762 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    QoS multicast routing protocol oriented to cognitive network using competitive coevolutionary algorithm

    Get PDF
    The human intervention in the network management and maintenance should be reduced to alleviate the ever-increasing spatial and temporal complexity. By mimicking the cognitive behaviors of human being, the cognitive network improves the scalability, self-adaptation, self-organization, and self-protection in the network. To implement the cognitive network, the cognitive behaviors for the network nodes need to be carefully designed. Quality of service (QoS) multicast is an important network problem. Therefore, it is appealing to develop an effective QoS multicast routing protocol oriented to cognitive network. In this paper, we design the cognitive behaviors summarized in the cognitive science for the network nodes. Based on the cognitive behaviors, we propose a QoS multicast routing protocol oriented to cognitive network, named as CogMRT. It is a distributed protocol where each node only maintains local information. The routing search is in a hop by hop way. Inspired by the small-world phenomenon, the cognitive behaviors help to accumulate the experiential route information. Since the QoS multicast routing is a typical combinatorial optimization problem and it is proved to be NP-Complete, we have applied the competitive coevolutionary algorithm (CCA) for the multicast tree construction. The CCA adopts novel encoding method and genetic operations which leverage the characteristics of the problem. We implement and evaluate CogMRT and other two promising alternative protocols in NS2 platform. The results show that CogMRT has remarkable advantages over the counterpart traditional protocols by exploiting the cognitive favors

    Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks

    Get PDF
    This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the NP-complete multicast routing problem (MRP). The main contribution is the extension of PSO from continuous domain to the binary or discrete domain. Firstly, a novel bi-velocity strategy is developed to represent possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP where 1 stands for a node being selected to construct the multicast tree while 0 stands for being otherwise. Secondly, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the OR-library (Operation Research Library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly as it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on GA, ACO, and PSO

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    GMPLS-OBS interoperability and routing acalability in internet

    Get PDF
    The popularization of Internet has turned the telecom world upside down over the last two decades. Network operators, vendors and service providers are being challenged to adapt themselves to Internet requirements in a way to properly serve the huge number of demanding users (residential and business). The Internet (data-oriented network) is supported by an IP packet-switched architecture on top of a circuit-switched, optical-based architecture (voice-oriented network), which results in a complex and rather costly infrastructure to the transport of IP traffic (the dominant traffic nowadays). In such a way, a simple and IP-adapted network architecture is desired. From the transport network perspective, both Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) technologies are part of the set of solutions to progress towards an IP-over-WDM architecture, providing intelligence in the control and management of resources (i.e. GMPLS) as well as a good network resource access and usage (i.e. OBS). The GMPLS framework is the key enabler to orchestrate a unified optical network control and thus reduce network operational expenses (OPEX), while increasing operator's revenues. Simultaneously, the OBS technology is one of the well positioned switching technologies to realize the envisioned IP-over-WDM network architecture, leveraging on the statistical multiplexing of data plane resources to enable sub-wavelength in optical networks. Despite of the GMPLS principle of unified control, little effort has been put on extending it to incorporate the OBS technology and many open questions still remain. From the IP network perspective, the Internet is facing scalability issues as enormous quantities of service instances and devices must be managed. Nowadays, it is believed that the current Internet features and mechanisms cannot cope with the size and dynamics of the Future Internet. Compact Routing is one of the main breakthrough paradigms on the design of a routing system scalable with the Future Internet requirements. It intends to address the fundamental limits of current stretch-1 shortest-path routing in terms of RT scalability (aiming at sub-linear growth). Although "static" compact routing works fine, scaling logarithmically on the number of nodes even in scale-free graphs such as Internet, it does not handle dynamic graphs. Moreover, as multimedia content/services proliferate, the multicast is again under the spotlight as bandwidth efficiency and low RT sizes are desired. However, it makes the problem even worse as more routing entries should be maintained. In a nutshell, the main objective of this thesis in to contribute with fully detailed solutions dealing both with i) GMPLS-OBS control interoperability (Part I), fostering unified control over multiple switching domains and reduce redundancy in IP transport. The proposed solution overcomes every interoperability technology-specific issue as well as it offers (absolute) QoS guarantees overcoming OBS performance issues by making use of the GMPLS traffic-engineering (TE) features. Keys extensions to the GMPLS protocol standards are equally approached; and ii) new compact routing scheme for multicast scenarios, in order to overcome the Future Internet inter-domain routing system scalability problem (Part II). In such a way, the first known name-independent (i.e. topology unaware) compact multicast routing algorithm is proposed. On the other hand, the AnyTraffic Labeled concept is also introduced saving on forwarding entries by sharing a single forwarding entry to unicast and multicast traffic type. Exhaustive simulation campaigns are run in both cases in order to assess the reliability and feasible of the proposals

    A Rough Penalty Genetic Algorithm for Multicast Routing in Mobile Ad Hoc Networks

    Get PDF
    Multicast routing is an effective way to transmit messages to multiple hosts in a network. However, it is vulnerable to intermittent connectivity property in mobile ad hoc network (MANET) especially for multimedia applications, which have some quality of service (QoS) requirements. The goal of QoS provisioning is to well organize network resources to satisfy the QoS requirement and achieve good network delivery services. However, there remains a challenge to provide QoS solutions and maintain end-to-end QoS with user mobility. In this paper, a novel penalty adjustment method based on the rough set theory is proposed to deal with path-delay constraints for multicast routing problems in MANETs. We formulate the problem as a constrained optimization problem, where the objective function is to minimize the total cost of the multicast tree subject to QoS constraints. The RPGA is evaluated on three multicast scenarios and compared with two state-of-the-art methods in terms of cost, success rate, and time complexity. The performance analyses show that this approach is a self-adaptive method for penalty adjustment. Remarkably, the method can address a variety of constrained multicast routing problems even though the initial routes do not satisfy all QoS requirements

    Tools for traffic engineering on IP networks

    Get PDF
    In this work, an user friendly software application is proposed, built on top of a network optimization framework, aiming to make traffic engineering an easier task for IP network administrators. This framework was developed in the Center of Computer Science and Technology (CCTC) of the University of Minho and allows the improvement of quality of service levels in TCP/IP based networks, by configuring the routing weights of link-state protocols, such as OSPF. This goal is achieved mainly using Evolutionary Algorithms as the optimization engines, while networks are represented using graph-based mathematical models. These methods allow the optimization of distinct cost functions, using penalties that take into account several measures of network performance such as network congestion and average end-to-end delays. The main goal of this work is to create a structured graphical user interface to support the optimization framework, enabling the user to simulate the effects of diferente OSPF settings, to obtain highly optimized configurations and to compare different weight setting optimization methods
    • 

    corecore