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Bulut, Xiaocheng Tang, Jie Liu, and Seyedalireza Yektamaram for providing strong tech-

nical support without which most of the numerical results would not be available. Thanks

also to my colleagues at the ISE department: Hao Wang, Lin He, Yunfei Song, Xi Bai, Wei

Guo, Jiadong Wang, Choat Inthawongse, Murat Mut, Dan Li, Xiaocun Que, and many

iv



others. These years at Lehigh is a memorable experience of my life.

Finally, heartfelt thanks to my parents and my sister, who have been extremely sup-

portive and respectful to every decision I have made.

v



Contents

Acknowledgements iv

List of Tables ix

List of Figures xi

Abstract 1

1 Introduction 3

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Related Algorithms 11

2.1 Active-Set Methods for QP . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Primal Active-Set Methods for QP . . . . . . . . . . . . . . . . . . . 15

2.1.2 Dual Active-Set Methods for QP . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Gradient Projection Methods for BQP . . . . . . . . . . . . . . . . . 17

2.1.4 Primal-Dual Active-Set Methods for BQP . . . . . . . . . . . . . . . 20

2.2 Relevant Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Parametric Active-Set Methods . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Augmented Lagrangian Methods . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Alternating Direction Methods of Multipliers . . . . . . . . . . . . . 30

3 Globalization of PDAS for Convex QP 33

vi



3.1 Algorithmic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Strategies for Updating the Indexing Sets . . . . . . . . . . . . . . . . . . . 42

3.2.1 Hintermüller, Ito, and Kunisch update . . . . . . . . . . . . . . . . . 42

3.2.2 Update based on monitoring index set changes . . . . . . . . . . . . 44

3.2.3 Update based on reducing the KKT error . . . . . . . . . . . . . . . 47

3.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 PDAS with Inexact Subproblem Solves 67

4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Algorithm Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 An Algorithm with a Partition-Defined Subproblem Tolerance . . . 76

4.2.2 Algorithms with Dynamic Subproblem Tolerances . . . . . . . . . . 85

4.3 An Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 PDAS for Machine Learning Applications 101

5.1 Problem Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Algorithms for Isotonic Regression . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 The PAV Algorithm for Isotonic Regression . . . . . . . . . . . . . . 104

5.2.2 The PDAS Algorithm for Isotonic Regression . . . . . . . . . . . . . 105

5.2.3 A Comparison Between PAV and PDAS . . . . . . . . . . . . . . . . 108

5.3 The PDAS Method for Trend Filtering . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Regularization with Difference Operators . . . . . . . . . . . . . . . 109

5.3.2 A PDAS Framework for Trend Filtering . . . . . . . . . . . . . . . . 110

5.3.3 Safeguard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.1 Test on Isotonic Regression . . . . . . . . . . . . . . . . . . . . . . . 115

vii



5.4.2 Test on Trend Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Conclusion 121

Bibliography 124

A Primal-Dual Active-Set as a Semi-Smooth Newton Method 137

B The pypdas Package for Convex QP 141

Biography 148

viii



List of Tables

2.1 Illustration that Algorithm 4 may cause failure on a strictly-convex BQP. . 24

3.1 Result of Algorithm 8 employed to solve the problem in Example 2.1 when

iterates are updated via Algorithm 10. . . . . . . . . . . . . . . . . . . . . . 47

3.2 Result of Algorithm 8 employed to solve the problem in Example 2.1 when

iterates are updated via Algorithm 11. In the algorithm, the `∞-norm is

used in the definition of the residual function r (recall (3.6)) and we define

rk := r(xk, z
u
k ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Results of Algorithm 9 employed to solve BQPs. Statistics followed by †

were computed only over 45 (of 50) successful runs. Similarly, statistics

followed by ‡ were computed only over 46 (of 50) successful runs. All other

statistics were computed over 50 successful runs. . . . . . . . . . . . . . . . 56

3.4 Results of Algorithm 10 employed to solve BQPs. . . . . . . . . . . . . . . . 57

3.5 Results of Algorithm 11 (without step 14) employed to solve BQPs. . . . . 58

3.6 Results of Algorithm 11 (with step 14) employed to solve BQPs. . . . . . . 59

3.7 Results of qpOASES employed to solve BQPs. . . . . . . . . . . . . . . . . . 59

3.8 Results of Algorithm 10 employed to solve QPs (with n = 104). . . . . . . . 60

3.9 Results of Algorithm 11 (without step 14) employed to solve QPs (with

n = 104). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 Results for Algorithm 11 (with step 14) employed to solve QPs (with n = 104). 61

3.11 Results of qpOASES employed to solve QPs (with n = 104). . . . . . . . . . 61

3.12 Results of Algorithm 10 employed to solve Maros and Meszaros problems. . 62

ix



3.13 Results of Algorithm 11 (without step 14) employed to solve Maros and

Meszaros problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Results of Algorithm 11 (with step 14) employed to solve Maros and Meszaros

problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Problem sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Input parameters for our implementations of Algorithms 12, 13, 16, and 17. 94

4.3 Algorithm 12 when solving problem (4.19). . . . . . . . . . . . . . . . . . . 95

4.4 Algorithm 13 when solving problem (4.19) with εres = 10−2. . . . . . . . . . 95

4.5 Algorithm 13 when solving problem (4.19) with εres = 10−3. . . . . . . . . . 95

4.6 Algorithm 16 when solving problem (4.19) with εres = 10−2. . . . . . . . . . 96

4.7 Algorithm 16 when solving problem (4.19) with εres = 10−3. . . . . . . . . . 96

4.8 Algorithm 17 when solving problem (4.19) with εres = 10−2. . . . . . . . . . 96

4.9 Algorithm 17 when solving problem (4.19) with εres = 10−3. . . . . . . . . . 97

4.10 Algorithm 12 when solving problem (4.20). . . . . . . . . . . . . . . . . . . 97

4.11 Algorithm 13 when solving problem (4.20) with εres = 10−2. . . . . . . . . . 98

4.12 Algorithm 13 when solving problem (4.20) with εres = 10−3. . . . . . . . . . 98

4.13 Algorithm 16 when solving problem (4.20) with εres = 10−2. . . . . . . . . . 98

4.14 Algorithm 16 when solving problem (4.20) with εres = 10−3. . . . . . . . . . 99

4.15 Algorithm 17 when solving problem (4.20) with εres = 10−2. . . . . . . . . . 99

4.16 Algorithm 17 when solving problem (4.20) with εres = 10−3. . . . . . . . . . 99

5.1 An illustration of Algorithm 3 cycling . . . . . . . . . . . . . . . . . . . . . 113

5.2 Percentages of successful runs for each algorithm and problem type . . . . . 117

A.1 Quantities relevant to evaluating the function KKT and computing the

slant derivative M at the point (x0, y0, z
u
0 ). . . . . . . . . . . . . . . . . . . 139

B.1 Default parameter settings in pypdas. . . . . . . . . . . . . . . . . . . . . . 142

x



List of Figures

1.1 Maximize the margin between two classes 1 . . . . . . . . . . . . . . . . . . 3

1.2 Minimize predicted performance cost 2 . . . . . . . . . . . . . . . . . . . . . 4

1.3 Trade-off between risk and expected return . . . . . . . . . . . . . . . . . . 5

2.1 Illustration of classic active-set method . . . . . . . . . . . . . . . . . . . . . 17

2.2 Active-set transition graph of applying Algorithm 4 on (2.27) 3. . . . . . . . 25

5.1 Typical merge operations in PAV (left) and PDAS (right) iteration. . . . . . 109

5.2 Trend filtering solutions for different choices of g and D(d,n). . . . . . . . . . 110

5.3 Comparison of PDAS and PAV in running time (left) and # of merges (right).115

5.4 Comparison of warm-started PDAS and PAV. . . . . . . . . . . . . . . . . . 116

5.5 PDAS vs IPM for D = D1,n and different choices of g. . . . . . . . . . . . . 118

5.6 PDAS vs IPM for D = D2,n and different choices of g. . . . . . . . . . . . . 119

5.7 PDAS (with warm-start) vs IPM. . . . . . . . . . . . . . . . . . . . . . . . . 120

xi



Abstract

Primal-dual active-set (PDAS) methods are developed for solving quadratic optimization

problems (QPs). Such problems arise in their own right in optimal control and statistics–

two applications of interest considered in this dissertation–and as subproblems when solv-

ing nonlinear optimization problems. PDAS methods are promising as they possess the

same favorable properties as other active-set methods, such as their ability to be warm-

started and to obtain highly accurate solutions by explicitly identifying sets of constraints

that are active at an optimal solution. However, unlike traditional active-set methods,

PDAS methods have convergence guarantees despite making rapid changes in active-set

estimates, making them well suited for solving large-scale problems.

Two PDAS variants are proposed for efficiently solving generally-constrained convex

QPs. Both variants ensure global convergence of the iterates by enforcing montonicity

in a measure of progress. Besides identifying an estimate set estimate, a novel uncertain

set is introduced into the framework in order to house indices of variables that have been

identified as being susceptible to cycling. The introduction of the uncertainty set guar-

antees convergence of the algorithm, and with techniques proposed to keep the set from

expanding quickly, the practical performance of the algorithm is shown to be very efficient.

Another PDAS variant is proposed for solving certain convex QPs that commonly arise

when discretizing optimal control problems. The proposed framework allows inexactness

in the subproblem solutions, which can significantly reduce computational cost in large-

scale settings. By controlling the level inexactness either by exploiting knowledge of an

upper bound of a matrix inverse or by dynamic estimation of such a value, the method

achieves convergence guarantees and is shown to outperform a method that employs exact

1



solutions computed by direct factorization techniques.

Finally, the application of PDAS techniques for applications in statistics, variants are

proposed for solving isotonic regression (IR) and trend filtering (TR) problems. It is

shown that PDAS can solve an IR problem with n data points with only O(n) arithmetic

operations. Moreover, the method is shown to outperform the state-of-the-art method for

solving IR problems, especially when warm-starting is considered. Enhancements to the

method are proposed for solving general TF problems, and numerical results are presented

to show that PDAS methods are viable for a broad class of such problems.

2



Chapter 1

Introduction

Nonlinear optimization (NLO) models capture the complex nature of real-world problems.

As a result, they have been widely used, and play an important role in areas such as

machine learning [116, 105, 91, 96, 107, 6], optimal control [74, 75, 8], portfolio selection

[89, 84], and many others [18, 53]. To get a sense of NLO models in practice, consider the

following examples.

Support Vector Machine (SVM)

Figure 1.1: Maximize the margin between two classes 1

A classical machine learning example is the support vector machine (SVM) problem

which attempts to find a hyperplane that “best” separates two classes of labeled training

data. In the separable case, there are infinitely many such hyperplanes, in which case an

SVM model typically picks the one with the largest separation margin, a choice which

1Figure from Chapter 10, [6]
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can be motivated by learning theory. Simply put, the SVM is designed to determine a

hyperplane that minimizes the misclassification error of unseen data. For example, in the

case illustrated in Figure 1.1, the labeled samples are linearly separable, and hence there

exists (w, b) such that

wTx + b ≥ 1 ∀x ∈ Class1,

wTx + b ≤ −1 ∀x ∈ Class2.

Suppose there are n labeled samples (xi, yi) for i = 1, . . . , n, the hyperplane is then

parameterized by the pair (w, b) and the SVM problem is formulated [116] as an NLP:

min
w,b

1

2
‖w‖2

s.t. yi(w
Txi + b) ≥ 1, i = 1, . . . , n.

(1.1)

In particular, (1.1) is an NLP with the objective function being quadratic and constraints

affine. Such an NLP is also called a quadratic optimization problem (QP) and in the

non-separable case the SVM problem is similarly [116] formulated as a QP.

Model Predictive Control (MPC)

Figure 1.2: Minimize predicted performance cost 2

Model predictive control (MPC) is an example of using online optimization techniques

in industrial practice. MPC aims to model the behavior of complex dynamical systems,

predict future control inputs and outputs, and minimize the predicted performance cost at

regular intervals. The complex dynamical system is usually approximated in discrete-time

2Figure from [7]

4



and the optimal control problem over a finite future horizon of N steps can be formulated

as an NLP in the form of

min
uk

N−1∑
k=0

L(yk − r(t+ k), uk)

s.t. xk+1 = f(xk, uk), for k = 0, 1, . . . , N − 1

yk = g(xk, yk), for k = 0, 1, . . . , N − 1

umin ≤ uk ≤ umax, for k = 0, 1, . . . , N − 1

ymin ≤ yk ≤ ymax, for k = 0, 1, . . . , N − 1

x0 = x(t).

(1.2)

The predicting error and the actuation are two factors of the performance cost function

L of (1.2). Specifically, yk − r(t+ k) represents the predicting error and uk the actuation.

Portfolio Selection

Figure 1.3: Trade-off between risk and expected return

Consider the decision of an investment on n assets each with return ri as a random variable

for i = 1, . . . , n. Denote that the expected return µi = E[ri], variance σ2
i = E[(ri − µi)2],

and covariance between each pair (i, j) as

ρij =
E[(ri − µi)(rj − µj)]

σiσj
, for i, j = 1, 2, . . . , n.

5



It is desirable to create a portfolio x ∈ Rn where xi represents the fraction of funds invested

in asset i such that the portfolio R = xT r has relatively high expected return and low

risk (measured by variance) which are usually at odds with each other. Notice that for

portfolio R we have

E[R] = E[
n∑
i=1

xRRi] = xTµ,

V ar[R] =
n∑
i=1

n∑
j=1

xixjσiσjρij = xTGx.

To trade-off between expected return and risk, one may employ κ > 0 and formulate the

following optimization model

max
x

xTµ− κxTGx

s.t.
n∑
i=1

xi = 1, x ≥ 0.

Each x is associated with a risk and expected return value as illustrated in Figure 1.3. By

selecting different values of κ, the solutions constitute the efficient frontier (yellow curve).

1.1 Overview

As shown in previous examples, a typical nonlinear optimization problem (NLP) is for-

mulated to maximize/minimize an objective function subject to potential constraints on

the decision variables. Mathematically, an NLP is expressed as

min
x∈Rn

f(x)

s.t. cE(x) = 0, cI(x) ≤ 0,

(1.3)

where f : Rn 7→ R, cE : Rn 7→ R|E|, and cI : Rn 7→ R|I| are differentiable. Some seemingly

nonsmooth optimization problems could also be cast in the form of (1.3).

A good NLP model should be complex enough to capture the intricacy of the real-

world problem yet simple enough to be solved relatively quickly. A quadratic optimization

6



problem (QP) is such a model that is formulated as

min
x∈Rn

1

2
xTHx+ cTx

s.t. Ax = b, ` ≤ x ≤ u.
(1.4)

where H ∈ Rn×n, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, and {`, u} ⊂ R̄n(i.e., the extended n-

dimensional reals that include infinite values). QPs are one of the most common types of

NLPs formulated and solved in practice, and have been studied extensively in numerous

areas of applied mathematics [15, 16, 53, 74, 75, 85, 88, 110, 116]. Moreover, there are

well-developed techniques [43, 44, 50, 51, 52, 97] for (1.3) by iteratively solving a series

of QPs. A bound constrained QP (BQP) is a special QP with only bound constraints on

the variables:

min
x

1

2
xTHx+ cTx

s.t. ` ≤ x ≤ u.
(1.5)

Since the computational efficiency of the solver for QPs is of paramount importance for

an NLP solver, in much of this dissertation we focus on algorithms for solving large-scale

QPs.

Three popular classes of NLO algorithms are interior-point methods (IPM), augmented

Lagrangian (AL) methods, and active-set methods. IPMs draw on the power of Newton’s

method to solve systems of nonlinear equations by solving a series of linearized equation

systems. The resulting algorithms run in polynomial-time [95, 94, 119, 33], and thus

are believed to be effective for large-scale problems. Augmented Lagrangian methods

represent a classical approach that are regaining favor in large-scale settings. The strength

of augmented Lagrangian methods is that they only require solving unconstrained or

bound-constrained subproblems [68, 102, 46] which, in some situations, can be cheaper

than solving linear systems or QPs as in IPMs or active-set methods respectively. Active-

set methods follow a different paradigm and have many distinctive features. The main

advantage of active-set methods is their ability to warm-start with a good initial point.

These methods have achieved great success in Sequential Quadratic Optimization(SQO)

methods [43, 44, 50, 51, 52, 97]. Additionally, they also can yield very accurate solutions

7



once the optimal active set is identified. Active-set methods are most used in solving

small- or medium-scale problems yet all their desirable properties motivate us to research

further the use of active-set methods for large-scale problems.

Algorithms for solving convex QPs have been studied for decades and they generally fall

into the categories of active-set [11, 36, 97] and interior-point methods [83, 95, 115, 119].

There are also a variety of methods designed exclusively for BQPs. These include active-

set [39, 45], interior-point [22, 67], gradient projection [10, 29, 40, 97], or some combination

of these methods [13, 64, 92].

Most active-set methods are initialized by making an estimate of the optimal active

set, then iteratively change the estimate until optimality is reached. Hence, the ability

to identify the optimal active set quickly is crucial in the design of efficient active-set

algorithms. Since active-set methods for NLP typically employ active-set methods to solve

QP subproblems, this dissertation will focus on active-set methods for QPs. In particular,

we focus on primal-dual active-set (PDAS) methods for solving convex QPs in the favor

of the methods’ promising performance in large-scale settings. A PDAS-like method was

proposed [1] as a Newton-type method to solve linear complementarity problems (LCPs),

see also in [78, 100] as block pivoting algorithms and [25] for a comprehensive overview

of pivoting algorithms for LCPs. Recently the method received much attention as it is

shown to replicate semismooth Newton method [69] as well as for its impressive practical

performance.

The algorithmic research of PDAS methods roughly follows two lines: the investiga-

tion of conditions under which a plain PDAS method without safeguards assumes global

convergence and the extension (with enhancements and safeguards) of PDAS variants for

more general QPs. For the former research, see [69, 86, 76] that impose conditions on

the Hessian of BQP (1.5) to guarantee global convergence and [42, 27] that provide ex-

amples of LCP and BQP that PDAS cycles. Moreover, inexactly solving the subproblems

might greatly improve the efficiency of PDAS [26] for certain QPs. Extending the PDAS

methods to more general problems entails safeguards on the algorithm design. Straightfor-

ward approaches include [81, 21, 78] that incorporate heuristics to detect suspicious cycles

8



and switch between PDAS and Murty’s method [93] where each update of the active-set

only adds/removes one constraint. A variant enforces convergence by encouraging pri-

mal feasibility and a potentially recursive subproblem solution method is proposed in [73]

for strictly convex BQPs. Finally, there are also numerous articles on the use of PDAS

methods for various applications [31, 55, 70, 71, 72, 87, 108].

1.2 Contributions of This Dissertation

Overall, the goals of the research in this dissertation are to enhance the theoretical and

algorithmic development of PDAS methods so that they may be effective for solving general

convex QPs, both on their own and in the context of solving NLPs. We summarize our

main contributions toward these ends as the following.

1. We propose a novel PDAS algorithmic framework that extends the PDAS method

of [69] to general convex QPs of the form (1.4). Global convergence is guaranteed

via the introduction of an uncertainty set that houses indices of variables that are

suspected of cycling. The framework allows rapid updates of the active-set estimate,

and thus it is well-suited for solving large-scale problems

2. We propose enhancements of a PDAS method for solving certain convex QPs arising

in various applications such as optimal control. By exploiting the special structure

of the QPs of interest, one only needs to solve the subproblem involved in each

PDAS iteration inexactly, yet global convergence is still guaranteed. We show that

incorporating inexactness can significantly reduce the overall computational costs

compared to a similar strategy that employs exact subproblem solutions obtained

via direct factorizations.

3. We demonstrate that PDAS methods can be extremely efficient when solving a broad

class of large-scale optimization problems arising in statistical learning. In particular,

we prove that a PDAS method is able to solve an isotonic regression problem [12] of

n points in O(n) elementary arithmetic operationsthe best possible complexity and

outperforms the state-of-the-art method for solving such problems. We also propose
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a novel safeguarding strategy that leads to a PDAS variant that shows competitive

performance when solving a related class of trend filtering problems [82].

4. We provide a software package known as pypdas, which includes a generic PDAS

framework that allows inexact subproblem solves. The package is implemented in

Python and available as open-source, which should facilitate other researchers efforts

in the study of PDAS methods.

The rest of this dissertation is organized in the following order. We first provide

the background of active-set methods and review several active-set methods as well as

closely-related algorithms for QPs in §2. Then a globally convergent PDAS framework

for general strictly convex QPs is described in §3. We investigate in §4 a special class

of convex QPs in optimal control and propose PDAS methods that only require solving

inexactly the subproblems. Finally, we illustrate in §5 that the PDAS methods could

be applied to a class of statistical learning applications where PDAS methods show very

competitive performance. The generic PDAS framwork is implemented in the open-source

package pypdas to facilitate study of the PDAS methods. A brief instruction of calling

the package for solving general convex QPs is attached in the Appendix B.
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Chapter 2

Background and Related

Algorithms

2.1 Active-Set Methods for QP

In this section, we review briefly several known active-set methods for solving convex QPs.

The primal and dual active-set methods are able to solve general convex QPs whereas the

gradient projection method and primal-dual active-set method were mostly used to solve

convex BQPs. We start by introducing necessary concepts and notation that would be

used throughout this dissertation. For convenience, we denote the set of variable indices

and equality constraint indices of (1.4), respectively, as

N := {1, . . . , n} and M := {1, . . . ,m}.

We also define a partition P(x) as a triplet of sets (A`(x),Au(x), I(x)) identified by x,

where

A`(x) := {i ∈ N : xi = `i}, (2.1a)

Au(x) := {i ∈ N : xi = ui}, (2.1b)

I(x) := N\(A` ∪ Au). (2.1c)
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Hereinafter, we use P,A`,Au, I instead of P(x),A`(x),Au(x), I(x) for simplicity. A

partition identified by the optimal solution x∗ is called the optimal partition and is denoted

by P∗ = (A`∗,Au∗ , I∗). We further denote the index set A as the union of lower active-set

A` and upper active-set Au, or in other words A := A`∪Au. The complement of A, i.e., I

is called the inactive-set. A working set W is defined as A∪M that includes additionally

the equality constraints.

Notation We use a counter as a subscript to denote iteration number and use a set as

a subscript to denote (sets of) elements of a vector or matrix; e.g., with xk we denote the

vector x at the kth iteration and with xS we denote the vector composed of the elements

in the vector x corresponding to those indices in the ordered set S. Similarly, with HS1,S2

we denote the matrix composed of the elements in the matrix H corresponding to those

row and column indices in the ordered sets S1 and S2, respectively. When we refer to

(sets of) elements of a vector with an additional subscript, such as x∗, we denote sets of

elements after appending brackets, such as in [x∗]S . We also occasionally denote a vector

composed of stacked subvectors as an ordered tuple of vectors, i.e., for vectors a and b

we occasionally write (a, b) := [aT bT ]T . For a square matrix S, we write S � 0 (S � 0)

to indicate that S is positive definite (semidefinite). Finally, e denotes a vector of ones

whose size is determined by the context in which it appears.

Optimality Conditions

We use Karush-Kuhn-Tucker (KKT) conditions to characterize the optimal solution x∗

of (1.4). Specifically, for x∗ to be optimal, there must exist dual variables y∗ ∈ Rm and

12



{z`∗, zu∗ } ⊂ Rn associated with x∗ such that:

Hx∗ +AT y∗ − z`∗ + zu∗ + c = 0, (2.2a)

Ax∗ = b, (2.2b)

(x∗ − `) ◦ z`∗ = 0, (2.2c)

(u− x∗) ◦ zu∗ = 0, (2.2d)

(x∗ − `, u− x∗, z`∗, zu∗ ) ≥ 0, (2.2e)

where ◦ represents an element-wise product. The KKT conditions serve naturally as an

optimality verification criteria of a primal-dual solution (x, y, z`, zu). In particular, we can

employ a KKT error measure KKT(x, y, z`, zu) to evaluate how close a given point is to

optimality. Specifically, for (x, y, z`, zu) to be optimal, we must have

0 = KKT(x, y, z`, zu) :=



Hx+AT y + c− z` + zu

Ax− b

min{x− `, z`}

min{u− x, zu}


. (2.3)

For future reference, when equality constraints are not present so that (1.4) reduces to

(1.5), the dual variable y is also not necessary and we refer to the residual simply as

KKT(x, z`, zu).

Once the optimal partition P is known for (1.4), we could simply fix xA` = `A` ,

xAu = uAu and drop off all bound constraints on xI . Problem (1.4) then becomes an

equality constrained QP which is much easier to solve. This is an important concept to

which we refer numerous times throughout the dissertation. To be consistent with this

idea, we define the subspace minimizer of a partition. Given a partition P = (A`,Au, I) of

a strictly convex QP (1.4), a subspace minimizer of P is a primal-dual solution (x, y, z`, zu)
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such that

xA` = `A` , (2.4a)

xAu = uAu , (2.4b)

z`I∪Au = 0, (2.4c)

zuI∪A` = 0, (2.4d)

Hx+AT y − z` + zu + c = 0, (2.4e)

Ax = b. (2.4f)

The Dual Problem

Sometimes the dual problem of (1.4) may shed some light on the primal problem that is

to be solved. Suppose H of (1.4) is positive semi-definite, i.e., (1.4) is a convex QP, the

dual problem is then

max
x,y,z

1

2
xTHx+ (c+AT y + zu − z`)Tx− bT y − uT zu + `T z`

s.t. Hx+ c+AT y + zu − z` = 0

zu, z` ≥ 0.

(2.5)

Suppose further that H is strictly positive definite, we can eliminate x and yield a convex

BQP:

min
y,zu,z`

1

2
(c+AT y + zu − z`)TH−1(c+AT y + zu − z`) + bT y + uT zu − `T z`

s.t. zu, z` ≥ 0.

(2.6)

Now we are in a position to review several popular active-set methods: primal active-

set methods and dual active-set methods for QPs (1.4); gradient projection methods and

primal-dual active-set methods for BQPs (1.5). All of these methods seek to find a sta-

tionary point (x∗, y∗, z
`
∗, z

u
∗ ) satisfying the optimality conditions of (2.2).
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2.1.1 Primal Active-Set Methods for QP

Primal active-set methods are seen as extension of simplex methods to nonlinear optimiza-

tion and have been extensively studied [39, 45, 41]. The algorithms keep primal variables

x feasible on all iterations, and alternate between minimizing in the primal space and up-

dating dual variables until all variables become feasible. In classic active-set algorithms,

an initial feasible point x0 must be specified which is obtainable via linear optimization,

i.e., the so-called Phase-I. Two types of procedures, namely a primal-procedure and dual-

procedure, are involved in the algorithm iterations. The primal-procedure searches in a

subspace of the feasible region and expands the active set when the boundary of the fea-

sible region is hit. When a subspace minimizer is achieved, the dual-procedure is invoked

which either terminates the algorithm if optimality is detected or shrinks the active set

by one unit otherwise. Under certain assumptions, the algorithm is globally convergent

and performs well when served with a good initial point. Furthermore, since the algo-

rithm treats active inequalities as equalities, it only searches in the reduced space hence

it can save computational as well as storage costs. The algorithm framework is shown in

Algorithm 1.

Now we list several drawbacks of primal active-set methods. First, a primal active-set

method can only iterate on the feasible region. However, finding a feasible initial solution

may require a considerable amount of computation for large-scale problems. In addition, a

primal active-set method behaves badly if the problem is ill-conditioned and/or the initial

point poorly chosen. Furthermore, it is difficult to obtain an efficient implementation

of the classic active-set method as one has to deal with degeneracy and other numerical

issues.

Figure 2.1 demonstrates the slow update of the active-set in classic active-set method.

The algorithm adds or drops only one active constraint per update, and thus it may take

numerous iterations to adapt a badly estimated active set to the optimal one when n is

large. Much can be improved if we allow dramatic changes of the active set per update.

15



Algorithm 1 Primal active-set method for convex QP

1: Input an initial feasible solution x0 and initial active-set A0 = A`
0 ∪ Au

0

2: for k = 0, 1, 2, . . . do
3: Solve

min
pk∈Rn

1

2
pTkHpk + (c+Hxk)T pk

s.t. Apk = 0

[xk]A`
k

+ [pk]A`
k

= `A`
k

[xk]Au
k

+ [pk]Au
k

= uAu
k

(2.7)

4: if pk = 0 then
5: Let (A`,Au, I) = (A`

k,Au
k , Ik) and set

[z`]Au∪I ← 0, [zu]A`∪I ← 0. (2.8)

Compute dual variables (y, z`, zu) satisfying

AT y −

 0

z`A`

0

+

 0
0

zuAu

 = −(Hxk + c). (2.9)

6: if (z`, zu) ≥ 0 then
7: Stop with solution x∗ = xk.
8: else
9: Set j = argminj∈A[z` + zu]j

xk+1 = xk; A`
k+1 = A`

k\{j}, Au
k+1 = Au

k\{j}, Ik+1 = Ik ∪ {j}.
10: end if
11: else
12: Compute

αk := min

(
1,min

i∈Ik

(
max

(
uj − [xk]j

[pk]j
,
lj − [xk]j

[pk]j

)))
(2.10)

13: xk+1 = xk + αkpk;
14: if there are blocking constraints then
15: Obtain (A`

k+1,Au
k+1) by moving one of the blocking constraints from Ik

16: else
17: (A`

k+1,Au
k+1, Ik+1)← (A`

k,Au
k , Ik)

18: end if
19: end if
20: end for

2.1.2 Dual Active-Set Methods for QP

Dual active-set methods have much theoretical appeal [62, 47, 4, 106]. Complicated con-

straints are potentially replaced by dual variables in much simpler form as seen in (2.6).

Unlike primal active-set method, specifying a feasible initial dual solution is trivial. For

example, fixing all dual variables to 0 will suffice. A dual active-set method framework

for QPs was proposed in [47]. We illustrate the method in Algorithm 2 which maintains

dual feasibility and updates primal variables until optimality is reached. Both primal and

dual active-set method suffer from the slow update of the active set. However in certain
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Figure 2.1: Illustration of classic active-set method

applications dual active-set methods appear more favorable in practice.

We next turn to discuss two efficient active-set methods, namely the gradient projection

methods and the primal-dual active-set methods. In contrast to primal active-set methods

and dual active-set methods, both algorithms to be reviewed are able to make rapid

changes of the active-set estimate. In particular, the PDAS method described herein is

motivated by the work of [69] that solves BQPs satisfying some special properties.

2.1.3 Gradient Projection Methods for BQP

Unlike the primal (dual) active-set method, Gradient Projection (GP) methods allow rapid

changes of the active-set estimate. Assuming that the initial point is feasible, GP meth-

ods either search along the path of a projected direction [97] or along a direction to a

projected point [65, 30]. The former methods require the projection of a path, while the

latter ones usually only require the projection of a point. Our description will focus on

the former framework, but first we refer to some relevant work of the latter variety for

the readers. Hager and Zhang [65] proposed a GP algorithm for bound constrained NLPs.

Their algorithm is designed by a set of rules to branch between a nonmonotone gradient

projection phase and an unconstrained optimization phase. The algorithm converges glob-

ally to a stationary point even for degenerate problems. Dai and Fletcher [30] designed

a GP method for BQP with an additional linear constraint. Both algorithms employed

Barzilai-Borwein [5] steps and a nonmonotonic line search[57].

When projection is cheap as in the case of BQP, GP methods are well-suited and often

17



Algorithm 2 Dual active-set method

1: Input an initial feasible dual solution (y0, z
`
0, z

u
0 ) and partition (I0,A`

0,Au
0 ) consistent with (y0, z

`
0, z

u
0 ).

2: for k = 0, 1, 2, . . . do
3: Let (A`,Au, I) = (A`

k,Au
k , Ik), then compute (y, z`, zu) by setting

[z`]Au∪I ← 0, [zu]A`∪I ← 0, (2.11)

and solving

min
1

2
xTHx+ cTx

s.t. Ax = b

xA` = `A`

xAu = uAu

(2.12)

4: if x is feasible then
5: x∗ ← x; Stop.
6: else
7: Compute step length αk

αk = max{t : z`k + t(z` − z`k) ≥ 0, zuk + t(zu − zuk ) ≥ 0}, (2.13)

8: if αk < 1 then
9: Set

xk+1 ← xk + αk(x− xk)

z`k+1 ← z`k + αk(z` − z`k)

xk+1 ← xk + αk(x− xk)

(2.14)

10: Shrink (A`
k+1,Au

k+1) by dropping one of the blocking dual constraints into Ik.
11: else
12: Set (xk+1, z

`
k+1, z

u
k+1) = (x, z`, zu)

13: Expand (A`
k+1,Au

k+1) by adding one of the blocking primal constraints from Ik.
14: end if
15: end if
16: end for

outperform other methods. For convenience of description, we define the projection of a

point x onto the feasible region of (1.5) by

P (x, `, u) = Median(x, `, u), (2.15)

where “Median” takes the element-wise median of x, ` and u. The search direction at a

point xk is usually chosen as the projected steepest descent direction which is denoted as

the piecewise linear path

x(αk) := P (xk − αk∇f(xk), `, u). (2.16)
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We define the Cauchy-point xCk as the solution on the path (2.16) that minimizes the ob-

jective function. For BQP, xCk can be computed efficiently [97] and a typical GP framework

is presented in Algorithm 3.

Algorithm 3 Gradient projection method for BQP

1: Input an initial feasible point x0;
set k ← 0, z`0 = max{0, Hx0 + c}, zu0 = max{0,−Hx0 − c};

2: while r(xk, z
`
k, z

u
k ) 6= 0 do

3: Find the Cauchy point xCk ;
4: Find an approximate solution x+ of

min
x

f(x) =
1

2
xTHx+ cTx (2.17a)

s.t. xA(xCk ) = [xCk ]A(xCk ) (2.17b)

`I(xCk ) ≤ xI(xCk ) ≤ uI(xCk ) (2.17c)

such that f(x+) ≤ f(xCk ) and x+ is feasible; xk+1 ← x+;
5: Compute z`k+1 = max(0, Hxk+1 + c), zuk+1 = max(0,−Hxk+1 − c);

set k ← k + 1.
6: end while

An exact solution of the subspace minimization problem (2.17) is not necessary to

ensure convergence. Thus, for large-scale problems, one typically employs an approach

to obtain an approximate solution. The Cauchy point xCk is a feasible solution of (2.17)

that is usually considered a candidate. One popular strategy to balance between choosing

the Cauchy point and solving problem (2.17) exactly is to apply the conjugate gradient

(CG) method to (2.17a) and (2.17b) and terminate once (2.17c) is satisfied. Alternatively,

instead of terminating immediately upon satisfaction of (2.17c), we can continue solving

with more CG iterations to achieve a more accurate solution and project the solution to

the feasible region of (2.17c).

The iterate directions of GP methods are usually confined to projected steepest descent

directions [65, 97]. Such a limited selection ensures global convergence, but also may

inhibit the algorithm from converging quickly. Some methods choose projected Newton

directions, but usually have to switch to the steepest descent direction when the projected

Newton direction is not a descent one [79]. Moreover, when the projection operation is

expensive, GP is not an appropriate choice.
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2.1.4 Primal-Dual Active-Set Methods for BQP

The primal-dual active-set (PDAS) method discussed here was motivated by the work of

Hintermüler, Ito, and Kunisch [69] in solving the BQP (1.5) with an additional assumption

that H is a (perturbed) M -matrix. An M -matrix is a positive definite matrix with non-

positive off-diagonal entries. The key feature of this method is its rapid adaptation of the

active-set estimate. In contrast to the description in [69], we illustrate the PDAS method

via updates to partitions. For convenience, we denote (z`, zu) as dual variables associated

with the lower and upper bounds, respectively. Without equality constraints, the KKT

conditions (2.2) now become:

Hx∗ − z`∗ + zu∗ + c = 0, (2.18a)

(x∗ − `) ◦ z`∗ = 0, (2.18b)

(u− x∗) ◦ zu∗ = 0, (2.18c)

(x∗ − `, u− x∗, z`∗, zu∗ ) ≥ 0. (2.18d)

We rephrase the PDAS method of [69] in Algorithm 4, but in a more general form that

includes both lower and upper bounds on variables.

Algorithm 4 alternates between two phases: a subspace minimization phase (step 3–5)

and a partition update phase (step 9). The subspace minimization phase fixes xA` and

xAu to their lower and upper bounds respectively, and sets z`I∪Au and zuI∪A` to 0 (step

3). The remaining unknowns, namely xI , z
`
A` and zuAu , are set by solving a linear system

of equations (step 4–5). Step 6 verifies optimality and terminates if the optimal solution

is found and turns to the partition update phase otherwise. Every partition (A`,Au, I)

defines a unique subspace minimizer (x, z`, zu) based on which we can decide whether it

is optimal or an update to the partition should be applied.

When the variables of problem (1.5) are only bounded above and the Hessian H is an

M -matrix, then global convergence of Algorithm 4 is guaranteed. Many results of this

dissertation are inspired by the convergence results thus we state them in Theorem 3.2.1

and provide a brief proof highlighting the behaviors of Algorithm 4.
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Algorithm 4 Primal-Dual Active-Set Method for BQP

1: Input (A`
0,Au

0 , I0) and set k ← 0.
2: loop
3: Let (A`,Au, I) = (A`

k,Au
k , Ik) and set

xA` ← `A` , xAu ← uAu , z`I∪Au ← 0, and zuI∪A` ← 0. (2.19)

4: Let A ← A` ∪ Au and set xI as the solution of

HIIxI = −cI −HIAxA. (2.20)

5: Set
z`A` ← [Hx+ c]A` and zuAu ← −[Hx+ c]Au . (2.21)

Let (xk, z
`
k, z

u
k ) = (x, z`, zu).

6: if r(xk, z
`
k, z

u
k ) = 0 then

7: return (A`
k,Au

k , Ik) and (xk, z
`
k, z

u
k )

8: else
9: Set

A` ← {i : i ∈ A` and z` ≥ 0, or i ∈ I and xi < `i}, (2.22a)

Au ← {i : i ∈ Au and zu ≥ 0, or i ∈ I and ui − xi < 0}, (2.22b)

I ← N\(A` ∪ Au). (2.22c)

10: end if
11: end loop

Theorem 2.1.1. ([69, Theorem 3.2]) Assume that H is an M -matrix and ` = −∞. Then

(xk, z
u
k )→ (x∗, z

u
∗ ) for any arbitrary initial partition. Moreover,

x∗ ≤ xk+1 ≤ xk for all k ≥ 0 (2.23a)

xk ≤ u for all k ≥ 1 (2.23b)

Proof. Since ` = −∞, we choose A` = ∅, set z` = 0 as a constant and denote A` as

A and zu as z. We first investigate the monotonic properties of x. The iteration where

(xk−1, zk−1) determines (Ak, Ik) which in turn determines (xk, zk) is considered. Denote

∆x := xk − xk−1 and ∆z := zk − zk−1. By the updating strategy (2.22), we have

∆xAk
= [xk − xk−1]Ak

≤ 0, (2.24a)

∆zIk = [zk − zk−1]Ik ≥ 0. (2.24b)

Monotonicity of x: Notice from Algorithm 4 that the KKT equation (2.18a) holds for
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all iterations. In particular, in computing (xk, zk) from (xk−1, zk−1) we conclude that

 HIkIk HIkAk

HAkIk HAkAk


 ∆xIk

∆xAk

+

 ∆zIk

∆zAk

 = 0, (2.25)

from which we obtain

∆xIk = −H−1
IkIkHIkAk

∆xAk
−H−1

IkIk∆zIk . (2.26)

Since H is an M -matrix, we have H−1
IkIk ≥ 0 and H−1

IkIkHIkAk
≤ 0. Combining additionally

(2.24) and (2.26), this yields immediately that ∆xIk ≤ 0. Therefore, xk+1 ≤ xk for

k ≥ 0. Next, we prove that x∗ ≤ xk+1. Denote an arbitrary partition as (A, I) and its

corresponding solution as (x, z). It is easily seen that

[x∗ − x]A = [x∗ − u]A ≤ 0.

From (2.26), we also obtain that

[x∗ − x]I = −[HII ]
−1HIA[x∗ − x]A − [HII ]

−1[z∗ − z]I

= −[HII ]
−1HIA[x∗ − u]A − [HII ]

−1[z∗ − 0]I

≤ 0,

thus completing the proof of (2.23a).

Feasibility of x: Next we show that x becomes feasible, i.e. x ≤ u, after the first

iteration. Denote the set of variables of x0 that violate their upper bounds as V0 := {i ∈

N : [x0]i > ui}. For any index i ∈ V0, we must have i ∈ I0, which by the updating

strategy (2.22) means that we have i ∈ A1 and [x1]i = ui. Whereas for any i ∈ N\V0,

from (2.23b) we conclude that [x1]i ≤ [x0]i ≤ ui. In summary, we have shown that x1 ≤ u

and by (2.23a) it follows that (2.23b) must hold as well.

Convergence: We prove the convergence of Algorithm 4 by showing that z becomes

feasible, i.e. z ≥ 0 after a finite number of iterations. Suppose there exists an index i that
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[zk]i < 0 for some iteration k ≥ 0, then necessarily i ∈ Ak ∩ Ik+1 and thus [zk+1]i = 0

becomes feasible. By the feasibility of x and the updating strategy (2.22), i remains

in I thereafter. Therefore, z will become feasible for all indices after some iterations.

By (2.23b), (x, z) will be feasible, i.e. (2.18d) will be satisfied after a finite number

of iterations. Additionally since it is guaranteed that the subspace minimizer (xk, zk)

satisfies (2.18a)-(2.18c) for all k ≥ 0, Algorithm 4 reaches optimality once (x, z) becomes

feasible.

Notice that an M -matrix, call it M , is not computationally stable in the sense that

an arbitrary perturbation ε may result in a non-M -matrix M + ε. The following theorem

shows that Algorithm 4 preserves global convergence in the presence of small perturba-

tions.

Theorem 2.1.2. ( [69, Theorem 3.4]) Assume that H = M + K with M an M -matrix

and with K an n × n matrix. Assume again that ` = −∞. Then if ‖K‖1 is sufficiently

small, Algorithm 4 is well-defined and converges to the optimal solution from any arbitrary

initial partition (Au0 , I0).

We briefly compare Algorithm 4 with the GP methods. Both algorithms in one it-

eration can make dramatic changes of the active-set. The computation of Algorithm 4

mainly involves solving the linear equations (2.20) which, if solved exactly, is usually more

expensive than solving a BQP subproblem inexactly as in GP methods. Algorithm 4 usu-

ally converges faster to the optimal solution than Algorithm 3 which we attribute to its

replication of the semi-smooth Newton steps [69]. Moreover, the design of Algorithm 4

requires no line search or trust region techniques, and thus are easier to implement.

We conclude that the global convergence guarantees provided above do not hold for

general convex BQPs as cycles may exist. We illustrate this potential cycling behavior

through the following simple problem.
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Example 2.1.3 (An example that Algorithm 4 fails to converge).

H =


4 5 −5

5 9 −5

−5 −5 7

 , c =


2

1

−3

 , ` =


−∞

−∞

−∞

 , and u =


0

0

0

 , (2.27)

Assume the initial partition of index sets is

(A`,Au, I) = (∅, ∅, {1, 2, 3}).

We show in Table 2.1 that Algorithm 4 cycles:

k A`k Auk Ik xk zuk

0 ∅ ∅ {1, 2, 3} (−3, 1,−1) (0, 0, 0)

1 ∅ {2} {1, 3} (1
3 , 0,

2
3) (0, 2

3 , 0)

2 ∅ {1, 2, 3} ∅ (0, 0, 0) (−2,−1, 3)

3 ∅ {3} {1, 2} (−13
11 ,

6
11 , 0) (0, 0,− 2

11)

4 ∅ {2} {1, 3} (1
3 , 0,

2
3) (0, 2

3 , 0)

...
...

...
...

...
...

Table 2.1: Illustration that Algorithm 4 may cause failure on a strictly-convex BQP.

Table 2.1 illustrates that the updating strategy in Algorithm 4 generates a cycle and

thus fails to provide the optimal solution. In particular, the iterates in iterations 1 and

4 are identical, which indicates that a cycle will continue to occur. Indeed, there are 8

possible initial index sets for this problem and 6 of them will lead to failure as illustrated

in the following figure.

We remark that it can be shown that the strategy in Algorithm 4 will lead to conver-

gence for any strictly-convex QP when n ≤ 2; hence, we created this example with n = 3.

See also [42, Proposition 4.1].

1Figure from [73].
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Figure 2.2: Active-set transition graph of applying Algorithm 4 on (2.27) 1.

Despite the fact that Algorithm 4 fails to solve the strictly-convex BQP (2.27), its

practical performance on randomly generated problems is impressive and its ability to

adapt the active set rapidly is attractive for large-scale problems. A focus of our work will

be to enhance the ability of Algorithm 4 to solve strictly-convex BQPs as well as more

general QPs without sacrificing overall efficiency.

2.2 Relevant Algorithms

We summarize in this section several relevant algorithms. Parametric active-set methods

exemplify the successful application of active-set methods on a series of closely related

QPs. Augmented Lagrangian (AL) methods and alternating direction methods multipli-

ers (ADMM), just as PDAS, are primal-dual methods but are designed to solve more

general NLPs and recently gained favor for their ability to solve large-scale problems. In

practice, AL and ADMM are rarely used to solve convex QPs but more general NLPs.

We summarize these methods merely due to the fact that, like PDAS methods, they allow

aggressive updates in the active-set estimate.

2.2.1 Parametric Active-Set Methods

Parametric active-set methods (PASM) trace back to the work of Best [11] on parametric

quadratic programming and is more recently applied in model predictive control (MPC)

by Ferreau et al. [101]. Successful implementation of PASM is included in [37] and

applications in [35, 38]. More recently, relevant analysis of invariant optimal active-set that

involves more than one parameter [60, 59] is shown to be a powerful tool for multiobjective

optimization [103]. We will describe the PASM following the framework of [101]. The key
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idea of PASM for solving (1.4) is to follow a homotopy path where each point corresponds

to the optimal solution of a QP. The homotopy could be viewed as morphing a QP with

known optimal solution to a QP to be solved. One salient feature of PASM is that no

Phase-I, i.e., the procedure to obtain an initial feasible solution, is required.

Throughout this section, suppose that H is positive semi-definite. Let the homotopy

be parameterized by τ ∈ [0, 1], in PASM a series of QPs parameterized by τ would be

solved as

min
x(τ)∈Rn

1

2
x(τ)Hx(τ) + c(τ)Tx(τ)

s.t. `(τ) ≤ Fx(τ) ≤ u(τ)

(2.28)

where c, `, and u are continuous functions of τ . Note that we have rewritten QP of (1.4)

in the form of (2.28) such that F ∈ R(m+n)×n contains coefficients of both equality and

inequality constraints of (1.4). For each τ , the optimal primal and dual solution pair is also

parameterized as (x(τ), z(τ)). Suppose further that c ∈ Hn, ` ∈ Hm+n, and u ∈ Hm+n

are affine functions defined by

Hk =
{
f : [0, 1] 7→ Rk | f(τ) = (1− τ)f(0) + τf(1), τ ∈ [0, 1]

}
.

It follows from [11] that the solution (x(τ), z(τ)) of (2.28) is piecewise linear but not

necessarily continuous on τ . On each line segment, the active set of the optimal solution

is constant. PSAM follows the solution path parameterized by τ and jumps from one line

segment to another until the QP of interest is solved. In the design of most parametric

active-set algorithms, τ = 0 usually corresponds to a QP whose optimal solution is known

or otherwise is easily solvable and τ = 1 corresponds to the QP to be solved. For example,

one may simply choose `(0) = −Me and u(0) = Me where M is a sufficiently large

number such that the initial working set is empty and the optimal solution is obtained by

solving a linear system.

The typical parametric active-set method is summarized in Algorithm 5. We discuss

the details of several key steps of Algorithm 5 below.

Step 3: Computation of step direction. Let FW represent the rows of F with index
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Algorithm 5 Parametric active-set method for convex QP
1: Input an initial c(0), `(0), u(0), and the optimal solution (x(0), z(0)) with working set W.
2: while τ < 1 do
3: Compute step direction ∆s = (∆x,∆z) with current working set W.
4: Determine maximum step ∆τ .
5: if ∆τ ≥ 1−∆τ then return x(1) = x(τ) + (1− τ)∆x, and z(1) = z(τ) + (1− τ)∆z.
6: Set τ+ := τ + ∆τ , x(τ+) = x(τ) + ∆τ∆x, z(1) = z(τ) + (1− τ)∆z, and W+ =W.
7: if constraint i is blocking constraint then
8: Set W+ =W+ ∪ {i}.
9: Linear independence test for W+.

10: if linear dependent then
11: Try to find exchange index k.
12: if not possible then return infeasible.
13: Adjust dual variable z(τ+).
14: Set W+ =W+\{k}.
15: end if
16: else if i-th dual variable is blocking then
17: Set W+ =W+\{i}.
18: Test for curvature of H on new working set W+.
19: if nonpositive curvature then
20: Try to find exchange index k.
21: if not possible then return unbounded.
22: Adjust primal variables x(τ+).
23: Set W+ =W+ ∪ {k}.
24: end if
25: end if
26: Set τ = τ+ and W =W+.
27: Possibly update matrix decomposition.
28: end while

belonging to W. The step direction is obtained by solving

 H F TW

FW 0


 ∆x

−∆zW

 =

 −(c(1)− c(τ))

FW(1)− FW(τ)

 , (2.29)

and setting ∆zW = 0.

Step 4: Determination of step length. As in simplex methods for linear optimization,

the step length ∆τ is determined via a ratio test. For the sake of brevity, we only describe

the idea of the ratio test and refer interested reader to [11, 101] for details. The primal-dual

solution pair (x(τ), z(τ)) is updated in the direction (∆x,∆z) until an inactive constraint

becomes active (a block constraint is met) or a dual variable in the working set becomes

0 (a dual variable is blocking) whichever happens earlier.

Step 9: Linear independence test. Deciding whether adding i to W will lead to linear
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dependence is done by solving the following equation

 H F TW

FW 0


 s

ξW

 =

Fi
0

 . (2.30)

It then becomes clear that Fi is linearly dependent on FW if and only if s = 0 is the

solution of (2.30).

Step 11: Determination of exchange index. Since s = 0, from (2.30) we have Fi =∑
j∈W ξjFj . Suppose λ > 0, adding λ(

∑
j∈W ξjFj − Fi) to the KKT equation of prob-

lem (2.28) would yield

Hx(τ+) + c(τ+) =
∑
j∈W

zj(τ
+)F Tj + λ(

∑
j∈W

ξjFj − Fi) = −λFi +
∑
j∈W

(zj(τ
+) + λξjFj).

Hence the index k could be selected by another ratio test by selecting the maximum λ

that keeps the sign of zi(τ
+) correct.

Step 13: Jump in dual variables. The dual variable is simply updated as

z̃j =


λ or − λ for j = i,

zj(τ
+) + λξj or zj(τ

+)− λξj for j /∈ W,

and set z(τ+) := z̃. Note that the sign of the change of z̃j depends on which of A` and

Au that j belongs to.

Step 18: Curvature test. Removing index i from W might lead to zero curvature on

the null space of the new working set, which lead further to the singularity of the linear

system to be solved in Step 3. This could be done via solving the following linear system

 H F TW

FW 0


 s

ξW

 =

 0

−[ei]W

 , (2.31)

where ei represent the i-th column of the (m+n)-by-(m+n) identify matrix. H is singular

in the null space of the new working set if and only if ξ = 0.
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Step 20: Determination of exchange index. Since (2.31) yields

Hs = 0, Fis = −1, and FW+s = 0.

It turns out that s is a non-increase direction and we can find the maximum step length

σ such that x(τ+) + σs is feasible.

Step 22: Jump in primal variables. The primal variable could be simply updated by

x(τ+) = x(τ+) + σs.

Step 27: Update matrix decomposition. Notice that (2.29), (2.30), and (2.31) have

identical coefficient matrix, of which the factorization could be reused. When the working

set changes by addition, removal, or substitution of constraints, the factorization could be

updated relatively cheaply [11, 101] and alternatively iterative methods would be appli-

cable when the matrix is sparse.

2.2.2 Augmented Lagrangian Methods

Augmented Lagrangian (AL) methods was originally proposed to solve constrained nonlin-

ear optimization [68, 102] and recently gained favor for their ability in solving large-scale

nonlinear problems. One big advantage of AL methods is that they usually possess fast

local convergence guarantees under relatively weak assumptions. We briefly review a clas-

sic AL method in this section and an alternative in §2.2.3. Consider the general nonlinear

optimization problem

min
x

f(x)

s.t. c(x) = 0

` ≤ x ≤ u,

(2.32)

where f : Rn 7→ R and g : Rm 7→ R are twice continuously differentiable. Let ρ > 0 be an

arbitrary positive number, the augmented Lagrange of (2.32) is defined as

Lρ(x, y) = f(x) + yT c(x) +
ρ

2
‖c(x)‖22.
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The basic AL iteration involves two steps:

xk+1 := argmin
x

Lρ(x, y
k) subject to ` ≤ x ≤ u; (2.33a)

yk+1 := yk + ρc(xk+1). (2.33b)

We describe how problem (1.4) could be solved via repeated application of (2.33). For a

convex QP (1.4), Step (2.33a) equivalents solving a bound-constrained QP

argmin
x

1

2
xTHx+ cTx+ c(x)T yk +

ρ

2
xTATAx subject to ` ≤ x ≤ u,

which could be solved efficiently for certain structured problems. Furthermore, the bound-

constrained QP subproblem does not need to be solved exactly [34, 28] and ρ could be

dynamically updated [28] to speed up the performance of AL methods.

2.2.3 Alternating Direction Methods of Multipliers

The Alternating Direction Methods of Multipliers (ADMM) could be viewed as Augmented

Lagrangian Methods with inexact subproblem solves and in particular by applying one

single Gauss-Seidel pass. A nice survey of ADMM for large-scale nonlinear optimization

is seen in [17]. In this section we focus on applying ADMM to solve (1.4) since ADMM

somehow can also make aggressive update on the active set estimate.

ADMM is proposed to solve convex optimization problems of the form

min
x∈Rn,y∈Rm

f(x) + g(y)

s.t. Ax+By = c,

(2.34)

where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. The convergence assumptions of ADMM only

require f and g to be convex. Let ρ > 0 be an arbitrary positive number, the augmented

Lagrangian of (2.34) is defined as

Lρ(x, y, z) = f(x) + g(y) + zT (Ax+By − c) + (
ρ

2
)‖Ax+By − z‖22.
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A basic ADMM iteration consists of the following steps

xk+1 := argmin
x

Lρ(x, y
k, zk), (2.35a)

yk+1 := argmin
y

Lρ(x
k+1, y, zk), (2.35b)

zk+1 := zk + ρ(Axk+1 +Byk+1 − c). (2.35c)

Under relatively mild assumptions (e.g., L0 has a saddle point) [17], applying ADMM

iterations on problem (2.34) converges to the optimal solution.

Now we confine ourselves to the application of ADMM to the QP problem (1.4), which

can be formulated as

min
x,y

f(x) + g(y)

s.t. x− y = 0,

where f(x) = 1
2x

THx+ cTx, domf = {x|Ax = b}, and g is the indicator function Ω(y) of

the bounds ` ≤ y ≤ u.

Next, we illustrate how each of the steps of (2.35) is carried out. Starting from

Step (2.35a), we have

argmin
x

Lρ(x, y
k, zk) = argmin

x:Ax=b

1

2
xTHx+ cTx+ Ω(yk) + (x− yk)T zk + (

ρ

2
)‖x− yk‖22,

which equivalents solving an equality constrained QP or a linear system. In solving

Step (2.35b), by dismissing the constants of quadratic terms of x we have

argmin
y

Lρ(x
k+1, y, zk) = argmin

y
Ω(y) + (xk+1 − y)T zk + (

ρ

2
)‖xk+1 − y‖22,

which turns out to be separable and have a closed-form solution

yk+1 = Median(`, xk+1 − zk/ρ, u),

where “Median” represents the element-wise median. Notice that in taking the element-

wise median operations, multiple entries of y might be added or removed from the active
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set. The computation involved in Step (2.35c) is trivial.

The biggest advantage of ADMM is that for some problems the steps of (2.35) might

be carried out in parallel thus greatly expand user’s ability to solve huge problems. For

QPs (1.4), ADMM can only achieve local linear convergence rate [66, 14], this is in contrast

to PDAS, which is super-linear [69]. Therefore, ADMM might not be well-suited when

warm-start or highly accurate solutions are desired.

32



Chapter 3

Globalization of PDAS for Convex

QP

The PDAS method described in §2.1.1, despite being extremely efficient, is only guaranteed

to work for certain classes of convex BQPs. The most distinctive feature of the method

is its ability to make rapid updates to the estimate of the optimal active-set, which may

make the method particularly favorable when solving large-scale problems. Indeed, this

feature has sparked numerous efforts to enhance the method to solve more general convex

BQPs [73, 82, 21] and LCPs [78]. In order to guarantee convergence, most of these efforts

involve the incorporation of safeguards to avoid cycling. However, additional challenges

besides cycling need to be addressed. It remains a challenge to design an efficient and

globally convergent PDAS algorithmic framework for solving general convex QPs.

In this chapter, we propose enhancements to the PDAS framework of Algorithm 4 so

that it will be applicable for solving generally-constrained strictly convex QPs. To do

this, we address two main issues that might occur when applying a PDAS method for

solving such problems. The first issue is that the PDAS iterates may encounter partitions

at which a subspace minimizer is not well-defined. Another issue, as illustrated in the

convex BQP in Example 2.1.3, is that a straightforward PDAS method might cycle.

Our proposed enhancements address these issues in the following ways. First, the

issue of ill-defined subspace minimizers may arise when the subproblem associated with
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the partition is infeasible. This usually happens when the active-set estimate contains

so many indices that fixing the values of the corresponding variables leads to a set of

equality constraints that are not satisfiable. In such a situation, no feasible solution exists

and a transformation of the partition is necessary to make further progress. To handle

this issue, we propose a procedure that detects feasibility of a subproblem by solving a

linear optimization problem for each newly obtained active-set estimate. Whenever an

infeasible subproblem is detected, our enhancement adaptively expands the search space

by shrinking the active-set estimate until a feasible subproblem is obtained.

We address the latter issue by proposing novel safeguards that attempt to preemp-

tively avoid cycling of the algorithm iterates. Since cycling is typically caused by a few

indices switching back and forth among different index sets, we introduce an uncertain set

to house indices that display such erratic behavior. Then, in the subspace minimization

phase, the bounds for variables corresponding to the uncertain set are enforced explicitly,

resulting in a BQP of reduced size. The uncertain set is updated dynamically and de-

liberating maintained to have a small size, which results in only modest additional costs

in the algorithm. Two techniques for updating the uncertain set are proposed: one that

monitors changes in the membership of each index and one that monitors progress toward

reducing the overall KKT error. Global convergence of our framework using either strat-

egy is proved and the practical performance of the resulting approaches are demonstrated

through extensive numerical tests.

This chapter is organized as follows. In §3.1, we describe our framework and prove

a generic global convergence theorem; in particular, we prove a result stating that our

framework is globally convergent when employed to solve strictly convex QPs. In §3.2,

we discuss two implementation variants of the framework and their relationship to the

method in [69]. In §3.3, we describe the details of our implementation and then present

numerical experiments in §3.4. These experiments illustrate that an implementation of

our framework is efficient when employed to strictly convex QPs, at least those with many

degrees of freedom relative to n. Finally, in §3.5 we summarize our findings and comment

on additional advantages of our framework, such as the potential incorporation of inexact
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reduced subproblem solves.

3.1 Algorithmic Framework

In this section, we motivate, describe, and prove a global convergence result for our frame-

work for solving the strictly convex QP (1.4). Throughout this chapter we assume that

H ∈ Rn×n is symmetric and positive definite. Additionally, we assume ` < u and that A

has full row-rank, all of which can be guaranteed by preprocessing the data and removing

fixed variables. If (1.4) is feasible, then the unique solution x∗ is the point at which there

exist Lagrange multipliers (y∗, z
`
∗, z

u
∗ ) such that (x∗, y∗, z

`
∗, z

u
∗ ) satisfies the Karush-Kuhn-

Tucker (KKT) conditions for (1.4), which is to say that the value of KKT(x∗, y∗, z
`
∗, z

u
∗ )

defined in (2.3) vanishes. (The norm used in the definition of the function KKT can be any

vector norm on Rn; our only requirement is that the same norm is used in the definition

of the residual function r defined in equation (3.6) later on.) On the other hand, if prob-

lem (1.4) is infeasible, then this can be detected by solving a traditional “Phase 1” linear

optimization problem (LP) to find a point that minimizes violations of the constraints;

see, e.g., [45]. For simplicity in the remainder of our algorithmic development and anal-

ysis, we ignore the possibility of having an infeasible instance of problem (1.4), but note

that we have implemented such an infeasibility detection strategy in our implementation

described in §3.3.

The iterates of our framework constitute a sequence of index sets {(A`k,Auk , Ik,Uk)}k≥0,

where for each k ≥ 0 the sets A`k, Auk , Ik, and Uk are mutually exclusive and exhaustive

subsets representing a partition of the set of primal variable indices N . Our use of index

sets as iterates makes our approach differ from many algorithms whose iterates are the

primal-dual variables themselves, but we make this choice as, in our framework, values

of the primal-dual variables are uniquely determined by the index sets. The first three

components of each iterate, namely A`k, Auk , and Ik, are commonly defined in active-set

methods and represent estimates of A`∗, Au∗ , and I∗, respectively. On the other hand, the

auxiliary set Uk (also referred to as the uncertain set) contains the indices of variables

whose bounds will be enforced explicitly when the corresponding primal-dual solution is
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computed. As illustrated by Theorem 3.1.2 (on page 39) and the results in §3.2, our use

of Uk allows for global convergence guarantees for our framework, while the numerical

results in §3.4 illustrate that these guarantees are typically attained at modest extra

computational cost (as compared to the costs when Uk is empty).

If equality constraints are present (i.e., if m 6= 0), then precautions should be taken to

ensure that each iteration of our method is well-defined. Specifically, each iteration of our

framework requires that we have a feasible partition, i.e., a partition (A`,Au, I,U) such

that there exists (xI , xU ) satisfying

AM,IxI +AM,UxU = b−AM,A``A` −AM,AuuAu and `U ≤ xU ≤ uU . (3.1)

Algorithm 6, below, is employed at the beginning of each iteration of our framework in

order to transform a given iterate (A`k,Auk , Ik,Uk) into a feasible partition. (We drop the

iteration number subscript in the algorithm as it is inconsequential in this subroutine.

Moreover, at this point we do not provide specific strategies for choosing the sets S`,

Su, SI , and SU in Algorithm 6; we leave such details until §3.3 where the approach

employed in our implementation is described.) Note that if m = 0, then (3.1) reduces to

`U ≤ xU ≤ uU . In such cases, preprocessing the data for problem (1.4) (i.e., to ensure

` < u) has guaranteed that each iterate is a feasible partition, so running Algorithm 6 is

unnecessary. Otherwise, if m > 0, then Algorithm 6 is well-defined and will produce a

feasible partition for any input. This can be seen by the fact that, in the worst case, the

algorithm will eventually have A` ∪ Au = ∅, in which case the feasibility of (1.4) implies

that (3.1) is satisfiable.

Algorithm 6 Transformation to a feasible partition (Feas)

1: Input (A`,Au, I,U) and initialize (A`,Au, I,U)← (A`,Au, I,U).
2: while (3.1) is not satisfiable do
3: Choose any S` ⊆ A` and Su ⊆ Au such that S ← S` ∪ Su 6= ∅.
4: Set A` ← A`\S` and Au ← Au\Su.
5: Choose any (SI ,SU ) ⊆ S × S such that SI ∪ SU = S and SI ∩ SU = ∅.
6: Set I ← I ∪ SI and U ← U ∪ SU .
7: end while
8: Return (A`,Au, I,U) =: Feas(A`,Au, I,U).
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Once a feasible partition is obtained, we use Algorithm 7 to compute primal-dual

variable values corresponding to the current index sets. The procedure computes the

primal-dual variables by minimizing the objective of (1.4) over subsets of the original

variables and constraints, where we have already ensured via Algorithm 6 that the reduced

problem (3.3) is feasible. Again, we drop the iteration number index in Algorithm 7 as it

is inconsequential in this subroutine.

Algorithm 7 Subspace minimization (SM)

1: Input (A`,Au, I,U) such that (3.1) is satisfiable (i.e., such that (3.3) is feasible).
2: Set

xA` ← `A` , xAu ← uAu , z`I∪Au ← 0, and zuI∪A` ← 0. (3.2)

3: Let A ← A` ∪Au, F ← I ∪U , and (xF , y, z
`
U , z

u
U ) be the optimal primal-dual solution

of
minimize
xF∈R|F|

1
2x

T
FHF,FxF + xTF(cF +HF,AxA)

subject to AM,FxF = b−AM,AxA, `U ≤ xU ≤ uU .
(3.3)

4: Set
z`A` ← [Hx+ c−ATy]A` and zuAu ← −[Hx+ c−ATy]Au . (3.4)

5: Return (x, y, z`, zu) =: SM(A`,Au, I,U).

The steps of Algorithm 7 are easily described. In Step 2, the components of x in

the set A` (Au) are fixed at their lower (upper) bounds, and components of z` (zu) are

fixed to zero corresponding to components of x that are not fixed at their lower (upper)

bounds. In Step 3, a reduced QP is solved in the remaining primal variables, i.e., those

in I and U . This step also determines the dual variables for the linear equalities and the

bound constraints in U . Finally, in Step 4, we set the dual variables corresponding to

those primal variables that were fixed in Step 2. Notice that when U = ∅, the solution of

(3.3) reduces to the solution of

HI,I ATM,I

AM,I 0


xI
−y

 = −

cI +HI,AxA

AM,AxA − b

 . (3.5)

This observation is critical as it shows that, whenever Uk = ∅ in our framework, the
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computational cost of Algorithm 7 is dominated by that of solving a reduced linear system.

In practice, the framework chooses U0 to be empty, and only introduces indices into Uk if

necessary to ensure convergence.

The following lemma shows a critical feature of the output of Algorithm 7. (Recall

that we require the vector norm in equation (3.6) to be that used in the definition of the

KKT function defined in equation (2.3).)

Lemma 3.1.1. If (A`,Au, I,U) is feasible and (x, y, z`, zu) ← SM(A`,Au, I,U), then

r(x, y, z`, zu) = KKT(x, y, z`, zu), where

r(x, y, z`, zu) :=

∥∥∥∥∥∥∥∥∥∥


min{z`A` , 0}

min{zuAu , 0}

min{0, [x− `]I , [u− x]I}


∥∥∥∥∥∥∥∥∥∥
. (3.6)

Proof. The proof follows by straightforward comparison of KKT(x, y, z`, zu) with (3.2),

the optimality conditions of (3.3), and (3.4). In particular, these conditions guarantee

that certain elements of the vector in the definition of KKT(x, y, z`, zu) are equal to zero;

the only potentially nonzero elements are those in the vector defining the residual value

r(x, y, z`, zu).

It follows from Lemma 3.1.1 that if the input (A`,Au, I,U) to Algorithm 7 yields

(x, y, z`, zu) with `I ≤ xI ≤ uI , z`A` ≥ 0, and zuAu ≥ 0, then (x, y, z`, zu) is the solution to

(1.4). This follows as the procedure in Algorithm 7 ensures that the resulting primal-dual

vector satisfies the first two blocks of equations in (2.3) as well as complementarity of the

primal and dual variables. The only conditions in (2.3) that it does not guarantee for each

partition are primal and dual variable bounds.

We now state our algorithmic framework in Algorithm 8.

Although we have yet to state specific strategies for updating the index sets in Step 6

of Algorithm 8, we can prove that it terminates and returns the optimal solution of (1.4)

as long as, for some k ≥ 0, we have

A`k ⊆ A`∗, Auk ⊆ Au∗ , and Ik ⊆ I∗. (3.7)
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Algorithm 8 Primal-dual active-set framework (PDAS)

1: Input (A`0,Au0 , I0,U0) and initialize k ← 0.
2: loop
3: Set (A`k,Auk , Ik,Uk)← Feas(A`k,Auk , Ik,Uk) by Algorithm 6.
4: Set (xk, yk, z

`
k, z

u
k )← SM(A`k,Auk , Ik,Uk) by Algorithm 7.

5: If r(xk, yk, z
`
k, z

u
k ) = 0, then break.

6: Choose (A`k+1,Auk+1, Ik+1,Uk+1), then set k ← k + 1.
7: end loop
8: Return (xk, yk, z

`
k, z

u
k ).

In other words, Algorithm 8 produces (x∗, y∗, z
`
∗, z

u
∗ ) satisfying (2.3) if, for some iteration

number k ≥ 0, the algorithm generates subsets of the optimal index sets.

Theorem 3.1.2. If problem (1.4) is feasible and the kth iterate of Algorithm 8 satisfies

(3.7), then r(xk, yk, z
`
k, z

u
k ) = 0 and (xk, yk, z

`
k, z

u
k ) solves problem (1.4).

Proof. Our strategy of proof is as follows. First, we will show that if (3.7) holds, then

(A`k,Auk , Ik,Uk) = Feas(A`k,Auk , Ik,Uk), which will imply that Algorithm 6 has no effect

on such an iterate in Step 3 of Algorithm 8. Second, we will show that (x∗, y∗, z
`
∗, z

u
∗ )

satisfies (3.2)–(3.4), where in the case of (3.3) we mean that the primal-dual optimality

conditions for the subproblem are satisfied. Since the vector (xk, yk, z
`
k, z

u
k ) is uniquely

defined by (3.2)–(3.4), it will then follow that (xk, yk, z
`
k, z

u
k ) = (x∗, y∗, z

`
∗, z

u
∗ ), which is the

desired result.

To show that, if (3.7) holds, then Algorithm 6 will have no effect on the partition, we

will show that—due to (3.7)—the point (x∗, y∗, z
`
∗, z

u
∗ ) satisfies (3.1). Since this will imply

that (3.1) is satisfiable, it will follow that the while loop in Algorithm 6 will not be entered,

and hence the initial partition given to Algorithm 6 will be returned. Let Ak ← A`k ∪Auk
and Fk ← Ik ∪ Uk (as in Algorithm 7). It follows from the KKT conditions (2.3) that

Ax∗ = b, which with condition (3.7) implies

AM,Fk
[x∗]Fk

= b−AM,A`
k
[x∗]A`

k
−AM,Au

k
[x∗]Au

k

= b−AM,A`
k
`A`

k
−AM,Au

k
uAu

k
. (3.8)
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In addition, (2.3) implies ` ≤ x∗ ≤ u, with which we find

`Uk ≤ [x∗]Uk ≤ uUk . (3.9)

Hence, (x∗, y∗, z
`
∗, z

u
∗ ) satisfies (3.1), so Algorithm 6 does not modify (A`k,Auk , Ik,Uk).

Next, we show that (x∗, y∗, z
`
∗, z

u
∗ ) satisfies (3.2)–(3.4). It follows from (3.7) that

[x∗]A`
k

= `A`
k
, [x∗]Au

k
= uAu

k
, [z`∗]Ik∪Au

k
= 0, and [zu∗ ]Ik∪A`

k
= 0, (3.10)

so (3.2) is satisfied. It then also follows from (2.3) and (3.10) that

HIkIk HIkUk

HUkIk HUkUk


[x∗]Ik

[x∗]Uk

+

HIkAk

HUkAk

 [x∗]Ak

+

cIk
cUk

−
ATM,Ik

ATM,Uk

 y∗ +

 0

[zu∗ − z`∗]Uk

 = 0. (3.11)

Furthermore,

if i ∈ Uk ∩ I∗, then [x∗]i ∈ (li, ui) and [z`∗]i = [zu∗ ]i = 0; (3.12a)

if i ∈ Uk ∩ A`∗, then [x∗]i = `i, [z`∗]i ≥ 0, and [zu∗ ]i = 0; (3.12b)

if i ∈ Uk ∩ Au∗ , then [x∗]i = ui, [z`∗]i = 0, and [zu∗ ]i ≥ 0. (3.12c)

Thus, it follows from (3.8)–(3.12) that [x∗]Fk
is the unique solution to (3.3) with associated

dual values (y∗, [z
`
∗]Uk , [z

u
∗ ]Uk). Finally, from (2.3) and (3.10) we have

[z`∗]A`
k

= [Hx∗ + c−ATy∗ + zu∗ ]A`
k

= [Hx∗ + c−ATy∗]A`
k

(3.13a)

and [zu∗ ]Au
k

= −[Hx∗ + c−ATy∗ − z`∗]Au
k

= −[Hx∗ + c−ATy∗]Au
k
. (3.13b)

We may now conclude from (3.8)–(3.13) that (x∗, y∗, z
`
∗, z

u
∗ ) satisfies (3.2)–(3.4), which are

uniquely satisfied by (xk, yk, z
`
k, z

u
k ). Thus, (xk, yk, z

`
k, z

u
k ) = (x∗, y∗, z

`
∗, z

u
∗ ).
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Note that due to potential degeneracy, condition (3.7) is not necessary for Algorithm 8

to terminate, though it is sufficient. For example, for i ∈ A`∗, we may find that with

i ∈ Ik we obtain [xk]i = `i from (3.3). This means that Algorithm 8 may terminate with

a solution despite an index corresponding to an active bound being placed in Ik, meaning

that Ik 6⊂ I∗. We remark, however, that this type of case does not inhibit us from proving

global convergence for our methods in §3.2.

Now that our algorithmic framework has been established in Algorithm 8, we comment

further on comparisons of our approach and a few related methods in the literature.

First, the algorithms in [8, 9, 86] have a similar form to Algorithm 8 and employ index

set updates that are similar to that in Algorithm 9, described in the following section.

However, as these algorithms do not aim to solve generally constrained convex QPs, they

do not possess global convergence guarantees for problem (1.4). Rather, they guarantee

convergence only for certain classes of convex QPs where the Hessian of the objective

function satisfies certain properties. Another related method is that proposed in [63]—

which is based on the method proposed in [61]—in which the authors propose a dual active-

set algorithm (DASA) which can solve generally constrained convex QPs. Fundamentally,

DASA and our PDAS framework differ in various ways. First, they differ in the structure

of the subproblems that arise in the algorithm. Specifically, an iteration of DASA involves

solving a linear system in the dual space, performing a line search, and—if the algorithm

has reached a maximum of a modified dual function—solving a bound-constrained problem

in the primal space to check for optimality. By contrast, the subproblems solved in PDAS

involve primal and dual variables and the original equality constraints from (1.4), but

with some primal variables fixed at their bounds and some bound constraints from (1.4)

ignored. Second, the strategies for updating the indexing sets in DASA are quite different

than those employed in PDAS: DASA uses the dual variables associated with the equality

constraints to generate a new active-set estimate, whereas the strategies that we propose

in the following section merely use the equality constraint multipliers to measure the

KKT error. Finally, DASA and our PDAS framework handle the potential infeasibility

of problem (1.4) differently: DASA uses a proximal point approach to avoid unbounded
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dual subproblems, whereas PDAS employs an initial infeasibility detection phase and

Algorithm 6 to guarantee that (3.3) is feasible.

3.2 Strategies for Updating the Indexing Sets

In this section, we describe several strategies for updating the index sets in Algorithm 8.

That is, we describe subroutines to be employed in Step 6 of Algorithm 8 to choose iterate

k + 1. Recall that Theorem 3.1.2 shows that if an update yields (3.7), then Algorithm 8

will terminate with a solution to problem (1.4). We begin by describing an extension of

the strategy of Hintermüller, Ito, and Kunisch [69] that yields this behavior in special

cases, but not for all strictly convex QPs. We then describe two novel techniques that

yield global convergence in the general case.

3.2.1 Hintermüller, Ito, and Kunisch update

The first strategy we describe, written as Algorithm 9 below, is an extension of the tech-

nique used in the method introduced by Hintermüller, Ito, and Kunisch [69]. In particular,

if m = 0, `i = −∞ for all i ∈ N , and U0 ← ∅, then Algorithm 8 with Step 6 employing

Algorithm 9 is identical to the algorithm in [69, Section 2].

Algorithm 9 Updating strategy inspired by Hintermüller, Ito, and Kunisch [69]

1: Input (A`k,Auk , Ik,Uk) and (xk, yk, z
`
k, z

u
k ).

2: Set

Uk+1 ← Uk, (3.14a)

A`k+1 ← {i ∈ (N \ Uk+1) : [xk]i < `i, or i ∈ A`k and [z`k]i ≥ 0}, (3.14b)

Auk+1 ← {i ∈ (N \ Uk+1) : [xk]i > ui, or i ∈ Auk and [zuk ]i ≥ 0}, (3.14c)

and Ik+1 ← N \ (Uk+1 ∪ A`k+1 ∪ Auk+1). (3.14d)

3: Return (A`k+1,Auk+1, Ik+1,Uk+1).

The following is an example of a result that can be proved with this strategy when H

is assumed to be a perturbation of an M-matrix; see [69, Theorem 3.4]. A matrix M is

said to be an M-matrix if it is positive definite and Mi,j ≤ 0 for all i 6= j, from which it
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can be shown that M−1 ≥ 0.

Theorem 3.2.1. Suppose m = 0, `i = −∞ for all i ∈ N , U0 ← ∅, and H = M + K

where M ∈ Rn×n is an M-matrix and K ∈ Rn×n. If ‖K‖1 is sufficiently small, then

problem (1.4) has a unique solution (x∗, z
`
∗, z

u
∗ ) and Algorithm 8 with Step 6 employing

Algorithm 9 yields (xk, z
`
k, z

u
k ) = (x∗, z

`
∗, z

u
∗ ) for some k ≥ 0.

We also show in Appendix A that Algorithm 8 with Uk = ∅ for all k ≥ 0 is equivalent

to a semi-smooth Newton method. Hintermüller, Ito, and Kunisch state similar results

for the case m = 0. It should be noted, however, that their proof actually only shows

that iterations after the first one are equivalent to a semi-smooth Newton method. This

caveat is important as they use this equivalence to prove that their method converges

superlinearly from any starting point sufficiently close to the solution. Such a result can

only be true for the iterate after their initial iterate due to the manner in which their

method is initialized. For example, consider a starting point obtained by perturbing the

optimal solution by an arbitrarily small amount into the strict interior of the feasible

region. Their algorithm would then begin by computing the unconstrained minimizer of

the quadratic objective, which can be arbitrarily far from the solution, meaning that fast

local convergence could not commence until the algorithm produces another iterate within

a sufficiently small neighborhood of the optimal solution. It should also be noted that,

since their algorithm converges (in special cases) in a finite number of iterations, the fact

that it converges superlinearly is immediate, regardless of [69, Theorem 3.1].

The main disadvantage of the strategy in Algorithm 9 when U0 = ∅ is that it does not

guarantee convergence for all strictly convex quadratic objective functions. This should not

be a surprise as Theorem 3.2.1 makes the assumption that H is a (perturbed) M-matrix,

which is restrictive. The three-dimensional Example (2.27) shows that the strategy may

fail if H is positive definite, but not an M-matrix. We provide this example as we also use

it later on to show that our techniques (which may set Uk 6= ∅) yield convergence on this

same problem.

To prevent cycling and ensure convergence from arbitrary initial iterates for n ≥ 3,

the following subsections focus on two updating strategies for the index sets that allow for
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the size of Uk to be changed (if needed) as the iterations proceed.

3.2.2 Update based on monitoring index set changes

The goal of our first new updating strategy for the index sets is to ensure that (3.7) is

eventually satisfied. This is desirable as then convergence of the associated iterates is

guaranteed by Theorem 3.1.2. The strategy is based on a simple observation: Since there

are only a finite number of distinct choices of the index sets, condition (3.7) will eventually

be satisfied if we prevent an infinite number of cycles of any length. Of course, taking

action only after a cycle has occurred may be inefficient for large-scale problems as the

cycle lengths can be exceedingly large. However, we can (preemptively) avoid cycling by

monitoring the number of times indices have moved between the index sets. This idea also

ties in with our numerical experience as we have often found that when the method in

the previous section does not yield convergence, it is primarily due to a handful of indices

that do not quickly settle into an index set. Variables that change index sets numerous

times may be considered sensitive and are prime candidates for membership in Uk.

To keep track of the number of times each index changes between index sets, we

define a counter sequence {qik} for each i ∈ N . Using these counters to monitor the

number of times each index changes set membership, we obtain the updating strategy in

Algorithm 10. (The algorithm is written to be as generic as possible, but precise strategies

for choosing S`, Su, and SI and updating the counters in Step 5 is given in §3.3.) The

motivation for the strategy is to mimic Algorithm 9, but to add an index (or indices) to

Uk+1 only if an index has changed index set membership too many times as determined

by a tolerance qmax ≥ 1. Note that when an index is moved into Uk+1, the counters (for all

indices) may be reduced or reset to avoid indices being moved into {Uk} too frequently.

(Again, due to the computational costs of solving instances of (3.3), we remark that it is

desirable to keep the elements of the sequence {|Uk|} small.)

The following lemma shows that Algorithm 10 guarantees that every iteration will

either move a nonempty subset of indices into the uncertain set, or our index counters will

increase.
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Algorithm 10 Updating strategy based on monitoring index set changes

1: Input (A`k,Auk , Ik,Uk), (xk, yk, z
`
k, z

u
k ), (q1

k, . . . , q
n
k ), and qmax ≥ 1.

2: if qik ≥ qmax for some i ∈ N then
3: Choose S` ⊆ A`k, Su ⊆ Auk , and SI ⊆ Ik such that S ← S` ∪ Su ∪ SI 6= ∅.
4: Set A`k+1 ← A`k\S`, Auk+1 ← Auk\Su, Ik+1 ← Ik\SI , and Uk+1 ← Uk ∪ S.
5: Set qik+1 ∈ {0, . . . , qik} for all i ∈ N .
6: else
7: Set (A`k+1,Auk+1, Ik+1,Uk+1) by (3.14).

8: Set qik+1 ← qik + 1 for all i ∈ A`k+1 such that i /∈ A`k.
9: Set qik+1 ← qik + 1 for all i ∈ Auk+1 such that i /∈ Auk .

10: Set qik+1 ← qik + 1 for all i ∈ Ik+1 such that i /∈ Ik.
11: end if
12: Return (A`k+1,Auk+1, Ik+1,Uk+1).

Lemma 3.2.2. Suppose that problem (1.4) is feasible. If Algorithm 8 does not terminate

before or in iteration k, then by employing Algorithm 10 in Step 6, we have that either

|Uk+1| > |Uk| or qik+1 > qik for at least some i ∈ N .

Proof. If Uk = N , then (3.1) is satisfiable and as a result of solving (3.3) we obtain

(x∗, y∗, z
`
∗, z

u
∗ ) solving (1.4). Consequently, Algorithm 8 terminates in iteration k. Thus,

we can assume that Uk 6= N . Moreover, if qik ≥ qmax for some i ∈ N , then it is clear that

Algorithm 10 will yield |Uk+1| > |Uk|. Thus, we may assume that qik < qmax for all i ∈ N .

All that remains is to show that, under the assumptions of the lemma, (3.14) will change

at least one index from some index set to another.

To derive a contradiction, suppose that (A`k+1,Auk+1, Ik+1,Uk+1) = (A`k,Auk , Ik,Uk) is

yielded by (3.14). By the procedure in Algorithm 7, it follows that

[xk]A`
k

= [`]A`
k
, [xk]Au

k
= [u]Au

k
, [z`k]Ik∪Au

k
= 0, and [zuk ]Ik∪A`

k
= 0, (3.15)

and the optimality conditions for subproblem (3.3) ensure that

min([xk − `]Uk , [z
`
k]Uk) = min([u− xk]Uk , [z

u
k ]Uk) = 0. (3.16)

Algorithm 10 and the assumption that there are no set changes imply that

Ik+1 = {i : i /∈ (A`k+1 ∪ Auk+1 ∪ Uk+1)} = Ik,
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from which we conclude that

[`]Ik ≤ [xk]Ik ≤ [u]Ik . (3.17)

Similarly, Algorithm 10 and the same assumption imply that

A`k+1 = {i : [xk]i < `i, or i ∈ A`k and [z`k]i ≥ 0} = A`k

and Auk+1 = {i : [xk]i > ui, or i ∈ Auk and [zuk ]i ≥ 0} = Auk

so that

[z`k]A`
k
≥ 0 and [zuk ]Au

k
≥ 0. (3.18)

With the residual function r defined by (3.6), it follows from (3.15)–(3.18) that we have

r(xk, yk, z
`
k, z

u
k ) = 0, which contradicts the assumption of the lemma that says that Algo-

rithm 8 does not terminate in iteration k.

The global convergence of Algorithm 8 with the updating strategy in Algorithm 10

can now be proved from arbitrary initial iterates. The simple, key idea to the proof is

that the monotonic nondecrease of the size of the auxiliary set will, in the worst case,

eventually lead to Uk = N for some large k, in which case the algorithm would produce

the optimal solution (and terminate) in iteration k. We stress, however, that while the

proof relies on such worst-case behavior, we have never witnessed such an occurrence in

practice. Indeed, as seen in our experiments in §3.4, we rarely find the auxiliary set ever

including more than a few indices.

Theorem 3.2.3. If problem (1.4) is feasible, then Algorithm 8 with Step 6 employing

Algorithm 10 solves problem (1.4) in a finite number of iterations.

Proof. To derive a contradiction, suppose that Algorithm 8 computes infinitely many

iterates. Then, by Lemma 3.2.2, each iteration will either yield |Uk+1| > |Uk| or qik+1 > qik

for at least some i ∈ N . If the algorithm continues without terminating, then eventually

the increases in the components of the elements of {(q1
k, . . . , q

n
k )} will yield Uk = N for

some sufficiently large k. However, as in the proof of Lemma 3.2.2, this means that (3.1)

will be satisfiable, solving (3.3) will yield (x∗, y∗, z
`
∗, z

u
∗ ) solving (1.4), and the algorithm
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will terminate, contradicting the supposition that an infinite number of iterations will be

performed.

Table 3.1 shows the behavior of Algorithm 8 on the problem in Example 2.27 given on

page 24. By using Algorithm 10 to update the index sets with qmax ← 1 (and setting qik+1

to zero whenever an element is moved into Uk+1), the algorithm converges to the solution

of the problem.

Table 3.1: Result of Algorithm 8 employed to solve the problem in Example 2.1 when
iterates are updated via Algorithm 10.

k A`k Auk Ik Uk xk zuk (q1
k, q

2
k, q

3
k)

0 ∅ ∅ {1, 2, 3} ∅ (−3, 1,−1) (0, 0, 0) (0, 0, 0)

1 ∅ {2} {1, 3} ∅ (1
3 , 0,

2
3) (0, 2

3 , 0) (0, 1, 0)

2 ∅ {1, 3} ∅ {2} (0,− 1
18 , 0) (−31

18 ,−
1
2 ,

49
18) (1, 0, 1)

3 ∅ {3} ∅ {1, 2} (−1
2 , 0, 0) (0, 3

2 ,
1
2) (0, 0, 0)

3.2.3 Update based on reducing the KKT error

The updating strategy described in this section is based on a technique for ensuring reduc-

tions in the KKT residual. In particular, we adopt a nonmonotonic watch-dog strategy

employed in various optimization methods [24, 51, 56, 112, 113]. Since there are only a

finite number of partitions of the index sets, by ensuring that the KKT residual is reduced

over sequences of iterations, the residual is eventually reduced to zero. As in the strat-

egy in the previous subsection, the aim is to mimic Algorithm 9, but to move an index

(or indices) to the uncertain set if the new KKT residual is not sufficiently small. One

additional benefit of this approach is that it allows for elements to be removed from the

uncertain set, which can be done whenever indices remain in the same index set as the

residual is reduced.

The steps of Algorithm 11 can be summarized as follows. First, a trial iterate is chosen

as (A`k+1,Auk+1, Ik+1,Uk+1) via (3.14) and then the Feas operator, i.e., Algorithm 6, is

applied to produce a feasible partition. If the resulting index sets yield (through the SM

operator, i.e., Algorithm 7) a primal-dual solution with a corresponding KKT value strictly

less than the maximum of the most recent pKKT values, then the algorithm continues with
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(A`k+1,Auk+1, Ik+1,Uk+1). Otherwise, (A`k+1,Auk+1, Ik+1,Uk+1) is reset to (A`k,Auk , Ik,Uk)

and indices are moved to Uk+1 until the resulting feasible partition yields a corresponding

KKT value less than the maximum of the most recent p KKT values. In either case,

once (A`k+1,Auk+1, Ik+1,Uk+1) is chosen in this manner, an optional step is available to

(potentially) remove elements from Uk+1. If this step is taken, then the primal variables

corresponding to the most recent p elements of {Uk} are considered. Specifically, the sets

T `, T u, and T I are constructed, representing indices whose variables have remained at

their lower bounds, at their upper bounds, or interior to their bounds, respectively, in the

last p iterations. If any of these sets are nonempty, then there is a strong indication that

overall computational costs can be reduced by moving elements into A`k+1, Auk+1, or Ik+1.

This is done and, importantly, it has no effect on the KKT value corresponding to iterate

k + 1.

For the strategy described in Algorithm 11, we have the following lemma.

Lemma 3.2.4. Suppose that problem (1.4) is feasible. If Algorithm 8 does not terminate

before or in iteration k, then by employing Algorithm 11 in Step 6, iteration k + 1 yields

r(xk+1, yk+1, z
`
k+1, z

u
k+1) < max

j∈{1,...,p}
{r(xk+1−j , yk+1−j , z

`
k+1−j , z

u
k+1−j)}. (3.19)

Proof. Under the assumption that Algorithm 8 has not yet terminated, we have

max
j∈{1,...,p}

{r(xk+1−j , yk+1−j , z
`
k+1−j , z

u
k+1−j)} > 0. (3.20)

If the condition in Step 5 holds (i.e., (3.19) does not hold), then the strategy reverts to

the kth partition. In such cases, the strategy iteratively moves indices corresponding to

nonzero elements in the vector defining r(xk+1, yk+1, z
`
k+1, z

u
k+1) (recall (3.6)) to the index

set Uk+1 until a strict reduction has been obtained (i.e., until (3.19) holds). This procedure

will terminate finitely as, in the worst-case, the method eventually has Uk+1 = N , in

which case r(xk+1, yk+1, z
`
k+1, z

u
k+1) = 0. Finally, observe that the procedure for removing

elements from Uk+1 has no effect on r(xk+1, yk+1, z
`
k+1, z

u
k+1) since indices are only removed

if their corresponding primal and dual variables do not contribute to any nonzero values
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Algorithm 11 Updating strategy based on ensuring KKT residual decrease

1: Input (A`k,Auk , Ik,Uk), p ≥ 1, and {(xk+1−j , yk+1−j , z
`
k+1−j , z

u
k+1−j)}j∈{1,...,p}.

2: Set (A`k+1,Auk+1, Ik+1,Uk+1) by (3.14).

3: Set (A`k+1,Auk+1, Ik+1,Uk+1)← Feas(A`k+1,Auk+1, Ik+1,Uk+1).

4: Set (xk+1, yk+1, z
`
k+1, z

u
k+1)← SM(A`k+1,Auk+1, Ik+1,Uk+1).

5: if r(xk+1, yk+1, z
`
k+1, z

u
k+1) ≥ maxj∈{1,...,p}{r(xk+1−j , yk+1−j , z

`
k+1−j , z

u
k+1−j)} then

6: Reset (A`k+1,Auk+1, Ik+1,Uk+1)← (A`k,Auk , Ik,Uk).
7: repeat
8: Choose S ← S` ∪ Su ∪ SI 6= ∅ with

S` ⊆ {i ∈ A`k+1 : z`k < 0}
Su ⊆ {i ∈ Auk+1 : zuk < 0}

and SI ⊆ {i ∈ Ik+1 : min{[xk − `]i, [u− xk]i} < 0}.

9: Set A`k+1← A`k+1\S`, Auk+1← Auk+1\Su, Ik+1← Ik+1\SI , and Uk+1← Uk+1 ∪ S.

10: Set (A`k+1,Auk+1, Ik+1,Uk+1)← Feas(A`k+1,Auk+1, Ik+1,Uk+1).

11: Set (xk+1, yk+1, z
`
k+1, z

u
k+1)← SM(A`k+1,Auk+1, Ik+1,Uk+1).

12: until r(xk+1, yk+1, z
`
k+1, z

u
k+1) < maxj∈{1,...,p}{r(xk+1−j , yk+1−j , z

`
k+1−j , z

u
k+1−j)}

13: end if
14: (Optional) Choose T ← T ` ∪ T u ∪ T I with

T ` ⊆

i ∈
k+1⋂

l=k+2−p
Ul : [xl]i = `i for l ∈ {k + 2− p, . . . , k + 1}

 ,

T u ⊆

i ∈
k+1⋂

l=k+2−p
Ul : [xl]i = ui for l ∈ {k + 2− p, . . . , k + 1}

 ,

and T I ⊆

i ∈
k+1⋂

l=k+2−p
Ul : `i < [xl]i < ui for l ∈ {k + 2− p, . . . , k + 1}

 ,

then setA`k+1← A`k+1∪T `, Auk+1← Auk+1∪T u, Ik+1← Ik+1∪T I , and Uk+1← Uk+1\T .

15: Return (A`k+1,Auk+1, Ik+1,Uk+1).

49



in the vectors defining r(xk+1, yk+1, z
`
k+1, z

u
k+1) and the r values in (3.20).

We now have the following theorem. The key idea to its proof is that, by ensuring

monotonic decrease in an appropriately defined merit function (see (3.21)), the KKT error

corresponding to the algorithm iterates will eventually vanish.

Theorem 3.2.5. If problem (1.4) is feasible, then Algorithm 8 with Step 6 employing

Algorithm 11 solves problem (1.4) in a finite number of iterations.

Proof. The result follows since by Lemma 3.2.4 we have that Algorithm 11 guarantees

{
max

j∈{1,...,p+1}
{r(xk+1−j , yk+1−j , z

`
k+1−j , z

u
k+1−j)}

}
(3.21)

is monotonically strictly decreasing. (Note that in the elements of this sequence, the max

is taken from j ∈ {1, . . . , p + 1}.) This is the case since, due to the strict inequality in

(3.19), there can be at most p consecutive iterations where the right-hand side of (3.19)

does not strictly decrease, and after p+ 1 iterations there must be a strict decrease. Since

there are only a finite number of partitions, we eventually obtain a sufficiently large k

such that r(x`k, y
u
k , z

`
k, z

u
k ) = 0.

Table 3.2 contains the output from solving the strictly convex QP in Example 2.27 on

page 24 using Algorithm 8 with p = 1.

Table 3.2: Result of Algorithm 8 employed to solve the problem in Example 2.1 when
iterates are updated via Algorithm 11. In the algorithm, the `∞-norm is used in the
definition of the residual function r (recall (3.6)) and we define rk := r(xk, z

u
k ).

k A`k Auk Ik Uk xk zuk rk

0 ∅ ∅ {1, 2, 3} ∅ (−3, 1,−1) (0, 0, 0) 1

1 ∅ {2} {1, 3} ∅ (1
3 , 0,

2
3) (0, 2

3 , 0) 2
3

2 ∅ {1, 2, 3} ∅ ∅ (0, 0, 0) (−2,−1, 3) 2

3 ∅ {2, 3} ∅ {1} (−1
2 , 0, 0) (0, 3

2 ,
1
2) 0
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3.3 Implementation details

In this paper, we have proposed and analyzed two instances of the generic framework pro-

vided as Algorithm 8, in addition to an instance representing an extension of the algorithm

in [69]. In this section, we describe an implementation in Matlab that incorporates all of

these approaches. The main motivation for our implementation (and the numerical results

in the following section) is to illustrate that while Algorithm 8 paired with the updating

strategy in Algorithm 9 is extremely efficient for solving many strictly-convex QPs, it can

lead to cycling, especially when applied to solve large and/or ill-conditioned problems.

Our updating strategies in Algorithms 10 and 11, on the other hand, are globally conver-

gent and require only a modest amount of additional computational effort. Specifically,

our implementation incorporates the index sets {Uk} to ensure global convergence, but

attempts to keep these sets small so that the subspace minimization procedure (SM) is

not much more expensive than solving a reduced linear system.

We specify the details of our implementation by considering, in turn, the subroutines

in Algorithm 8. First, Algorithm 6 is responsible for detecting the potential infeasibility

of a partition and, if necessary, modifying the partition to a feasible one. The infeasibility

detection phase involves the solution of a linear optimization problem (LP) that minimizes

violations of the constraints in (3.3):

minimize
xF ,r,s

eT (r + s)

subject to AM,FxF = b−AM,AxA + r − s, `U ≤ xU ≤ uU , (r, s) ≥ 0,

(3.22)

where e ∈ Rm is vector of ones of appropriate length, A and F are defined as in Step 3 of

Algorithm 7, and xA is defined as it is set in Step 2 of Algorithm 7. For the first component

of the starting point for solving this problem, call it x0
F , we choose the projection of the

most recent primal-dual solution estimate onto the feasible region of the bound constraints

in (3.3); i.e.,

x0
F ← (x0

I , x
0
U ), where x0

I ← [xk−1]I and x0
U ← max{`U ,min{[xk−1]U , uU}}.
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We then set the initial values for the slack variables to be

r0 = max{0, AM,AxA +AM,Fx
0
F − b}

and s0 = max{0, b−AM,AxA −AM,Fx
0
F}.

CPLEX’s primal simplex method is applied to solve (3.22). In many cases, (3.22) is solved

at this initial point. In general, however, (3.22) is solved via an LP solution method and,

when (3.1) is satisfiable, the resulting solution (x∗F , r
∗, s∗) yields eT (r∗ + s∗) = 0. (In

fact, due to numerical inaccuracies, we consider a given partition to be feasible as long as

eT (r∗ + s∗) ≤ ε for a small constant ε > 0.) If we find that this condition does not hold,

then this implies that the active set A` ∪Au should have elements removed. Algorithm 6

is motivated by the fact that infeasibility of (3.1) implies that too many variables are fixed

to their bounds. Based on this observation, our implementation transforms the partition

into a feasible one by iteratively moving an index from A` ∪ Au to I. The index to be

moved, call it j, is selected as one that, if included in I, would potentially lead to the

largest reduction in infeasibility; i.e., with ai defined as the ith column of A, we choose

j ← argmin
i∈A`∪Au

(
min
∆xi

1
2‖AM,AxA + ai∆xi +AM,Fx

∗
F − b‖22

)
,

which can be computed via |A`∪Au| minimizations of one-dimensional convex quadratics.

(If multiple indexes yield the same objective value for the inner minimization problem,

then our implementation selects the smallest such index.)

Our implementation of Algorithm 7 is relatively straightforward. Indeed, the only

step that requires specification is the method employed to solve subproblem (3.3). If

|U| = 0, then the solution of (3.3) is obtained by solving the reduced linear system (3.5);

in such cases, we employ Matlab’s built-in "\" routine to solve this system. If |U| 6= 0,

then problem (3.3) is a generally-constrained QP and we employ the active-set method

implemented in the qpOASES package [37].

We now turn to the details of our implementation of our strategies in Algorithms 10

and 11. Due to the increased computational costs of the SM subroutine when Uk is large,
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we have implemented these strategies so that |Uk+1| ≤ |Uk|+ 1 for all k. In Algorithm 10,

we implement Step 3 by choosing S as the smallest index in {i ∈ N : qik = maxj∈N qjk},

and we implement Step 5 by setting qik+1 ← 0 for all i ∈ N . Similarly, in Algorithm 11,

we implement Step 8 by choosing S as the index in A`k+1 ∪Auk+1 ∪ Ik+1 corresponding to

the element of the vector defining r(xk+1, yk+1, z
`
k+1, z

u
k+1) (recall (3.6)) with the largest

absolute value. (If there are more than one such indices in A`k+1 ∪ Auk+1 ∪ Ik+1, then

we choose the smallest such index.) Finally, due to numerical inaccuracies in the SM

routine, the idealized conditions in Step 12 of Algorithm 11 are inappropriate in practice

for removing elements from the set Uk+1. (In particular, since variables may never be

set exactly at their bounds, those conditions would typically consider all variables to be

inactive in all solutions, which would be inappropriate.) Alternatively, we perform this

step by defining 0 < εA < εI and setting

T ` ←

i ∈
k+1⋂

l=k+2−p
Ul : [xl]i ≤ `i + εA for l ∈ {k + 2− p, . . . , k + 1}

 ,

T u ←

i ∈
k+1⋂

i=k+2−p
Ul : [xl]i ≥ ui − εA for l ∈ {k + 2− p, . . . , k + 1}

 , and

T I ←

i ∈
k+1⋂

i=k+2−p
Ul : `i + εI ≤ [xl]i ≤ ui − εI for l ∈ {k + 2− p, . . . , k + 1}

 .

That is, we choose a relatively tight (but still nonzero) tolerance for determining an index

to be active and a relatively large tolerance for determining an index to be inactive. Primal

variables with values between εA and εI are considered too ambiguous to be determined

as active or inactive.

The numerical results in the following section support our claim that both updating

strategies effectively prevent |Uk| from becoming large.

3.4 Numerical Results

We tested our implementation of Algorithm 8 by solving randomly generated problems

with various numbers of variables (n), constraints (m), and condition numbers of H
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(Hcond). We generated H via Matlab’s sprandsym routine and generated A via Mat-

lab’s randn routine. The problems were generated so that there would (roughly) be an

equal number of lower-active, upper-active, and inactive primal variables in the optimal

solution. The algorithms were tested in Matlab 7.12.0.635 (R2011a) on a 64-bit machine

with 16 processors running a Linux environment.

For all of our experiments, the components (A`0,Au0 , I0) of the initial partition were

randomly generated while U0 was set to ∅. Algorithm 10 was run with qmax ← 5 and

Algorithm 11 (with and without step 14) was run with p ← 5. These values were chosen

as they resulted in good performance in our experiments. A problem was declared to be

solved successfully by an algorithm if for some k it obtained r(xk, yk, z
`
k, z

u
k ) ≤ 10−6, where

the `∞-norm was used in the definition of r. However, we set an iteration limit for each

problem as 1.1n; i.e., if for a given problem an algorithm failed to satisfy our tolerance

for the KKT error in 1.1n iterations, then we say that the algorithm failed to solve that

problem. The tolerance parameter ε > 0 (see the discussion following problem (3.22)) was

set to 10−8 and for Algorithm 11 we set εA ← 10−8 and εI ← 10−2.

Hereinafter, we refer to Algorithm 8 paired with the updating strategy in Algorithm 9

simply as “Algorithm 9”, and similarly for Algorithms 10 and 11. We first compare the

algorithms when solving strictly convex bound-constrained QPs (BQPs). (Recall that

for bound-constrained problems, the Feas routine, i.e., Algorithm 6, is never invoked.)

We tested problems with all combinations of number of variables (n) in {102, 103, 104}

and condition numbers for H (Hcond) in {102, 104, 106}. We generated 50 problems for

each of these 9 combinations and report, in Tables 3.3–3.7, averages (and some standard

deviations) of performance measures over these 50 runs. For each combination, all 50

problems were solved unless otherwise indicated, and in cases when fewer than the 50

problems were solved, the statistics are computed only over those runs that were successful.

In fact, this occurred only for the results in Table 3.3; see the caption for that table.

In Tables 3.3–3.6, we present results for Algorithms 9, 10, and 11. The first three

statistics that we report are the average number of iterations (µ(#Iter)), the standard

deviation of the number of iterations (σ(#Iter)), and the average number of calls to Al-
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gorithm 7 (µ(#SM)). In Tables 3.3 and 3.4, the number of calls to Algorithm 7 is equal

to the number of iterations (plus 1 as the SM routine is called in the last iteration before

computing the final KKT error), but in Tables 3.5 and 3.6 the number of calls to Algo-

rithm 7 may be relatively larger due to potential additional calls to the SM routine while

updating the index set partition.

The next statistics that we report represent a breakdown between two types of calls to

Algorithm 7. In particular, if Uk = ∅, then the major computational component of the call

is a linear system solve, which (as has already been mentioned) is performed via Matlab’s

built-in "\" routine; otherwise, if Uk 6= ∅, we solve the corresponding bound-constrained

subproblem with the qpOASES package. In the former type of iteration we increment

a “linear system” counter (by 1), whereas in the latter type of iteration we increment

a “quadratic subproblem iteration” counter (by the number of iterations reported by

qpOASES). In the tables, we report the average total number of linear systems solved

(µ(#LS)), the standard deviation of the number of linear systems solved (σ(#LS)), the

average total number of iterations of qpOASES summed over all calls to it (µ(#QP-Iter)),

and the standard deviation of the total number of qpOASES iterations (σ(#QP-Iter)).

When observing these results, it is important to note that when the initial point for solving

a QP is optimal, qpOASES reports zero iterations were performed.

The last statistics that we report relate to the cardinality of the uncertain sets in

the experiments. For a given run of an algorithm to solve a given problem instance, let

K represent the final iteration number. In the tables, we report the average cardinality

of UK (µ(Last-|U|)), the average of the mean cardinality of the elements of {Uk}Kk=0

(µ(Avg-|U|)), and the standard deviation of the mean cardinality of the elements of

{Uk}Kk=0 (σ(Avg-|U|)).

Since Algorithm 9 maintains Uk = ∅ for all k, we omit columns (that would other-

wise appear in Table 3.3) corresponding to qpOASES iterations and cardinalities of the

uncertain set since these values are all zero.

Table 3.3 shows that Algorithm 9 is generally very efficient, but may not converge.

On the other hand, Algorithms 10 and 11 (see Tables 3.4–3.6) solved all problems in
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Table 3.3: Results of Algorithm 9 employed to solve BQPs. Statistics followed by † were
computed only over 45 (of 50) successful runs. Similarly, statistics followed by ‡ were
computed only over 46 (of 50) successful runs. All other statistics were computed over 50
successful runs.

n Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)

1e+02 1e+02 3.78e+00 6.79e-01 4.78e+00 4.78e+00 6.79e-01

1e+02 1e+04 5.14e+00 9.69e-01 6.14e+00 6.14e+00 9.69e-01

1e+02 1e+06 6.22e+00 1.06e+00 7.22e+00 7.22e+00 1.06e+00

1e+03 1e+02 4.78e+00 6.16e-01 5.78e+00 5.78e+00 6.16e-01

1e+03 1e+04 6.64e+00 1.05e+00 7.64e+00 7.64e+00 1.05e+00

1e+03 1e+06 8.02e+00 1.06e+00 9.02e+00 9.02e+00 1.06e+00

1e+04 1e+02 5.80e+00 4.95e-01 6.80e+00 6.80e+00 4.95e-01

1e+04 1e+04 8.24e+00† 7.43e-01† 9.24e+00† 9.24e+00† 7.43e-01†
1e+04 1e+06 1.01e+01‡ 1.14e+00‡ 1.11e+01‡ 1.11e+01‡ 1.14e+00‡

our experiments, illustrating that their global convergence guarantees are beneficial in

practice. Note that in Tables 3.4–3.5, a “µ(Last-|U|)” equal to zero indicates that the

algorithm is behaving identically to Algorithm 9. As this occurs often, particularly in

Table 3.5, this illustrates that Algorithms 10 and 11 are as efficient as Algorithm 9 for

many instances in our experiments. Moreover, even when this performance measure is

nonzero, it is typically very small (especially when considered relative to n) illustrating

that our global convergence guarantees are attained at modest additional effort. This is

further confirmed by the observation that the total qpOASES iterations (µ(#QP-Iter))

is often very small (especially relative to n). We also remark that the optional strategy in

Algorithm 11 yields some benefits in our experiments; i.e., by removing elements from the

uncertain set, the algorithm typically requires fewer QP iterations and maintains smaller

uncertain sets. This can be seen by comparing the results in Tables 3.5 and 3.6.

As a means of comparison for the results in Tables 3.3–3.6, we present in Table 3.7

results when the same set of test problems are solved directly with qpOASES. We report

the average number of iterations reported by qpOASES (µ(#QP-Iter)) and the standard

deviation of the number of iterations reported (σ(#QP-Iter)). It is important to note

that these results should not be compared directly with the similarly named columns in

Tables 3.3–3.6 since in many iterations our implementations of Algorithms 9, 10, and 11

solve a linear system directly rather than calling qpOASES. That being said, the results

in Table 3.7 illustrate the typical behavior of a classic active-set method with which
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Table 3.4: Results of Algorithm 10 employed to solve BQPs.
n Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)

1e+02 1e+02 3.78e+00 6.79e-01 4.78e+00 4.78e+00 6.79e-01

1e+02 1e+04 5.14e+00 9.69e-01 6.14e+00 6.04e+00 8.56e-01

1e+02 1e+06 6.20e+00 1.05e+00 7.20e+00 6.74e+00 8.03e-01

1e+03 1e+02 4.78e+00 6.16e-01 5.78e+00 5.78e+00 6.16e-01

1e+03 1e+04 6.60e+00 1.05e+00 7.60e+00 6.82e+00 8.96e-01

1e+03 1e+06 8.00e+00 1.07e+00 9.00e+00 6.60e+00 9.90e-01

1e+04 1e+02 5.80e+00 4.95e-01 6.80e+00 6.62e+00 5.30e-01

1e+04 1e+04 9.28e+00 3.89e+00 1.03e+01 6.02e+00 1.41e-01

1e+04 1e+06 1.07e+01 2.73e+00 1.17e+01 6.00e+00 0.00e+00

n Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+02 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+02 1e+04 1.20e-01 8.49e-01 6.00e-02 1.42e-02 6.17e-02

1e+02 1e+06 3.40e-01 9.17e-01 2.40e-01 6.12e-02 1.19e-01

1e+03 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+03 1e+04 2.60e-01 6.64e-01 4.20e-01 1.05e-01 1.43e-01

1e+03 1e+06 1.44e+00 2.44e+00 7.60e-01 2.83e-01 1.79e-01

1e+04 1e+02 1.20e-01 5.94e-01 1.60e-01 2.91e-02 6.92e-02

1e+04 1e+04 3.84e+00 8.35e+00 1.14e+00 4.55e-01 2.64e-01

1e+04 1e+06 6.06e+00 7.57e+00 1.14e+00 5.42e-01 1.73e-01

the number of iterations often increases with problem size (n) and condition number of

H (Hcond). By contrast, such a dependence appears less significant in the results in

Tables 3.3–3.6.

For our second set of experiments, we randomly generated problems with n = 104, but

with all combinations of numbers of equality constraints (m) in {10, 20} and condition

numbers for H (Hcond) in {102, 104, 106}. For each combination we generated 10 problems

and report the averages (and some standard deviations) of various performance measures.

All measures that we considered were the same as for the bound-constrained problems,

except that we now also report the average number of calls to Algorithm 6 (µ(#Feas)), the

average number of times that a call to Algorithm 6 actually modified the index set partition

(µ(#Feas-Mod)), the average total number of simplex pivots (in CPLEX) summed over

all calls to Algorithm 6 (µ(#Feas-Pvt)), and the standard deviation of the total number

of simplex pivots (σ(#Feas-Pvt)). These results are provided in Tables 3.8–3.10.

Tables 3.8–3.10 illustrate that Algorithms 10 and 11 (with or without the optional

step 14) successfully and efficiently solved all generated problem instances. Moreover, in

all cases, the set Uk was maintained at a very small size relative to n. All of this being

said, these results illustrate that the performance of our algorithms is less impressive when
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Table 3.5: Results of Algorithm 11 (without step 14) employed to solve BQPs.
n Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)

1e+02 1e+02 3.78e+00 6.79e-01 4.78e+00 4.78e+00 6.79e-01

1e+02 1e+04 5.14e+00 9.69e-01 6.14e+00 6.14e+00 9.69e-01

1e+02 1e+06 6.22e+00 1.06e+00 7.22e+00 7.22e+00 1.06e+00

1e+03 1e+02 4.78e+00 6.16e-01 5.78e+00 5.78e+00 6.16e-01

1e+03 1e+04 6.64e+00 1.05e+00 7.64e+00 7.64e+00 1.05e+00

1e+03 1e+06 8.02e+00 1.06e+00 9.02e+00 9.02e+00 1.06e+00

1e+04 1e+02 5.80e+00 4.95e-01 6.80e+00 6.80e+00 4.95e-01

1e+04 1e+04 8.86e+00 2.27e+00 1.00e+01 9.66e+00 1.47e+00

1e+04 1e+06 1.04e+01 1.47e+00 1.15e+01 1.13e+01 1.26e+00

n Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+02 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+02 1e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+02 1e+06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+03 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+03 1e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+03 1e+06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+04 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+04 1e+04 9.80e-01 6.79e+00 1.80e-01 3.98e-02 2.16e-01

1e+04 1e+06 1.80e-01 1.02e+00 1.00e-01 1.59e-02 5.89e-02

equality constraints are present. While the size of the uncertain set is typically very small

relative to n, it is less often equal to zero (when compared to our results for BQPs).

For example, in Table 3.8, the consistent values 6.00e+00 and 0.00e+00 for µ(#LS) and

σ(#LS), respectively, indicate that Algorithm 10 consistently only had an empty uncertain

set in the first few iterations, and afterwards the set had at least one element. This means

that the solver more often relies on qpOASES, causing an increase in the total number of

subproblem iterations. The algorithms also involve additional work to maintain feasible

partitions; work that may become significant if even more equality constraints are present.

It is for these reasons that we do not present results for problems with higher numbers

of equality constraints. Still, for the experiments we have performed, the results of our

algorithms are strong when compared to the results obtained when applying qpOASES

directly to solve the problems; see Table 3.11.

Finally, we test the practical performance of our proposed algorithms on the Maros

and Meszaros Convex QP test set [90]. The problems that are not solved within the

time limit are not reported. We employ State to indicate the state when the algorithm

terminates, with State being 0 meaning successful solve and -1 meaning the problem

violates feasibility tolerance. We set time limit of 48 hours and report the numerical
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Table 3.6: Results of Algorithm 11 (with step 14) employed to solve BQPs.
n Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)

1e+02 1e+02 3.78e+00 6.79e-01 4.78e+00 4.78e+00 6.79e-01

1e+02 1e+04 5.14e+00 9.69e-01 6.14e+00 6.14e+00 9.69e-01

1e+02 1e+06 6.22e+00 1.06e+00 7.22e+00 7.22e+00 1.06e+00

1e+03 1e+02 4.78e+00 6.16e-01 5.78e+00 5.78e+00 6.16e-01

1e+03 1e+04 6.64e+00 1.05e+00 7.64e+00 7.64e+00 1.05e+00

1e+03 1e+06 8.02e+00 1.06e+00 9.02e+00 9.02e+00 1.06e+00

1e+04 1e+02 5.80e+00 4.95e-01 6.80e+00 6.80e+00 4.95e-01

1e+04 1e+04 8.86e+00 2.27e+00 1.00e+01 9.86e+00 2.27e+00

1e+04 1e+06 1.04e+01 1.54e+00 1.15e+01 1.14e+01 1.54e+00

n Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+02 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+02 1e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+02 1e+06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+03 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+03 1e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+03 1e+06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+04 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

1e+04 1e+04 1.20e-01 7.18e-01 0.00e+00 1.11e-02 3.92e-02

1e+04 1e+06 6.00e-02 3.14e-01 0.00e+00 7.13e-03 2.52e-02

Table 3.7: Results of qpOASES employed to solve BQPs.
n Hcond µ(#QP-Iter) σ(#QP-Iter)

1e+02 1e+02 5.40e+01 7.37e+00

1e+02 1e+04 5.90e+01 6.16e+00

1e+02 1e+06 6.22e+01 6.73e+00

1e+03 1e+02 5.39e+02 2.11e+01

1e+03 1e+04 5.70e+02 2.04e+01

1e+03 1e+06 5.94e+02 1.97e+01

1e+04 1e+02 5.33e+03 5.98e+01

1e+04 1e+04 5.70e+03 6.40e+01

1e+04 1e+06 5.97e+03 8.31e+01

results of the solved problems in Table 3.12–3.14. We observe again that for the solved

problems PDAS usually can converge in a few iterations.
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Table 3.8: Results of Algorithm 10 employed to solve QPs (with n = 104).
m Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)

1e+01 1e+02 1.20e+01 3.23e+00 1.30e+01 6.00e+00 0.00e+00

1e+01 1e+04 1.47e+01 9.38e+00 1.57e+01 6.00e+00 0.00e+00

1e+01 1e+06 2.25e+01 1.85e+01 2.35e+01 6.00e+00 0.00e+00

2e+01 1e+02 1.39e+01 5.90e+00 1.49e+01 6.00e+00 0.00e+00

2e+01 1e+04 1.77e+01 1.05e+01 1.87e+01 6.00e+00 0.00e+00

2e+01 1e+06 1.65e+01 6.85e+00 1.75e+01 6.00e+00 0.00e+00

m Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+01 1e+02 6.67e+01 2.86e+01 1.30e+00 6.31e-01 2.53e-01

1e+01 1e+04 1.01e+02 7.15e+01 1.60e+00 8.50e-01 7.93e-01

1e+01 1e+06 2.31e+02 3.15e+02 2.80e+00 1.40e+00 1.47e+00

2e+01 1e+02 1.72e+02 1.07e+02 1.60e+00 7.50e-01 3.93e-01

2e+01 1e+04 2.77e+02 2.50e+02 2.00e+00 9.28e-01 5.73e-01

2e+01 1e+06 2.37e+02 1.59e+02 2.10e+00 9.70e-01 5.76e-01

m Hcond µ(#Feas) µ(#Feas-Mod) µ(#Feas-Pvt) σ(#Feas-Pvt)

1e+01 1e+02 1.30e+01 2.70e+00 1.30e+00 2.11e+00

1e+01 1e+04 1.57e+01 3.70e+00 1.90e+00 5.00e+00

1e+01 1e+06 2.35e+01 8.40e+00 1.38e+01 3.21e+01

2e+01 1e+02 1.49e+01 4.00e+00 5.90e+00 7.78e+00

2e+01 1e+04 1.87e+01 3.20e+00 1.10e+00 1.10e+00

2e+01 1e+06 1.75e+01 6.10e+00 7.10e+00 1.16e+01

Table 3.9: Results of Algorithm 11 (without step 14) employed to solve QPs (with n =
104).

m Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)

1e+01 1e+02 1.88e+01 8.12e+00 2.74e+01 1.07e+01 2.00e+00

1e+01 1e+04 2.19e+01 7.87e+00 2.82e+01 1.36e+01 2.50e+00

1e+01 1e+06 2.27e+01 7.06e+00 2.79e+01 1.37e+01 2.45e+00

2e+01 1e+02 1.89e+01 5.22e+00 2.40e+01 1.06e+01 1.58e+00

2e+01 1e+04 2.08e+01 9.02e+00 2.63e+01 1.17e+01 3.53e+00

2e+01 1e+06 3.51e+01 2.92e+01 5.47e+01 1.42e+01 3.99e+00

m Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+01 1e+02 2.61e+02 4.45e+02 7.60e+00 3.05e+00 4.93e+00

1e+01 1e+04 1.72e+02 2.06e+02 5.30e+00 1.70e+00 2.54e+00

1e+01 1e+06 2.03e+02 3.55e+02 4.20e+00 1.65e+00 3.71e+00

2e+01 1e+02 2.80e+02 2.34e+02 4.10e+00 1.58e+00 2.14e+00

2e+01 1e+04 3.59e+02 5.14e+02 4.50e+00 1.64e+00 3.37e+00

2e+01 1e+06 1.68e+03 3.29e+03 1.86e+01 8.30e+00 1.65e+01

m Hcond µ(#Feas) µ(#Feas-Mod) µ(#Feas-Pvt) σ(#Feas-Pvt)

1e+01 1e+02 2.74e+01 3.70e+00 9.60e+00 1.39e+01

1e+01 1e+04 2.82e+01 4.00e+00 1.00e+01 1.79e+01

1e+01 1e+06 2.79e+01 2.90e+00 8.00e+00 1.93e+01

2e+01 1e+02 2.40e+01 5.80e+00 2.07e+01 3.51e+01

2e+01 1e+04 2.63e+01 3.20e+00 8.10e+00 2.07e+01

2e+01 1e+06 5.47e+01 5.30e+00 5.74e+01 1.03e+02
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Table 3.10: Results for Algorithm 11 (with step 14) employed to solve QPs (with n = 104).
m Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)

1e+01 1e+02 3.29e+01 2.14e+01 5.42e+01 3.38e+01 2.12e+01

1e+01 1e+04 3.14e+01 1.64e+01 4.90e+01 3.20e+01 1.56e+01

1e+01 1e+06 3.69e+01 1.96e+01 6.04e+01 3.73e+01 1.84e+01

2e+01 1e+02 3.92e+01 2.74e+01 6.95e+01 3.98e+01 2.72e+01

2e+01 1e+04 4.39e+01 3.02e+01 7.39e+01 4.43e+01 2.90e+01

2e+01 1e+06 1.06e+02 1.13e+02 2.02e+02 1.05e+02 1.07e+02

m Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+01 1e+02 2.12e+02 2.85e+02 1.00e-01 4.71e-01 2.96e-01

1e+01 1e+04 1.32e+02 1.91e+02 4.00e-01 4.39e-01 2.61e-01

1e+01 1e+06 2.71e+02 3.27e+02 1.00e-01 4.93e-01 3.00e-01

2e+01 1e+02 6.03e+02 6.23e+02 3.00e-01 5.93e-01 2.95e-01

2e+01 1e+04 6.38e+02 8.15e+02 2.00e-01 5.12e-01 2.88e-01

2e+01 1e+06 1.92e+03 2.46e+03 5.00e-01 6.37e-01 3.76e-01

m Hcond µ(#Feas) µ(#Feas-Mod) µ(#Feas-Pvt) σ(#Feas-Pvt)

1e+01 1e+02 5.42e+01 3.70e+00 3.90e+00 5.11e+00

1e+01 1e+04 4.90e+01 3.40e+00 3.40e+00 6.26e+00

1e+01 1e+06 6.04e+01 5.30e+00 6.40e+00 1.25e+01

2e+01 1e+02 6.95e+01 1.09e+01 3.26e+01 6.19e+01

2e+01 1e+04 7.39e+01 4.60e+00 8.00e+00 2.01e+01

2e+01 1e+06 2.02e+02 9.40e+00 5.57e+01 1.25e+02

Table 3.11: Results of qpOASES employed to solve QPs (with n = 104).
m Hcond µ(#QP-Iter) σ(#QP-Iter)

1e+01 1e+02 5.41e+03 5.65e+01

1e+01 1e+04 5.74e+03 9.20e+01

1e+01 1e+06 6.06e+03 1.14e+02

2e+01 1e+02 5.36e+03 7.45e+01

2e+01 1e+04 5.76e+03 5.99e+01

2e+01 1e+06 6.05e+03 4.82e+01
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3.5 Concluding Remarks

Motivated by the impressive practical performance of the primal-dual active-set method

proposed by Hintermüller, Ito, and Kunisch [69] when solving certain bound-constrained

QPs arising from discretized PDE-constrained optimization problems, we have proposed an

algorithmic framework for solving strictly convex QPs that possesses appealing properties.

In particular, we have shown that our framework is globally convergent when solving any

strictly convex generally-constrained QP, and have shown in our numerical experiments

that two instances of our framework achieve this theoretical behavior with only a modest

increase in per-iteration computational cost as compared to the method in [69].

The novel idea underlying our framework is to introduce a set auxiliary to the tradi-

tional active-set estimate. Our techniques for handling this auxiliary set, which houses

the indices of variables whose bounds will be enforced explicitly during a given iteration,

have been motivated based on two observations. First, we have seen in our numerical ex-

periments and those of others that the active-set method in [69] often converges extremely

quickly when solving a convex BQP, despite the limitations of the method’s theoretical

convergence guarantees. Second, when the method in [69] does not converge, this behavior

typically can be attributed to a small subset of variables that tend to migrate between

active and inactive set estimates. Hence, by introducing our auxiliary set and devising

strategies that only move indices to that set to avoid cycling/nonconvergence, we are able

to attain the rapid convergence behavior of the method in [69] while solidifying a global

convergence guarantee for a more general class of problems.

The biggest potential drawback of introducing our auxiliary set is that the added

computational cost may become severe if the size of the set Uk becomes large. In such

cases, rather than simply requiring the solution of a reduced linear system in each iteration

as is required in [69] (and in our framework when Uk = ∅), our framework requires the

solution of a reduced QP with a subset of the original bound constraints. However, the

numerical results that we have provided in §3.4 show that the set Uk rarely grows beyond

a few indices. In fact, we often find that Uk remains empty throughout most iterations of

a run of the algorithm, in which case our framework behaves as the method in [69].
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Our framework was less efficient when solving QPs with a large number of equality

constraints relative to the number of variables. This was not a surprise to us as the rapidly-

adapting active-set estimates may led to infeasible partitions, which may in general lead to

unacceptable increases in computational costs. Therefore, we recommend our framework

when solving QPs with many degrees of freedom, and otherwise suggest the use of classical

active-set strategies, which are better tailored for problems with few degrees of freedom.

Finally, we remark that our framework lends itself to possible further enhancements,

such as the use of iterative methods in place of direct matrix factorizations when solving

our reduced subproblems. Maintaining global convergence guarantees when such tech-

niques are used is not a trivial task as inexactness in the subproblem solves has to be

monitored carefully so that progress is still made when updating the active-set estimates.

In §4, we prove that for certain convex QPs the level of inexactness is indeed tractable to

ensure global convergence. We also illustrate how incorporating inexactness in subproblem

solves could effectively reduce the overall computational demand.
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Chapter 4

PDAS with Inexact Subproblem

Solves

In §3, we proposed a globally convergent PDAS algorithmic framework for generally-

constrained strictly convex QPs. The main computational cost occurs in solving the

subproblem which is either a reduced linear system (as in the case of Algorithm 4) or a

reduced BQP (as in Algorithm 8). When the subproblem is a linear system, we propose in

this chapter extra enhancements that can further reduce the computational cost. The nov-

elty of the enhanced algorithms is that they allow inexactness in the reduced linear system

solves at all partitions (except optimal ones). Such a feature is particularly important in

large-scale settings when one employs iterative Krylov subspace methods [19, 98, 104, 114]

to solve these systems. We establish theoretical foundations for the PDAS framework with

inexact subproblem solves. We illustrate that incorporating inexactness can significantly

reduce the overall cost of PDAS methods when solving large-scale problems.

We propose three primal-dual active-set methods for solving large-scale instances of

an important class of QPs. The first algorithm is convergent on problems for which

properties of the Hessian can be exploited to derive explicit bounds to be enforced on

the reduced linear system residuals, whereas our second and third algorithms employ

dynamic parameters to control the residuals to avoid the computation of such explicit

bounds. We prove that, when applied to solve an important class of convex QPs, our
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algorithms converge from any initial partition. We also illustrate their practical behavior

by providing the results of numerical experiments on a pair of discretized optimal control

problems.

We remark that a straightforward heuristic involving a dynamic accuracy tolerance

that decreases as the optimization process proceeds will not ensure convergence without

strong assumptions on the employed linear system solver. Indeed, such is the approach

employed in our third algorithm, for which our convergence guarantees are significantly

weaker than for our first two algorithms. (We also provide an example illustrating why

the convergence guarantees for such an algorithm must be weaker.) In short, our first two

algorithms are able to attain stronger convergence guarantees as they involve procedures

for computing an upper bound on the norm of the inverse of a particular submatrix during

each iteration; our first algorithm computes such an upper bound explicitly, whereas our

second algorithm incorporates a dynamic parameter that (effectively) replaces this upper

bound.

This chapter is organized as follows. In §4.1, we state our problem of interest, basic

concepts and definitions, and outline our algorithmic framework. In §4.2, we present our

proposed algorithms and corresponding subroutines. We also prove that the algorithms

attain convergence guarantees for a certain class of problems of interest. We then discuss

an implementation of our algorithm in §4.3 and provide the results of numerical exper-

iments on discretized optimal control problems in §4.4 to show that our inexact PDAS

methods have advantages over a similar strategy that employs exact linear system solves.

Finally, concluding remarks are provided in §4.5.

4.1 Fundamentals

For a positive integer n and nonnegative integer m, we define an index set of (upper)

bounded variables N := {1, . . . , n}, index set of free variables F := {n + 1, . . . , n + m},

and index set of equality constraintsM := {1, . . . ,m}. Then, given problem data in terms

of c ∈ Rn+m, H ∈ R(n+m)×(n+m), A ∈ Rm×(n+m), b ∈ Rm, and u ∈ Rn, we consider the
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quadratic optimization problem

min
x∈Rn+m

cT

xN
xF

+ 1
2

xN
xF


T

H

xN
xF

 s.t. A

xN
xF

 = b, xN ≤ u. (4.1)

Throughout this chapter, we make the following assumption about the matrices in the

problem data for a given instance of (4.1).

Assumption 4.1.1. In (4.1), the Hessian of the objective function satisfies H � 0 and

HNN � 0, and the constraint data submatrix AMF is invertible.

Under Assumption 4.1.1, it follows that (4.1) is feasible and there exists a unique

primal point x and unique Lagrange multipliers (y, z) satisfying the Karush-Kuhn-Tucker

(KKT) optimality conditions for (4.1), which can be written as

0 = KKT(x, y, z) :=

c+H

xN
xF

+AT y +

z
0

 , A
xN
xF

− b, min{u− xN , z}

 .

We define a partition (A, I) of the index set of bounded variables as a pair of mutually

exclusive and exhaustive subsets of N , where A represents an active set of variables (i.e.,

variables equal to their upper bounds) and I = N\A represents the corresponding inactive

set. Corresponding to a partition (A, I), we define a subspace solution, call it (x, y, z), by

the following sequence of operations:

Set xA ← uA and zI ← 0, (4.2a)

then solve


HII HIF [AMI ]

T

HFI HFF [AMF ]T

AMI AMF 0



xI

xF

y

 = −


cI

cF

−b

−

HIA

HFA

AMA

uA (4.2b)

for (xI , xF , y),

then set zA ← −HANxN −HAFxF − [AMA]T y − cA. (4.2c)

Under Assumption 4.1.1, the matrix on the left-hand side of (4.2b) is nonsingular, and
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hence the subspace solution corresponding to (A, I) is unique. We call (A, I) an opti-

mal partition if its subspace solution (x, y, z) satisfies KKT(x, y, z) = 0, i.e., if (x, y, z) is

the optimal primal-dual solution for (4.1). Otherwise, the partition (A, I) and its cor-

responding subspace solution (x, y, z) are suboptimal. We remark that while the optimal

primal-dual solution is unique for an instance of (4.1), there may be more than one op-

timal partition. Indeed, more generally, for a given instance of (4.1), multiple partitions

may correspond to the same subspace solution.

Given a partition (A, I) and its corresponding subspace solution (x, y, z), we define

the violated sets of indices of variables as given by

VP := {i ∈ I : xi > ui} and VD := {i ∈ A : zi < 0}. (4.3)

(Clearly, these violated sets depend on the partition (A, I). However, for brevity in our

presentation, we do not indicate this dependence in the notation for VP and VD. In all

cases, the partition of interest will be clear from the context.) The following result has

important consequences that we will use extensively.

Theorem 4.1.2. Let (x, y, z) be the subspace solution corresponding to a given partition

(A, I). Then, (A, I) is optimal for (4.1) if and only if VP ∪ VD = ∅.

Proof. By straightforward verification of the KKT conditions for (4.1), the subspace so-

lution defined by (5.3) satisfies all KKT conditions, except perhaps subsets of min{u −

xN , z} = 0 corresponding to the bounds xI ≤ uI and zA ≥ 0. Subsets of these bounds

are violated if and only if the set VP ∪ VD is nonempty.

Consider the framework for solving (4.1) that is stated as Algorithm 12 below. Each

iteration of Algorithm 12 involves the computation of a subspace solution as defined in

(5.3). If the corresponding primal-dual solution estimate yields a zero (or sufficiently

small, corresponding to an arbitrary vector norm ‖ · ‖) KKT residual, then the solu-

tion is (approximately) optimal and the algorithm terminates. Otherwise, subsets of the

corresponding violated sets—the union of which is guaranteed by Theorem 4.1.2 to be

nonempty—are chosen, the indices of which are switched from active to inactive, or vice
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versa, to create a new partition. This algorithm represents a generic framework that al-

lows much flexibility, such as in the choices for CP and CD in Step 8. In the subsequent

sections of this chapter, we propose three algorithms related to Algorithm 12 that allow

inexactness in each subspace solution; along with these algorithms, details are provided

for all algorithmic computations, including how one may consider choosing the sets CP

and CD.

Algorithm 12 Primal-Dual Active-Set (PDAS) Framework

1: Input an initial partition (A, I) and optimality tolerance εopt ≥ 0.
2: loop
3: Compute the subspace solution (x, y, z) by (5.3).
4: if ‖KKT(x, y, z)‖ ≤ εopt then
5: Terminate and return (x, y, z).
6: end if
7: Set VP and VD by (4.3).
8: Choose CP ⊆ VP and CD ⊆ VD such that CP ∪ CD 6= ∅.
9: Set A ← (A\CD) ∪ CP and I ← (I\CP ) ∪ CD.

10: end loop

The algorithm in [69] can be viewed as a special case of Algorithm 12. In particular,

for the case when m = 0 (i.e., F = ∅ and M = ∅), it corresponds to Algorithm 12 with

the choice CP ← VP and CD ← VD in Step 8 in each iteration. The authors of [69]

provide convergence results for their algorithm that are similar to those in Theorem 4.1.3

below. For our purposes, we state the theorem in a more general setting so that it applies

for Algorithm 12 above. A proof is given afterwards. For the result, recall that a real

symmetric matrix is a P -matrix if all of its principal minors are positive (implying that

the matrix is positive definite), and a P -matrix is called an M -matrix if all of its off-

diagonal entries are nonpositive. We define [A]+ := max{0, A} (where the max should be

understood component-wise), the KKT system matrix

K :=

H AT

A 0

 , (4.4)
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and the following submatrix of K with its Schur complement with respect to K:

Q :=

HFF [AMF ]T

AMF 0

 and R := HNN −

HFN
AMN


T

Q−1

HFN
AMN

 . (4.5)

Theorem 4.1.3. Suppose that Assumption 4.1.1 holds and that the matrix R in (4.5)

satisfies at least one of the following conditions:

(a) R is a P -matrix and, corresponding to any partition (A, I), we have that ‖[R−1
IIRIA]+‖1 <

1 and eTR−1
IIw ≥ 0 for any w ≥ 0, where the latter inequality holds strictly, i.e.,

eTR−1
IIw > 0, whenever w 6= 0.

(b) R = M + E, where M is an M -matrix and ‖E‖1 is sufficiently small.

Then, with εopt ≥ 0 and any initial partition, Algorithm 12 terminates in a finite number

of iterations. In particular, if εopt = 0, then Algorithm 12 terminates in a finite number

of iterations with a KKT point for (4.1).

We prove Theorem 4.1.3 by proving two theorems; the first corresponds to condition (a)

of the theorem and the second corresponds to condition (b).

Theorem 4.1.4. Suppose Assumption 4.1.1 holds, R is a P -matrix, and, corresponding

to any partition (A, I), we have that ‖[R−1
IIRIA]+‖1 < 1 and eTR−1

IIw ≥ 0 for any w ≥ 0,

where the latter inequality holds strictly, i.e., eTR−1
IIw > 0, whenever w 6= 0. Then, with

εopt ≥ 0 and any initial partition, Algorithm 12 terminates in a finite number of iterations.

In particular, if εopt = 0, then Algorithm 12 terminates in a finite number of iterations

with a KKT point for (4.1).

Proof. It suffices to prove the result for εopt = 0. Thus, in the proof, we show that

Algorithm 12 yields a KKT point in a finite number of iterations.

In order to derive a contradiction, suppose that Algorithm 12 generates an infinite

number of partitions. For a given partition (A, I) considered in the algorithm, let (A+, I+)

be the subsequent partition in the algorithm. Furthermore, let (x, y, z) and (x+, y+, z+),
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respectively, be the subspace solutions corresponding to these partitions. For any index

i ∈ A+, we have by Step 9 of Algorithm 12 that either

i ∈ A =⇒ xi = ui = x+
i

or i ∈ I =⇒ xi > ui = x+
i .

Hence, it follows that [x+ − x]A+ ≤ 0. Similarly, for any index i ∈ I+, we have by Step 9

of Algorithm 12 that either

i ∈ I =⇒ zi = 0 = z+
i

or i ∈ A =⇒ zi < 0 = z+
i .

Hence, it follows that [z+ − z]I+ ≥ 0. Now, since (x, y, z) and (x+, y+, z+) are subspace

solutions, it follows from (5.3) that

R[x+ − x]N + [z+ − z] = 0, (4.6)

which implies that

[x+ − x]I+ = −R−1
I+I+(RI+A+ [x+ − x]A+ + [z+ − z]I+).

Moreover, from nonsingularity of the matrix R, it follows that if [x+−x]A+ and [z+−z]I+

are both zero, then [x+−x]I+ and [z+−z]A+ are both zero. By the partition update rule in

Step 9 of Algorithm 12, this occurs if and only if the violated sets VP and VD corresponding

to (x, y, z) satisfy VP ∪ VD, which, by Theorem 4.1.2, occurs if and only if (x, y, z) is a

KKT point for (4.1), i.e., KKT(x, y, z) = 0. However, in such a case, the algorithm would

have terminated with (x, y, z), contradicting the supposition that an infinite number of

partitions are generated. Hence, it follows that [x+−x]A+ and [z+− z]I+ cannot both be

zero.

For brevity, we now define ∆x := x+−x and ∆z := z+−z. From the discussion above
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and letting e ∈ Rn denote a vector of ones, we have

eT∆xN

= eTA+ [∆x]A+ + eTI+ [∆x]I+

= eTA+ [∆x]A+ − eTI+R
−1
I+I+RI+A+ [∆x]A+ − eTI+R

−1
I+I+ [∆z]I+

≤ − (1− ‖[R−1
I+I+RI+A+ ]+‖1)‖[∆x]A+‖1 − eTI+R

−1
I+I+ [∆z]I+ < 0,

where, by the conditions of the theorem, the last inequality is strict since [∆x]A+ and

[∆z]I+ cannot both be zero. Thus, the quantity eTxN strictly decreases in each iteration

of Algorithm 12. However, this is a contradiction to the supposition that an infinite number

of iterates are generated since x is uniquely determined by the partition and there are only

a finite number of partitions of N . Consequently, we have proved that Algorithm 12 must

terminate finitely with a KKT point.

Theorem 4.1.5. Suppose Assumption 4.1.1 holds and R satisfies R = M+E, where M is

an M -matrix and ‖E‖1 is sufficiently small. Then, with εopt ≥ 0 and any initial partition,

Algorithm 12 terminates in a finite number of iterations. In particular, if εopt = 0, then

Algorithm 12 terminates in a finite number of iterations with a KKT point for (4.1).

Proof. As in the proof of Theorem 4.1.4, it suffices to prove the result for εopt = 0.

Furthermore, again as in the proof of Theorem 4.1.4, we suppose—in order to derive a

contradiction—that Algorithm 12 generates an infinite number of partitions. Borrowing

notation and conclusions from the proof of Theorem 4.1.4, we have [∆x]A+ ≤ 0 and

[∆z]I+ ≥ 0. Moreover, for sufficiently small ‖E‖1, the matrix R is nonsingular,

R−1
I+I+RI+A+ = M−1

I+I+MI+A+ +O(‖E‖1) and R−1
I+I+ = M−1

I+I+ +O(‖E‖1).

Since M is an M -matrix, we have M−1
I+I+MI+A+ ≤ 0 and M−1

I+I+ ≥ 0. Hence, since
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[∆x]A+ and [∆z]I+ cannot both be zero, we have for sufficiently small ‖E‖1 that

eT∆xN

= eTA+ [∆x]A+ + eTI+ [∆x]I+

= eTA+ [∆x]A+ − eTI+R
−1
I+I+RI+A+ [∆x]A+ − eTI+R

−1
I+I+ [∆z]I+

= eTA+ [∆x]A+ − eTI+M
−1
I+I+MI+A+ [∆x]A+ − eTI+M

−1
I+I+ [∆z]I+ +O(‖E‖1) < 0.

The remainder of the proof follows in the same manner as that of Theorem 4.1.4.

4.2 Algorithm Descriptions

In this section, we propose three algorithms for solving (4.1). Each algorithm has the

same basic structure as Algorithm 12, but allows inexactness in the reduced linear system

solves. In the first algorithm that we propose, a tolerance for inexactness is set based on

an upper bound on a norm of a particular submatrix. We illustrate that such a bound can

be computed efficiently in certain cases of interest. In the second and third algorithms,

the inexactness tolerance is set based on a parameter that is updated dynamically within

the algorithm. For all algorithms, we prove that the guarantees of Theorem 4.1.3 are

maintained.

The algorithms in this section employ an extension of the operations specified in (5.3).

In particular, corresponding to a partition (A, I), we define an inexact subspace solution,

call it (x̃, ỹ, z̃), by the following operations (where by “≈” in (4.7b) we are indicating that
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the “solve” may be approximate):

Set x̃A ← uA and z̃I ← 0, (4.7a)

then solve


HII HIF [AMI ]

T

HFI HFF [AMF ]T

AMI AMF 0



xI

xF

y

 ≈ −

cI

cF

−b

−

HIA

HFA

AMA

uA (4.7b)

for (x̃I , x̃F , ỹ),

then set z̃A ← −HAN x̃N −HAF x̃F − [AMA]T ỹ − cA (4.7c)

and


r̃N

r̃F

t̃

←

cN

cF

−b

+


HNN HNF [AMN ]T

HFN HFF [AMF ]T

AMN AMF 0



x̃N

x̃F

ỹ

+


z̃

0

0

 . (4.7d)

The vector (r̃, t̃) is the residual in the (reduced) linear system solve that produces (x̃, ỹ, z̃)

via (4.7b). Under Assumption 4.1.1, we find by comparing (5.3) and (4.7) that (x̃, ỹ, z̃) =

(x, y, z) if and only if (r̃, t̃) = 0.

In each of the algorithms proposed in this section, we iteratively solve the linear system

in (4.7b) until either it is verified that the partition (A, I) is optimal (with respect to a

tolerance εopt ≥ 0) or the inexact subspace solution is sufficiently accurate in that it leads

to a productive update of the partition. In our first algorithm, we provide a strategy

in which we identify subsets of the violated sets VP and VD corresponding to the exact

subspace solution (x, y, z) without having to explicitly compute this exact solution. In this

manner, the algorithm fits into the framework of Algorithm 12. In our other algorithms,

we do not necessarily identify subsets of these violated sets, though we can still ensure

convergence guarantees by employing and appropriately updating a dynamic algorithmic

parameter.

4.2.1 An Algorithm with a Partition-Defined Subproblem Tolerance

Our first algorithm imposes a tolerance on the residual (r̃, t̃) defined in (4.7d) that is based

on a partition-defined value with which we can guarantee that at any suboptimal partition
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a subset of the union VP ∪ VD corresponding to the exact subspace solution (x, y, z) will

be identified. In order to motivate the tolerance that we employ, we first explore, for a

given partition (A, I), the relationship between the subspace solution (x, y, z) defined by

(5.3) and an inexact subspace solution (x̃, ỹ, z̃) defined by (4.7). Then, once the tolerance

is established, we present our first inexact PDAS algorithm, followed by subsections in

which we discuss details of subroutines of the algorithm. It is important to note that we

assume that a subroutine is available for computing exact solutions of linear systems with

Q in (4.5); i.e., we assume products with Q−1 can be computed. This is a reasonable

assumption in certain applications, especially since the matrix Q is fixed, i.e., it does not

depend on the partition.

Given a partition (A, I) and recalling (4.4), consider the decomposition

K =

H AT

A 0

 =



[
HAA

] [
HAI ST[A]

]
HIA
S[A]


HII ST[I]

S[I] Q



 , (4.8)

where (using a subscript [·] to indicate dependence on an index set) we define

K[I] :=

HII ST[I]

S[I] Q

 , S[A] :=

HFA
AMA

 , and S[I] :=

HFI
AMI

 .
(Note that K[N ] = K and RII = HII − ST[I]Q

−1S[I] is the Schur complement of Q with

respect to K[I].) Observing (5.3) and (4.7), it follows that x̃A = uA = xA and z̃I = 0 = zI .

In addition, defining the residual subvector ṽ := (r̃F , t̃), we have

xI = x̃I −R−1
II r̃I +R−1

IIS
T
[I]Q

−1ṽ (4.9a)

and zA = z̃A + (HAI − ST[A]Q
−1S[I])R

−1
II r̃I

− (HAIR
−1
IIS

T
[I] − S

T
[A] − S

T
[A]Q

−1S[I]R
−1
IIS

T
[I])Q

−1ṽ. (4.9b)

Observing (4.9), it follows that the violated sets VP and VD corresponding to (x, y, z)
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can be defined in terms of an inexact subspace solution (x̃, ỹ, z̃) and its residual (r̃, t̃).

In particular, for an index i ∈ I, the ith element of x violates its upper bound if the

corresponding element on the right-hand side of (4.9a) is greater than ui, and, for an

index i ∈ A, the ith element of z violates its lower bound (of zero) if the corresponding

element on the right-hand side of (4.9b) is negative. This revised viewpoint of the elements

of xI and zA does not immediately yield any benefits since the evaluation of the terms on

the right-hand sides of (4.9) is equivalent to that of solving (4.7b) exactly. However, it

reveals that with an inexact subspace solution (x̃, ỹ, z̃) and bounds on the residual terms

in (4.9), we may identify subsets of VP and VD without computing (x, y, z) explicitly. The

following lemma suggests a strategy for such a procedure.

Lemma 4.2.1. Given a partition (A, I), let (x, y, z) be the corresponding subspace solution

and let (x̃, ỹ, z̃) be an inexact subspace solution with residual (r̃, t̃). Furthermore, suppose

that with ṽ := (r̃F , t̃) we have αI and βA satisfying

αI ≥ R−1
II r̃I −R

−1
IIS[I]Q

−1ṽ (4.10a)

and βA ≥ (HAI − ST[A]Q
−1S[I])R

−1
II r̃I

− (HAIR
−1
IIS

T
[I] − S

T
[A] − S

T
[A]Q

−1S[I]R
−1
IIS

T
[I])Q

−1ṽ. (4.10b)

Then, for the violated sets VP and VD corresponding to (x, y, z), we have

ṼP := {i ∈ I : x̃i − αi > ui} ⊆ VP and ṼD := {i ∈ A : z̃i + βi < 0} ⊆ VD. (4.11)

Moreover, if (A, I) is suboptimal, then there exists ε > 0 such that (4.10)–(4.11) with

‖αI‖ = O(‖(r̃, t̃)‖) and ‖βA‖ = O(‖(r̃, t̃)‖) (4.12)

yields ṼP = VP and ṼD = VD for any inexact subspace solution with ‖(r̃, t̃)‖ ≤ ε.

Proof. By (4.10) and the relationships in (4.9), we have that for i ∈ I the inequality

x̃i−αi > ui implies xi > ui, and for i ∈ A the inequality z̃i+βi < 0 implies zi < 0. Hence,

with (4.11), it follows that ṼP ⊆ VP and ṼD ⊆ VD.
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Now suppose that (A, I) is suboptimal, from which it follows by Theorem 4.1.2 that

VP∪VD 6= ∅. If VP 6= ∅, then for any i ∈ VP we have xi > ui. Moreover, by continuity of the

linear transformation defined by the inverse of the matrix on the left-hand side of (4.7b), for

this i ∈ VP there exists εi > 0 such that for any (r̃, t̃) with ‖(r̃, t̃)‖ ≤ εi, the condition (4.12)

implies x̃i−αi > ui. Similar analysis shows that if VD 6= ∅, then for any i ∈ VD there exists

εi > 0 such that for any (r̃, t̃) with ‖(r̃, t̃)‖ ≤ εi, the condition (4.12) implies z̃i + βi < 0.

Since ṼP ⊆ VP and ṼD ⊆ VD, it follows that with ε := min{εi : i ∈ VP ∪ VD} > 0, we

have ṼP = VP and ṼD = VD.

Lemma 4.2.1 proves that at any suboptimal partition (A, I), a subset of the union of

violated sets VP ∪ VD can be identified as long as upper bounds αI and βA are available

and are proportional (in terms of any given norm ‖ · ‖) to the residual vector (r̃, t̃). On

the other hand, if a partition (A, I) is optimal, then with a sufficiently small residual we

obtain a sufficiently accurate primal-dual solution. Motivated by these observations, we

propose the inexact PDAS framework presented as Algorithm 13.

Algorithm 13 PDAS Framework with Inexact Subspace Solutions

1: Input an initial partition (A, I) and optimality tolerance εopt ≥ 0.
2: loop
3: Compute an inexact subspace solution (x̃, ỹ, z̃) with residual (r̃, t̃) by (4.7).
4: if ‖KKT(x̃, ỹ, z̃)‖ ≤ εopt then
5: Terminate and return (x̃, ỹ, z̃).
6: end if
7: Compute αI and βA satisfying (4.10) and (4.12).
8: Set ṼP and ṼD by (4.11).
9: if ṼP ∪ ṼD 6= ∅ then

10: Choose CP ⊆ ṼP and CD ⊆ ṼD such that CP ∪ CD 6= ∅.
11: Set A ← (A\CD) ∪ CP and I ← (I\CP ) ∪ CD.
12: end if
13: end loop

We have the following result, indicating conditions on the inexact subspace solutions

computed in the algorithm—or, more precisely, on their corresponding residual vectors—

that are necessary to ensure convergence.

Theorem 4.2.2. Suppose that the conditions of Theorem 4.1.3 hold for the partitions

generated by Algorithm 13. Then, the following hold:
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(i) If, for any partition, repeated executions of Step 3 yield (r̃, t̃)→ 0, then, with εopt >

0, Algorithm 13 terminates after a finite number of partition updates.

(ii) If there exists a positive integer J such that, for any partition, at most J executions

of Step 3 yields (r̃, t̃) = 0, then, with εopt ≥ 0, Algorithm 13 terminates in a finite

number of iterations. In particular, if εopt = 0, then Algorithm 13 terminates in a

finite number of iterations with a KKT point for (4.1).

Proof. Given any partition, it follows by the conditions in (i) and Lemma 4.2.1 that after

a finite number of executions of Step 3, the sets ṼP ⊆ VP and ṼD ⊆ VD defined by (4.11)

satisfy ṼP ∪ ṼD 6= ∅. The result in (i) then follows from Theorem 4.1.3 and the fact

that after a finite number of partition updates, a partition is identified such that repeated

executions of Step 3 yield (x̃, ỹ, z̃) satisfying the condition in Step 5 of the algorithm. The

result in (ii) follows in a similar manner due to the additional observation that, given any

partition, at most J executions of Step 3 occur before the condition in Step 5 is satisfied

or the partition is modified.

There remain many details that need to be specified for a practical implementation

of Algorithm 13. These details are the subjects of the following three subsections. First,

due to the observation that upper bounds αI and βA in Step 7 are easily computed once

one obtains an upper bound for the norm of the matrix R−1
II , we present an algorithm for

computing such a bound in certain cases of interest. Second, we present a generic technique

for computing αI and βA once such a bound is obtained. Third, we outline conditions

that one may choose to impose—in addition to the condition that ṼP ∪ ṼD 6= ∅—in the if

statement in Step 9 of Algorithm 13.

Obtaining an upper bound for ‖R−1
II‖1

In this subsection, given an index set I, we present a technique for computing an upper

bound for ‖R−1
II‖1. Our technique amounts to solving a linear system of equations by

an iterative process, where the computed upper bound may become tighter as the linear

system is solved more accurately. (Indeed, under certain conditions, an exact solution of
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the linear system reveals ‖R−1
II‖1.) In this manner, it is clear how the upper bounds αI

and βA required in Step 7 may be improved during the loop of Algorithm 13: For a given

partition (A, I), repeated executions of the algorithm in this subsection eventually lead to

a tighter upper bound for ‖R−1
II‖1, which in turn eventually lead to tighter upper bounds

αI and βA via the algorithm in the following subsection.

Given a symmetric p× p matrix B � 0, consider the set

P(B) := {w ∈ Rp : w > 0, Bw > 0, ‖w‖∞ = 1}

and the symmetric p× p matrix M(B) defined, for all {i, j} ⊆ {1, . . . , p}, by

[M(B)]ij =


|Bii| if i = j

−|Bij | if i 6= j.

The matrix B is called an H-matrix if and only if M(B) is a nonsingular M -matrix.

Moreover, according to [118, eq. (5)], the following three statements are equivalent:

1. B is an H-matrix.

2. M(B) is an M -matrix.

3. P(B) is nonempty.

We also have the following result, which is a special case of [118, Theorem 1]. (In [118],

the author discusses upper bounds for the `∞-norm of a matrix inverse. However, since

our matrix is symmetric, we can equivalently refer to its `1-norm.)

Lemma 4.2.3. If B ∈ Rp×p is a symmetric H-matrix, then, for any w ∈ P(B),

‖B−1‖1 ≤ ‖M(B)−1‖1 ≤ (min{[Aw]i : 1 ≤ i ≤ p})−1,

where the second inequality holds as an equality when w = B−1e/‖B−1e‖∞ ∈ P(B).

By Lemma 4.2.3, if RII is an H-matrix, then we can obtain an upper bound for ‖R−1
II‖1

by iteratively solving the linear system M(RII)w = e for w ∈ R|I|, terminating whenever
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an element of P(RII) is obtained. We formalize this strategy as Algorithm 14, for which

we have the following result.

Algorithm 14 Subroutine for Obtaining an Upper Bound of ‖R−1
II‖1

1: Input RII .
2: loop
3: Compute an inexact solution w of M(RII)w = e.
4: if M(RII)w > 0 then
5: Terminate and return

‖w‖∞(min{[RIIw]i : 1 ≤ i ≤ |I|})−1.

6: end if
7: end loop

Lemma 4.2.4. Suppose Assumption 4.1.1 holds and R satisfies R = M + E where M is

an M -matrix and ‖E‖1 is sufficiently small. Then, for any I ⊆ N , if repeated executions

of Step 3 of Algorithm 14 yield M(RII)w → e, then Algorithm 14 will terminate and

return an upper bound for ‖R−1
II‖1.

Proof. Since R = M + E, we have RII = MII + EII for some M -matrix MII . Since

MII is an M -matrix, it is also an H-matrix since M(MII) = MII . Then, since MII is

an H-matrix, it follows that for sufficiently small ‖E‖1 we have sufficiently small ‖EII‖1

such that RII is also an H-matrix. The result then follows by Lemma 4.2.3 since, under

the conditions of the lemma, the algorithm eventually computes w satisfying M(RII)w >

0.

We close this subsection by remarking that if RII is strictly diagonally dominant, then

by computing w = e in Step 3, Algorithm 14 would terminate in the first iteration of the

loop and return the upper bound given by

‖R−1
II‖1 ≤ (min{[RIIe]i : 1 ≤ i ≤ |I|})−1.

This is known as the Ahlberg-Nilson-Varah bound [2, 117].
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Obtaining upper bounds αI and βA

Given a partition (A, I), an inexact subspace solution (x̃, ỹ, z̃) with residual (r̃, t̃), and an

upper bound for a norm of R−1
II (say, computed via Algorithm 14), in this subsection we

present a generic method for computing upper bounds αI and βA satisfying (4.10) and

(4.12).

We present our technique as the following algorithm. For the approach, we recall

that since Q is independent of the partition, we suppose that this matrix is formed and

factorized at the start of the optimization process so that products with Q−1 are available.

Thus, the computational cost of executing the algorithm is relatively low, especially if the

matrix Q−1S[N ] is precomputed.

Algorithm 15 Subroutine for Obtaining αI and βA Satisfying (4.10) and (4.12)

1: Input p ≥ 1, q ≥ 1, and γ ≥ ‖R−1
II‖p such that ‖ · ‖p and ‖ · ‖q are dual norms.

2: Terminate and return

αI ← (γ‖r̃I − S[I]Q
−1ṽ‖q)e

and βA ← [HAI − ST[A]Q
−1S[I]]+αI − [HAI − ST[A]Q

−1S[I]]−αI + S[A]Q
−1ṽ.

The fact that the upper bounds αI and βA generated by Algorithm 15 satisfy (4.10)

and (4.12) follows as a consequence of the following lemma. Recall that we define e as

a vector of ones whose length is determined by the context in which it appears. For the

proof of the lemma, we also define ei as the corresponding ith unit vector.

Lemma 4.2.5. Consider B ∈ Rm×n with ith row denoted by Bi for i ∈ {1, . . . ,m}, a

vector w ∈ Rn, and a vector norm ‖ · ‖p with corresponding dual norm ‖ · ‖q. Then,

Biw ≤ ‖BT
i ‖p‖w‖q for all i ∈ {1, . . . ,m}. Furthermore, Bw ≤ ‖BT ‖p‖w‖qe.

Proof. Hölder’s inequality implies that |Biw| ≤ ‖BT
i ‖p‖w‖q for all i ∈ {1, . . . ,m}, as

desired. Then, the remainder of the results follows since

|[Bw]i| = |Biw| ≤ ‖BT
i ‖p‖w‖q ≤ ‖BT ‖p‖w‖q for all i ∈ {1, . . . ,m},

where the last inequality follows from the fact that ‖Bi‖p = ‖BT ei‖p ≤ ‖BT ‖p.
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We remark that when employing Algorithm 14 to compute an upper bound for ‖R−1
II‖1,

it is natural to employ Algorithm 15 with p = 1 and q =∞. This is the approach used in

our implementation and numerical experiments.

Conditions for executing a partition update

We close our discussion of Algorithm 13 by describing conditions that one may choose to

impose—in addition to the (generally very loose) requirement that ṼP ∪ṼD 6= ∅—in the if

statement in Step 9. As already shown in Theorem 4.2.2, the convergence of the algorithm

is guaranteed with the condition as it is stated in the algorithm. Therefore, the addition

of extra conditions is not necessary to ensure convergence. However, in our experience, it

is worthwhile to impose extra conditions to ensure that any update to the partition that

is performed will lead to substantial progress toward a solution, which can be expected to

be the case when either the inexact subspace solution is sufficiently accurate and/or the

modification to the partition will involve a large number of indices switching from active

to inactive, or vice versa. We have found the conditions that we state in this section to

work well in practice, though one may imagine other possible conditions that could be

imposed.

Let (x̃′, ỹ′, z̃′) be a given inexact subspace solution with residual (r̃′, t̃′). For example,

one may consider (x̃′, ỹ′, z̃′) = (0, 0, 0) or the inexact subspace solution corresponding to

primal-dual variable values as computed in the previous iteration of Algorithm 13. Given

a tolerance εres ∈ (0, 1) and a vector norm ‖ · ‖, a condition that one may choose to

impose is the following, similar to conditions typically found in inexact Newton methods

for solving systems of equations [32]:

‖(r̃, t̃)‖ ≤ εres‖(r̃′, t̃′)‖. (4.13)

That is, one may choose not to modify the partition until the residual vector (r̃, t̃) is

sufficiently small in norm compared to the reference residual (r̃′, t̃′) corresponding to the

reference solution (x̃′, ỹ′, z̃′). If the right-hand side of (4.13) is zero, then (x, y, z) =

(x̃′, ỹ′, z̃′); otherwise, (4.13) will eventually be satisfied as long as the employed iterative
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solver ensures that the residual vanishes, i.e., (r̃, t̃)→ 0.

In our experience, we have also found it beneficial to avoid modifying the partition

until there is consistency between the sets ṼP and ṼD in (4.11) and

Ṽ ′P := {i ∈ I : x̃i > ui} and Ṽ ′D := {i ∈ A : z̃i < 0}, (4.14)

potentially with the latter set replaced by

Ṽ ′D := {i ∈ A : z̃i + [S[A]Q
−1ṽ]i < 0}. (4.15)

Specifically, we have found it beneficial to avoid modifying the partition until the number

of elements of the violated sets that have been identified (as measured by |ṼP ∪ ṼD|) is

proportional to the number of elements of the primal-dual components that violate their

bounds (as measured by |Ṽ ′P ∪ Ṽ ′D|). Given a parameter θ ∈ (0, 1], we write this condition

as

|ṼP ∪ ṼD| ≥ θ|Ṽ ′P ∪ Ṽ ′D|. (4.16)

Observe that Algorithm 15 yields αI ≥ 0 and βA ≥ 0, from which it follows that |ṼP ∪

ṼD| ≤ |Ṽ ′P ∪ Ṽ ′D|. This justifies the restriction that θ ∈ (0, 1].

4.2.2 Algorithms with Dynamic Subproblem Tolerances

We are now prepared to present our second and third inexact PDAS algorithms. For

a given partition (A, I), the main idea underlying our first method—i.e., Algorithm 13

presented in §4.2.1—was to use properties of inexact subspace solutions and their corre-

sponding residuals in order to construct explicit subsets of the violated sets VP and VD

corresponding to the exact subspace solution, all without having to explicitly compute

this exact solution. Unfortunately, however, the procedure that we proposed required an

explicit upper bound for a norm of R−1
II , which may be expensive to compute in certain

situations, especially when a tight bound is needed to identify elements of the violated

sets. By contrast, the algorithms that we propose in this section do not require explicit

upper bounds of this type; instead, they involve dynamic parameters either to estimate
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such an upper bound or control inexactness directly.

Our second algorithm, stated as Algorithm 16 below, employs a dynamic parameter

that plays a role similar to the upper bound for a norm ofR−1
II as employed in Algorithm 13.

In the worst case, this dynamic parameter will increase large enough such that it is, in

fact, an upper bound for a norm of R−1
II (for any I); indeed, the convergence guarantees

that we present for Algorithm 16 are based on this feature. However, we have designed

the update for this dynamic parameter such that we rarely see such behavior in practice.

Indeed, in practice, we often observe that the algorithm terminates for relatively small

values of this dynamic parameter. As in Algorithm 13, the norm used in the optimality

test in Step 5 can be any vector norm; we also add that, in the context of this algorithm,

it is natural to use the same norm in Step 13. On the other hand, the norm to which

we refer in Step 8 should be the norm ‖ · ‖p with p ≥ 1 employed in Algorithm 15 for

computing the values αI and βA.

Algorithm 16 PDAS Framework with Inexact Subspace Solutions (Dynamic)

1: Input an initial partition (A, I), optimality tolerance εopt > 0, dynamic parameter
γ > 0, update factor δγ > 1, optimality tolerance history length j ∈ N, and sufficient
reduction factor κ ∈ (0, 1).

2: Initialize a partition update counter j ← 0 and KKTj ←∞ for j ∈ {−1, . . . ,−j}.
3: loop
4: Compute an inexact subspace solution (x̃, ỹ, z̃) with residual (r̃, t̃) by (4.7).
5: if ‖KKT(x̃, ỹ, z̃)‖ ≤ εopt then
6: Terminate and return (x̃, ỹ, z̃).
7: end if
8: Compute αI and βA by Algorithm 15 with input γ (even if γ 6≥ ‖R−1

II‖p).
9: Set ṼP and ṼD by (4.11) (even if ṼP 6⊆ VP and/or ṼD 6⊆ VD).

10: if ṼP ∪ ṼD 6= ∅ then
11: Choose CP ⊆ ṼP and CD ⊆ ṼD such that CP ∪ CD 6= ∅.
12: Set A ← (A\CD) ∪ CP and I ← (I\CP ) ∪ CD.
13: Set KKTj ← ‖KKT(x̃, ỹ, z̃)‖.
14: if KKTj ≥ κmax{KKTj−1, . . . ,KKTj−j} then
15: Set γ ← δγγ.
16: end if
17: Set j ← j + 1.
18: end if
19: end loop

The purpose of the sequence {KKTj} computed in Algorithm 16 is to monitor progress
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in reducing the KKT error over the sequence of iterations in which the partition is modified.

Specifically, if a KKT error computed in Step 13 is not less than the most recent j̄ such

computed KKT errors, then the dynamic parameter γ is increased. As can be seen in

the procedure in Algorithm 15, this has the effect of yielding larger values for αI and βA,

which in turn has the effect of producing more conservative estimates (i.e., ṼP and ṼD)

of the violated sets (i.e., VP and VD).

We have the following theorem related to convergence properties of Algorithm 16.

Theorem 4.2.6. Suppose that the conditions of Theorem 4.1.3 hold for the partitions

generated by Algorithm 16. Then, the following hold:

(i) If, for any partition, repeated executions of Step 4 yield (r̃, t̃)→ 0, then, with εopt >

0, Algorithm 16 terminates after a finite number of partition updates.

(ii) If there exists a positive integer J such that, for any partition, at most J executions

of Step 4 yields (r̃, t̃) = 0, then, with εopt ≥ 0, Algorithm 16 terminates in a finite

number of iterations. In particular, if εopt = 0, then Algorithm 16 terminates in a

finite number of iterations with a KKT point for (4.1).

Proof. Given any partition, it follows by the conditions in either (i) or (ii) that after a finite

number of executions of Step 4, the sets ṼP and ṼD defined by (4.11) satisfy ṼP ∪ ṼD 6= ∅

(despite the fact that we may have ṼP 6⊆ VP and/or ṼD 6⊆ VD). Consequently, given

any partition, Algorithm 16 will eventually either terminate or a partition update will be

performed. If the algorithm terminates finitely, then there is nothing left to prove. Hence,

in order to derive a contradiction, suppose that an infinite number of partition updates are

performed. If {KKTj} → 0, then, under the conditions in either (i) or (ii), the optimality

condition in Step 5 eventually will be satisfied; this would cause the algorithm to terminate

finitely, a contradiction to our supposition that an infinite number of partition updates are

performed. Thus, we may assume that {KKTj} is bounded below by a positive constant,

which, by the condition in Step 14, implies that γ →∞. However, once

γ ≥ γ̄ := max
I⊆N

‖R−1
II‖p, (4.17)
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it follows that we will always have ṼP ⊆ VP and ṼD ⊆ VD, implying that convergence can

be guaranteed as the same manner as in the proof of Theorem 13. Since this contradicts

our supposition that an infinite number of partition updates are performed, we have that

the algorithm will terminate finitely, as desired.

One important observation about Algorithm 16 is that it is nontrivial to choose an ini-

tial value for the dynamic parameter γ such that all iterations performed in the algorithm

may be identical to those that would be performed by Algorithm 13. For example, assum-

ing that it may be computed efficiently, one may consider an initial value of γ ← ‖R−1‖1

(independently of any partition), but this value does not necessarily satisfy (4.17). To see

this, consider the following example.

Example 4.2.7. Let

R =


7
6

1
6

29
12

1
6

1
6

5
12

29
12

5
12

143
24

 and I = {1, 2}.

One can verify that ‖R−1‖1 = 31
4 < 8 = ‖R−1

II‖1.

Our third inexact PDAS algorithm, presented as Algorithm 17 below, employs the

straightforward heuristic of defining a dynamic tolerance for the residuals in the (reduced)

linear system solves that decreases as the optimization process proceeds. In this algorithm,

it is reasonable to choose the norm in Step 8 as the same norm used in the KKT residual

checks in Steps 5 and 12. (We also note that a relative residual test—rather than an

absolute residual test—could be employed, as we do in our implementation and numerical

experiments.)

We have the following convergence result for Algorithm 17.

Theorem 4.2.8. Suppose that the conditions of Theorem 4.1.3 hold for the partitions

generated by Algorithm 17. If, after a finite number of partition updates, the executions

of Step 4 ensure that the condition in Step 8 only ever holds true when ‖(r̃, t̃)‖ = 0, then,

with εopt ≥ 0, Algorithm 17 terminates in a finite number of iterations. In particular, if

88



Algorithm 17 PDAS Framework with Inexact Subspace Solutions (Dynamic)

1: Input an initial partition (A, I), optimality tolerance εopt > 0, dynamic parameter
ζ > 0, update factor δζ > 1, optimality tolerance history length j ∈ N, and sufficient
reduction factor κ ∈ (0, 1).

2: Initialize a partition update counter j ← 0 and KKTj ←∞ for j ∈ {−1, . . . ,−j}.
3: loop
4: Compute an inexact subspace solution (x̃, ỹ, z̃) with residual (r̃, t̃) by (4.7).
5: if ‖KKT(x̃, ỹ, z̃)‖ ≤ εopt then
6: Terminate and return (x̃, ỹ, z̃).
7: end if
8: if ‖(r̃, t̃)‖ ≤ ζ then
9: Set Ṽ ′P and Ṽ ′D by (4.14) (even if Ṽ ′P 6⊆ VP and/or Ṽ ′D 6⊆ VD).

10: Choose CP ⊆ Ṽ ′P and CD ⊆ Ṽ ′D such that CP ∪ CD 6= ∅.
11: Set A ← (A\CD) ∪ CP and I ← (I\CP ) ∪ CD.
12: Set KKTj ← ‖KKT(x̃, ỹ, z̃)‖.
13: if KKTj ≥ κmax{KKTj−1, . . . ,KKTj−j} then
14: Set ζ ← ζ/δζ .
15: end if
16: Set j ← j + 1.
17: end if
18: end loop

εopt = 0, then Algorithm 17 terminates in a finite number of iterations with a KKT point

for (4.1).

Proof. Under the conditions of the theorem, it follows that after a finite number of par-

tition updates the algorithm behaves as if (exact) subspace solutions were computed via

(5.3). Hence, the result follows similarly as Theorem 4.1.3.

Despite the fact that Algorithm 17 employs a straightforward heuristic for controlling

inexactness and has the advantage that a factorization of Q is not required, it has two key

disadvantages vis-à-vis Algorithms 13 and 16. First, as a practical matter, our experience

suggests that it is much more difficult to choose (initial) values for ζ and δζ that lead to

good performance on a wide range of problems. Second, our convergence guarantee for

Algorithm 17 is significantly weaker than those for Algorithms 13 and 16. The following

example illustrates why it is not possible to obtain the same convergence guarantees in

Theorem 4.2.8 as we have stated in Theorems 4.2.2 and 4.2.6. In particular, the example

shows that in order to ensure that Ṽ ′P ⊆ VP , Ṽ ′D ⊆ VD, and Ṽ ′P ∪ Ṽ ′D 6= ∅, one may need

a linear system residual that is exactly zero.
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Example 4.2.9. Let

m = 0, H =


2 0 0

0 2 −1

0 −1 2

 , c =


1

−1

−1

 , and u =


1

1

1

 .

With (A, I) = ({1, 2}, {3}), it follows from (5.3) that the subspace solution is

x =


1

1

1

 and z =


−3

0

0

 ,

from which it follows that VP = ∅ and VD = {1}. In particular, (A, I) is suboptimal.

Moreover, from (4.7), any inexact subspace solution (x̃, z̃) satisfies


2 0 0

0 2 −1

0 −1 2




0

0

x̃3 − x3

+


z̃1 − z1

z̃2 − z2

0

 =


0

0

r̃3

 ,

which implies that (z̃1− z1) = 0 and r̃3 = 2(x̃3−x3) = 2(z̃2− z2). Hence, in order to have

Ṽ ′P ⊆ VP , Ṽ ′D ⊆ VD, and Ṽ ′P ∪ Ṽ ′D 6= ∅, one must have

x̃3 = x3 + 1
2 r̃3 = 1 + 1

2 r̃3 ≤ 1

and z̃2 = z2 + 1
2 r̃2 = 0 + 1

2 r̃3 ≥ 0,

i.e., one must have r̃3 = 0. (On the other hand, one can verify that with γ = 1 ≥ ‖H−1
33 ‖1,

Algorithms 13 and 16 obtain ṼP = ∅ = VP and ṼD = {1} = VD for |r̃3| < 3.)

4.3 An Implementation

We have written implementations of Algorithms 12, 13, 16, and 17 along with the subrou-

tines described as Algorithms 14 and 15. We discuss common and distinguishing details

of the implementations in this section.
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All algorithms are implemented in a single piece of software in Python 2.7.3. The

software uses the infrastructure in cvxopt for matrix storage and manipulation, as well

as the implementation of MINRES [98] provided in Scipy for (approximately) solving the

linear systems (4.2b) and (4.7b). For Algorithms 13 and 16, the matrix Q is factored at

the start of each run using cvxopt’s interface to LAPACK; specifically, the sytrf subroutine

is called to compute an LDLT factorization of Q, the factors of which are employed to

compute products with Q−1 as they are needed.

Our use of MINRES as the iterative solver for the linear systems (4.2b) and (4.7b) is not

required; any iterative method for solving symmetric indefinite systems could be employed.

It should also be noted that while preconditioning would be a critical aspect of any efficient

implementation of either of our algorithms, we did not implement a preconditioner in our

software. We claim that this is reasonable as the purpose of our numerical experiments is

merely to illustrate the convergence behavior of our algorithms despite inexactness in the

subspace solutions; in particular, the speed at which these inexact subspace solutions are

obtained is not a focus of our experiments, which only serve as a “proof of concept” for

our algorithms.

In all algorithms, the initial point provided to MINRES in the first PDAS iteration is

a randomly generated vector, whereas, in subsequent PDAS iterations, the initial point

is set by extracting the corresponding elements of the primal-dual solution corresponding

to the previous PDAS iterate. For Algorithm 12 in which “exact” solutions are required,

each run of MINRES terminates once the `∞-norm of the residual for the linear system

(4.2b) is reduced below a prescribed tolerance εnum > 0. Similarly, for Algorithm 17,

MINRES terminates once either (4.13) holds (with εres replaced by ζ) or the `∞-norm of

the residual for the linear system (4.7b) is reduced below εnum. Finally, for Algorithms 13

and 16, MINRES terminates either once (4.13) and (4.16) both hold or the `∞-norm of the

residual for the linear system (4.7b) is reduced below εnum. (The only exceptions occur

when ‖(r̃, t̃)‖∞ ≤ εnum, but |ṼP ∪ ṼD| = |Ṽ ′P ∪ Ṽ ′D| = 0 and ‖KKT(x̃, ỹ, z̃)‖∞ > εopt, in

which case MINRES is forced to continue.)

In terms of Algorithms 13 and 16, the evaluation of vectors in Algorithm 15 requires
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products with Q−1 (i.e., solves with the factors of Q), meaning that it is not economical

to run this subroutine after every MINRES iteration. Hence, our software performs 100

MINRES iterations in Step 3 of Algorithm 13 and Step 4 of Algorithm 16. In both cases,

we use p = 1 in Algorithm 15.

Finally, for Algorithm 16, we implemented an additional strategy for updating γ that

utilizes intermediate vectors computed by MINRES. (The purpose of this strategy is to

use problem information to quickly adjust γ if the initial value is set too low for a given

run of the algorithm.) In particular, with an intermediate solution x̃I and product RII x̃I ,

both provided at no extra cost by MINRES, we set

γ ← max

{
γ,

‖x̃I‖1
‖RII x̃I‖1

}
.

This update is motivated by the fact that

‖R−1
II‖1 = max

‖x‖1=1
‖RIIx‖−1

1 . (4.18)

4.4 Numerical Results

In this section, we report on the performance of our implementations of Algorithms 12, 13,

16, and 17 when they were employed to solve two optimal control test problems. In fact,

the problems we consider are the same as those considered in [69]. We remark at the outset

that, for consistency with notation commonly used in the context of optimal control, the

decision variables in the test problems presented in this section are a state variable y and

a control variable u. In addition, we use x = (x1, x2) to denote the coordinate axes in

R2. Overall, the reader should be aware that the pair (x, y) in this section should not be

confused with the primal-dual variable pair (x, y) used in the previous sections.

Given a domain Ω ∈ R2, reference function z ∈ L2(Ω), upper bound function ψ ∈
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L2(Ω), and regularization parameter β > 0, we consider the test problems

min
y,u

1
2‖y − z‖

2
L2(Ω) + β

2 ‖u‖
2
L2(Ω)

s.t.


−∆y = u in Ω

y = 0 on ∂Ω

u ≤ ψ in Ω,

(4.19)

and, with n denoting the unit outer normal to Ω along ∂Ω,

min
y,u

1
2‖y − z‖

2
L2(Ω) + β

2 ‖u‖
2
L2(∂Ω)

s.t.


−∆y + y = 0 in Ω

∂y
∂n = u on ∂Ω

u ≤ ψ on ∂Ω.

(4.20)

In particular, as in [69], we let

Ω = [0, 1]2, z(x1, x2) = sin(5x1) + cos(4x2), ψ = 0, and β = 10−5.

In order to illustrate the performance of our implementation of our algorithms on instances

of various sizes, we generated discretized versions of problems (4.19) and (4.20) at various

levels of discretization. In particular, we generated instances of both problems with the

numbers of grid points along each dimension in the set {20, 40, 60, 80, 100}. A five-point-

star discretization of ∆ was used and the functions z, ψ, y, and u were discretized by

means of grid functions at the nodal points. It is easily verified that all of the resulting

problem instances have the form (4.1) satisfying Assumption 4.1.1. Table 4.1 contains

the sizes of each problem instance in terms of the numbers of grid points per dimension

(g), variables (n), and equality constraints (m). For each instance of each problem, all

algorithms were initialized with the same initial partition, which was generated randomly

for all problem instances.

For our experiments, we used the input parameters in Table 4.2. These values were
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Table 4.1: Problem sizes.

(4.19) (4.20)
g n m n m

20 800 400 560 480

40 3200 1600 1920 1760

60 7200 3600 4080 3840

80 12800 6400 7040 6720

100 20000 10000 10800 10400

used as they lead to good performance in our experiments, though it should be noted

that, in any application, these parameters should be tuned for optimal performance. As

for the dynamic parameter γ > 0 in Algorithm 16, it was initialized to 102, and as for the

dynamic parameter ζ > 0 in Algorithm 17, it was initialized to εres.

Table 4.2: Input parameters for our implementations of Algorithms 12, 13, 16, and 17.
Parameter Value Algorithm(s)

εopt 10−6 12, 13, 16, 17
εnum 10−6 12, 13, 16, 17
εres {10−2, 10−3} 13, 16, 17
θ 0.5 13, 16
δγ 1.2 16
δζ 1.2 17
j 5 16, 17
κ 0.9 16, 17

The performance of the algorithms in solving problem (4.19) is reported in Tables 4.3–

4.9 below. In each table, we report the numbers of grid points per dimension and PDAS

iterations required before termination (Iter.) for each instance. We also report, to il-

lustrate the accuracy with which the (reduced) linear systems were solved in each run of

the algorithm, the minimum (min), median (med), and maximum (min) relative residual

(Rel.Res.) and absolute residual (Abs.Res.) over all PDAS iterations. (It should be

noted that, due to diagonal dominance of the matrix involved, all runs of Algorithm 13

required only one Krylov iteration per PDAS iteration to compute the upper bound on

‖R−1
II‖1 in Algorithm 14. Hence, this subroutine did not lead to a significant increase in

computational expense.)

94



Table 4.3: Algorithm 12 when solving problem (4.19).

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 7 2.82e-07 1.88e-06 2.94e-05 7.57e-07 9.22e-07 9.98e-07

40 8 2.44e-07 7.74e-06 5.08e-03 7.30e-07 9.88e-07 9.99e-07

60 8 2.92e-07 1.75e-05 1.71e-03 8.75e-07 9.97e-07 1.00e-06

80 8 3.20e-07 2.96e-05 4.97e-03 9.61e-07 9.97e-07 1.00e-06

100 8 3.22e-07 3.55e-05 6.99e-03 9.66e-07 9.99e-07 1.00e-06

Table 4.4: Algorithm 13 when solving problem (4.19) with εres = 10−2.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 10 1.71e-04 8.47e-04 8.96e-03 8.51e-07 2.84e-04 2.39e-02

40 12 3.21e-04 3.41e-03 1.31e-02 9.63e-07 2.44e-04 2.89e-02

60 11 8.70e-04 3.33e-03 5.08e-01 9.95e-07 9.98e-05 2.55e-02

80 12 2.10e-03 4.67e-03 8.11e-02 9.95e-07 8.76e-05 2.77e-02

100 13 3.30e-03 8.44e-03 4.81e-01 9.99e-07 1.21e-04 2.58e-02

Table 4.5: Algorithm 13 when solving problem (4.19) with εres = 10−3.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 9 1.71e-04 6.17e-04 9.20e-04 8.51e-07 2.28e-04 1.90e-03

40 10 3.24e-04 7.10e-04 1.31e-02 9.63e-07 4.86e-05 2.24e-03

60 10 1.60e-04 8.43e-04 5.08e-01 9.95e-07 2.37e-05 2.14e-03

80 9 2.26e-04 6.95e-04 9.49e-03 9.95e-07 1.53e-05 2.98e-03

100 9 2.89e-04 7.53e-04 2.65e-02 9.99e-07 1.02e-05 2.94e-03
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Table 4.6: Algorithm 16 when solving problem (4.19) with εres = 10−2.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 9 3.05e-05 6.25e-03 8.96e-03 8.51e-07 1.26e-03 2.39e-02

40 9 6.43e-04 8.75e-03 1.03e-02 9.97e-07 4.34e-04 2.89e-02

60 10 1.91e-03 6.91e-03 4.65e-02 9.95e-07 2.52e-04 2.55e-02

80 9 2.29e-03 6.26e-03 9.39e-03 9.95e-07 1.24e-04 2.77e-02

100 9 3.40e-03 8.36e-03 9.31e-03 1.00e-06 1.79e-04 2.58e-02

Table 4.7: Algorithm 16 when solving problem (4.19) with εres = 10−3.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 8 1.71e-04 5.96e-04 6.66e-04 8.51e-07 9.37e-05 1.90e-03

40 8 2.19e-04 5.21e-04 1.03e-02 9.97e-07 5.42e-05 2.24e-03

60 8 1.26e-04 4.52e-04 1.72e-03 9.95e-07 2.38e-05 2.14e-03

80 8 3.87e-04 6.47e-04 5.00e-03 9.95e-07 2.09e-05 2.98e-03

100 9 2.35e-04 7.33e-04 4.81e-01 9.99e-07 1.50e-05 2.94e-03

Table 4.8: Algorithm 17 when solving problem (4.19) with εres = 10−2.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 11 5.38e-04 9.74e-03 1.07e-02 8.51e-07 1.05e-03 2.87e-02

40 9 5.26e-03 9.80e-03 9.99e-03 9.97e-07 4.58e-04 2.93e-02

60 10 9.39e-03 9.93e-03 9.55e-02 9.95e-07 2.86e-04 2.97e-02

80 11 9.53e-03 9.98e-03 6.26e-01 9.95e-07 2.18e-04 2.97e-02

100 10 9.51e-03 9.97e-03 7.66e-01 1.00e-06 2.22e-04 2.99e-02
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Table 4.9: Algorithm 17 when solving problem (4.19) with εres = 10−3.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 8 7.35e-04 9.49e-04 1.07e-02 8.51e-07 2.80e-04 2.67e-03

40 9 3.38e-04 9.61e-04 1.16e-01 9.63e-07 8.33e-05 2.87e-03

60 9 9.46e-04 9.82e-04 9.39e-03 9.95e-07 4.43e-05 2.93e-03

80 8 9.62e-04 9.97e-04 1.60e-03 9.95e-07 3.29e-05 2.99e-03

100 9 9.00e-04 9.92e-04 4.81e-01 9.99e-07 2.40e-05 3.00e-03

The results in Tables 4.3–4.9 provide evidence for the computational benefits of allow-

ing inexactness in the subspace solutions. In particular, when applied to solve instances of

various sizes, Algorithms 13, 16, and 17 converge in a number of PDAS iterations that is

comparable to that required by Algorithm 12; however, this convergence is attained with

substantially larger relative and absolute residuals in the (reduced) linear system solves.

With a reasonable preconditioner for the linear systems, such larger relative and abso-

lute residuals would be obtainable with significantly fewer Krylov iterations, potentially

yielding significant savings in computational expense.

The performance of the algorithms in solving instances of problem (4.20) is reported

in Tables 4.10–4.16. (It is worthwhile to note that, again, the computational expense of

applying Algorithm 14 was negligible in the context of Algorithm 13.)

Table 4.10: Algorithm 12 when solving problem (4.20).

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 8 2.06e-07 4.60e-07 2.97e-06 7.81e-07 9.66e-07 1.00e-06

40 12 1.33e-07 4.02e-07 2.56e-06 8.85e-07 9.91e-07 1.00e-06

60 17 9.02e-08 3.01e-07 2.78e-06 9.53e-07 9.94e-07 1.00e-06

80 22 7.10e-08 2.61e-07 2.86e-06 9.65e-07 9.92e-07 9.99e-07

100 26 5.75e-08 2.37e-07 3.05e-06 9.64e-07 9.97e-07 1.00e-06
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Table 4.11: Algorithm 13 when solving problem (4.20) with εres = 10−2.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 9 3.67e-07 1.47e-03 8.22e-03 1.18e-07 9.78e-04 3.79e-02

40 20 9.93e-08 5.50e-03 9.96e-03 3.91e-08 2.90e-03 3.69e-02

60 38 6.58e-07 3.06e-03 9.49e-03 2.18e-07 1.95e-03 3.13e-02

80 50 6.25e-07 3.50e-03 9.92e-03 1.93e-07 1.60e-03 3.53e-02

100 72 2.30e-06 5.60e-03 9.97e-03 5.52e-07 1.57e-03 2.21e-02

Table 4.12: Algorithm 13 when solving problem (4.20) with εres = 10−3.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 8 3.53e-07 7.36e-06 8.19e-04 1.18e-07 1.66e-05 3.78e-03

40 14 1.11e-07 5.68e-04 9.95e-04 3.91e-08 1.05e-03 4.79e-03

60 21 6.58e-07 7.78e-04 9.93e-04 2.18e-07 1.25e-03 4.16e-03

80 34 5.63e-07 7.33e-04 9.98e-04 1.93e-07 8.59e-04 3.45e-03

100 39 1.80e-06 7.23e-04 9.98e-04 5.52e-07 1.38e-03 4.05e-03

Table 4.13: Algorithm 16 when solving problem (4.20) with εres = 10−2.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 8 3.53e-07 1.19e-05 8.22e-03 1.18e-07 2.46e-05 3.79e-02

40 16 1.09e-07 1.19e-04 7.99e-03 3.91e-08 1.02e-04 3.69e-02

60 21 2.45e-07 3.14e-05 6.79e-03 2.18e-07 9.16e-05 3.13e-02

80 28 2.70e-07 2.27e-05 4.96e-03 1.93e-07 4.81e-05 2.29e-02

100 33 2.30e-07 5.09e-06 3.89e-03 5.52e-07 1.47e-05 1.79e-02
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Table 4.14: Algorithm 16 when solving problem (4.20) with εres = 10−3.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 8 3.53e-07 1.19e-05 8.19e-04 1.18e-07 2.46e-05 3.78e-03

40 16 1.11e-07 4.67e-05 8.40e-04 3.91e-08 5.46e-05 3.88e-03

60 21 2.45e-07 2.96e-05 9.02e-04 2.18e-07 9.16e-05 4.16e-03

80 28 2.70e-07 2.23e-05 7.49e-04 1.93e-07 4.81e-05 3.45e-03

100 33 2.30e-07 4.76e-06 8.78e-04 5.52e-07 1.47e-05 4.05e-03

Table 4.15: Algorithm 17 when solving problem (4.20) with εres = 10−2.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 19 3.06e-06 6.72e-03 9.96e-03 9.16e-07 9.48e-03 4.58e-02

40 31 2.67e-06 3.34e-03 9.98e-03 9.52e-07 4.53e-03 4.60e-02

60 44 2.76e-06 2.78e-03 1.00e-02 9.84e-07 1.23e-03 1.18e-01

80 62 2.88e-06 1.93e-03 9.98e-03 9.94e-07 1.47e-03 1.26e-01

100 69 2.90e-06 1.12e-03 1.00e-02 9.77e-07 8.44e-04 1.01e-01

Table 4.16: Algorithm 17 when solving problem (4.20) with εres = 10−3.

Rel.Res. Abs.Res.

g Iter. min med max min med max

20 9 2.77e-06 9.65e-04 9.99e-04 9.16e-07 1.69e-03 5.85e-03

40 16 2.67e-06 5.77e-04 9.99e-04 9.52e-07 1.64e-03 9.19e-03

60 40 2.81e-06 4.59e-04 9.99e-04 9.84e-07 1.05e-03 4.61e-03

80 37 2.91e-06 2.12e-04 1.00e-03 9.94e-07 8.53e-04 4.60e-03

100 40 2.91e-06 1.34e-04 1.00e-03 9.77e-07 4.37e-04 4.60e-03

In contrast to those for problem (4.19), it is clear from the results for problem (4.20)

that the number of PDAS iterations required before termination is mesh dependent. Thus,

these results more clearly illustrate the trade-off between saving per-iteration computa-
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tional costs with overall costs, as well as the sensitivity of parameter choices in our inexact

PDAS algorithms. In particular, while certain runs of our algorithms involve less accurate

(reduced) linear system solutions, this may may lead to a significant increase in the num-

ber of PDAS iterations required before termination. With an effective preconditioner, one

should still expect to attain reduced overall computational costs by allowing inexactness in

the subproblem solutions, but this may require careful selection of algorithmic parameters

such as εres.

4.5 Concluding Remarks

In this chapter, we have proposed a set of primal-dual active-set algorithms for solving

certain structured quadratic optimization problems. The distinguishing feature of the

algorithms is that they attain global convergence guarantees while allowing inexactness

in the (reduced) linear system solves in each iteration. In each iteration, the first al-

gorithm sets a requirement for the accuracy in the linear system solve through the use

of subroutines for computing an upper bound for the inverse of a particular submatrix,

whereas the second and third make use of dynamic algorithmic parameters for controlling

the level of inexactness in each iteration. We have implemented our algorithms and have

provided the results of numerical experiments on a pair of optimal control test problems,

illustrating that our algorithms can converge in a similar number of PDAS iterations as

an algorithm that employs “exact” linear system solves, but with much lower per-iteration

computational costs.

One potential topic of research would be to investigate possibilities of incorporating

inexactness into the PDAS framework of §3 for generally-constrained convex QPs. In

this chapter, our proposed approach ensures global convergence by monitoring the level

of inexactness and bounding the solution of the linear systems. We point out that the

main obstacle of extending this approach to the PDAS framework of §3 is that, when the

subproblem is a BQP (for example, when U is nonempty) inferring a bound of the optimal

solution is challenging.
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Chapter 5

PDAS for Machine Learning

Applications

In this chapter, we demonstrate how PDAS methods can be adapted to solve certain

large-scale optimization problems arising in machine learning. In particular, we customize

PDAS methods for solving Isotonic Regression (IR) and related Trend Filtering (TR)

problems. We reveal that adapting PDAS techniques to solve these problems leads to

novel and extremely efficient algorithms that can outperform state-of-the-art approaches.

Isotonic regression is a non-parametric method for fitting an arbitrary monotone func-

tion to a dataset [3, 20] that has recently gained favor as a calibration method for su-

pervised learning [54, 91, 96, 121]. A well-known and efficient method for solving the

IR problems is the Pool Adjacent Violators (PAV) algorithm [12]. This method is easily

implemented and enjoys a convergence guarantee with a work complexity of O(n) where n

is the dimension of the dataset. A drawback of the PAV algorithm in large-scale settings,

however, is that it is inherently sequential. Consequently, in order to exploit parallelism,

one has to resort to decomposing the IR problem [80], where deciding the number of pro-

cessors is nontrivial. For example, a recent Spark implementation of a parallelized PAV

method suffers from significant overhead [122]. In addition, since the PAV algorithm must

be initialized from a particular starting point, it cannot be warm-started—a fact that is

especially detrimental when a sequence of IR problems need to be solved [109] or in the
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online setting where data points are constantly added. As an alternative, we propose a

primal-dual active-set (PDAS) method for solving the IR problems. Our PDAS algorithm

also has a convergence guarantee for IR and a work complexity of O(n), but can be warm-

started and is easily parallelized. We also provide PDAS algorithm variants for a related

class of trend filtering problems. Despite the existence of interior point methods, some

specialized ADMM methods, and proximal methods that are applicable to TR problems,

active-set methods are able to generate very accurate solutions thus are favored for cer-

tain applications such as switch points identification and time series segmentation. The

results of numerical experiments are provided for all algorithm variants which show great

practical strengths of PDAS methods.

This chapter is organized in the following order. In §5.1, we give the problem descrip-

tions of IR and TF to which we have applied PDAS methods. In §5.2, we summarize

and compare the well-known Pool Adjacent Violators (PAV) algorithm and our proposed

primal-dual active-set (PDAS) method for solving IR problems. PDAS variants (with safe-

guards) for solving related TF problems are presented in §5.3. We report the experimental

results as well as our discovery in §5.4. Finally, our concluding remarks are provided in

§5.5.

5.1 Problem Descriptions

Isotonic Regression

We consider the isotonic regression (IR) problem

min
θ∈Rn

1

2

n∑
i=1

ωi(yi − θi)2 subject to θ1 ≤ . . . ≤ θn, (IR)

where y ∈ Rn represents observed data and ω ∈ Rn+ represents weights for the data fitting

term. The goal of this optimization problem formulation is to determine a monotonically

increasing step function that matches the observed data as closely as possible in a sense

of distance defined by ω.
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Trend Filtering

Problem (IR) can be viewed as a special case of the trend filtering problem

min
θ∈Rn

φ(θ), where φ(θ) = f(θ) + λg(θ), (TF)

where f : Rn 7→ R is smooth and convex, λ > 0 is a regularization parameter, and the

regularization function g : Rn 7→ R is convex but not necessarily smooth. In trend filtering

or time series segmentation, f is usually chosen to measure the distance between θ and y

while g is a function that imposes desired properties on the solution θ. A typical trend

filtering problem has the form

f(θ) =
1

2

n∑
i=1

ωi(yi − θi)2 with g(θ) = ‖Dθ‖1 or g(θ) = ‖(Dθ)+‖1,

where D is a first-order (or higher) difference operator and (γ)+ = max{γ, 0} (component-

wise). Specifically, as in [82], a k-th order difference matrix D(k,n) ∈ R(n−k)×n is defined

recursively as D(k,n) = D(1,n−k+1)D(k−1,n). The first and second order difference matrix

D(1,n) and D(2,n) is defined, respectively, as

D(1,n) =


1 −1

1 −1

. . .
. . .

1 −1

 , and D(2,n) =


1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

 .

Note that when g(θ) = ‖(D(1,n)θ)‖1 and λ is sufficiently large, solving (TF) gives also the

solution of (IR).

5.2 Algorithms for Isotonic Regression

We describe and compare two efficient algorithms for solving problem (IR); in particular,

the existing PAV and our proposed PDAS algorithms are described and their corresponding

theoretical properties are summarized in §5.2.1 and §5.2.2, respectively. After that, a

comparison between these two algorithms is conducted in §5.2.3. Throughout this and
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the subsequent sections, we borrow the following notation from [12] in the algorithm

descriptions.

Notation Let J represent a partition of the variable indices {1, 2, . . . , n} into or-

dered blocks {B1, B2, . . .} where each block consists of consecutive indices, i.e., each

block has the form {p, . . . , q} for p ≤ q. The immediate predecessor (successor) of

block B is denoted as B− (B+). By convention B− (B+) equals ∅ when B is the ini-

tial (final) block. The weighted average of the elements of y in block B is denoted

Av(B) := (
∑q

i=p ωiyi)/(
∑q

i=p ωi). For each index i ∈ B = {p, . . . , q}, we define the

“lower” and “upper” sets

Li(J) = {p, p+ 1, . . . , i} and Ui(J) = {i+ 1, i+ 2, . . . , q}.

Hereinafter, we shall use Li and Ui for brevity when their dependence on a particular J

is clear.

5.2.1 The PAV Algorithm for Isotonic Regression

The Pool Adjacent Violators (PAV) algorithm has long been studied [12, 3, 111, 58, 20, 80].

It is usually the first choice for solving isotonic regression problems due to its simplicity as

well as its practical performance. We describe briefly the PAV algorithm, state its main

theoretical properties, and discuss its important features in this section. To start with,

we rephrase the description of the PAV algorithm in [12], where the algorithm is shown

to replicate a dual active-set method for quadratic optimization.

The main idea of Algorithm 18 can be understood as follows. Initially, each index

is represented by a separate block. The algorithm then sequentially visits all blocks,

merging a block with its successor whenever a “violator” is met, i.e., whenever a block

has a weighted average greater than its successor. Once any merge occurs, the algorithm

searches backwards to perform subsequent merges in order to ensure that, at the end of

any loop iteration, no violators exist up to the furthest visited block. Once all blocks

have been visited, no violator exists and the solution θ will be monotonically increasing.
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Algorithm 18 PAV for Isotonic Regression

1: Input the initial partition J = {{1}, . . . , {n}} and set C = {1}
2: loop
3: if C+ = ∅ then
4: Terminate and return θi = Av(B) for each i ∈ B for each B ∈ J
5: end if
6: if Av(C) ≤ Av(C+) then
7: Set C ← C+

8: else
9: Set J ←

(
J\{C,C+}

)
∪ (C ∪ C+) and C ← C ∪ C+

10: while Av(C−) > Av(C) and C− 6= ∅ do
11: Set J ←

(
J\{C−, C}

)
∪ (C− ∪ C) and C ← C− ∪ C

12: end while
13: end if
14: end loop

An impressive property of Algorithm 18 is that by storing an intermediate value for

each block and showing that at most nmerge operations may occur, one obtains an efficient

implementation that solves problem (IR) within O(n) elementary arithmetic operations

[58]. Due to this fact and its good practical performance, Algorithm 18 has been popular

since its invention. However, we argue that the PAV algorithm does have critical drawbacks

when it comes to solving large-scale problems of interest today. First, Algorithm 18

must be initialized with J = {{1}, . . . , {n}}, which is unfortunate when one has a better

initial partition, such as when one is solving a sequence of related instances of (IR) [109].

In addition, the sequential nature of PAV makes it difficult to leverage multi-processor

infrastructures.

5.2.2 The PDAS Algorithm for Isotonic Regression

Primal-dual active-set (PDAS) methods have been proposed in the literature for solving

Linear Complementarity Problems (LCPs) [1], bound-constrained QPs (BQPs) [69], and

more recently generally-constrained QPs [27]. To our knowledge, however, the application

and theoretical analysis of a PDAS method for solving problem (IR) has not previously

been studied.

In this section, we propose a PDAS method designed exclusively for (IR) and discuss

its theoretical guarantees and practical benefits. We first reveal the relationship between

problem (IR) and a special class of convex BQPs for which a primal-dual active-set (PDAS)
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method is known to be well-suited. We then propose our PDAS algorithm tailored for

solving (IR). Finally, the complexity of our proposed algorithm is analyzed and its key

features and properties are discussed.

Relationship Between IR and Convex BQP

The problem formulation of (IR) is a convex QP of very special structure. In order to

explore further the properties of this problem that might be useful for PDAS methods,

we first give the dual problem of (IR). Let Ω = diag(ω1, . . . , ωn) be the diagonal weight

matrix, the dual problem of (IR) then has the form

min
z∈Rn−1

+

1

2
zTDΩ−1DT z − yTDT z, (BCQP)

where

DΩ−1DT =



2
ω1

− 1
ω2

0 · · · 0

− 1
ω2

2
ω2

− 1
ω3

· · · 0

0 − 1
ω3

2
ω3

. . . 0

...
...

. . .
. . . − 1

ωn−2

0 0 · · · − 1
ωn−2

2
ωn−1


, and Dy =


y1 − y2

y2 − y3
...

yn−1 − yn

 .

Since DΩ−1DT is positive definite with non-positive off-diagonal entries, it is an M -

matrix, meaning that (BCQP) has a form for which a PDAS method is well-suited [69].

In descriptions of PDAS methods for BQP such as that in [69], the notion of a partition

corresponds to a division of the index set for z into “active” and “inactive” sets. There is

a one-to-one correspondence between a partition of (BCQP) and that of (IR); specifically,

the non-zero indices in z correspond to the boundaries of the blocks of a partition for

problem (IR). We state the following convergence result of applying a PDAS method

to the dual problem (BCQP) since it is paramount for our convergence and complexity

analysis of the proposed PDAS algorithm for (IR).

Theorem 5.2.1 (Theorem 3.2, [69]). If the PDAS method from [69] is applied to solve

problem (BCQP), then the iterate sequence {zk} is nondecreasing, has zk ≥ 0 for all k ≥ 1,

and converges to the optimal solution of (BCQP).
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A PDAS Algorithm for Isotonic Regression

One can apply the PDAS method from [69] to solve (IR) by applying the approach to

its dual (BCQP). However, a straightforward application would fail to exploit the special

structure of problem (IR). Algorithm 19, on the other hand, generates the same sequence

of iterates as the PDAS method of [69], but is written in a much more computationally

efficient form.

Algorithm 19 PDAS for Isotonic Regression
1: Input an initial partition J0
2: For each i ∈ B = {p, . . . , q} ∈ J0, set

θi ←
∑

i∈B ωiyi∑
i∈B ωi

and zi ←


ωi(yi − θi) if i = p

0 if i = q 6= n

zi−1 + ωi(yi − θi) otherwise

3: Initialize J1 ← J0
4: for each i ∈ B ∈ J1 with zi < 0, set J1 ← (J1\B) ∪ {Li, Ui}
5: for each B ∈ J1, set αB ←

∑
i∈B ωiyi, βB ←

∑
i∈B ωi, µB ← αB/βB , and θi ← µB for all

i ∈ B
6: for k = 1, 2, . . . do
7: Initialize Jk+1 ← Jk
8: for each {Bs, . . . , Bt} ⊆ Jk with µBs−1 ≤ µBs > · · · > µBt ≤ µBt+1

Let N ←
t⋃

j=s

Bj and update Jk+1 ← (Jk+1 ∪N)\{Bs, . . . , Bt},

Set αN ←
t∑

j=s

αBj , βN ←
t∑

j=s

βBj , µN ← αN/βN , and θi ← µN for all i ∈ N

9: if Jk+1 = Jk, then terminate and return θ
10: end for

Algorithm 19 is more sophisticated than Algorithm 18. The major difference between

these two algorithms is their way of applying merge operations. In Algorithm 18, each

update of the partition is merely merging two adjacent blocks, whereas in Algorithm 19

Step 5 allows independent merge operations to happen in multiple places where each may

involve more than two consecutive blocks. We can prove that Algorithm 19, like the careful

implementation [58] of Algorithm 18, is able to solve (IR) in O(n) elementary arithmetic

operations. We state and prove the complexity of Algorithm 19 in Theorem 5.2.2.

Theorem 5.2.2. If Algorithm 19 is applied to solve problem (IR), then it will yield the
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optimal solution for (IR) within O(n) elementary arithmetic operations.

Proof. Since Algorithm 19 replicates applying the PDAS method from [69] on (BCQP),

according to Theorem 5.2.1 it is guaranteed to find the optimal solution in finitely many

iterations. The initialization process in Steps 1–5 requires O(n) elementary arithmetic

operations as each step involves at most a constant number of calculations with each

value from the dataset. As for the main loop involving Steps 6–9, the introduction of α

and β ensures that the number of elementary arithmetic operations in merging two blocks

becomes O(1). Thus, since the for loop only involves merge operations and there can be

at most n merges, the desired result follows.

5.2.3 A Comparison Between PAV and PDAS

Algorithm 19 enjoys several nice features that Algorithm 18 and other relevant algorithms

do not possess. First of all, the initial partition J0 of Algorithm 19 can be an arbitrary

one. Such freedom allows Algorithm 19 to be warm-started by providing a good initial

partition that is only slightly different with the optimal one. This feature is particularly

appealing when a sequence of related IR problems need to be solved [109].

Another salient feature of Algorithm 19 that sets it apart from Algorithm 18 and

other known active-set methods for (IR) is its potential to be parallelized. This feature is

enabled because Algorithm 19 allows for multiple independent merge operations in each

iterate. Specifically, this is reflected in Step 8 of Algorithm 19. As an illustrative example

with y = {6, 4, 2, 9, 11, 4} and ω = e, we demonstrate in Figure 5.1 the different behavior

between Algorithm 19 and Algorithm 18 when applied on this data set.

As illustrated in Figure 5.1, PAV method each time only merges two consecutive blocks

whereas PDAS method allows multiple consecutive blocks to be merged and this can occur

in multiple locations. Notice also that in total PDAS takes 3 division operations while

PAV requires 4, despite the fact that in both methods the number of merge operations

are counted as 4.
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Figure 5.1: Typical merge operations in PAV (left) and PDAS (right) iteration.

5.3 The PDAS Method for Trend Filtering

The trend filtering problem (TF) can be viewed as a generalization of problem (IR). While

(IR) imposes monotonicity on the solution vector θ, variants of (TF) can impose other

related properties, as illustrated in §5.3.1. Consequently, it is natural to extend PDAS for

solving (TF), as we do in §5.3.2. However, since a direct application of a PDAS method

may cycle when solving certain versions of (TF), we propose safeguarding strategies to

ensure convergence; see §5.3.3.

5.3.1 Regularization with Difference Operators

Common choices for the regularization function in problem (TF) are g(θ) = g1(θ) :=

‖D(d,n)θ‖1 or g(θ) = g1+(θ) = ‖(D(d,n)θ)+‖1, where D(d,n) ∈ R(n−d)×n is the d-order dif-

ference matrix on Rn. The choice of the regularization function determines the properties

that one imposes on θ. We illustrate the typical behavior of θ for different choices of the

regularization in Figure 5.2.

As shown in Figure 5.2, when g = g+ the fitted variable θ has the property of being

nearly-monotone and nearly-convex for d = 1 and d = 2, respectively. Similarly when

g = g1, the fitted curve would be piecewise constant and piecewise linear for d = 1 and

d = 2, respectively. Higher order difference operators are applicable yet first and second

order ones are more widely used in practice.
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Figure 5.2: Trend filtering solutions for different choices of g and D(d,n).

5.3.2 A PDAS Framework for Trend Filtering

For brevity, we assume that D is the d-order difference matrix D(d,n) in this section.

Denote the optimal solution of problem (TF) as (θ∗, z∗). Corresponding to this optimal

solution, we may partition the indices of Dθ∗ as follows:

P∗ = {j : (Dθ∗)j > 0}; N ∗ = {j : (Dθ∗)j < 0}; A∗ = {j : (Dθ∗)j = 0}.

Active-set methods are initialized with an estimation of the optimal partition and it-

eratively update the estimate until the optimal one is reached. The greatest advantage

of PDAS methods are their ability to apply more progressive update on a partition esti-

mate. A typical PDAS framework consists of three generic steps: subspace minimization

(SSM), termination check, and partition update. We now give the PDAS framework in

Algorithm 20 and discuss the details of each of the three steps in turn.
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Algorithm 20 PDAS Framework

1: Input an initial partition (P,N ,A)
2: loop
3: Compute the subspace minimizer (θ, z) corresponding to (P,N ,A)
4: if (θ, z) is optimal, then terminate and return (θ, z)
5: Compute a new partition (P,N ,A)
6: end loop

Subspace Minimization

A subspace minimizer needs to be computed in each iteration, as in Step 3 of Algorithm 20.

Given a partition (P,N ,A), the associated subspace minimizer is a primal-dual pair (θ, z)

that can be viewed as an estimate of (θ∗, z∗). The following schematics show the processes

for computing (θ, z) for problem (TF). For the convenience of expression, we denote I as

the union P ∪N .

SSM for g(θ) = ‖(Dθ)+‖1

Set zj ← 0 for j ∈ N and zj ← 1 for j ∈ P.

Solve for (θ, zA):

 I λDT
A

λDA 0

 θ

zA

 =

y − λDT
I zI

0

 . (5.1)

Set

VP ← {j ∈ P : (Dθ)j < 0};

VN ← {j ∈ N : (Dθ)j > 0};

VAP ← {j ∈ A : zj > 1};

VAN ← {j ∈ A : zj < 0}.

SSM for g(θ) = ‖Dθ‖1

Set zj ← −1 for j ∈ N and zj ← 1 for j ∈ P.

Solve for (θ, zA):

 I λDT
A

λDA 0

 θ

zA

 =

y − λDT
I zI

0

 . (5.2)

Set

VP ← {j ∈ P : (Dθ)j < 0};

VN ← {j ∈ N : (Dθ)j > 0};

VAP ← {j ∈ A : zj > 1};

VAN ← {j ∈ A : zj < −1}.

Observing that SSM requires solving a sparse KKT linear system (5.1) or (5.2), we

discuss how it could be efficiently carried out. Notice that the linear system could be

expressed as

 θ
zA

 =

 I λDT
A

λDA 0

−1 y − λDT
I zI

0

 =

I −DT
A(DAD

T
A)−1DA

(DAD
T
A)−1DA/λ

[y − λDT
I zI

]
.

It turns out that the solution (θ, zA) of system (5.1) or (5.2) could be efficiently obtained
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by

solving for zA from the system DAD
T
AzA = DA(y − λDT

I zI)/λ, (5.3a)

then setting θ ← y − λDT z. (5.3b)

Since DA is usually a first (second) order difference matrix, consequently DAD
T
A is a

tridiagonal (quindiagonal) matrix, meaning that the coefficient matrix of the linear system

(5.3a) is banded and zA can be solved cheaply.

Termination Check

One can easily see that a subspace minimizer (θ, z) is optimal if the set V = VP ∪ VN ∪

VAP ∪ VAN , consisting of indices of Dθ and z corresponding to violated bounds, is empty

[26]. Thus, when V is empty, optimality has been reached and the algorithm terminates.

Otherwise, these sets indicate a manner in which the partition could be updated.

Partition Update

In PDAS methods, the indices of Dθ and z violating their bounds are the candidates whose

membership need to be changed in a partition update. Specifically, a standard update in

the PDAS method from [69] involves the following steps:

P ← (P\VP ) ∪ VAP ;

N ← (P\VN ) ∪ VAN ;

A ← A\(VAP ∪ VAN ) ∪ (VP ∪ VN ).

(5.4)

5.3.3 Safeguard

There is no convergence guarantee for Algorithm 20 for an arbitrary instance of (TF);

indeed, an example illustrating that the method can cycle is given in [27] for BQPs and

presented below is an example that Algorithm 20 cycles in solving (TF).

Example 5.3.1. y = (603, 996, 502, 19, 56, 139)T , λ = 100, and g(θ) = ‖D(2,6)θ‖1.
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Iter P N A Dθ z

0 {2, 3, 4} {1} ∅ (13,−689, 820,−254)T (−1, 1, 1, 1)T

1 {3} ∅ {1, 2, 4} (0, 0, 4227/38, 0)T (−5293/2280,−482/475, 1, 5201/5700)T

2 {3} {1, 2} {4} (−787, 520,−16, 0)T (−1,−1, 1, 91/100)T

3 ∅ {1} {2, 3, 4} (−887/5, 0, 0, 0)T (−1, 127/125, 371/125, 943/500)T

4 {2, 3, 4} {1} ∅ (13,−689, 820,−254)T (−1, 1, 1, 1)T

...

Table 5.1: An illustration of Algorithm 3 cycling

Since the algorithm returns to a previously explored partition without computing an

optimal solution, the algorithm cycles, i.e., it is not convergent for this problem instance

from the given starting point. We have confirmed that the cycle is not caused by numerical

issues since the same updates would occur with exact computation.

A simple safeguarding strategy to overcome this issue and ensure convergence is pro-

posed in [78] and subsequently embedded in the work of [81, 21]. In particular, when |V|

fails to decrease for several consecutive iterations, a backup procedure is invoked in which

(5.4) is modified to only change partition membership of one index of V. We rephrase this

approach as a PDAS method for (TF) in Algorithm 21.

Algorithm 21 A PDAS Method with Safeguarding of [78]

1: Input a partition (P,N ,A), an integer tmax, initialize parameter Vbest as ∞, t as 0
2: loop
3: Compute the subspace minimizer (θ, z) corresponding to (P,N ,A)
4: if |V| = 0, then terminate and return (θ, z)
5: if |V| < Vbest then
6: Set t← 0, and Vbest ← |V|
7: else if |V| ≥ Vbest then
8: Set t← t+ 1
9: if t ≤ tmax then

10: Apply partition update by (5.4)
11: else if t > tmax then
12: Set j ← min{i : i ∈ V} and apply partition update by

moving j from P to A, if j ∈ VP
moving j from N to A, if j ∈ VN
moving j from A to P, if j ∈ VAP

moving j from A to N , if j ∈ VAN

(5.5)

13: end if
14: end if
15: end loop

The safeguard of Algorithm 21 essentially employs a heuristic to decide whether the
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partition update applies (5.4) or that of (5.5). We describe in this section an alternative

strategy that we have found to perform better in our experiments. First, unlike that of

[78, 81, 21], our safeguard changes the memberships of a portion of V, where the portion

size is dynamically updated. Another difference in the safeguard design is that we employ

a finite queue (first-in-first-out) to store recent values of |V|. When an element is pushed

into the queue that is already full, the earliest element is removed. We use the maximum

value of the elements in the queue as the reference measure. By enforcing strict decrease on

the reference measure for each iteration, our proposed algorithm framework is guaranteed

to converge to the optimal solution.

Algorithm 22 PDAS Framework with Safeguarding

1: Input (P,N ,A), queue Qm with size m, proportion p ∈ (0, 1], parameter δs ∈ (0, 1) and
δe ∈ (1,∞)

2: loop
3: Compute the subspace minimizer (θ, z) corresponding to (P,N ,A)
4: if |V| = 0, then terminate and return (θ, z)
5: Set max/min← maximum/minimum of Qm

6: if |V| > max then
7: set p← max(δsp,

1
|V| )

8: else if |V| < min then
9: push |V| into Qm and set p← max(δep, 1)

10: else
11: push |V| into Qm

12: end if
13: Sort V by max(λ|Dθ|, |z|) and apply (5.4), only changing the top p|V| indices
14: end loop

Algorithm 22 can be understood as follows. If |V| = 0, then (θ, z) is optimal and the

algorithm terminates. Otherwise, the update (5.4) is to be applied using only the bp|V|c

indices from V corresponding to the largest violations. If p = 1/|V|, then this corresponds

to moving only one index as in [81], but if p ∈ (1/|V|, 1], then a higher portion of violated

indices may be moved. As long as the reference value—i.e., the maximum of the values

in the queue—decreases, the value for p is maintained or is increased. However, if the

reference value fails to decrease, then p is decreased. Overall, since the procedure guaran-

tees that the reference value is monotonically decreasing and that p is sufficiently reduced

whenever a new value for |V| is not below the reference value, our strategy preserves the

convergence guarantees established in [81] while applying more aggressive update on the
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partition estimate.

5.4 Experiments

We implemented Algorithms 19, 20, and 22 in Python 2.7, using the Numpy (version 1.8.2)

and Scipy (version 0.14.0) packages for matrix operations. In the following subsections,

we discuss the results of numerical experiments for solving randomly generated instances

of problems (IR) and (TF). For problem (IR), merge operations for Algorithm 19 were

implemented sequentially, though in Figure 5.1 we also illustrate how they can potentially

be implemented in parallel. Throughout our experiments, we set ω as an all-one vector.

5.4.1 Test on Isotonic Regression

We compare the numerical performance of Algorithm 19 (PDAS) with the Python imple-

mentation of Algorithm 18 (PAV) that is integrated into scikit-learn (version 0.13.1, all later

versions are re-implemented in C) [99]. The data yi are generated by yi ← i + εi where

εi ∼ N (0, 4). By default the initial partition is set as J0 = {{1}, {2}, . . . , {n}} for both al-

gorithms. We generated 10 random instances each for n ∈ {1×104, 5×104, . . . , 33×104}. A

boxplot for running time in seconds (Time (s)) and number of merge operations (# Merge)

are reported in Figure 5.3.

Figure 5.3: Comparison of PDAS and PAV in running time (left) and # of merges (right).

Figure 5.3 demonstrates that the implementation of PDAS outperforms PAV in terms of

running time. That being said, when both use the set of singletons as the starting point,
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the numbers of merge operations performed by the two algorithms are nearly identical.

Warm-starting

Figure 5.3 does not show an obvious advantage of PDAS over PAV when it comes to the total

number of merge operations. However, as claimed, we now show an advantage of PDAS in

terms of its ability to exploit a good initial partition. We simulate warm-starting PDAS

by generating an instance of (IR) as in our previous experiment, solving it with PDAS,

and using the solution as the starting point for solving related instances for which the

data vector y has been perturbed. In particular, for each problem size n, we generated 10

perturbed instances by adding a random variable εi ∼ N (0, 10−2) to each yi. The results

of solving the perturbed instances are reported in Figure 5.4.

Figure 5.4: Comparison of warm-started PDAS and PAV.

Since PAV is not able to utilize a good initial partition, the required work (i.e., number

of merge operations) for solving the perturbed problems is not cheaper than for the base

instance. In contrast, warm-starting the PDAS algorithm can greatly reduce the compu-
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tational cost as observed in the much-reduced number of merge operations (even after

accounting for the added split operations).

5.4.2 Test on Trend Filtering

We now compare the performance of several PDAS variants for trend filtering. In particu-

lar, we compare the straightforward PDAS method of Algorithm 20 (PDAS), Algorithm 21

(SF1), and the PDAS method with our proposed safeguard strategy in Algorithm 22

(SF2). The safeguard parameter tmax = 5 was chosen for SF1 and we similarly set m = 5,

δs = 0.9, and δe = 1.1 for SF2. We generated 10 random problem instances each for

n ∈ {104, 1.7× 105, 3.3× 105} where, for each instance, the data vector had yi uniformly

distributed in [0, 10]. Such datasets had minimum pattern and thus made each problem

relatively difficult to solve. We considered both regularization functions g1 and g1+ defined

in §5.3.1 with difference matrices D(1,n) and D(2,n), setting λ = 10 in all cases. For all

runs, we set an iteration limit of 800; if an algorithm failed to produce the optimal solution

within this limit, then the run was considered a failure. The percentages of successful runs

for each algorithm is reported in Table 5.2.

Table 5.2: Percentages of successful runs for each algorithm and problem type

n (size)
% of success

g(θ) = ‖(D(1,n)θ)+‖1 g(θ) = ‖D(1,n)θ‖1 g(θ) = ‖(D(2,n)θ)+‖1 g(θ) = ‖D(2,n)θ‖1
PDAS SF1 SF2 PDAS SF1 SF2 PDAS SF1 SF2 PDAS SF1 SF2

1.0e+4 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0

1.7e+5 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

3.3e+5 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

We observe from Table 5.2 that all algorithms solved all instances when the regular-

ization function involved a first-order difference matrix, but that PDAS and SF1 both had

failures when a second-order difference matrix is used. By contrast, our proposed safe-

guard in SF2 results in a method that is able to solve all instances within the iteration

limit. This shows that our proposed safeguard, which allows more aggressive updates, can

be more effective than a conservative safeguard.

To compare further the performance of the algorithms, we collected the running

time and iteration number for all successfully solved instances. Figure 5.5 demonstrates

that when D = D(1,n), all algorithms show very similar performance. However, when
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D = D(2,n) as in Figure 5.6, the results show that SF2 is not only more reliable than

PDAS and SF1; it is also more efficient even when SF1 is successful. We also include the

results for the interior-point method (IPM) proposed in [82], but emphasize that this al-

gorithm is implemented in Matlab (as opposed to Python) and is only set up to solve the

instances when an `1-regularization function is used. Although the imterior point method

implementation used herein has very impressive practical performance, we remark that in

general it is difficult to warm-starting interior point methods [77], despite recent efforts

toward this direction [120, 49, 48] .

(a) D = D(1,n), g = g1+

(b) D = D(1,n), g = g1

Figure 5.5: PDAS vs IPM for D = D1,n and different choices of g.

Warm-starting

We conclude our experiments by comparing the performance of IPM—which is not set

up for warm-starting—and warm-started SF2. As in §5.4.1, we generated 10 perturbed

instances for a given dataset by adding a random variable εi ∼ N (0, 10−2) to yi. The

running times and numbers of iterations for solving the perturbed problems are reported
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(a) D = D(2,n), g = g1+

(b) D = D(2,n), g = g1

Figure 5.6: PDAS vs IPM for D = D2,n and different choices of g.

via boxplots in Figure 5.7.

Comparing the performance of SF2 between Figures 5.5, Figures 5.6 and 5.7 shows that

warm-starting SF2 can dramatically reduce the cost of solving an instance of (TF). With

a cold-start, SF2 may require hundreds of iterations, while with warm-starting it requires

dramatically fewer iterations. In contrast, IPM does not benefit much from a good starting

point.

5.5 Concluding Remarks

We propose innovative PDAS algorithms for Isotonic Regression (IR) and Trend Filtering

(TF). For IR, our PDAS method enjoys the same theoretical properties as the well-known

PAV method, but also has the ability to be warm-started, can exploit parallelism, and

outperforms PAV in our experiments. Our proposed safeguarding strategy for a PDAS

method for TF also exhibits reliable and efficient behavior. Overall, our proposed methods

show that PDAS frameworks are powerful when solving a broad class of regularization
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(a) D = D(1,n), g = g1

(b) D = D(2,n), g = g1

Figure 5.7: PDAS (with warm-start) vs IPM.

problems. Our major discovery is that customizing PDAS method to certain machine

learning problems usually results to novel methods that outperform state-of-the-art algo-

rithms. It therefore deserves further exploration of problems to which PDAS methods are

applicable.
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Chapter 6

Conclusion

Primal-dual active-set (PDAS) methods show great potential in solving certain large-scale

convex QPs arising in optimal control and statistics. As other active-set methods, PDAS

methods possess many favorable properties such as the ability to be warm-started and to

obtain highly accurate solutions. These features make PDAS methods ideal candidates

when solving a nonlinear optimization problem via a series of quadratic optimization

subproblems. Moreover, PDAS methods can adapt the active set estimate in a much

more aggressive manner than traditional active-set methods, making them well-suited for

solving large-scale problems.

In this dissertation, we have proposed various methods for improving the practical per-

formance of PDAS methods and for enhancing their capabilities to solve larger-classes of

problems. First, for solving general convex QPs, a primary challenge is that the algorithm

may encounter active set estimates at which a subspace minimizer is not well-defined. In

addition, even if the subspace minimizers are well-defined throughout the iterative process,

a plain PDAS iteration might cycle and, thus, never converge. In §3, we have addressed

these issues by proposing enhancements to arrive at a globally convergent PDAS frame-

work for general convex QPs. In particular, the former issue is addressed by a process

of solving linear optimization problems while adaptively expanding the subspace until a

feasible partition is reached. To address the latter issue, we introduced into the algorithm

an uncertainty set to house indices that are suspected of leading to cycling. Global con-
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vergence of the algorithm is then achieved by dynamically adapting the uncertainty set

until no cycle persists. Through numerical experiments, we illustrated that our enhance-

ments are effective and the algorithmic framework is very efficient when solving large-scale

convex QPs.

We continued our proposed enhancements to PDAS methods in §4, in which we pre-

sented ideas for lowering the chief computational cost in any PDAS method, namely, the

subspace minimization procedure. We proved that inexact subspace minimization can be

exploited to yield productive steps under reduced computational costs. To ensure global

convergence of the method, we proposed precise conditions under which a given inexact

step is acceptable. These conditions involve inferring an upper bound on the norm of a

matrix inverse, which we show can be done explicitly or eventually through updates for a

dynamic parameter. We show through examples of discretized optimal control problems

that allowing inexactness can be appealing in that iterative linear system solution methods

can be terminated early with gains in overall computational cost for the algorithm. This

provides evidence that PDAS methods with inexact, iterative subspace minimization steps

can perform well in comparison to methods that employ direct factorization techniques.

As another area in which PDAS methods can be effective, we showed in §5 that PDAS

methods are powerful in solving certain large-scale optimization problems arising in sta-

tistical learning. In particular, we showed that the isotonic regression (IR) problem over

n data points is solvable by a PDAS method in O(n) elementary arithmetic operations. In

addition, we showed that a sophisticated implementation of this method outperforms the

state-of-the-art method for solving such problems. We also showed that safeguarded vari-

ants of PDAS methods show competitive performance in solving a broad class of related

trend filtering (TF) problems.

We conclude by pointing out a few research topics that one may consider for extend-

ing the work in this dissertation. First, our convergence guarantees for PDAS methods

with inexact subproblem solves in §4 were limited to cases of solving a restricted class of

convex QPs. One topic of interest would be extending these techniques for solving gen-

eral convex QPs, such as by merging them with the globalization strategies proposed in
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§3. Another interesting research direction would be to explore parallelization techniques

in implementations of PDAS methods. We have discussed how one could parallelize a

PDAS method for solving IR problems in §5, but completing such an implementation and

comparing it to a sequential solver remains as future work. Finally, the incorporation of a

PDAS method for solving QPs into an outer algorithm for solving nonlinear optimization

problems (NLPs) could lead to interesting new methods. The practical performance of

such an approach as compared to one in which a traditional QP solver is employed could

be groundbreaking.
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[72] S. Hüeber, G. Stadler, and B. I. Wohlmuth. A primal-dual active set algorithm

for three-dimensional contact problems with Coulomb friction. SIAM Journal on

Scientific Computing, 30(2):572–596, 2008.

[73] P. Hungerländer and F. Rendl. A feasible active set method for strictly convex

quadratic problems with simple bounds. 2015.

[74] K. Ito and K. Kunisch. Optimal control of elliptic variational inequalities. Applied

Mathematics and Optimization, 41(3):343–364, 2000.

[75] K. Ito and K. Kunisch. The primal-dual active set method for nonlinear optimal

control problems with bilateral constraints. SIAM Journal on Control and Opti-

mization, 43(1):357–376, 2004.

[76] K. Ito and K. Kunisch. Convergence of the primal-dual active set strategy for

diagonally dominant systems. SIAM Journal on Control and Optimization, 46(1):14–

34, 2007.

[77] E. John and E. A. Yıldırım. Implementation of warm-start strategies in interior-point

methods for linear programming in fixed dimension. Computational Optimization

and Applications, 41(2):151–183, 2008.

131
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Appendix A

Primal-Dual Active-Set as a

Semi-Smooth Newton Method

In this appendix, we show that Algorithm 8 is equivalent to a semi-smooth Newton method

under certain conditions. The following theorem utilizes the concept of a slant derivative

of a slantly differentiable function [69].

Theorem A.0.1. Let {(xk, yk, z`k, zuk )} be generated by Algorithm 8 with Step 6 employing

Algorithm 9, where we suppose that, for all k, (A`k,Auk , Ik,Uk) with Uk = ∅ is a feasible

partition at the start of Step 3. Then, {(xk, yk, z`k, zuk )} is the sequence of iterates generated

by the semi-smooth Newton method for finding a zero of the function KKT defined by (2.3)

with initial value (x0, y0, z
`
0, z

u
0 ) = SM(A`0,Au0 , I0, ∅) and slant derivative M(a, b) of the

slantly differentiable function m(a, b) = min(a, b) defined by

[M(a, b)]ij =



0 if j /∈ {i, n+ i}

1 if j = i, ai ≤ bj

0 if j = i, ai > bj

0 if j = n+ i, ai ≤ bj

1 if j = n+ i, ai > bj.

Proof. To simplify the proof, let us assume that ` = −∞ so that problem (1.4) has upper
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bounds only. This ensures that z`k = 0 and A`k = ∅ for all k, so in this proof we remove all

references to these quantities. The proof of the case with both lower and upper bounds

follows similarly.

Under the assumptions of the theorem, the point (x0, y0, z
u
0 ) ← SM(∅,Au0 , I0, ∅) is

the first primal-dual iterate for both algorithms, i.e., Algorithm 8 and the semi-smooth

Newton method. Furthermore, it follows from (3.2)–(3.4) that

Hx0 + c−ATy0 + zu0 = 0 and Ax0 − b = 0. (A.1)

We now proceed to show that both algorithms generate the same subsequent iterate,

namely (x1, y1, z
u
1 ). The result then follows as a similar argument can be used to show

that both algorithms generate the same iterate (xk, yk, z
u
k ) for each k.

Partitioning the variable indices into four sets, namely I, II, III, and IV, we find:

I := {i : i ∈ I0 and [x0]i ≤ ui} =⇒ [zu0 ]i = 0; (A.2a)

II := {i : i ∈ Au0 and [zu0 ]i ≤ 0} =⇒ [x0]i = ui; (A.2b)

III := {i : i ∈ I0 and [x0]i > ui} =⇒ [zu0 ]i = 0; (A.2c)

IV := {i : i ∈ Au0 and [zu0 ]i > 0} =⇒ [x0]i = ui. (A.2d)

Here, the implications after each set follow from Step 2 of Algorithm 7. Next, (3.14)

implies

I1 ← I ∪ II and A1 ← III ∪ IV. (A.3)

Algorithm 8 computes the next iterate as the unique point (x1, y1, z
u
1 ) satisfying

[zu1 ]I1 = 0, [x1]A1 = uA1 , Hx1 + c−ATy1 + zu1 = 0, and Ax1 − b = 0. (A.4)

Now, let us consider one iteration of the semi-smooth Newton method on the func-

tion KKT defined by (2.3) using the slant derivative function M . It follows from (A.2),

Table A.1, and the definition of M that the semi-smooth Newton system may be written
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as



HI,I HI,II HI,III HI,IV ATN ,I I 0 0 0

HII,I HII,II HII,III HII,IV ATN ,II 0 I 0 0

HIII,I HIII,II HIII,III HIII,IV ATN ,III 0 0 I 0

HIV,I HIV,II HIV,III HIV,IV ATN ,IV 0 0 0 I

AN ,I AN ,II AN ,III AN ,IV 0 0 0 0 0

0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 I 0 0

0 0 −I 0 0 0 0 0 0

0 0 0 −I 0 0 0 0 0





∆xI

∆xII

∆xIII

∆xIV

−∆y

∆zI

∆zII

∆zIII

∆zIV



= −



0

0

0

0

0

0

[zu0 ]II

[u− x0]III

0



.

(A.5)

Table A.1: Quantities relevant to evaluating the function KKT and computing the slant
derivative M at the point (x0, y0, z

u
0 ).

Index set [zu0 ]i [u− x0]i min([zu0 ]i, [u− x0]i)]

i ∈ I 0 ≥ 0 0

i ∈ II ≤ 0 0 [zu0 ]i

i ∈ III 0 < 0 [u− x0]i

i ∈ IV > 0 0 0

The first five block equations of (A.5) combined with (A.1) yield

Ax1 − b = A(x0 +∆x)− b = Ax0 − b+A∆x = 0 and (A.6a)

Hx1 + c−ATy1 + zu1 = H(x0 +∆x) + c−AT(y0 +∆y) + zu0 +∆z = 0, (A.6b)
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while the last four blocks of equations of (A.5) and (A.2) imply

∆zI = 0 =⇒ [zu1 ]I = [zu0 +∆z]I = 0 (A.7)

∆zII = −[zu0 ]II =⇒ [zu1 ]II = [zu0 +∆z]II = 0 (A.8)

∆xIII = [u− x0]III =⇒ [x1]III = [x0 +∆x]III = uIII (A.9)

∆xIV = 0 =⇒ [x1]IV = [x0 +∆x]IV = uIV (A.10)

so that

[zu1 ]I1 = 0 and [x1]A1 = uA1 . (A.11)

It now follows from (A.4), (A.6), and (A.11) that (x1, y1, z
u
1 ) generated by the semi-smooth

Newton method is the same as that generated by Algorithm 8.
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Appendix B

The pypdas Package for Convex

QP

In Chapter 4, we presented a PDAS algorithm framework for certain class of QPs that

supports inexact subproblem solves. In fact, all of the implementation of the three PDAS

variants described therein are built and tested on top of pypdas, a Python package that

provides a generic PDAS method framework with support of inexact subproblem solves.

We give a brief instruction of the function call of pypdas for solving convex QPs. The

source code is maintained on the following Github repository:

https://github.com/zhh210/pypdas

The pypdas interface attempts to emulate that of MATLAB which assumes the convex

QP to be in the form of

min
x∈Rn

1

2
xTHx+ cTx

s.t. Aeqx = beq

bl ≤ Ax ≤ bu

` ≤ x ≤ u.

(B.1)

In this manner, a subspace minimizer is defined by solving a linear system with a

reduced space matrix of the form (B.2). In pypdas, this system is solved using MINRES

[98, 23], a Krylov iterative linear system solver available in the SciPy package. Despite a
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lack of theoretical guarantee when solving general problems of the form (B.1), our practical

experience suggests that this procedure generally leads to a productive partition update.


HAA AeqTA AeqTA

AeqA 0 0

AA 0 0

 (B.2)

The design of pypdas follows the framework of Algorithm 12 but supports solving the

more general QP (1.4). We list all optional parameters and their default values that are

used in the pypdas package. Users could specify their own preferred value via the function

call of pdas or ipdas.

Table B.1: Default parameter settings in pypdas.
Parameter Default Usage Note

OptTol 10−6 pdas, ipdas εopt, tolerance for KKT error
ResTol 10−6 pdas, ipdas εnum, tolerance for linear system solve
MaxItr 500 pdas, ipdas maximum number of iteration
CG_res_absolute_hard 10−2 ipdas εres, hard tolerance for linear system solve
identified_estimated_ratio 0.5 ipdas θ, minimum proportion of |V| identified
fun_estinv 1 100 ipdas a function to estimate matrix inverse norm

1This function is optionally provided by the users to utilize the structure of (B.2) for the problem of
interest. The package provides optional functions such as: power iteration, or Algorithm 14 when (B.2) is
a (perturbed) H-matrix.
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Finally we provide a step-to-step guidance on how one could call pypdas to solve a

convex QP in Python 2.7.

(I) Prepare Data

In the favor of the unified interface for both sparse and dense matrix operations, pypdas

chooses the matrix data structure implemented in cvxopt. The following piece of code

creats random sparse coefficient matrices of (B.1).

from pdas.toolbox import pdas,ipdas

from pdas.randutil import sprandsym, sp_rand

n = 100 # number of variables

m = 1 # number of equality

mi = 1 # number of inequality

# Generate some random data (sparse)

H = sprandsym(n)

c = sp_rand(n,1,1)

A = sp_rand(mi,n,1)

bl = sp_rand(mi,1,1)

bu = bl + 1

Aeq = sp_rand(m,n,0.8)

beq = sp_rand(m,1,1)

l = sp_rand(n,1,1)

u = l + 1

x0 = sp_rand(n,1,0.8) # optional initial solution
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(II) PDAS with exact subproblem solve

To solve a QP with exact subproblem solve, one simply callss function pdas

pdas(H,c,Aeq,beq,A,bl,bu,l,u,x0)

The output should be somewhat

================================================================================

Iter Obj KKT |AL| |AU| |I| |V| |cV| invnorm Krylov

================================================================================

0 7.21e+02 4.71e+01 57 15 28 49 0 2.00e+00 32

1 6.23e+02 2.97e+01 56 10 34 26 0 2.00e+00 34

2 6.86e+02 7.03e+00 55 18 27 12 0 2.00e+00 32

3 6.93e+02 3.23e+00 53 22 25 5 0 2.00e+00 28

4 6.94e+02 5.86e-01 54 24 22 2 0 2.00e+00 25

5 6.94e+02 2.88e-08 54 22 24 0 0 2.00e+00 28

--------------------------------------------------------------------------------

Problem Status : Optimal

Total Iterations : 5

Total Krylov-iterations : 179

Avg norm(r)/norm(r0 ): 6.25e-08

Avg norm(r) : 3.56e-07

Time Elapsed : 6.00e-02

--------------------------------------------------------------------------------
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To solve a BQP with exact subproblem solve, one simply calls function pdas

pdas(H=H,c=c,l=l,u=u,x0=x0)

The output should be somewhat

================================================================================

Iter Obj KKT |AL| |AU| |I| |V| |cV| invnorm Krylov

================================================================================

0 7.17e+02 5.06e+01 57 15 28 45 0 2.00e+00 27

1 5.88e+02 2.90e+01 56 9 35 22 0 2.00e+00 33

2 6.57e+02 2.26e+00 58 17 25 8 0 2.00e+00 28

3 6.64e+02 7.94e-01 57 18 25 2 0 2.00e+00 27

4 6.65e+02 2.88e-02 58 19 23 1 0 2.00e+00 23

5 6.65e+02 1.05e-03 57 19 24 1 0 2.00e+00 27

6 6.65e+02 3.17e-13 58 19 23 0 0 2.00e+00 26

--------------------------------------------------------------------------------

Problem Status : Optimal

Total Iterations : 6

Total Krylov-iterations : 191

Avg norm(r)/norm(r0 ): 4.75e-08

Avg norm(r) : 3.53e-07

Time Elapsed : 6.00e-02

--------------------------------------------------------------------------------
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(III) PDAS with inexact subproblem solve

To solve a QP with iexact subproblem solve, one simply calls function ipdas

ipdas(H,c,Aeq,beq,A,bl,bu,l,u,x0,identified_estimated_ratio = 0.5)

Note that besides identified_estimated_ratio any of the parameters in Table B.1 could

be specified in the function. The output should be somewhat

================================================================================

Iter Obj KKT |AL| |AU| |I| |V| |cV| invnorm Krylov

================================================================================

0 7.21e+02 4.72e+01 57 15 28 49 42 2.00e+00 19

1 6.17e+02 2.50e+01 54 11 35 28 25 2.00e+00 17

2 6.88e+02 8.24e+00 57 18 25 16 16 2.00e+00 23

3 6.93e+02 3.62e+00 51 22 27 6 6 2.00e+00 22

4 6.94e+02 1.10e-01 54 23 23 1 1 2.00e+00 20

5 6.94e+02 2.88e-08 54 22 24 0 0 2.00e+00 28

--------------------------------------------------------------------------------

Problem Status : Optimal

Total Iterations : 5

Total Krylov-iterations : 129

Avg norm(r)/norm(r0) : 5.25e-04

Avg norm(r) : 2.34e-02

Time Elapsed : 2.60e-01

Total Krylov4estimation : 0

--------------------------------------------------------------------------------
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To solve a BQP with inexact subproblem solve, one simply calls function ipdas

ipdas(H=H,c=c,l=l,u=u,x0=x0,identified_estimated_ratio = 0.5)

The output should be somewhat

================================================================================

Iter Obj KKT |AL| |AU| |I| |V| |cV| invnorm Krylov

================================================================================

0 7.17e+02 5.06e+01 57 15 28 45 43 2.00e+00 13

1 5.82e+02 1.98e+01 56 9 35 22 20 2.00e+00 16

2 6.57e+02 2.76e+00 59 16 25 8 7 2.00e+00 15

3 6.65e+02 1.02e-03 57 19 24 1 1 2.00e+00 20

4 6.65e+02 3.17e-13 58 19 23 0 0 2.00e+00 26

--------------------------------------------------------------------------------

Problem Status : Optimal

Total Iterations : 4

Total Krylov-iterations : 90

Avg norm(r)/norm(r0) : 4.13e-04

Avg norm(r) : 2.08e-02

Time Elapsed : 1.80e-01

Total Krylov4estimation : 0

--------------------------------------------------------------------------------
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