18,063 research outputs found

    Dynamics-Based Modified Fast Simultaneous Localisation and Mapping for Unmanned Aerial Vehicles with Joint Inertial Sensor Bias and Drift Estimation

    Get PDF
    In this paper, the problem of simultaneous localization and mapping (SLAM) using a modified Rao Blackwellized Particle Filter (RBPF) (a modified FastSLAM) is developed for a quadcopter system. It is intended to overcome the problem of inaccurate localization and mapping caused by inertial sensory faulty measurements (due to biases, drifts and noises) injected in the kinematics (odometery based) which is commonly used as a motion model in FastSLAM approaches. In this paper, the quadcopter’s dynamics with augmented bias and drift models is employed to eliminate these faults from the localization and mapping process. A modified FastSLAM is then developed in which both Kalman Filter (KF) and Extended Kalman Filter (EKF) algorithms are embedded in a PF with modified particles weights to estimate biases, drifts and landmark locations, respectively. In order to make the SLAM process robust to model mismatches due to parameter uncertainties in the dynamics, measurements are incorporated in the PF and in the particle generation process. This leads to a cascaded two-stage modified FastSLAM in which the extended FastSLAM 1.0 (to include dynamics and sensory faults) is employed in first stage and the results are used in second stage in which probabilistic inverse sensor models are incorporated in the particle generation process of the PF. The efficiency of the proposed approach is demonstrated through a co-simulation between MATLAB-2019b and Gazebo in the robotic operating system (ROS) in which the quadcopter model is simulated in Gazebo in ROS using a modified version of the Hector quadcopter ROS package. The collected pointcloud data using LiDAR is then utilised for feature extraction in the Gazebo. The simulation environment used to this aim is validated based on experimental data

    AUV SLAM and experiments using a mechanical scanning forward-looking sonar

    Get PDF
    Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods

    Efficient wireless location estimation through simultaneous localization and mapping

    Get PDF
    Conventional Wi-Fi location estimation techniques using radio fingerprinting typically require a lengthy initial site survey. It is suggested that the lengthy site survey is a barrier to adoption of the radio fingerprinting technique. This research investigated two methods for reducing or eliminating the site survey and instead build the radio map on-the-fly. The first approach utilized a deterministic algorithm to predict the user's location near each access point and subsequently construct a radio map of the entire area. This deterministic algorithm performed only fairly and only under limited conditions, rendering it unsuitable for most typical real-world deployments. Subsequently, a probabilistic algorithm was developed, derived from a robotic mapping technique called simultaneous localization and mapping. The standard robotic algorithm was augmented with a modified particle filter, modified motion and sensor models, and techniques for hardware-agnostic radio measurements (utilizing radio gradients and ranked radio maps). This algorithm performed favorably when compared to a standard implementation of the radio fingerprinting technique, but without needing an initial site survey. The algorithm was also reasonably robust even when the number of available access points were decreased.Ph.D.Committee Chair: Owen, Henry; Committee Member: Copeland, John; Committee Member: Giffin, Jonathon; Committee Member: Howard, Ayanna; Committee Member: Riley, Georg

    Benchmarking Particle Filter Algorithms for Efficient Velodyne-Based Vehicle Localization

    Get PDF
    Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured by these sensors, we perform a systematic statistical analysis of how many points are actually required to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter settings required to ensure convergence. Our findings include that a decimation factor between 100 and 200 on incoming point clouds provides a large savings in computational cost with a negligible loss in localization accuracy for a VLP-16 scanner. Furthermore, an initial density of ∼2 particles/m 2 is required to achieve 100% convergence success for large-scale (∼100,000 m 2 ), outdoor global localization without any additional hint from GPS or magnetic field sensors. All implementations have been released as open-source software

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
    corecore