7 research outputs found

    BiLQ: An Iterative Method for Nonsymmetric Linear Systems with a Quasi-Minimum Error Property

    Full text link
    We introduce an iterative method named BiLQ for solving general square linear systems Ax = b based on the Lanczos biorthogonalization process defined by least-norm subproblems, and that is a natural companion to BiCG and QMR. Whereas the BiCG (Fletcher, 1976), CGS (Sonneveld, 1989) and BiCGSTAB (van der Vorst, 1992) iterates may not exist when the tridiagonal projection of A is singular, BiLQ is reliable on compatible systems even if A is ill-conditioned or rank deficient. As in the symmetric case, the BiCG residual is often smaller than the BiLQ residual and, when the BiCG iterate exists, an inexpensive transfer from the BiLQ iterate is possible. Although the Euclidean norm of the BiLQ error is usually not monotonic, it is monotonic in a different norm that depends on the Lanczos vectors. We establish a similar property for the QMR (Freund and Nachtigal, 1991) residual. BiLQ combines with QMR to take advantage of two initial vectors and solve a system and an adjoint system simultaneously at a cost similar to that of applying either method. We derive an analogous combination of USYMLQ and USYMQR based on the orthogonal tridiagonalization process (Saunders, Simon, and Yip, 1988). The resulting combinations, named BiLQR and TriLQR, may be used to estimate integral functionals involving the solution of a primal and an adjoint system. We compare BiLQR and TriLQR with Minres-qlp on a related augmented system, which performs a comparable amount of work and requires comparable storage. In our experiments, BiLQR terminates earlier than TriLQR and MINRES-QLP in terms of residual and error of the primal and adjoint systems

    Mini-Workshop: Adaptive Methods for Control Problems Constrained by Time-Dependent PDEs

    Get PDF
    Optimization problems constrained by time-dependent PDEs (Partial Differential Equations) are challenging from a computational point of view: even in the simplest case, one needs to solve a system of PDEs coupled globally in time and space for the unknown solutions (the state, the costate and the control of the system). Typical and practically relevant examples are the control of nonlinear heat equations as they appear in laser hardening or the thermic control of flow problems (Boussinesq equations). Specifically for PDEs with a long time horizon, conventional time-stepping methods require an enormous storage of the respective other variables. In contrast, adaptive methods aim at distributing the available degrees of freedom in an a-posteriori-fashion to capture singularities and are, therefore, most promising

    Primal-Dual Active-Set Methods for Convex Quadratic Optimization with Applications

    Get PDF
    Primal-dual active-set (PDAS) methods are developed for solving quadratic optimization problems (QPs). Such problems arise in their own right in optimal control and statistics–two applications of interest considered in this dissertation–and as subproblems when solving nonlinear optimization problems. PDAS methods are promising as they possess the same favorable properties as other active-set methods, such as their ability to be warm-started and to obtain highly accurate solutions by explicitly identifying sets of constraints that are active at an optimal solution. However, unlike traditional active-set methods, PDAS methods have convergence guarantees despite making rapid changes in active-set estimates, making them well suited for solving large-scale problems.Two PDAS variants are proposed for efficiently solving generally-constrained convex QPs. Both variants ensure global convergence of the iterates by enforcing montonicity in a measure of progress. Besides identifying an estimate set estimate, a novel uncertain set is introduced into the framework in order to house indices of variables that have been identified as being susceptible to cycling. The introduction of the uncertainty set guarantees convergence of the algorithm, and with techniques proposed to keep the set from expanding quickly, the practical performance of the algorithm is shown to be very efficient. Another PDAS variant is proposed for solving certain convex QPs that commonly arise when discretizing optimal control problems. The proposed framework allows inexactness in the subproblem solutions, which can significantly reduce computational cost in large-scale settings. By controlling the level inexactness either by exploiting knowledge of an upper bound of a matrix inverse or by dynamic estimation of such a value, the method achieves convergence guarantees and is shown to outperform a method that employs exact solutions computed by direct factorization techniques.Finally, the application of PDAS techniques for applications in statistics, variants are proposed for solving isotonic regression (IR) and trend filtering (TR) problems. It is shown that PDAS can solve an IR problem with n data points with only O(n) arithmetic operations. Moreover, the method is shown to outperform the state-of-the-art method for solving IR problems, especially when warm-starting is considered. Enhancements to themethod are proposed for solving general TF problems, and numerical results are presented to show that PDAS methods are viable for a broad class of such problems

    A direct method for the numerical solution of optimization problems with time-periodic PDE constraints

    Get PDF
    In der vorliegenden Dissertation entwickeln wir auf der Basis der Direkten Mehrzielmethode eine neue numerische Methode für Optimalsteuerungsprobleme (OCPs) mit zeitperiodischen partiellen Differentialgleichungen (PDEs). Die vorgeschlagene Methode zeichnet sich durch asymptotisch optimale Skalierung des numerischen Aufwandes in der Zahl der örtlichen Diskretisierungspunkte aus. Sie besteht aus einem Linearen Iterativen Splitting Ansatz (LISA) innerhalb einer Newton-Typ Iteration zusammen mit einer Globalisierungsstrategie, die auf natürlichen Niveaufunktionen basiert. Wir untersuchen die LISA-Newton Methode im Rahmen von Bocks kappa-Theorie und entwickeln zuverlässige a-posteriori kappa-Schätzer. Im Folgenden erweitern wir die LISA-Newton Methode auf den Fall von inexakter Sequentieller Quadratischer Programmierung (SQP) für ungleichungsbeschränke Probleme und untersuchen das lokale Konvergenzverhalten. Zusätzlich entwickeln wir klassische und Zweigitter Newton-Picard Vorkonditionierer für LISA und beweisen gitterunabhängige Konvergenz der klassischen Variante auf einem Modellproblem. Anhand numerischer Ergebnisse können wir belegen, dass im Vergleich zur klassichen Variante die Zweigittervariante sogar noch effizienter ist für typische Anwendungsprobleme. Des Weiteren entwickeln wir eine Zweigitterapproximation der Lagrange-Hessematrix, welche gut in den Rahmen des Zweigitter Newton-Picard Ansatzes passt und die im Vergleich zur exakten Hessematrix zu einer Laufzeitreduktion von 68% auf einem nichtlinearen Benchmarkproblem führt. Wir zeigen weiterhin, dass die Qualität des Feingitters die Genauigkeit der Lösung bestimmt, während die Qualität des Grobgitters die asymptotische lineare Konvergenzrate, d.h., das Bocksche kappa, festlegt. Zuverlässige kappa-Schätzer ermöglichen die automatische Steuerung der Grobgitterverfeinerung für schnelle Konvergenz. Für die Lösung der auftretenden, großen Probleme der Quadratischen Programmierung (QPs) wählen wir einen strukturausnutzenden zweistufigen Ansatz. In der ersten Stufe nutzen wir die durch den Mehrzielansatz und die Newton-Picard Vorkonditionierer bedingten Strukturen aus, um die großen QPs auf äquivalente QPs zu reduzieren, deren Größe von der Zahl der örtlichen Diskretisierungspunkte unabhängig ist. Für die zweite Stufe entwickeln wir Erweiterungen für eine Parametrische Aktive Mengen Methode (PASM), die zu einem zuverlässigen und effizienten Löser für die resultierenden, möglicherweise nichtkonvexen QPs führen. Weiterhin konstruieren wir drei anschauliche, contra-intuitive Probleme, die aufzeigen, dass die Konvergenz einer one-shot one-step Optimierungsmethode weder notwendig noch hinreichend für die Konvergenz der entsprechenden Methode für das Vorwärtsproblem ist. Unsere Analyse von drei Regularisierungsansätzen zeigt, dass de-facto Verlust von Konvergenz selbst mit diesen Ansätzen nicht verhindert werden kann. Des Weiteren haben wir die vorgestellten Methoden in einem Computercode mit Namen MUSCOP implementiert, der automatische Ableitungserzeugung erster und zweiter Ordnung von Modellfunktionen und Lösungen der dynamischen Systeme, Parallelisierung auf der Mehrzielstruktur und ein Hybrid Language Programming Paradigma zur Verfügung stellt, um die benötigte Zeit für das Aufstellen und Lösen neuer Anwendungsprobleme zu minimieren. Wir demonstrieren die Anwendbarkeit, Zuverlässigkeit und Effektivität von MUSCOP und damit der vorgeschlagenen numerischen Methoden anhand einer Reihe von PDE OCPs von steigender Schwierigkeit, angefangen bei linearen akademischen Problemen über hochgradig nichtlineare akademische Probleme der mathematischen Biologie bis hin zu einem hochgradig nichtlinearen Anwendungsproblem der chemischen Verfahrenstechnik im Bereich der präparativen Chromatographie auf Basis realer Daten: Dem Simulated Moving Bed (SMB) Prozess

    SUBMINRES. A modified implementation of MINRES to monitor residual subvector norms for block systems

    No full text
    This code is a modified implementation of the MINRES method by Paige & Saunders. It allows the user to monitor the (preconditioned) norms of selected subvectors of the residual vector with minimal additional effort. The user may specify stopping criteria related to any or all of these quantities
    corecore