459 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Wireless Heterogeneous Networks and Next Generation Internet

    Get PDF
    The recent advances in wireless access technologies as well as the increasing number of mobile applications have made Wireless Internet a reality. A wide variety of bandwidth demanding services including high speed data delivery and multimedia communication have been materialized through the convergence of the next generation Internet and heterogeneous wireless networks. However, providing even higher bandwidth and richer applications necessitates a fundamental understanding of wireless Internet architecture and the interactions between heterogeneous users. Consequently, fundamental advances in many concepts of the wireless Internet are required for the ultimate goal of communication anytime anywhere. This special issue of the ACM Mobile Networks and Applications Journal is dedicated to the recent advances in the area of Wireless Internet. We accepted 10 papers out of 59 submissions from all over the world with a 17% acceptance rate. Papers describing management schemes, protocols, models, evaluation methods, and experimental studies of Wireless Internet are included in this special issue to provide a broad view of recent advances in this field

    Wireless Heterogeneous Networks and Next Generation Internet

    Get PDF
    The recent advances in wireless access technologies as well as the increasing number of mobile applications have made Wireless Internet a reality. A wide variety of bandwidth demanding services including high speed data delivery and multimedia communication have been materialized through the convergence of the next generation Internet and heterogeneous wireless networks. However, providing even higher bandwidth and richer applications necessitates a fundamental understanding of wireless Internet architecture and the interactions between heterogeneous users. Consequently, fundamental advances in many concepts of the wireless Internet are required for the ultimate goal of communication anytime anywhere. This special issue of the ACM Mobile Networks and Applications Journal is dedicated to the recent advances in the area of Wireless Internet. We accepted 10 papers out of 59 submissions from all over the world with a 17% acceptance rate. Papers describing management schemes, protocols, models, evaluation methods, and experimental studies of Wireless Internet are included in this special issue to provide a broad view of recent advances in this field

    Design and investigation of scalable multicast recursive protocols for wired and wireless ad hoc networks

    Get PDF
    The ever-increasing demand on content distribution and media streaming over the Internet has created the need for efficient methods of delivering information. One of the most promising approaches is based on multicasting. However, multicast solutions have to cope with several constraints as well as being able to perform in different environments such as wired, wireless, and ad hoc environments. Additionally, the scale and size of the Internet introduces another dimension of difficulty. Providing scalable multicast for mobile hosts in wireless environment and in mobile ad hoc networks (MANETs) is a challenging problem. In the past few years, several protocols have been proposed to efficient multicast solutions over the Internet, but these protocols did not give efficient solution for the scalability issue. In this thesis, scalable multicast protocols for wired, wireless and wireless ad hoc networks are proposed and evaluated. These protocols share the idea of building up a multicast tree gradually and recursively as join/leave of the multicast group members using a dynamic branching node-based tree (DBT) concept. The DBT uses a pair of branching node messages (BNMs). These messages traverse between a set of dynamically assigned branching node routers (BNRs) to build the multicast tree. In the proposed protocols only the branching node routers (BNRs) carry the state information about their next BNRs rather than the multicast group members, which gives a fixed size of control packet header size as the multicast group size increases, i.e. a good solution to the problem of scalability. Also the process of join/leave of multicast group members is carried out locally which gives low join/leave latency. The proposed protocols include: Scalable Recursive Multicast protocol (SReM) which is proposed using the DBT concepts mentioned above, Mobile Scalable Recursive Multicast protocol (MoSReM) which is an extension for SReM by taking into consideration the mobility feature in the end hosts and performing an efficient roaming process, and finally, a Scalable Ad hoc Recursive Multicast protocol (SARM) to achieve the mobility feature for all nodes and performing an efficient solution for link recovery because of node movement. By cost analysis and an extensive simulation, the proposed protocols show many positive features like fixed size control messages, being scalable, low end to end delay, high packet rate delivery and low normalized routing overhead. The thesis concludes by discussing the contributions of the proposed protocols on scalable multicast in the Internet society

    Review of multicast QoS routing protocols for mobile ad hoc networks

    Get PDF
    A Mobile Ad hoc NETwork (MANET) is consisting of a collection of wireless mobile nodes, which form a temporary network without relying on any existing infrastructure or centralized administration. Since the bandwidth of MANETs is limited and shared between the participating nodes in the network, it is important to efficiently utilize the network bandwidth. Multicasting can minimize the link bandwidth consumption and reduce the communication cost by sending the same data to multiple participants. Multicast service is critical for applications that need collaboration of team of users. Multicasting in MANETs becomes a hot research area due to the increasing popularity of group communication applications such as video conferencing and interactive television. Recently, multimedia and group-oriented computing gains more popularity for users of ad hoc networks. So, effective Quality of Service (QoS) multicasting protocol plays significant role in MANETs. In this paper, we are presenting an overview of set of the most recent QoS multicast routing protocols that have been proposed in order to provide the researchers with a clear view of what has been done in this field

    Atomic-SDN: Is Synchronous Flooding the Solution to Software-Defined Networking in IoT?

    Get PDF
    The adoption of Software Defined Networking (SDN) within traditional networks has provided operators the ability to manage diverse resources and easily reconfigure networks as requirements change. Recent research has extended this concept to IEEE 802.15.4 low-power wireless networks, which form a key component of the Internet of Things (IoT). However, the multiple traffic patterns necessary for SDN control makes it difficult to apply this approach to these highly challenging environments. This paper presents Atomic-SDN, a highly reliable and low-latency solution for SDN in low-power wireless. Atomic-SDN introduces a novel Synchronous Flooding (SF) architecture capable of dynamically configuring SF protocols to satisfy complex SDN control requirements, and draws from the authors' previous experiences in the IEEE EWSN Dependability Competition: where SF solutions have consistently outperformed other entries. Using this approach, Atomic-SDN presents considerable performance gains over other SDN implementations for low-power IoT networks. We evaluate Atomic-SDN through simulation and experimentation, and show how utilizing SF techniques provides latency and reliability guarantees to SDN control operations as the local mesh scales. We compare Atomic-SDN against other SDN implementations based on the IEEE 802.15.4 network stack, and establish that Atomic-SDN improves SDN control by orders-of-magnitude across latency, reliability, and energy-efficiency metrics

    Towards QoS provisioning in a heterogeneous carrier-grade wireless mesh access networks using unidirectional overlay cells

    Get PDF
    Proceedings of: 6th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, QShine 2009 and 3rd International Workshop on Advanced Architectures and Algorithms for Internet Delivery and Applications, AAA-IDEA 2009, Las Palmas, Gran Canaria, November 23-25, 2009The visibility and success ofWireless Mesh Network (WMN) deployments has raised interest among commercial operators in this technology. Compared to traditional operator access networks WMNs have the potential to offer easier deployment and flexible self-reconfiguration at lower costs. A WMN-type architecture considered as an alternative for an operator access network must meet similar requirements such as high availability and guaranteed QoS in order to support triple-play content provisioning. In this paper we introduce an architecture of such a Carrier-grade Wireless Mesh Access Network (CG-WMAN). We then present our contribution, an approach to seamlessly integrate unidirectional broadcast cells (i.e. DVB-T) into such a CG-WMAN. This allows higher layer protocols to utilize broadcast cells like regular mesh links, where beneficial for a given payload and receiver distribution. We then present a typical use case and discuss for which combinations of traffic type, user distribution and QoS requirements the use of longer range broadcast technologies can help to improve the overall CG-WMAN performance in terms of throughput and reliability.European Community's Seventh Framework ProgramPublicad

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Architectural and mobility management designs in internet-based infrastructure wireless mesh networks

    Get PDF
    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous ap- plications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility management techniques for mobile users to achieve seamless roam- ing. Mobility management includes handoff management and location management. The objective of this research is to design new handoff and location management techniques for Internet-based infrastructure WMNs. Handoff management enables a wireless network to maintain active connections as mobile users move into new service areas. Previous solutions on handoff manage- ment in infrastructure WMNs mainly focus on intra-gateway mobility. New handoff issues involved in inter-gateway mobility in WMNs have not been properly addressed. Hence, a new architectural design is proposed to facilitate inter-gateway handoff man- agement in infrastructure WMNs. The proposed architecture is designed to specifi- cally address the special handoff design challenges in Internet-based WMNs. It can facilitate parallel executions of handoffs from multiple layers, in conjunction with a data caching mechanism which guarantees minimum packet loss during handoffs. Based on the proposed architecture, a Quality of Service (QoS) handoff mechanism is also proposed to achieve QoS requirements for both handoff and existing traffic before and after handoffs in the inter-gateway WMN environment. Location management in wireless networks serves the purpose of tracking mobile users and locating them prior to establishing new communications. Existing location management solutions proposed for single-hop wireless networks cannot be directly applied to Internet-based WMNs. Hence, a dynamic location management framework in Internet-based WMNs is proposed that can guarantee the location management performance and also minimize the protocol overhead. In addition, a novel resilient location area design in Internet-based WMNs is also proposed. The formation of the location areas can adapt to the changes of both paging load and service load so that the tradeoff between paging overhead and mobile device power consumption can be balanced, and at the same time, the required QoS performance of existing traffic is maintained. Therefore, together with the proposed handoff management design, efficient mobility management can be realized in Internet-based infrastructure WMNs

    Scalable and Secure Multicast Routing for Mobile Ad-hoc Networks

    Get PDF
    Mobile Ad-Hoc Networks (MANETs) are decentralized and autonomous communication systems: They can be used to provide connectivity when a natural disaster has brought down the infrastructure, or they can support freedom of speech in countries with governmental Internet restrictions. MANET design requires careful attention to scalability and security due to low-capacity and error-prone wireless links as well as the openness of these systems. In this thesis, we address the issue of multicast as a means to efficiently support the MANET application of group communication on the network layer. To this aim, we first survey the research literature on the current state of the art in MANET routing, and we identify a gap between scalability and security in multicast routing protocols–two aspects that were only considered in isolation until now. We then develop an explicit multicast protocol based on the design of a secure unicast protocol, aiming to maintain its security properties while introducing minimal overhead. Our simulation results reveal that our protocol reduces bandwidth utilization in group communication scenarios by up to 45 % compared to the original unicast protocol, while providing significantly better resilience under blackhole attacks. A comparison with pure flooding allows us to identify a practical group size limit, and we present ideas for better large-group support
    corecore