8 research outputs found

    A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Get PDF
    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring

    Design of a WSN for the sampling of environmental variability in complex terrain

    Get PDF
    Las mediciones de parámetros ambientales in situ utilizando sistemas de sensores conectados a una red inalámbrica se han generalizado, pero el problema de monitorear áreas grandes y montañosas por medio de una red de sensores inalámbricos (WSN) no está bien resuelto. Las principales razones de esto son: (1) la distribución de la variabilidad ambiental es desconocida en el campo; (2) sin este conocimiento, sería necesario un gran número de sensores para asegurar la cobertura completa de la variabilidad ambiental y (3) los requisitos de diseño de WSN, por ejemplo, la conectividad efectiva (intervisibilidad), las distancias límite y la redundancia controlada por prueba y error. Utilizando la temperatura como variable ambiental objetivo, proponemos: (1) un método para determinar las clases ambientales homogéneas a muestrear utilizando el modelo de elevación digital (DEM) y simulaciones geométricas y (2) un procedimiento para determinar un diseño eficaz de WSN en complejos Terreno en términos de número de sensores, redundancia, coste y distribución espacial. La metodología propuesta, basada en sistemas de información geográfica y programación de números enteros binarios, se puede adaptar fácilmente a una amplia gama de aplicaciones que requieren un monitoreo ambiental exhaustivo y continuo con alta resolución espacial. Los resultados muestran que el diseño WSN es perfectamente adecuado para la topografía y las especificaciones técnicas de los sensores, y proporciona una cobertura completa de la variabilidad ambiental en términos de exposición al sol. Sin embargo, estos resultados aún deben ser validados en el campo y el procedimiento propuesto debe ser refinado.In-situ environmental parameter measurements using sensor systems connected to a wireless network have become widespread, but the problem of monitoring large and mountainous areas by means of a wireless sensor network (WSN) is not well resolved. The main reasons for this are: (1) the environmental variability distribution is unknown in the field; (2) without this knowledge, a huge number of sensors would be necessary to ensure the complete coverage of the environmental variability and (3) WSN design requirements, for example, effective connectivity (intervisibility), limiting distances and controlled redundancy, are usually solved by trial and error. Using temperature as the target environmental variable, we propose: (1) a method to determine the homogeneous environmental classes to be sampled using the digital elevation model (DEM) and geometric simulations and (2) a procedure to determine an effective WSN design in complex terrain in terms of the number of sensors, redundancy, cost and spatial distribution. The proposed methodology, based on geographic information systems and binary integer programming can be easily adapted to a wide range of applications that need exhaustive and continuous environmental monitoring with high spatial resolution. The results show that the WSN design is perfectly suited to the topography and the technical specifications of the sensors, and provides a complete coverage of the environmental variability in terms of Sun exposure. However these results still need be validated in the field and the proposed procedure must be refined.peerReviewe

    Optical Environmental Sensing in Wireless Smart Meter Network

    Get PDF
    In recent years, the traditional power grid is undergoing a profound revolution due to the advent and development of smart grid. Many hard and challenging issues of the traditional grid such as high maintenance costs, poor scalability, low efficiency, and stability can be effectively handled and solve in the wireless smart grid (WSG) by utilizing the modern wireless sensor technology. In a WSG, data are collected by sensors at first and then transmitted to the base station through the wireless network. The control centre is responsible for taking actions based on this received data. Traditional sensors are failing to provide accurate and reliable data in WSG, and optical fiber based sensor are emerging as an obvious choice due to the advancement of optical fiber sensing technology, accuracy, and reliability. This paper presents a WSG platform integrated with optic fiber-based sensors for real-time monitoring. To demonstrate the validity of the concept, fresh water sensing of refractive index (RI) was first experimented with an optical fiber sensor. The sensing mechanism functions with the reflectance at the fiber’s interface where reflected spectra’s intensity is registered corresponding to the change of RI in the ambient environment. The achieved sensitivity of the fabricated fiber sensor is 29.3 dB/RIU within the 1.33–1.46 RI range. An interface between the measured optical spectra and the WSG is proposed and demonstrated, and the data acquired is transmitted through a network of wireless smart meters

    Temperature and relative humidity estimation and prediction in the tobacco drying process using artificial neural networks

    Get PDF
    Producción CientíficaThis paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.Centro para el Desarrollo Tecnológico Industrial (CDTI), proyecto "Mejora de la competitividad del sector del tabaco en Extremadura: nuevos procesos y productos" (under project IDI-20100986)Junta de Castilla y León, financiado por el Plan Regional de Proyectos de Investigación (proyecto VA034A10-2

    Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming

    Get PDF
    [EN] Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN) to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB) which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation.The research leading to these results has received funding from "la Caixa" Foundation and Triptolemos Foundation. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIRCambra-Baseca, C.; Sendra, S.; Lloret, J.; Lacuesta, R. (2018). Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming. Sensors. 18(5):1-16. https://doi.org/10.3390/s18051333S116185Salley, S. W., Sleezer, R. O., Bergstrom, R. M., Martin, P. H., & Kelly, E. F. (2016). A long-term analysis of the historical dry boundary for the Great Plains of North America: Implications of climatic variability and climatic change on temporal and spatial patterns in soil moisture. Geoderma, 274, 104-113. doi:10.1016/j.geoderma.2016.03.020Yang, H., Du, T., Qiu, R., Chen, J., Wang, F., Li, Y., … Kang, S. (2017). Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agricultural Water Management, 179, 193-204. doi:10.1016/j.agwat.2016.05.029Ferentinos, K. P., Katsoulas, N., Tzounis, A., Bartzanas, T., & Kittas, C. (2017). Wireless sensor networks for greenhouse climate and plant condition assessment. Biosystems Engineering, 153, 70-81. doi:10.1016/j.biosystemseng.2016.11.005Ibayashi, H., Kaneda, Y., Imahara, J., Oishi, N., Kuroda, M., & Mineno, H. (2016). A Reliable Wireless Control System for Tomato Hydroponics. Sensors, 16(5), 644. doi:10.3390/s16050644Ntinas, G. K., Neumair, M., Tsadilas, C. D., & Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of Cleaner Production, 142, 3617-3626. doi:10.1016/j.jclepro.2016.10.106Europapress Newshttp://www.europapress.es/andalucia/almeria-00350/noticia-superficie-invernaderos-crece-105-ultimos-cuatro-anos-llegar-29596-hectareas-20150213102204.htmlTreftz, C., & Omaye, S. T. (2016). Hydroponics: potential for augmenting sustainable food production in non-arable regions. Nutrition & Food Science, 46(5), 672-684. doi:10.1108/nfs-10-2015-0118De Anda, J., & Shear, H. (2017). Potential of Vertical Hydroponic Agriculture in Mexico. Sustainability, 9(1), 140. doi:10.3390/su9010140Croft, M. M., Hallett, S. G., & Marshall, M. I. (2017). Hydroponic production of vegetable Amaranth (Amaranthus cruentus) for improving nutritional security and economic viability in Kenya. Renewable Agriculture and Food Systems, 32(6), 552-561. doi:10.1017/s1742170516000478Ferrarezi, R. S., & Testezlaf, R. (2014). Performance of wick irrigation system using self-compensating troughs with substrates for lettuce production. Journal of Plant Nutrition, 39(1), 147-161. doi:10.1080/01904167.2014.983127Understanding Irrigation Water Test Results and Their Implications on Nursery and Greenhouse Crophttps://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1160&context=anr_reportsKim, H.-J., Kim, D.-W., Kim, W. K., Cho, W.-J., & Kang, C. I. (2017). PVC membrane-based portable ion analyzer for hydroponic and water monitoring. Computers and Electronics in Agriculture, 140, 374-385. doi:10.1016/j.compag.2017.06.015(2017). Remote Sensing for Irrigation of Horticultural Crops. Horticulturae, 3(2), 40. doi:10.3390/horticulturae3020040Suárez-Albela, M., Fraga-Lamas, P., Fernández-Caramés, T., Dapena, A., & González-López, M. (2016). Home Automation System Based on Intelligent Transducer Enablers. Sensors, 16(10), 1595. doi:10.3390/s16101595Zhang, Q., Yang, X., Zhou, Y., Wang, L., & Guo, X. (2007). A wireless solution for greenhouse monitoring and control system based on ZigBee technology. Journal of Zhejiang University-SCIENCE A, 8(10), 1584-1587. doi:10.1631/jzus.2007.a1584Gill, S. S., Chana, I., & Buyya, R. (2017). IoT Based Agriculture as a Cloud and Big Data Service. Journal of Organizational and End User Computing, 29(4), 1-23. doi:10.4018/joeuc.2017100101Nordic Semiconductor, RF Specialist in Ultra-Low Power Wireless Communicationshttp://www.nordicsemi.com/eng/Products/2.4GHzRF/nRF24L01Pawlowski, A., Guzman, J., Rodríguez, F., Berenguel, M., Sánchez, J., & Dormido, S. (2009). Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control. Sensors, 9(1), 232-252. doi:10.3390/s90100232Li, X., Cheng, X., Yan, K., & Gong, P. (2010). A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network. Sensors, 10(10), 8963-8980. doi:10.3390/s10100896

    New algorithms for improving the probability of strong barrier coverage using mobile nodes

    Get PDF
    U ovoj tezi se razmatra problem pokrivenosti bežičnim senzorskim mrežama u slučaju stohastičkog razmeštaja čvorova u određenom regionu od interesa. Stohastički razmeštaj čvorova je jedini način instalacije mreže u situacijama kada je pristup terenu otežan ili nemoguć. Tipični primeri ovog načina instalacije nalaze se u oblasti vojnih primena. U vojnim aplikacijama, najčešće je potrebno obezbediti dobru pokrivenost regiona od interesa senzorskim poljem, bez obzira na činjenicu što se senzori ne mogu manuelno smestiti u optimalnim pozicijama gde je pokrivenost maksimalna pri minimalnom broju senzorskih čvorova i pri određenom nivou robusnosti i redundatnosti mreže. Štaviše, ovakav vid instalacije se može realizovati uglavnom samo upotrebom artiljerije ili avijacije te je, u ovim uslovima, pre nego što se pristupi optimizaciji mreže po pitanju potrošnje energije, sigurnosti i pouzdanosti, potrebno odrediti fundamentalne parametre pri kojima se može postići osnovna funkcionalnost mreže, odnosno određeni stepen pokrivenosti područja od interesa i potrebna konektivnost. Područje od interesa može biti region bilo kojeg oblika. U vojnim aplikacijama, to je najčešće geografsko područje površine od 5 do 20 . Ako je cilj očitavanje veličina iz čitavog regiona, govorimo o pokrivenosti regiona. Drugi čest slučaj primene senzorskih mreža u vojnim aplikacijama, odnosi se na obezbeđivanje određene linije između dva regiona po pitanju prelaska neprijateljskih vojnih trupa sa jednog regiona na drugi. U ovom slučaju se govori o pokrivenosti barijere.This thesis treats the problem of the network coverage in randomly deployed wireless sensor networks. Placing the nodes quasi-randomly is often the only way of deploying the network in geographically inaccessible regions. This way of deployment is often present in military applications. In military applications, high quality of the network coverage is usually a primary goal, despite the fact that the nodes cannot be placed manually in the optimal positions where they would all together provide the highest coverage, a certain degree of robustness, and redundancy, by using the minimum number of nodes. Bearing in mind that this kind of installation is usually realized by using artillery or the aircrafts, before approaching the energy, security, and reliability optimization, it is important for the application to meet the basic functionality, i. e., it is important for the values of the basic parameters that provide a certain degree of the network coverage and connectivity for a given area of interest to be assessed. The area of interest can be a region of any shape. In military applications, it is usually the region of size 5-20 . If the aim is for the whole area to be covered, we deal with the area coverage. Another usual example of the appliance of the wireless sensor networks in military applications is related to the detection of intruders while attempting to cross the line between two regions. In this case, we deal with the barrier coverage

    PLAtaforma TEcnológica Multimedia para la Agricultura de Precisión (PLATEM Precision Agriculture)

    Full text link
    [ES] Hay muchos trabajos relacionados con la automatización de procesos en agricultura. Con la revolución del Internet de las Cosas (del Inglés, Internet of things o IoT) están apareciendo en el mercado multitud de dispositivos capaces de interconectar sensores. Más enfocado a la agricultura intensiva, aparecen muchas comercializadoras de productos IoT que, aunque sus desarrolladores aseguran que son capaces de automatizar las tareas en los cultivos, vemos que no es así. Muchos productos tecnológicos desarrollados para ser usados en la agricultura de precisión, como son los programadores de riego tele-gestionados funcionan de forma independiente con otras tecnologías de la agricultura. En estos momentos y con el avance tecnológico actual, se debe integrar una programación de riego acorde a las necesidades reales del cultivo en tierra y con unas mediciones de necesidades de cultivo tomadas vía satélite o mediante dron desde el aire adaptando las variables de forma automática en una única plataforma de gestión. Si el patrón de producción de mi explotación funciona bien, la PLAtaforma TEcnológica Multimedia (PLATEM) permitirá compartir la estrategia seguida para que socios cooperativistas o personas que estén registrados en la red social, puedan verla y ver los contenidos publicados en ella sobre sistemas de control agrícolas. Esta tesis se centra en la investigación, diseño y desarrollo de nuevas tecnologías para integrar todos los sistemas presentes en un sistema automáticos, considerando, desde la monitorización de parámetros, hasta el procesado y toma de decisiones para una administración eficiente, siendo plata una herramienta óptima para la comunidad profesional de agricultores y con una usabilidad cercana al agricultor. Primeramente, se presentan trabajos previos relacionados con la captura de datos procedentes de cultivo y funcionamiento de riego a través del procesado de vídeo realizado con drones de vuelo autónomo. Seguidamente, se presentan los dispositivos presentes en la red inalámbrica de sensores orientada a captura de datos de los sensores terrestres y actuadores en sistemas de riego telegestionados de ultra bajo consumo energético. Por esto, nuestro trabajo se centra en redes de comunicaciones de banda estrecha, muy adecuadas para el uso en el medio rural. Nuestro sistema permite mantener un dispositivo comunicado y capaz de maniobrar las válvulas de hasta una extensión de 16 hectáreas con una pila comercial de 9 voltios toda una campaña de riego, sin necesidad de placas solares. Por último, toda la información e interoperabilidad de los apartados anteriores necesitan una gestión integral en un único sistema amigable con el usuario. En este punto presentamos un servidor con un motor de reglas de negocio y machine learning con autoaprendizaje capaz de generar decisiones para los controladores de riego, datos sensoriales de parcela o ambientales. Esta información es capaz de publicarse entre grupos sociales de usuarios e intercambiar métodos de trabajo y consignas. Todos los desarrollos y propuestas han sido precedidos de estudios de consumos energéticos en todos los dispositivos incluidos en el sistema. Además, se ha realizado un estudio en campo de las redes inalámbricas de sensores desplegadas en el medio rural bajo condiciones altamente problemáticas para comprobar el correcto funcionamiento del sistema entero.[CA] Existeixen gran quantitat de treballs relacionats amb l'automatització de processos en agricultura. Amb la revolució la Internet de les coses (de l'anglès Internet of Things o IoT) estan apareixent al mercat multitud de dispositius capaços d'interconnectar sensors. Més enfocat a l'agricultura intensiva, s'estan comercialitzant productes IoT que, tot i que els seus desenvolupadors asseguren que són capaços d'automatitzar les tasques en els cultius, veiem que no és així. Molts productes tecnològics desenvolupats per a utilitzar-los a l'agricultura de precisió, com són els programadors de reg tele gestionats, funcionen de forma independent amb altres tecnologies usades en l'agricultura. En aquests moments i amb l'avanç tecnològic actual, existeix la possibilitat d'aplicar unes rutines de reg adequades amb les necessitats reals del cultiu en terra, combinat amb la mesura de les necessitats de cultiu preses via satèl·lit o mitjançant vehicles aeris no tripulats o dron des de l'aire, adaptant les variables de forma automàtica en una única plataforma de gestió. Si el patró de producció de la meva explotació funciona bé, la PLAtaforma TEcnològica Multimedia (PLATEM) permetrà compartir l'estratègia seguida per tal que socis cooperativistes o persones que estiguin registrats en la xarxa social, puguen vore-la i veure els continguts publicats en ella sobre sistemes de control agrícoles. Aquesta tesi es centra en la investigació, disseny i desenvolupament de noves tecnologies per a integrar tots els sistemes presents en un sistema automàtics, considerant, des de la monitorització de paràmetres, fins al processat i pressa de decisions per a una administració eficient, sent PLATEM una ferramenta òptima per a la comunitat professional d'agricultors i amb una usabilitat propera a l'agricultor. Primerament, es presenten treballs previs relacionats amb la captura de dades procedents de cultiu i funcionament de reg a través del processat de vídeo realitzat amb drons de vol autònom. Seguidament, es presenten els dispositius presents en la xarxa sense fils de sensors orientada a captura de dades terrestres i els actuadors utilitzats per al reg tele-gestionats d'ultra baix consum energètic. Per això, el nostre treball se centra en xarxes de comunicacions de banda estreta, molt adequades per a l'ús en el medi rural. El nostre sistema permet mantenir un dispositiu comunicat i capaç de controlar les vàlvules en terrenys extensió de 16 hectàrees amb una pila comercial de 9 volts durant tota una campanya de reg, sense necessitat de plaques solars. Finalment, tota la informació i interoperabilitat dels dispositius que integren la xarxa necessiten una gestió integral en un únic sistema amigable amb l'usuari. En aquest punt presentem un servidor amb un motor de regles de negoci que aplica machine learning amb autoaprenentatge capaç de generar decisions per als controladors de reg, tenint en compte les dades dels sensors de parcel·la i ambientals. Aquesta informació és capaç de publicar-se entre grups socials d'usuaris i intercanviar mètodes de treball i consignes. Tots els desenvolupaments i propostes han estat combinats amb estudis de consums energètics. A més, s'ha realitzat un estudi en camp de les xarxes sense fils de sensors desplegades en el medi rural sota condicions altament problemàtiques per a comprovar el correcte funcionament del sistema sencer.[EN] There are many works related to the automation of processes in agriculture. With the revolution of the Internet of Things (IoT), many devices capable of interconnecting sensors are appearing on the market. The focus is on intensive agriculture in a market where designers and marketers of IoT products present designs for the automation of crop production, claiming systematic achievements that ar not always compatible with agricultural reality. Many technological products, such as remote or WiFi management of irrigation programmers, focused on precision agriculture, are independent systems with no connection to other agricultural technologies. At this time and with the current technological advance, it must be integrated irrigation schedules in response to the real time needs of crop nutrition determining cultivation needs are transmitted via satellite or drone, in a platform will automatically integrate intelligent irrigation systems on the plot of land in relation to thermal analysis and crop vigor. If the production patterns of a farm are promising, PLAtaforma TEcnologica Multimedia (PLATEM) will allow disseminate a strategy followed to cooperative partners or people who are registered in the social network can see it and see the contents published in it on agricultural control systems. This thesis will attempt to solve the above-mentioned issues: the integration from start to finish of data capture and open data decisions for a community of professional farmers. Firtsly, we will review the literature on data harvesting of irrigation decisions for cultivation through computer-processed videos recorded by drones with autonomous flight mapping. Next, the devices present in a Wireless Sensor Network (WSN) are presented aimed at capturing terrestrial sensory data connected to tele-managed irrigation systems with ultra-low energy consumption. Hence, the focus of this work is firmly set on narrowband communication networks that are very suitable for use in rural areas. Our system maintains a communicated device capable of maneuvering valves within an area of 16 hectares with a commercial 9-volt battery throughout an irrigation campaign, with no need for solar panels. Finally, all the information and interoperability described in the previous sections will need integral management. At this point, we present a server with a business rules engine and machine learning with (self-learning) decision trees capable of generating decisions for irrigation controllers. The basic layer consists of the data processing of data mining models. The second layer consists of model training with historical data and the third layer applies to machine learning that generates the best results for guidance on recommendations. This information can be published and shared on social media between groups of users for the exchange of working methods and opinions regarding crops, cultivation strategies and demonstration plots. All of the proposed developments and proposals have been grounded in systematic energy consumption studies of all devices in the intelligent irrigation systems. In addition, a field study is conducted of the WSN deployed in rural areas under highly problematic conditions to determine the correct functioning of the entire system.Cambra Baseca, C. (2019). PLAtaforma TEcnológica Multimedia para la Agricultura de Precisión (PLATEM Precision Agriculture) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/135820TESI
    corecore