
Tools for Traffic Engineering on IP Networks
Tiago Sá

CCTC
University of Minho

Campus de Gualtar, Braga, Portugal
Email: tiagosa@di.uminho.pt

Miguel Rocha
CCTC

University of Minho
Campus de Gualtar, Braga, Portugal

Email: mrocha@di.uminho.pt

Pedro Sousa
CCTC

University of Minho
Campus de Gualtar, Braga, Portugal

Email: pns@di.uminho.pt

Abstract—In this work, an user friendly software application

is proposed, built on top of a network optimization framework,

aiming to make traffic engineering an easier task for IP network

administrators. This framework was developed in the Center of

Computer Science and Technology (CCTC) of the University of

Minho and allows the improvement of quality of service levels in

TCP/IP based networks, by configuring the routing weights of

link-state protocols, such as OSPF. This goal is achieved mainly

using Evolutionary Algorithms as the optimization engines,

while networks are represented using graph-based mathematical

models. These methods allow the optimization of distinct cost

functions, using penalties that take into account several measures

of network performance such as network congestion and average

end-to-end delays. The main goal of this work is to create a

structured graphical user interface to support the optimization

framework, enabling the user to simulate the effects of different

OSPF settings, to obtain highly optimized configurations and to

compare different weight setting optimization methods.

Index Terms—Traffic Engineering, Routing protocols, Network

management, Evolutionary Algorithms, Open-source Software.

I. INTRODUCTION

During the last years, various kinds of applications have
been integrated over IP converged networks, increasing the
requirements on the ability to provision adequate service
levels. In order to address this issue, researchers came up with
many different Quality of Service (QoS) solutions and traffic
control mechanisms, mostly based on traffic prioritization and
selective resource reservation [1].

There is no single solution to provide this kind of perfor-
mance and, in general, achieving reasonable service quality
requires several components to work seamlessly.

Besides the QoS mechanisms, there are other factors which
play a crucial role on the networking performance, like the way
data routing is controlled across a given domain. This work
focuses on the Open Shortest Path First (OSPF) intra-domain
routing protocol, extremely popular due to its simplicity and
ease of implementation [9] [10]. In order to perform its job,
the administrator sets specific weights to every link in the
network, which are then used to compute the best paths
from each source to each destination, using the well-known
Dijkstra algorithm, resulting on the nodes’ routing tables
[3]. This weight setting process has a major impact on the
networking performance, although in practice simple methods
and heuristics are commonly used, like setting the weights
inversely proportional to the link capacity. However, this often
leads to sub-optimal network resource utilization.

Another approach was taken by Fortz et al. [2], where OSPF
wight setting is implemented using traffic engineering, assum-
ing that the administrator has access to a matrix representing
traffic demands between each pair of nodes in the network.
These authors face this task as an optimization problem, by
defining a cost function that measures the network congestion.

In previous work, the authors proposed a new approach
[4] [5], also accommodating delay based constraints, that are
crucial to implement QoS aware networking services. In this
work, optimization algorithms were used to calculate link-
state routing weights that optimize traffic congestion, while
simultaneously complying with specific delay requirements,
providing a multi-constrained QoS aware optimization frame-
work, proved to clearly outperform the common OSPF weight
setting heuristics.

Although the published results are competitive, this traffic
engineering mechanism that efficiently performs the weight
setting task is still emerging within the research community,
and there is the need to put it in practice, in real case scenarios.
The main goal of this work is, therefore, to develop an user-
friendly software application, to be used by any network
administrator that allows to apply the developed optimization
methods in real environments, like Internet Service Providers
(ISPs) or large-scale networking domains.

In order to fill this gap, an application was developed to
simplify the use of the existing framework, by hiding the
complexity of the optimization tasks, making the administra-
tion job easier and more efficient. This application provides a
Graphical User Interface (GUI) to improve the interaction with
the user, eliminating any requirement for programming skills.
Several operations were defined to better allow manipulating
data structures, executing optimization algorithms, retrieving
the results of simulation and optimization tasks, etc. Data
can also be displayed in different forms, in different views,
adapted for improved efficiency. This tool was developed in
a structured way, in different conceptual layers, divided into
modular components which can be easily extended with new
functionalities.

The paper proceeds with a description of the optimization
framework used, including the methods used in network
representation and in OPSF weight setting. Then, the soft-
ware application is described, including the requirements and
functionalities, as well as implementation details. The paper
finishes with conclusions and further work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A
B

[10
0M

bp
s,5

0m
s]

[100Mbps,100ms]

[1Mbps,10ms]

[10Mbps,50ms]

[10Mbps,80ms] [100Mbps,50ms]

[1Mbps,10ms]

[1
0M

bp
s,6

0m
s]

[100Mbps,70ms] [50
Mbp

s,5
ms]

[2M
bp

s,5
ms]

PATH 1
PATH 2

Network 
Management 

Tool

Network 
Administrator

weight

weight weight weight weight

weight weight
weight

weight

Network Scenario Example

Solution

Fig. 1. Example of a network scenario.

II. METHODS FOR OSPF WEIGHT SETTING

This section presents an overview of the mathematical
problem that gives ground to the optimization task, which can
be tackled using different optimization algorithms.

A. Problem Definition

The developed application is supported by the optimization
framework presented by the authors in [5], which aims to
provide network administrators with efficient OSPF link con-
figurations, taking into account the users demands, the network
topology and corresponding characteristics of a given network
domain.

This work assumes that client demands are mapped into a
matrix1 summarizing, for each source/destination router pair,
a given amount of bandwidth and a target end-to-end delay
required to be supported by the network domain.

As an illustrative example, consider the network scenario
included in Fig.1, involving an individual demand between two
network nodes (A and B). If the demand is mainly expressed in
terms of a delay target, then the administrator, in the absence
of other traffic, should be able to compute OSPF weights that
would result in a data path with the minimum end-to-end
delay between the network nodes (PATH 1). In opposition, if
no delay requirements are imposed, and the only constraint
between A and B is a given bandwidth requirement, then
the optimization methods would try to minimize the network
congestion and assign OSPF weights to force a data path
inducing the lowest level of losses in the traffic (PATH 2).
These two distinct optimization aims would result in two
distinct sets of OSPF weights.

Additionally, if one considers that a given demand has
simultaneously bandwidth and delay constraints, then it is
expected that the OSPF weight setting process would try to
find a data path representing a trade-off between both. The

1There are several techniques on how to obtain traffic demand matrices [6]
[7] which provide estimations regarding the overall QoS requirements within
a given network domain.

example in Fig.1 is extremely straightforward, due to the fact
that one simple demand was considered in the traffic traversing
the network domain. Taking into account the fact that each
router pair of a given ISP may have specific multi-constrained
QoS requirements (i.e. congestion vs. delay demands), it is
easy to understand how complex can the problem get, with
the need of obtaining OSPF settings able to optimize multiple
parameters of a given network domain.

The general routing problem, that underpins this work,
represents routers and transmission links by a set of nodes and
a set of arcs, respectively, in a directed graph [8]. Each arc
has a specific bandwidth capacity and an average propagation
delay, both intrinsic in the network topology 2.

Additionally, a demand matrix is available, where each
element represents the traffic demand between each pair of
nodes, allowing to calculate the total load on each arc. This
value is used to define a congestion measure for each link,
resulting on a penalty function that becomes more expensive
and exponentially penalizes high values of congestion.

The framework was enriched with the inclusion of delay
requirements for each pair of routers in the network. These
are modeled as a matrix that, for each pair of nodes, gives
the delay target for traffic between the origin and destination.
Again, a cost function was developed to evaluate the delay
compliance for each scenario. This, in turn, allowed the
definition of a delay minimization cost function.

In OSPF, all arcs are associated with an integer weight.
Every node uses these weights as an input to the Dijkstra
algorithm [3] to calculate the shortest paths to all other nodes
in the network. All the traffic from a given source to a
destination travels along the shortest path, except when two
or more paths have the same length3. In that case, traffic is
evenly divided among the arcs in these paths (load balancing)
[13].

2Note that it was considered that, in the scenarios where this work would
be applicable, the delay in each path is dominated by the component given
by propagation delays in its arcs and that queuing delays can be neglected.

3This feature can be fine-tuned in the routing protocol.



The bi-objective optimization problem addressed in our
framework aims to find the set of OSPF weights that simulta-
neously minimizes the cost functions associated with network
congestion and average end-to-end delays in a network do-
main. Details on the mathematical definitions of this functions
can be found in [5].

B. Algorithms for OSPF

Different methods and heuristics can be used in order to
solve the optimization problem described in Section II-A. Our
framework supports different types of optimization algorithms.
Part of those have been implemented in the current version of
the software application proposed here.

As mentioned, the base optimization framework resorts
to the use of Evolutionary Algorithms (EAs) in order to
improve the performance of a given network domain [4]. In
the developed EA, each individual encodes a solution as a
vector of integer values, where each value (gene) corresponds
to the weight of a link in the network. Therefore, the size of
the individual equals the number of links in the network. The
individuals in the initial population are randomly generated,
with link weights taken from an uniform distribution. In order
to create new solutions, several reproduction operators were
used.

The overall structure of the EA is given by:
1) Generate and evaluate the initial population(P0).
2) While the termination criteria is not met:

a) Select from Pt individuals for reproduction.
b) Apply the reproduction operators to breed the

offspring and evaluate them.
c) Insert the offspring into the next population (Pt+1).
d) Select the survivors from Pt to be kept in Pt+1.

The selection procedure is done by converting the fitness
value into a linear ranking in the population, and then applying
a roulette wheel scheme. The default population size of 100
individuals was considered. When using this EA, the user
specifies a parameter (α) that defines the importance that is
confered to each objective (congestion and delays).

Also, two multi-objective EAs (SPEA2 and NSGAII) were
implemented. Its natural multi-objective orientation makes
them the most adequate algorithms for the job, since no further
parameters are defined by the user.

The Differential Evolution (DE) method differs from the EA
essentially in the reproduction operators. DE generates trial
individuals by calculating vector differences between other
randomly selected members of the population. Since OSPF
weights are integer, it is necessary to round the values used in
the DE before the evaluation. It is important to notice that in
the DE all individuals go through the previous reproduction
step.

A number of heuristic methods were implemented to assess
the order of magnitude of the improvements obtained by the
proposed methods when compared with the traditional weight
setting heuristics:

• InvCap – sets each link weight to a value inversely
proportional to its capacity.

Brite Topology 
Generator

Delay and Demand
Matrices

-Unit
-L2

-InvCap
-Random

Configuration parameters

OSPF Routing Simulator

weight

weight weight weight weight

weight weight

weight

weight

Scenario #n G
ra

ph
ic

al
 U

se
r I

nt
er

fa
ce

Heuristics Evolutionary Algorithms

Cluster

Si
m

ul
at

io
n

O
pt

im
iz

at
io

n

Fig. 2. Platform for performance evaluation.

• L2 – sets each link weight to a value proportional to its
Euclidean distance.

• Random – a number of randomly generated solutions are
analyzed and the best is selected.

• Unit - sets every link weight to one.
An extended performance analysis of the model is presented

in [4] and [5], for a large set of distinct QoS constrained
scenarios. Fig.2 presents the experimental platform that was
implemented and used in that work for benchmarking. The
main components are: a topology generator, a traffic demand
generator, an OSPF simulator, a set of optimization heuristics
and a module implementing the proposed EA. As emphasized
in the figure, the developed application acts as a bridge
between the platform and the user.

III. SOFTWARE

The developed tools allow the creation of Wide Area
Network (WAN) models, setting OSPF weights for each con-
nection and calculating how traffic is routed on the network,
for given arrays of point-to-point requirements. This allows to
calculate measures of network performance in terms of QoS,
such as congestion or average end-to-end delays. An important
component is the implementation of optimization algorithms,
whose aim is to set the value of the OSPF weights on each
connection, in order to improve the network performance, for
specific objective functions, involving some QoS metrics.

A. Requirements and Functionalities

The presented problem imposed a set of requirements,
which were taken into consideration, as guidelines for the
implementation task. One of the main goals of the developed
application was to provide an easy way to make use of the



a)

c)

d)

b)

e) f)

g)

Fig. 3. Screenshots of the application: a) Main application window; b) Weight generation heuristic input dialog; c) Evolutionary Algorithm input dialog; d)
Edge topology view; e) Another topology view; f) Clipboard displaying the main datatypes; g) Weights table resulting from optimization.

existing optimization framework for efficient OSPF weight
setting. This structured application has the responsibility of
hiding the complexity of the problem from the user, possibly
a network administrator without major programming skills, by
creating an abstraction layer between the user and the system.

Another major requirement is modularity. As described in
the previous sections, there are different methods and algo-
rithms which can be applied on the optimization job. Some of
those have been implemented, many others can be developed
and easily explored and plugged into the application, pro-
vided that those new functions meet the specified Application
Programing Interface (API). To achieve the solution for the
problem, the user has to handle different types of data, such as
network topology, demands and delay requests, among others.

Software functionalities or available actions are represented
as operations. When an operation is called, its interface is
launched and the input data objects are selected. After being
triggered, an operation typically creates an instance of an out-
put datatype. The required application features were mapped
in operations, divided in different groups, easily accessible in
the graphical interface. Those are listed below:

• File

– New project from files - Creates a project from text
files specifying the nodes and links details.

– Random Demands/Delay Requests - Generates a
Demands/DelayRequests instance, based on a scale
parameter. Allows to generate data for benchmark-



ing.
– Load/Save - Load or Save data files (Demands,

DelayRequests, OSPFWeights).
• Simulation

– Weight Generation - Creates OSPFWeights based
on the network topology, using different heuristics
(InvCap, Unit, L2, Random).

– Simulate Scenario - Computes resulting Loads and
Delays, based on the topology and selected De-
mands, DelayRequests and OSPFWeights.

• Optimization - Different optimization algorithms compute
OSPFWeights, based on the selected parameters.

• Serialization - Load or Save objects using Serialization.

B. Implementation

Both the optimization framework and the application are
fully implemented in the Java language, which is being in-
creasingly used by the scientific community in the area and
has the advantage of being platform independent.

The application is entirely built on top of AIBench [11], a
software development framework that was born as a collabo-
rative project between researchers from the University of Vigo
and the University of Minho. AIBench is a lightweight, non-
intrusive, MVC-based Java application framework that eases
the connection, execution and integration of operations with
well defined input/output, completely fitting on the optimiza-
tion problem being addressed. The platform was particularly
conceived to facilitate the development of a wide range of re-
search applications based on general input–processing–output
cycles, where the framework acts as the glue between each
executed task.

Building applications over AIBench brings important ad-
vantages to both the developers and the users, given its design
principles and architecture. AIBench based applications tend
to follow the Model-View-Controller (MVC) design pattern.
This leads to units of work with high coherence that can
easily be combined and reused. Furthermore, it is plug-in
based: applications are developed adding components, called
plug-ins, each containing a set of AIBench objects. This
allows reusing and integrating functionality of past and future
developments based on AIBench.

In order to provide the basis for supporting rapid application
development, AIBench manages three key concepts that are
present in every AIBench application: operations, data-types
and views. The developer only needs to concentrate on how to
divide and structure the problem-specific code into objects of
these three entities. The framework will carry out the rest of
the work to generate a completely runnable final application.
These tasks include:

• Producing a GUI under which the user is allowed to select
and execute the implemented functionality.

• Automatically retrieving the user parameters of a given
operation whenever it is needed.

• Running operations, gathering the results and keeping
them available for further use.

• Displaying the results through custom (or default) views.
• Keeping track of all executed operations together with

the information needed to repeat the same (or modified)
workflow in the future.

Software development has taken as a first premise to build a
tool aimed at network administrators and not at computational
or programming experts. Thus, the primary goal in the de-
velopment process was to provide good usability for the final
user.

As previously stated, every AIBench application is divided
into three kinds of components: operations, implementing the
algorithms and data processing routines; data-types, storing
relevant problem-related information; views, rendering data-
types obtained from executed operations. Based on these
concepts, a user-friendly GUI was developed. The layout of
the components can be observed in Fig.3a).

The clipboard, Fig.3f), keeps all data objects created within
the application, in a logical hierarchy, grouped by their
datatypes. The root of this tree is the ProjectBox container,
that keeps a list of instances, representing different problems.

The components of a project are graphically shown in the
form of explicit hierarchical containers, namely:

• The Network Topology includes information about nodes,
edges, capacities, and all the network details;

• The Demands Box and Delay Requests Box hold one or
more instances of Demands or DelayRequests, respec-
tively.

• OSPFWeights, hold sets of OSPF weights, one per each
link in the network. These can be loaded from files or
generated by the implemented operations, are grouped in
the OSPFWeights box.

• Both the ResultSimul and ResultOptim aggregate the
resulting information of the operations.

When an object in the clipboard is double-clicked, the views
corresponding to its datatype will be launched on the right side
of the working area (if more than one view is available, those
are accessible in different tabs). Examples of two views of the
network topology are shown in Figures 3d) and 3e).

All the available operations are easily accessible, either
through the menu in the top or by right clicking the item in
the clipboard area. Snapshots of simulation and optimization
operation input dialogs are shown in Fig.3b) and Fig.3c),
respectively.

As previously mentioned, operation outputs are grouped
together in the respective ResultBox. Fig.3g) shows an example
of the optimization algorithm SPEA2, in this case the resulting
weights table.

All operations are, at the maximum possible level, default-
oriented, thus hiding behind scenes their complexity (e.g. def-
inition of non-obvious parameters). Nevertheless, they allow
more advanced users to fine-tune the parameters available to
a given operation.

The optimization part of the application makes use of
JECoLi, an open-source Java-based library for the implemen-
tation of metaheuristic optimization algorithms with a focus



on Genetic and Evolutionary Computation based methods [16].
JECoLi has been/is being used in several research projects that
share similar optimization needs, ranging application fields
from Bioinformatics to Data Mining.

The graphical presentation of the network topology (Fig.3e)
was produced using Jung [12], a software library that provides
a common and extendible language for the modeling, analysis,
and visualization of data that can be represented as a graph or
network.

C. Availability

The software is made available, together with other re-
sources, in the home page accessible at http://darwin.di.
uminho.pt/netopt/. Readers have access to the source code
and different releases of the application, which is still under
development. Thanks to the platform independence of Java,
the only software requirement is Java JRE 1.6.

D. Case Study and documentation

The developed application benefits from the well-defined
structure of AIBench. The distinction of the components
between operations, data-types and views makes utilization
easier and more efficient. Yet, there is a flexible workflow
that shall be followed to reach these results. Logically, the user
starts by loading the initial datatypes (like network topology
and demands) before triggering the operations. Finally, the
results can be displayed in different ways or saved to files, in
order to improve users’ understanding of the information.

Given the space restrictions of this manuscript a full case
study is detailed in the software documentation given in the
project web site. This also includes a set of How To’s that
detail how the major operations can be achieved with the
application.

IV. CONCLUSION

This paper describes an user-friendly application, built on
top of an existing optimization framework, that allows the
improvement of QoS levels on IP networks. The presented way
of optimizing traffic flow, using OSPF weights, is an important
tool, with no need to modify the basic network model. It can be
an easy way of guaranteeing adequate levels of QoS, avoiding
the typical additional mechanisms and inherent complexity
(e.g. MPLS). From the results observed in the tests, and the
referenced bibliography, the EAs have proven to be, in general,
capable of a very good performance. There is a significant
gain when compared to common heuristics offered by routing
protocols.

One of the interesting conclusions of this work is that
AIBench guided the application development through a lay-
ered programming. The MVC philosophy, defended by this
framework, forced a modular code, which clearly improves the
development efficiency. The resulting application is scalable,
which means that new components, such as datatypes or
algorithms, can be easily plugged into the existing application,
without any significant modification.

The supporting framework is currently under rapid devel-
opment and the most recent functionalities may be integrated
in the future. The class-based [15] and multicast [14] opti-
mization mechanisms are two examples of new developments,
which need integration. J. Pinho et al. have been working
[17] on the parallelization of JEColi, the Java library that
implements the EAs. This interesting feature will certainly
improve the efficiency of the application.

ACKNOWLEDGMENTS

This work was supported by the grant
UMINHO/BII/061/2009 and by the project
PTDC/EIA/64541/2006, both funded by Fundacao para
a Ciencia e Tecnologia (FCT). The authors would like to
thank to Paulo Maia and Paulo Vilaça who kindly helped
with their technical knwoledge.

REFERENCES

[1] Z. Wang. Internet QoS: Architectures and Mechanisms for Quality of

Service. Morgan Kaufmann Publishers, 2001.
[2] B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing

OSPF Weights. In Proceedings of IEEE INFOCOM, pages 519–528,
2000.

[3] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(269-271), 1959.

[4] P. Sousa, M. Rocha, M. Rio, and P.Cortez, Efficient ospf weight
allocation for intra-domain qos optimization in 6th IEEE International

Workshop on IP OPerations and Management, IPOM 2006, LNCS 4268,

pages 37-48, G. Parr, D. Malone, and M. O. Foghlú, Eds. Springer-
Verlag, 2006.

[5] M. Rocha, P. Sousa, P. Cortez and M. Rio, Quality of Service constrained
routing optimization using Evolutionary Computation, Applied Soft

Computing, 11(1), pages 356-364, Elsevier (Jan. 2011)
[6] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic

matrix estimation: Existing techniques and new directions. Computer

Communication Review, 32(4):161–176, 2002.
[7] A. Davy, D. Botvich, and B. Jennings. An efficient process for estimation

of network demand for qos-aware ip networking planning. In G. Parr,
D. Malone, and M. Foghlú, editors, 6th IEEE International Workshop

on IP OPerations and Management, IPOM 2006, LNCS 4268, pages
120–131. Springer-Verlag, 2006.

[8] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows. Prentice Hall, 1993.
[9] J. Moy. RFC 2328: OSPF version 2, April 1998.

[10] T.M. ThomasII. OSPF Network Design Solutions. Cisco Press, 1998.
[11] D. Glez-Peña and M. Reboiro-Jato and P. Maia and M. Rocha and F.

Dı́az. and F. Fdez-Riverola. AIBench: A rapid application development
framework for translational research in biomedicine, Computer Methods

and Programs in Biomedicine, 98(2), pages 191-203, May 2010.
[12] Jung Java Library http://jung.sourceforge.net/
[13] J. Moy. OSPF, Anatomy of an Internet Routing Protocol. Addison

Wesley, 1998.
[14] P. Sousa, M. Rocha, P. Cortez and M. Rio. Multiconstrained Optimiza-

tion of Networks with Multicast and Unicast Traffic. Management of

Converged Multimedia Networks and Services, Springer, LNCS 5274,
pages 139-150, 2008.

[15] P. Sousa, M. Rocha, M. Rio and P. Cortez. Class-Based OSPF Traffic
Engineering Inspired on Evolutionary Computation, Wired/Wireless

Internet Communication, pp. 141-152, Springer-Verlag , 2007.
[16] P. Evangelista, P. Maia and M. Rocha, Implementing Metaheuristic

Optimization Algorithms with JECoLi, Intelligent Systems Design and

Applications(ISDA 2009), pages 505-510, 2009
[17] J. Pinho, M. Rocha and J. L. Sobral. Pluggable Parallelization of

Evolutionary Algorithms Applied to the Optimization of Biological
Processes 18th Euromicro Conference on Parallel, Distributed and

Network-based Processing, pp.395-402, 2010

http://darwin.di.uminho.pt/netopt/
http://darwin.di.uminho.pt/netopt/
http://jung.sourceforge.net/

	Introduction
	Methods for OSPF Weight setting
	Problem Definition
	Algorithms for OSPF

	Software
	Requirements and Functionalities
	Implementation
	Availability
	Case Study and documentation

	Conclusion
	References

