MDO approach in reinforcement learning. 
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Since the theoretical analysis of reinforcement learning and decentralized and distributed Q-

learning mostly focuses on the existence of the optimal policy, we lack the theoretical explanation 

for the superior converging speed of selectively decentralized learning. Therefore, taking Q-

learning as a typical example, [26, 46, 88], we try to explain the superior performance of selectively 

decentralized learning from two points of view. First, as stated in the foundation of Q-learning 

[26], the convergence of Q-learning assumes that all of the state-action entries in the Q-table are 

visited infinitely. Therefore, in order to converge to the optimal Q, the Q-learning systems are 

supposed to spend time to explore the Q-table. In figures 1 and 2 of chapter 4 where we show the 

convergence of centralized Q-learning, there are long periods where ||x|| and accumulate Q-gained 

change slowly. These periods may correspond to the exploration phases. Because the number of 

states, actions, and state-action entries grow exponentially with system dimensionality, 

decentralized Q-learning into smaller dimension may also improve the convergence exponentially 

due to exponentially less search space. Second, selectively decentralized Q-learning proposes more 

search options than centralized Q-learning, which is another factor to improve the converging 

speed. In centralized Q-learning, a newly visited state has no prior information to estimate its Q-

table entries. With the same state, in selectively decentralized Q-learning, the components of the 

state have higher chance to be visited by the subsystem learner (in different centralized states), 

which may reduce the effort to compute the optimal Q-value. 

 

The ‘art’ in this thesis is choosing the criteria for switching communication scheme. From our 

points of view, as showed in this thesis, the criteria should be specific to the problems and 

techniques which selective decentralization incorporates. For model-bases learning techniques, 

since the estimation of the dynamic changes in the environment is critical for the learning 
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performance, we choose system identification as the only criterion. For Q-learning, which is a 

model-free technique, we choose best decentralization scheme by the sum of subsystems’ gained 

Q-values only because of the linearity in state-reward function, which is the main driver for Q-

value update. However, there is no theoretical basis to support whether or not the different sum of 

subsystem gained Q-value in different decentralization scheme is comparable. There may exist 

more solid options for choosing the best decentralization scheme than cumulative gained Q-value. 

Similar to Q-learning, due to the difficulty to theoretically prove the switching criteria, this 

important point should be carefully examined by the scientist performing the experiment. 

 

The outcomes in this thesis reflex and could be easily understood from the philosophical points of 

view. First, the ‘trial and error’ paradigm is showed in learning the optimal communication scheme. 

At the beginning, the central coordinator frequently switches among different communication 

schemes. Then, as the overall learning performance improves, the central coordinator decides less 

switching and eventually stops switching the communication scheme before all of the learning 

agents learn the stable policy. This ‘trial and error’ paradigm is typically demonstrated in 

selectively decentralized Q-learning. Second, at least in a cooperative task, trusting the behavior 

of the collaborators often lead to better results than doubting the incompetence or error from the 

collaborators. As showed in the MDO results, when a learning agent ‘doubts’ the performance 

other agents and makes the decision considering all of the possible scenarios from the others, the 

learning agent may not be able to learn the optimal policy. However, when an agent believes that 

the others at least do not do worse, if not doing better, the agent eventually learn the optimal policy 

faster than a centralized agent does. 
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There are several limitations in this thesis. First, for MDP approximation, the discretization 

thresholds need the distribution of the next state assuming that the current state and control vectors 

are uniformly distributed and may require a number of ad-hoc steps. Third, in selective 

decentralization, we still explore all possible decoupling scheme B(k), which grows exponentially. 

However, since the selectively decentralized system converges faster than the centralized system 

in most of the cases, we believe that the heavily computational model-switching phase in the 

selective decentralized system will be relatively short. Therefore, the selectively decentralized 

system may be more computationally efficient than the centralized system, which must run the 

learning algorithm in high dimensional data for long term. Forth, due to the lack of collaboration 

opportunities, the case-studies presented in this thesis are limited to a well-known problem, which 

has been thoroughly studied, and to an unexplored problem of pharmacology, where the domain 

knowledge may or may not sufficient to ensure the quality of the modelling and controlling the 

system. 

 

From the innovations and limitations in this thesis, we believe that the following points are still 

opened to explore in future works 

1. The theoretical converging time for reinforcement learning and decentralized learning 

should be fully addressed. 

2. The converging policy of decentralized learning should be further studied. What are 

the relationships, or mappings, between the decentralized policy and the centralized policy, and 

do they converge to the same point? 

3. Techniques to reduce the search place for optimal communication schemes should be 

applied to avoid exponential computational time. 
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4. The selective decentralization should be applied in more real-world learning problems. 

Two promising areas for application are bioinformatics - system biology: personalized medicine 

and automatic vehicle control. Automatic vehicle control and robotics have been among the main 

applications for reinforcement learning for decades. System biology with large number of gene 

and undiscovered biological knowledge suggests that decentralized reinforcement learning could 

be a promising approach.
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APPENDIX. DECOST FRAMEWORK: REINFORCEMENT LEARNING – 
CONTROL SYSTEM APPLICATION IN DRUG REPURPOSING 

This appendix contains more details on the dataset, system setup and biological insights for section 

9.2, where I present applying Reinforcement learning and control system in drug repurposing. 

Biological insights 

Therapeutic scores for Breast Cancer Drugs 

From the Integrated Breast Cancer Pathway [131] on Wikipathway (section III.1) and the Breast 

Cancer drug list, we queried 222 drug-protein interactions for the drugs’ treatment vectors 

(Supplemental Table S2). Supplemental Table S3 contains the initial condition vector from 

GEO2R expression analysis. 

 

Figure A1 shows that the Td score is able to give appropriate ranking for most of the well-known 

therapeutic drugs and suggest candidate drugs for repurposing in Breast Cancer ER-positive case. 

Td score reflexes the difference between the D1 and D2 drugs with receiver operator characteristic 

[132] area under the curve (AUC) of 0.76. We did not setup training set and test set for 

classification because the model construction and Td calculation does not need the drug categories. 

The Td scores for D1 drugs in Breast Cancer ER-negative case are relatively lower than the scores 

for ER-positive case (Figure A2). Using Td for classifying D1 and D2 drugs yields AUC of 0.68. 

In fact, clinical trials and literature have showed several drugs which are effective in ER-positive 

treatment but show little or no impact in ER-negative treatment. For example, Tamoxifen (Td ER-

positive: 0.294, Td ER-negative: 0.176), which is a selective estrogen receptor modulator, does not 

prevent ER-negative Breast Cancer, when the estrogen receptor genes do not express [133, 134]. 
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Figure A1. Td score in Breast Cancer, ER-positive subtype; the horizontal bars in each group 
stand for median value of Td 

 

Figure A2. Td score in Breast Cancer, ER-negative subtype; the horizontal bars in each group 
stand for median value of Td 
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Potential drugs for Breast Cancer studies and biological insights 

From the Td scores for D3 drugs, our framework suggests 8 drugs (Erbitux, Flutamide, Medrysone, 

Methylprednisolone, Norethindrone, Prednisolone, Prednisonea and Vandetanib) with high 

potential efficacy in Breast Cancer ER+ drug repurposing. Significantly, these drugs do not 

directly target Estrogen receptor, which is the most well-known approach in Breast Cancer ER+ 

drug design. Tamoxifen is a typical example of Breast Cancer drugs which slows cancer process 

by blocking estrogen hormone receptors, preventing hormones from binding to them. About 80% 

of all breast cancers are ER+: the cancer cells grow in response to the hormone estrogen [135]. 

About 65% of the ER+ cases grow in response to another hormone, progesterone [136]. Tumors 

in ER/PR-positive cases are much more likely to respond to hormone therapy than tumors that are 

ER/PR-negative. ER+ breast cancer entirely depends on the estrogen for growth and propagation 

involving genomic and non-genomic pathways. Epidermal growth factor receptor (EGFR) is a 

receptor found on both normal and tumor cells that is important for cell growth [137]. ER-positive 

(ER+) drugs recommended for repurposing in this framework block the activities and growth of 

EGFR. These drugs show different mechanism of action with the common objective of the 

inhibition of the growth of cancerous cells. By adjusting and modifying the known biases of the 

interactomic networks, our procedure would help to reveal the therapeutic effect of drugs along 

with effective treatments. 

 

For Breast Cancer ER- case, our framework suggests Daunorubicin and Donepezil as the 

repurposing candidates. These drugs are independent of estrogen and usually inhibit the cell 

growth by either interacting with DNA or inhibiting Cholinesterases. Daunorubicin interacts with 

DNA by intercalation and inhibition of macromolecular biosynthesis [138]. This inhibits the 

progression of the enzyme topoisomerase II, and thereby stopping the process of replication. 
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Donepezil is in a class of cholinesterase inhibitor that improves mental function and fatigue in 

cancer. The current research focused on recent large-scale efforts to systematically find 

repositioning candidates and elucidate individual disease mechanisms in cancer [139]. 

Personalized medicine and repositioning both aim to improve the productivity of current drug 

discovery pipelines. Standard drug discovery strategies can also lead to repositioning opportunities. 

D1, D2, and D3 drugs found to potently modulate the desired activity are repositioning candidates. 
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