
INAUGURAL–DISSERTATION
zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich–Mathematischen Gesamtfakultät

der

Ruprecht–Karls–Universität

Heidelberg

vorgelegt von

Dipl.–Math. Andreas Potschka

aus Schweinfurt

Tag der mündlichen Prüfung

.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/32582823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A direct method for the

numerical solution of

optimization problems with

time-periodic PDE constraints

Gutachter: Prof. Dr.Dr. h.c. Hans Georg Bock

Prof. Dr.Dr. h.c. Rolf Rannacher

Zusammenfassung

In der vorliegenden Dissertation entwickeln wir auf der Basis der Direkten
Mehrzielmethode eine neue numerische Methode für Optimalsteuerungsprobleme
(OCPs) mit zeitperiodischen partiellen Differentialgleichungen (PDEs). Die vorge-
schlagene Methode zeichnet sich durch asymptotisch optimale Skalierung des nume-
rischen Aufwandes in der Zahl der örtlichen Diskretisierungspunkte aus. Sie besteht
aus einem Linearen Iterativen Splitting Ansatz (LISA) innerhalb einer Newton-Typ
Iteration zusammen mit einer Globalisierungsstrategie, die auf natürlichen Niveau-
funktionen basiert. Wir untersuchen die LISA-Newton Methode im Rahmen von
Bocks κ-Theorie und entwickeln zuverlässige a-posteriori κ-Schätzer. Im Folgenden
erweitern wir die LISA-Newton Methode auf den Fall von inexakter Sequentieller
Quadratischer Programmierung (SQP) für ungleichungsbeschränke Probleme und
untersuchen das lokale Konvergenzverhalten. Zusätzlich entwickeln wir klassische
und Zweigitter Newton-Picard Vorkonditionierer für LISA und beweisen gitterun-
abhängige Konvergenz der klassischen Variante auf einem Modellproblem. Anhand
numerischer Ergebnisse können wir belegen, dass im Vergleich zur klassichen Vari-
ante die Zweigittervariante sogar noch effizienter ist für typische Anwendungspro-
bleme. Des Weiteren entwickeln wir eine Zweigitterapproximation der Lagrange-
Hessematrix, welche gut in den Rahmen des Zweigitter Newton-Picard Ansatzes
passt und die im Vergleich zur exakten Hessematrix zu einer Laufzeitreduktion von
68 % auf einem nichtlinearen Benchmarkproblem führt. Wir zeigen weiterhin, dass
die Qualität des Feingitters die Genauigkeit der Lösung bestimmt, während die
Qualität des Grobgitters die asymptotische lineare Konvergenzrate, d.h., das Bock-
sche κ, festlegt. Zuverlässige κ-Schätzer ermöglichen die automatische Steuerung
der Grobgitterverfeinerung für schnelle Konvergenz. Für die Lösung der auftre-
tenden, großen Probleme der Quadratischen Programmierung (QPs) wählen wir
einen strukturausnutzenden zweistufigen Ansatz. In der ersten Stufe nutzen wir
die durch den Mehrzielansatz und die Newton-Picard Vorkonditionierer beding-
ten Strukturen aus, um die großen QPs auf äquivalente QPs zu reduzieren, deren
Größe von der Zahl der örtlichen Diskretisierungspunkte unabhängig ist. Für die
zweite Stufe entwickeln wir Erweiterungen für eine Parametrische Aktive Mengen
Methode (PASM), die zu einem zuverlässigen und effizienten Löser für die resultie-
renden, möglicherweise nichtkonvexen QPs führen. Weiterhin konstruieren wir drei
anschauliche, contra-intuitive Probleme, die aufzeigen, dass die Konvergenz einer
one-shot one-step Optimierungsmethode weder notwendig noch hinreichend für die
Konvergenz der entsprechenden Methode für das Vorwärtsproblem ist. Unsere Ana-
lyse von drei Regularisierungsansätzen zeigt, dass de-facto Verlust von Konvergenz
selbst mit diesen Ansätzen nicht verhindert werden kann. Des Weiteren haben wir
die vorgestellten Methoden in einem Computercode mit Namen MUSCOP imple-
mentiert, der automatische Ableitungserzeugung erster und zweiter Ordnung von
Modellfunktionen und Lösungen der dynamischen Systeme, Parallelisierung auf der
Mehrzielstruktur und ein Hybrid Language Programming Paradigma zur Verfügung
stellt, um die benötigte Zeit für das Aufstellen und Lösen neuer Anwendungspro-
bleme zu minimieren. Wir demonstrieren die Anwendbarkeit, Zuverlässigkeit und

iii

iv ZUSAMMENFASSUNG

Effektivität von MUSCOP und damit der vorgeschlagenen numerischen Methoden
anhand einer Reihe von PDE OCPs von steigender Schwierigkeit, angefangen bei
linearen akademischen Problemen über hochgradig nichtlineare akademische Pro-
bleme der mathematischen Biologie bis hin zu einem hochgradig nichtlinearen An-
wendungsproblem der chemischen Verfahrenstechnik im Bereich der präparativen
Chromatographie auf Basis realer Daten: Dem Simulated Moving Bed (SMB) Pro-
zess.

Abstract

In this thesis we develop a numerical method based on Direct Multiple Shooting
for Optimal Control Problems (OCPs) constrained by time-periodic Partial Differ-
ential Equations (PDEs). The proposed method features asymptotically optimal
scale-up of the numerical effort with the number of spatial discretization points.
It consists of a Linear Iterative Splitting Approach (LISA) within a Newton-type
iteration with globalization on the basis of natural level functions. We investigate
the LISA-Newton method in the framework of Bock’s κ-theory and develop reliable
a-posteriori κ-estimators. Moreover we extend the inexact Newton method to an in-
exact Sequential Quadratic Programming (SQP) method for inequality constrained
problems and provide local convergence theory. In addition we develop a classical
and a two-grid Newton-Picard preconditioner for LISA and prove grid independent
convergence of the classical variant for a model problem. Based on numerical re-
sults we can claim that the two-grid version is even more efficient than the classical
version for typical application problems. Moreover we develop a two-grid approx-
imation for the Lagrangian Hessian which fits well in the two-grid Newton-Picard
framework and yields a reduction of 68 % in runtime for a nonlinear benchmark
problem compared to the use of the exact Lagrangian Hessian. We show that the
quality of the fine grid controls the accuracy of the solution while the quality of the
coarse grid determines the asymptotic linear convergence rate, i.e., Bock’s κ. Based
on reliable κ-estimators we facilitate automatic coarse grid refinement to guarantee
fast convergence. For the solution of the occurring large-scale Quadratic Program-
ming Problems (QPs) we develop a structure exploiting two-stage approach. In the
first stage we exploit the Multiple Shooting and Newton-Picard structure to reduce
the large-scale QP to an equivalent QP whose size is independent of the number
of spatial discretization points. For the second stage we develop extensions for a
Parametric Active Set Method (PASM) to achieve a reliable and efficient solver for
the resulting, possibly nonconvex QP. Furthermore we construct three illustrative,
counter-intuitive toy examples which show that convergence of a one-shot one-step
optimization method is neither necessary nor sufficient for the convergence of the
forward problem method. For three regularization approaches to recover conver-
gence our analysis shows that de-facto loss of convergence cannot be avoided with
these approaches. We have further implemented the proposed methods within a
code called MUSCOP which features automatic derivative generation for the model
functions and dynamic system solutions of first and second order, parallelization on
the Multiple Shooting structure, and a hybrid language programming paradigm to
minimize setup and solution time for new application problems. We demonstrate
the applicability, reliability, and efficiency of MUSCOP and thus the proposed nu-
merical methods and techniques on a sequence of PDE OCPs of growing difficulty
ranging from linear academic problems, over highly nonlinear academic problems of
mathematical biology to a highly nonlinear real-world chemical engineering problem
in preparative chromatography: The Simulated Moving Bed (SMB) process.

v

Contents

Zusammenfassung iii

Abstract v

List of acronyms ix

Introduction xi
Results of this thesis xiii
Thesis overview xv
Acknowledgments xvi

Part 1. Theoretical foundations 1

Chapter 1. Problem formulation 3
1. Dynamical models described by Partial Differential Equations 3
2. Coupled Ordinary and Partial Differential Equations 6
3. The Optimal Control Problem 6

Chapter 2. Direct Optimization: Problem discretization 9
1. Discretize-then-optimize approach 9
2. Method Of Lines: Discretization in space 10
3. Direct Multiple Shooting: Discretization in time 12
4. Discretization of path constraints 13
5. The resulting Nonlinear Programming Problem 13

Chapter 3. Elements of optimization theory 15
1. Basic definitions 15
2. Necessary optimality conditions 15

Part 2. Numerical methods 17

Chapter 4. Inexact Sequential Quadratic Programming 19
1. Newton-type methods 19
2. Local convergence 21
3. Globalization of convergence 23
4. A Rosenbrock-type example 27
5. The Restrictive Monotonicity Test 28
6. A Natural Monotonicity Test for LISA-Newton methods 29
7. Inequality constrained optimization problems 42

Chapter 5. Newton-Picard preconditioners 47
1. The Newton-Picard method for finding periodic steady states 48
2. Discretization of the model problem 48
3. Newton-Picard for optimal control problems 51
4. Extension to nonlinear problems and Multiple Shooting 62

vii

viii CONTENTS

Chapter 6. One-shot one-step methods and their limitations 63
1. Illustrative, counter-intuitive examples in low dimensions 64
2. Subproblem regularization without changing the Jacobian approximation 65
3. Analysis of the regularized subproblems 66

Chapter 7. Condensing 71
1. Multiple shooting structure 71
2. Newton-Picard structure 73
3. Elimination of discretized PDE states 76
4. Newton-Picard Hessian approximation 77
5. Scaling invariance of the Newton-Picard LISA-Newton method 78

Chapter 8. A Parametric Active Set method for QP solution 79
1. General remarks on Quadratic Programming Problems 79
2. Parametric Active Set methods 81
3. Fundamental numerical challenges 86
4. Strategies to meet numerical challenges 87
5. The code rpasm: A PASM in Matlab R© 90
6. Comparison with existing software 90
7. Drawbacks of the proposed PASM 93
8. Nonconvex Quadratic Programs 93

Chapter 9. Automatic derivative generation 95
1. Algorithmic Differentiation 95
2. The principle of IND 96
3. IND for implicit time-stepping with monitor strategy 97
4. Numerical effort of IND 99

Chapter 10. The software package MUSCOP 101
1. Programming paradigms 101
2. Orchestration of software components 104

Part 3. Applications and numerical results 107

Chapter 11. Linear boundary control for the periodic 2D heat equation 109
1. General parameters 109
2. Euclidean vs. L2 projector 110
3. Mesh independence 112
4. Comparison with Schur complement preconditioning 113

Chapter 12. Nonlinear boundary control of the periodic 1D heat equation 115
1. Problem and algorithmical parameters 115
2. Discussion of numerical convergence 116

Chapter 13. Optimal control for a bacterial chemotaxis system 121
1. Problem formulation 121
2. Numerical results 122

Chapter 14. Optimal control of a Simulated Moving Bed process 127
1. Mathematical modeling of adsorption processes 128
2. Numerical results 131

Conclusions and future work 135

Bibliography 137

List of acronyms

AD Algorithmic Differentiation
BDF Backward Differentiation Formula
BVP Boundary Value Problem
ECOP Equality Constrained Optimization Problem
END External Numerical Differentiation
FDM Finite Difference Method
FEM Finite Element Method
FVM Finite Volume Method
IND Internal Numerical Differentiation
IRAM Implicitly Restarted Arnoldi Method
IVP Initial Value Problem
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Qualification
LISA Linear Iterative Splitting Approach
MOL Method Of Lines
NDGM Nodal Discontinuous Galerkin Method
NLP Nonlinear Programming Problem
NMT Natural Monotonicity Test
OCP Optimal Control Problem
ODE Ordinary Differential Equation
OOP Object Oriented Programming
PASM Parametric Active Set Method
PCG Preconditioned Conjugate Gradient
PDE Partial Differential Equation
PQP Parametric Quadratic Programming
QP Quadratic Programming Problem
RMT Restrictive Monotonicity Test
SCC Strict Complementarity Condition
SMB Simulated Moving Bed
SOSC Second Order Sufficient Condition
SQP Sequential Quadratic Programming
VDE Variational Differential Equation

ix

Introduction

“The miracle of the appropriateness of the language of mathemat-
ics for the formulation of the laws of physics is a wonderful gift
which we neither understand nor deserve. We should be grateful
for it and hope that it will remain valid in future research and that
it will extend, for better or for worse, to our pleasure even though
perhaps also to our bafflement, to wide branches of learning.”

— E.P. Wigner [162]

Mathematics today permeates an ever increasing part of the sciences far beyond
mathematical physics just as about 50 years ago Nobel Prize laureate Wigner has
hoped for. In particular mathematical methods for simulation and optimization of
quantitative mathematical models continue to face growing demand in disciplines
ranging from engineering, biology, economics, physics, etc. even to emerging areas
of psychology or archeology (see, e.g., Sager et al. [137], Schäfer et al. [138]).

In this thesis we focus on mathematical and computational methods for the
class of Optimal Control Problems (OCPs) pioneered by Pontryagin and Bellman
in the middle of the 20th century. General mathematical optimization problems
consist of finding a solution candidate which satisfies a set of constraints and min-
imizes a certain objective function. OCPs are optimization problems whose free
variables comprise states and controls from (usually infinite dimensional) function
spaces constrained to satisfy given differential equations. The differential equations
describe the behavior of a dynamic system which can be controlled in a prescribed
way.

The treatment of constraints given by Partial Differential Equations (PDEs) is
one major challenge that we address in this thesis. PDEs appear when spatially
distributed phenomena need to be taken into account, e.g., when we describe the
diffusion of a substance in a liquid. Ordinary Differential Equations (ODEs), which
describe the evolution of a system in time, are not a satisfactory mathematical tool
for the description of spatial effects (although we shall use them to approximate
solutions of PDEs). A considerable amount of theory and practical computational
methods is available today for ODE OCPs. The presence of PDE constraints causes
additional difficulties both on the theoretical as well as on the numerical side and is
a much younger field of research especially in the aspect of methods which heavily
rely on high computing power.

OCPs are inherently infinite problems because we seek solutions in function
spaces. We can divide numerical methods for OCPs into two main classes: Direct
and indirect methods. The defining line between the two is somewhat blurry, espe-
cially when we cross borders of mathematical communities. We base our classifica-
tion here on the sequence of discretization and optimization. In indirect methods
we first derive optimality conditions in function space which we discretize after-
wards. In direct methods we discretize the problem first and then find an optimizer
of the resulting Nonlinear Programming Problem (NLP). Moreover we often end up
with an implicit characterization of the control via artificially introduced co-state

xi

xii INTRODUCTION

or adjoint variables in indirect methods. This is in contrast to direct methods for
which the discretized control usually occurs explicitly as one or the only remaining
variable. Indirect methods for ODE OCPs are mostly based on Dynamic Pro-
gramming (see, e.g., Bellman [15]) or Pontryagin’s Maximum Principle (see, e.g.,
Pontryagin et al. [123]). Tröltzsch [150] in his introductory textbook for PDE OCPs
also treats only indirect methods. A discussion of direct and indirect methods for
PDE OCPs is given in Hinze et al. [84, Chapter 3]. In the 1980’s the endeavor to
apply numerical optimization quickly to new application areas and new problems
led to the development of direct methods for ODE OCPs, most notably collocation
methods (see, e.g., Biegler [18], Bär [8]) and Direct Multiple Shooting (Bock and
Plitt [25]). One advantage of direct methods is that the optimality conditions of
an NLP are generic, whereas optimality conditions of undiscretized OCPs need to
be reestablished for each new problem and often require partial a-priori knowledge
of the mathematical structure of the solution which in general is not available for
many application problems. At the crux of creating an efficient direct optimization
method is structure exploitation in the numerical solution of the NLP. Usually
either Sequential Quadratic Programming (SQP) or Interior Point methods are
employed (see, e.g., the textbook of Nocedal and Wright [119]). These iterative
methods require the computation of derivatives of the objective function and the
constraints. Derivative free methods (see, e.g., the introductory textbook by Conn
et al. [33]) are typically not suited because of the high number of unknowns and
because nonlinear constraints can only be treated with excessive computational
effort.

It is our goal in this thesis to extend Direct Multiple Shooting for ODE OCPs in
order to make it applicable and continue its success story for a class of PDE OCPs.
The first hurdle on this venture is the large problem size of the discretized OCPs.
Schäfer [139] describes in his dissertation approaches to address this difficulty by
exploitation of the special mathematical structure of the discretized OCPs. His
approaches lead to a reduction in the number of needed directional derivatives for
the dynamical system. The Schäfer approach requires only a constant number of
directional derivatives per optimization iteration while the number of directional
derivatives for conventional Direct Multiple Shooting depends linearly on the num-
ber of spatial discretization points which typically grow prohibitively large.

However, the Schäfer approach cannot be applied efficiently to OCPs with
boundary conditions in time, the treatment of which is another declared goal of this
thesis. PDE OCPs with time-periodicity conditions are even more difficult because
for each spatial discretization point one additional constraint arises. In order to
obtain an algorithm whose required number of directional derivatives is independent
of the spatial discretization we have developed a globalized inexact SQP method
in extension to ideas for inexact Newton methods (Ortega and Rheinboldt [120],
Dembo et al. [40]), inexact SQP methods (Diehl et al. [47], Wirsching [164]), the
Newton-Picard approach (Lust et al. [108]), and globalization via natural level
functions (Bock [22], Bock et al. [26], Deuflhard [43]).

Boundary conditions in time occur often in practical applications, most of the
time in form of a periodicity constraint. In this thesis we apply the investigated
methods to the optimization of a real-world chromatographic separation process
called Simulated Moving Bed (SMB). Preparative chromatography is one of various
examples in the field of process operations for which periodic operation leads to a
considerable increase in process performance compared to batch operation. The
complicated structure of optimal solutions makes mathematical optimization an
indispensable tool for the practitioner (see, e.g., Nilchan and Pantelides [118], van

RESULTS OF THIS THESIS xiii

Noorden et al. [154], Toumi et al. [149], de la Torre et al. [39], Kawajiri and Biegler
[91, 92], Agarwal et al. [1]).

Results of this thesis

For the first time we propose a method based on Direct Multiple Shooting
for time-periodic PDE OCPs which features optimal scale-up of the effort in the
number of spatial discretization points. This result is based on grid-independence
of the number of inexact SQP iterations and a bound on the numerical effort for
one inexact SQP iteration as essentially a constant times the effort for the solu-
tion of one Initial Value Problem (IVP) of the dynamical system. We can solve
a nonlinear discretized large-scale optimization problem with roughly 700 million
variables (counting intermediate steps of the IVP solutions as variables) in under
half an hour on a current commodity desktop machine. Although developed par-
ticularly for PDE OCPs with time-periodicity constraints in mind, the method can
also be applied to problems with fixed initial conditions instead of time-periodicity
constraints and is thus considerably versatile.

Based on an inner Linear Iterative Splitting Approach (LISA) for the linear sys-
tems we review a LISA-Newton method. It is well-known that the linear asymptotic
convergence rate of a LISA-Newton method with l inner LISA iterations coincides
with the asymptotic convergence rate of the LISA method to the power of l. We
prove this result for the first time in the framework of Bock’s κ-theory. Truncated
Neumann series occur in the proof which yield a closed form for the backward error
of the inexact linear system solves. This backward error is of significant importance
not only for the linear system itself but also in Bock’s Local Contraction Theorem
(Bock [24]) which characterizes the local convergence of Newton-type methods.

The previous result enables us to develop three novel a-posteriori κ-estimators
which are computed from the iterates of the inner LISA iterations. We highlight
the complications which result from the occurrence of non-diagonalizable iteration
matrices from a geometrical point of view with examples.

We further extend LISA-Newton methods to SQP methods and prove that limit
points satisfy a first order necessary optimality condition and that a second order
sufficiency condition transfers from the Quadratic Programming Problem (QP) in
the solution to the solution of the NLP. Moreover we describe the use of inexact
Jacobians and Hessians within a generalized LISA method based on QPs. We also
attempt an extension of a globalization strategy for LISA-Newton methods using
natural level functions for the case of inexact SQP methods. We discuss important
details of the numerical implementation and show that the developed strategy works
reliably on numerical examples of practical relevance.

For LISA methods for time-periodic PDE OCPs we develop Newton-Picard
preconditioners. We propose a classical variant based on Lust et al. [108] and a
two-grid variant. We show that it is of paramount importance for numerical ef-
ficiency to modify the classical Newton-Picard preconditioner to use an L2-based
projector instead of a Euclidean projector. Moreover we prove grid-independent
convergence of the classical Newton-Picard preconditioner on a linear-quadratic
time-periodic PDE OCP. We further give numerical evidence that the two-grid
variant is more efficient on a wide range of practical problems. For the extension of
the proposed preconditioners to the nonlinear case for use in LISA-Newton meth-
ods we discuss several difficulties of the classical Newton-Picard preconditioner.
We also develop a new two-grid Hessian approximation which fits naturally in the
two-grid Newton-Picard framework and yields a reduction of 68 % in runtime for
an exemplary nonlinear benchmark problem. Moreover we show that the two-grid

xiv INTRODUCTION

Newton-Picard LISA-Newton method is scaling invariant. This property is of con-
siderable importance for the reliability of the method on already badly conditioned
problems.

The analysis reveals that the quality of the fine grid controls the accuracy of the
solution while the quality of the coarse grid determines the asymptotic linear con-
vergence rate, i.e., Bock’s κ, of the two-grid Newton-Picard LISA-Newton method.
Based on the newly established reliable a-posteriori κ-estimates we develop a nu-
merical strategy for automatic determination of when to refine the coarse grid to
guarantee fast convergence.

We further develop a structure exploiting two-stage strategy for the solution
of QP subproblems in the inexact SQP method. The first stage is an extension
of the traditional condensing step in SQP methods for Direct Multiple Shooting
which exploits the constraint for periodicity or alternatively given fixed initial val-
ues for the PDE in addition to the Multiple Shooting matching conditions. This
strategy reduces the large-scale QP to an equivalent QP whose size is independent
of the spatial discretization. The reduction can be efficiently computed because it
additionally exploits the (two-grid) Newton-Picard structure in the QP constraint
and Hessian matrices. For the second stage we develop a Parametric Active Set
Method (PASM) which can also treat nonconvex QPs with indefinite Hessian ma-
trices. This capability is required because we want to treat nonconvex NLPs using
accurate approximations for Lagrangian Hessians. We propose numerical tech-
niques for improving the reliability of our PASM code which outperforms several
other popular QP codes when in terms of reliability.

The Newton-Picard LISA method can also be interpreted as a one-shot one-step
approach for a linear PDE OCP. The almost optimal convergence theorem which we
prove for the considered model problem supports the conjecture that such one-step
approaches will in general yield optimization algorithms which converge as fast as
the algorithm for the forward problem, which consists of satisfying the constraints
for fixed controls. Contrary to common belief, however, we have constructed three
small-scale, equality constrained QPs which illustrate that the convergence for the
forward problem method is neither sufficient nor necessary for the convergence
of the one-step optimization method. Furthermore we show that existing one-
step techniques to enforce converge might lead to de-facto loss of convergence with
contraction factors of almost 1. These examples and results can serve as a warning
signal or guiding principle for the choice of assertions which one might want to
attempt to prove about one-step methods. It also justifies that we prove convergence
of the Newton-Picard LISA only for a model problem.

We have put substantial effort into the implementation of the proposed ideas
in a new software package called MUSCOP. Based on a hybrid programming design
principle we strive to keep the code both easy to use and easy to maintain/develop
further at the same time. The code features parallelization on the Multiple Shooting
structure and automatic generation of derivatives of first and second order of the
model functions and dynamic systems in order to reduce setup and solution time
for new application problems to a minimum.

Finally we use MUSCOP to demonstrate the applicability, reliability, and ef-
ficiency of the proposed numerical methods and techniques on a sequence of PDE
OCPs of growing difficulty: Linear and nonlinear boundary control tracking prob-
lems subject to the time-periodic linear heat equation in 2D and 1D, a tracking
problem in bacterial chemotaxis which features a strong nonlinearity in the con-
vective term, and finally a real-world practical example: Optimal control of the
ModiCon variant of the SMB process.

THESIS OVERVIEW xv

Thesis overview

This thesis is structured in three parts: Theoretical foundations, numerical
methods, and applications and numerical results. In Chapter 1 we give a short
introduction to Bochner spaces and sketch the functional analytic setting for par-
abolic PDE in order to formulate the PDE OCP that serves as the point of origin
for all further investigations in this thesis.

We present a direct optimization approach in Chapter 2. After a discussion
of the discretize-then-optimize and optimize-then-discretize paradigms we describe
a multi-stage discretization approach: Given a hierarchy of spatial discretizations
we employ the Method Of Lines (MOL) to obtain a sequence of large-scale ODE
OCPs which we subsequently discretize with Direct Multiple Shooting. We then
formulate the resulting NLPs and discuss their numerical challenges.

In Chapter 3 we give a concise review of elements of finite dimensional opti-
mization theory for completeness. This concludes Part 1, theoretical foundations.

We begin Part 2, numerical methods, with the development of a novel inexact
SQP method in Chapter 4. We commence the discussion with Newton-type meth-
ods and present Bock’s Local Contraction Theorem and its proof. Subsequently we
review popular methods for globalization of Newton-type methods and discuss their
limits when it comes to switching from globalized mode to fast local contraction
mode. We then present the idea and several interpretations of globalization via
natural level functions and explain how they overcome the problem of impediment
of fast local convergence. The natural level function approach leads to computable
monotonicity tests for the globalization strategy. A review of the Restrictive Mono-
tonicity Test (RMT) and a Natural Monotonicity Test (NMT) for LISA-Newton
methods then precedes an exhaustive discussion of the convergence of LISA and
its connection with Bock’s κ-theory. On this basis we develop three a-posteriori
κ-estimators which are based on the LISA iterates. In addition we propose an
extension to SQP methods, prove that a first-order necessary optimality condition
holds if the method converges, and further show that a second order sufficiency
condition transfers from the QP in the solution to the solution of the NLP. Finally
we present a novel extension to inexact SQP methods on the basis of a generalized
LISA for QPs.

In Chapter 5 we develop so-called Newton-Picard preconditioners for time-
periodic OCPs. We discuss a classical and a two-grid projective approach. For
the classical approach we show grid independent convergence. We conclude the
chapter with a discussion of the application of Newton-Picard preconditioning in a
LISA-Newton method for nonlinear problems and for Multiple Shooting.

We present three counter-intuitive toy examples in Chapter 6 which show that
convergence of the forward problem method is neither sufficient nor necessary for
the convergence of a corresponding one-step one-shot optimization approach. We
furthermore analyze regularization approaches which are designed to enforce one-
step one-shot convergence and demonstrate that de-facto loss of convergence cannot
be avoided via these techniques.

In Chapter 7 we discuss condensing of the occurring large-scale QPs to equiv-
alent QPs whose size is independent of the number of spatial discretization points.
We further develop efficient numerical exploitation of the Multiple Shooting and
Newton-Picard structure. Moreover we propose a two-grid Hessian matrix ap-
proximation which fits well in the framework of the two-grid Newton-Picard pre-
conditioners. As a final remark we show scaling invariance of the Newton-Picard
LISA-Newton method for PDE OCPs.

The solution of the resulting medium-scale QPs via PASM is our subject in
Chapter 8. We identify numerical challenges in PASMs and develop strategies to

xvi INTRODUCTION

meet these challenges, in particular the techniques of drift correction and flipping
bounds. Furthermore we implement these strategies in a code called rpasm and
demonstrate that rpasm outperforms other popular QP solvers in terms of reliability
on a well-known test set. We conclude the chapter with an extension to nonconvex
QPs which can arise when employing the exact Lagrangian Hessian or the two-grid
Newton-Picard Hessian approximation. The proposed PASM is also considerably
efficient because it can be efficiently hot-started.

In Chapter 9 we review numerical methods for automatic generation of deriva-
tives on the basis of Algorithmic Differentiation (AD) and Internal Numerical
Differentiation (IND). Furthermore we address issues with a monitor strategy in
implicit numerical integrators which can lead to violation of the IND principle for
the example of a linear 1D heat equation. Then we conclude the chapter with a
short account on the numerical effort of IND.

We dedicate Chapter 10 to the design of the software package MUSCOP. Is-
sues we address include programming paradigms and description of the various
software components and their complex orchestration necessary for smart structure
exploitation. This concludes Part 2, numerical methods.

In Part 3 we present applications and numerical results which were generated
with MUSCOP. Linear boundary control for the periodic 2D heat equation is in the
focus of our presentation in Chapter 11. We give numerical evidence of the failure
of Euclidean instead of L2 projection in classical Newton-Picard preconditioners.
In accordance with the proof of mesh-independent convergence we give several
computational results for varying problem data and discuss why the two-grid variant
is superior to the classical Newton-Picard preconditioner.

We extend the problem to nonlinear boundary control in 1D in Chapter 12
and discuss numerical self-convergence. We can show that employing the two-grid
Hessian approximation leads to an overall reduction in computation time of 68 %.
We discuss parallelization issues and compare runtimes for different discretizations
of the control in time. In all cases we give detailed information about the runtime
spent in different parts of the algorithm and show exemplarily that with above 95 %
most of the runtime is required for system simulation and IND.

In Chapter 13 we present a tracking type OCP for a (non-periodic) bacterial
chemotaxis model in 1D. The model is characterized by a highly nonlinear convec-
tive term. We demonstrate the applicability of the proposed methods also to this
problem and discuss the self-convergence of the computation.

Chapter 14 is the last chapter of this thesis. In it we present the SMB process
and explain a mathematical model for chromatographic columns. We then present
numerical results for the ModiCon variant of the SMB process for real-world data.
We obtain optimal solutions with an accuracy which has not been achieved before.
This concludes Part 3 and this thesis.

Chapters 5, 6, 8, 11, and parts of Chapter 14 are based on own previously
published work. For completeness we reprint partial excerpts here with adaptions to
the unified nomenclature and structure of this thesis. We give the precise references
to the respective articles at the beginning of each of these chapters.

Acknowledgments

I would like to thank Deutsche Forschungsgemeinschaft (DFG) for support
within the International Graduiertenkolleg 710 Complex processes: Modeling, Sim-
ulation and Optimization, for grant BO864/12-1 within the Schwerpunktprogramm
1253 Optimization with Partial Differential Equations, and for support within the
Heidelberg Graduate School for Mathematical and Computational Methods in the
Sciences (HGS). I am also grateful for support by Bundesministerium für Bildung

ACKNOWLEDGMENTS xvii

und Forschung (BMBF) under grant 03BONCHD. Furthermore I would like to
acknowledge support by the European Commission within the project Embedded
Optimization for Resource Constrained Platforms (EMBOCON).

The Interdisciplinary Center for Scientific Computing (IWR) has been an ex-
tremely stimulating environment for my research. Well linked to other institutions
of international reputation—not only as host of the projects mentioned in the previ-
ous paragraph—it has brought me into contact with leading experts in and beyond
my field. Therefore I would especially like to thank my advisers Hans Georg Bock
and Rolf Rannacher for putting so much of their energy and enthusiasm into shap-
ing IWR and for not only enabling but even more so encouraging me to engage
in international scientific activities early on in my project. Giving seminar or con-
ference talks in Boston, Ein Gedi, Hanoi, Houston, Leuven, Oxford, Prague, and
Warsaw have undoubtedly been highlights for me in the past years.

Furthermore I would like to thank Hans Georg Bock and Johannes Schlöder
for their financial and personal support, their abundance of ideas, their confidence
in my abilities, and the resulting freedom they have granted me for my research.
Serene even in the most stressful times, they are role models who make it very
difficult not to like them. I am sure the pleasant yet productive atmosphere within
the Bock work group is rooted deeply in the personality of its heads. I also want
to express my gratitude to our cooperation partner Sebastian Engell who provided
the application which initially sparked the research leading to this thesis. For his
patience and affirmation I am very grateful. Moreover I owe thanks to Sebastian
Sager who has been more than just a mentor for me. Be it science, sports, or
questions of life in general, I have enjoyed and benefited from his opinions and
achievements on various occasions. Additionally, I would like to thank Ekaterina
Kostina and Moritz Diehl for their contributions to the initial proposal of this
project.

While working on this thesis I had the pleasure and honor to prepare a few
articles and manuscripts. I would like to express my gratitude to my coauthors (in
alphabetical order): Hans Georg Bock, Sebastian Engell, Jan Van Impe, Christian
Kirches, Stefan Körkel, Achim Küpper, Filip Logist, Mario Mommer, Sebastian
Sager, and Johannes Schlöder.

I am indebted to Falk Hante, Christian Kirches, Mario Mommer, Sebastian
Sager, and Johannes Schlöder for valuable comments on a first draft of this thesis.
Moreover I want to express my sincere gratitude to secretary Margret Rothfuss for
being so kind and helpful in formal and personal matters.

Furthermore I would like to thank my officemate Leonard Wirsching for always
being open, available, and eager to scrutinize new ideas and for his invaluable
contributions to discussion afterwards which have left a permanent imprint on this
thesis. Not only is he an extremely capable numerical analyst but also a person
with one of the largest hearts that I know.

The members of the AG Bock Doktorandenrunde have been a constant source of
inspiration, motivation, and help in the last period of my doctoral project. I would
like to thank all members: Dörte Beigel, Kathrin Hatz, Christian Hoffmann, Chris-
tian Kirches, Simon Lenz, Andreas Sommer, Andreas Schmidt, and Leo Wirsching.
For the implementation of DAESOL-II I would like to thank Jan Albersmeyer. Ad-
ditionally I owe many thanks to Dörte Beigel, Christian Kirches, Andreas Schmidt,
and Leonard Wirsching for our arduous but successful group effort for DAESOL-II
maintenance after Jan’s leave. In particular I want to thank Christian Kirches who
voluntarily threw in his excellent expertise and sacrificed his working hours with-
out the prospect or requirement of using DAESOL-II in the near future in his own
projects.

xviii INTRODUCTION

I also want to express my special thanks to Andreas Schmidt for introducing
me to the captivating hobby of rock climbing which effectively keeps away back
pain even when spending large parts of the day in front of a computer screen.

Moreover I owe my gratitude to Moritz Diehl, Andreas Griewank, Matthias
Heinkenschloss, Nick Trefethen, and Fredi Tröltzsch for hosting me for short and
not so short research stays at their respective institutes.

I would further like to thank Sean Hardesty for all the fun time we spent
together in Houston and Heidelberg. Moreover I thank the members of the Rice
graduates rock band: Tommy Binford, Eddie and Rick Castillo, and Denis Ridzal.
I hope that one day we will manage to play Pear Jam together again.

Music has helped considerably to keep my mind in balance while working on my
doctoral project. I had the pleasure to be involved in various musical activities. In
particular I am deeply grateful for the unforgettable opportunities to sing and play
cajon together with Andreas Griewank on the guitar for my advisers Hans Georg
Bock and Rolf Rannacher at the MOSOCOP conference on the occasion of their
60th birthdays and to take part in a jam session with songs of The Beatles on cajon
and guitar together with Tom Kraus on guitar and Roger Fletcher on the piano in
front of the Caipirinha bar at the conference dinner of the Czech–French–German
Conference on Optimization (CFG) 2007. I would also like to thank Tom Kraus
and Francisco Cueto for the evenings we spent together jamming on Neckarwiese.
Furthermore I enjoyed the concerts with Junger Kammerchor Baden–Württemberg
which unfortunately I had to skip more and more towards the final period of my
doctoral project.

I am thankful to my Celestial Smile bandmates Esta Darshini Volkova and Ralf
Kern for the concerts we rehearsed and performed and for creating the album The
Time and the Tide all on our own in a long but rewarding process. They deserve my
gratitude also for opening up my view on mathematics from a non-mathematician’s
point of view.

Furthermore I thank Rob Solomon for investing so much time and effort recently
into the band project formerly known as Tabak & Tee which Tom Kraus and myself
have founded. Lifting some of our songs to a professional level together has been
a wonderful experience which Tom and I alone would have never managed on the
side of our doctoral projects.

I am deeply grateful to Tom Kraus for being such a wonderful person and such
a great friend. Out of his unbreakable joie de vivre paired with his inner depth
springs an intense creative field which I experienced as a tremendous gift. For their
down-to-earth but open warmth of the heart I would like to thank Anita and Micha
Strauß and their family whose presence seems to inevitably provoke a wonderful
feeling of gratitude for all the goodness in the world. Moreover I want to express my
gratefulness towards my friends Evelyn and Tobias Stuwe. To know them has given
my life a new quality which is hard to describe to those who have not experienced
it. I thank Nadia Dubé for having shared the joys of partnership with me for more
than three years.

Finally I would like to thank my sister Susanne, my brother Manuel and his
whole family, and my parents Maria and Michael for keeping many worries away
from me, for their constant support, and for the love and the trustful freedom I
have received from them.

Part 1

Theoretical foundations

CHAPTER 1

Problem formulation

The goal of this chapter is to introduce the Optimal Control Problem (OCP)
formulation which serves as the point of origin for all further investigations in this
thesis. To this end we recapitulate elements of the theory of parabolic Partial
Differential Equations (PDEs) in Section 1 and present a system of PDEs coupled
with Ordinary Differential Equations (ODEs) in Section 2. The coupled system is
one of the constraints among additional boundary and path constraints for the OCP
which we describe in Section 3. We emphasize the particular aspects in which our
problem setting differs and extends the setting most often found in PDE constrained
optimization.

1. Dynamical models described by Partial Differential Equations

We treat processes which are modeled by a state u distributed in space and
evolving over time. The evolution of u is deterministic and described by PDEs. The
behavior of the dynamical system can further be influenced by a time and possibly
space dependent control q.

Nonlinear instationary PDEs usually do not have solutions in classical function
spaces. We recapitulate the required definitions for Bochner spaces and vector-
valued distributions necessary for formulations which have solutions in a weak sense.
The presentation here is based on Dautray and Lions [36], Gajewski et al. [56], and
Wloka [165]. We omit all proofs which can be found therein. Throughout this
chapter let Ω ∈ Rd be a bounded open domain with sufficiently regular boundary
∂Ω, X be a Banach space, and dµ denote the Lebesgue measure in Rd.

We assume that the reader is familiar with basic concepts of functional analysis
(see, e.g., Dunford and Schwartz [49]). We denote with Lp(Ω), 1 ≤ p ≤ ∞, the
Lebesgue space of µ-measurable R-valued functions whose absolute value to the p-
th power has a bounded integral over Ω if p <∞ or which are essentially bounded
if p = ∞. Functions which coincide µ-almost everywhere are considered identical.
With W k,p(Ω), k ≥ 0, 1 ≤ p < ∞ we denote the Sobolev space of functions in
Lp(Ω) whose distributional derivatives up to order k lie in Lp(Ω). The spaces
Lp(Ω),W k,p(Ω) endowed with their usual norms are Banach spaces. The spaces
Hk(Ω) := W k,2(Ω) equipped with their usual scalar product are Hilbert spaces.
The construction of Lp(Ω) and W k,p(Ω) can be generalized to functions with values
in Banach spaces:

Definition 1.1 (Bochner spaces). By Lp(Ω;X), 1 ≤ p < ∞, we denote the
space of all measurable functions v : Ω→ X satisfying∫

Ω

‖v‖pXdµ <∞.

We identify elements of Lp(Ω;X) which coincide µ-almost everywhere and equip
Lp(Ω;X) with the norm

‖v‖Lp(Ω;X) =

(∫
Ω

‖v‖pXdµ

)1/p

.

3

4 1. PROBLEM FORMULATION

Now we proceed in the following way: Generally we are interested in weak
solutions u ∈ W in an appropriate Hilbert space W ⊂ L2((t1, t2) × Ω) with finite
t1, t2 ∈ R. Functions in L2((t1, t2)×Ω) need not even be continuous and hence we
must exercise care to give well-defined meaning to derivatives and the traces u(t1, .)
and u(t2, .). This is not trivial because altering u on any set of measure zero, e.g.,
{t1, t2}×Ω, yields the same u in L2((t1, t2)×Ω). The traces are important for the
formulation of boundary value conditions. We address these issues concerning the
state space in three steps. In a first step, we write

L2((t1, t2)× Ω) = L2((t1, t2);L2(Ω)),

i.e., we interpret u as an L2 function in time with values in the space of L2 functions
in space. Second, we can formulate the time derivative du/dt of u via the concept
of vectorial distributional derivatives.

Definition 1.2. Let Y be another Banach space. We denote the space of
continuous linear mappings from X to Y with L(X,Y).

Definition 1.3. The space of vectorial distributions of the interval (t1, t2) ⊂ R
with values in the Banach space X is denoted by

D′((t1, t2);X) := L(C∞([t1, t2];R), X).

We can identify every u ∈ L2((t1, t2);X) ⊂ L1((t1, t2);X) with a distribution
T ∈ D′((t1, t2);X) via the Bochner integral

Tϕ =

∫ t2

t1

u(t)ϕ(t)dt for all ϕ ∈ C∞([t1, t2];R).

Definition 1.4. The k-th derivative of T is defined via

dkT

dtk
ϕ = (−1)k

∫ t2

t1

u(t)ϕ(k)(t)dt.

Thus, dT/dt ∈ D′((t1, t2);X). We assume now that X ↪→ Y , where ↪→ denotes
continuous embedding. Hence it holds that

D′((t1, t2);X) ↪→ D′((t1, t2);Y),

Lp((t1, t2);X) ↪→ Lp((t1, t2);Y).

Let u ∈ L2((t1, t2);X). We say that du/dt ∈ L2((t1, t2);Y) if there exists u′ ∈
L2((t1, t2), Y) such that∫ t2

t1

u′(t)ϕ(t)dt =
dT

dt
ϕ = −

∫ t2

t1

u(t)ϕ(1)(t)dt for all ϕ ∈ C∞([t1, t2];R),

and we identify du/dt := u′. We also use the abbreviation ∂tu := du/dt.
In the third step, let V and H be separable Hilbert spaces and let V ∗ denote

the dual space of V . We assume throughout that (V,H, V ∗) is a Gelfand triple

V
d
↪→ H

d
↪→ V ∗,

i.e., the embeddings of V in H and H = H∗ in V ∗ are continuous and dense. Now
we choose X = V and Y = V ∗ in order to define the space of L2 functions over V
with time derivatives in L2 over the dual V ∗ according to

W (t1, t2) = {u ∈ L2((t1, t2);V) | ∂tu ∈ L2((t1, t2);V ∗)}.
Lemma 1.5. The space W (t1, t2) is a Hilbert space when endowed with the

scalar product

(u, v)W (t1,t2) =

∫ t2

t1

(u(t), v(t))V dt+

∫ t2

t1

(∂tu(t), ∂tv(t))V ∗ dt.

1. DYNAMICAL MODELS DESCRIBED BY Partial Differential Equations 5

Proof. See Wloka [165, Satz 25.4].

Theorem 1.6. We can alter every u ∈ W (t1, t2) on a set of measure zero to
obtain a function in C0([t1, t2];H). Furthermore, if we equip C0([t1, t2];H) with
the norm of uniform convergence then

W (t1, t2) ↪→ C0([t1, t2];H).

Proof. See Dautray and Lions [36, Chapter XVIII, Theorem 1].

Corollary 1.7. For u ∈ W (t1, t2) the traces u(t1), u(t2) have a well-defined
meaning in H (but not in V in general).

For the control we assume q ∈ L2((t1, t2);Q) where Q ⊆ L2(Ω)nq or Q ⊆
L2(∂Ω)nq for distributed or boundary control, respectively. We can then formulate
the parabolic differential equation

∂tu(t) +A(q(t), u(t)) = 0, (1.1)

with a nonlinear elliptic differential operator A : Q × V → V ∗. In the numerical
approaches which we present in Chapters 4 and 5 we exploit that A is an elliptic
operator. We further assume that A is defined via a semilinear (i.e., linear in the
last argument) form a : (Q× V)× V → R according to

〈A(q(t), u(t)), ϕ〉V ∗×V = a(q(t), u(t), ϕ) for all ϕ ∈ V. (1.2)

We consider Initial Value Problems (IVPs), i.e., PDE (1.1) subject to u(t1) =
u0 ∈ H. The question of existence, uniqueness, and continuous dependence of
solutions on the problem data u0 and q cannot be answered satisfactorily in a general
setting. However, there are problem-dependent sufficient conditions (compare, e.g.,
Gajewski et al. [56] for the case A(q(t), u(t)) = Aq(q(t)) + Au(u(t))). A thorough
discussion of this question is beyond the focus of this thesis.

Example 1. For illustration we consider the linear heat equation with Robin
boundary control and initial values

∂tu = ∆u in (0, 1)× Ω, (1.3a)

∂νu+ αu = βq on (0, 1)× ∂Ω, (1.3b)

u
∣∣
t=0

= u0, (1.3c)

where α, β ∈ L∞(∂Ω) and ∂ν denotes the derivative in the direction of the outwards
pointing normal ν on ∂Ω. We choose V = H1(Ω) and H = L2(Ω). Multiplication
with a test function ϕ ∈ V and integration by parts transform equations (1.3a)
and (1.3b) into

0 =

∫
Ω

∂tu(t)ϕ−
∫

Ω

(∆u(t))ϕ (1.4a)

=

∫
Ω

∂tu(t)ϕ+

∫
Ω

∇u(t)T∇ϕ−
∫
∂Ω

(
∇u(t)Tν

)
ϕ (1.4b)

=

∫
Ω

∂tu(t)ϕ+

∫
Ω

∇u(t)T∇ϕ+

∫
∂Ω

αu(t)ϕ−
∫
∂Ω

βq(t)ϕ (1.4c)

=:

∫
Ω

∂tu(t)ϕ+ a(q(t), u(t), ϕ), (1.4d)

which serves as the definition for the semilinear form a and the corresponding
operator A. We immediately observe that a is even bilinear on (Q×V)×V in this
example.

6 1. PROBLEM FORMULATION

2. Coupled Ordinary and Partial Differential Equations

In some applications, e.g., in chemical engineering, the models consist of PDEs
which are coupled with ODEs. We denote the ODE states, which are not dis-
tributed in space, by v ∈ C0([t1, t2];Rnv). These states can for instance model the
accumulation of mass of a chemical species at an outflow port of a chromatographic
column (compare Chapter 14). We can formulate the coupled system of differential
equations as

∂tu(t) = −A(q(t), u(t), v(t)), (1.5a)

v̇(t) = fODE(q(t), u(t), v(t)), (1.5b)

where fODE : Q×H×Rnv , subject to initial or boundary value conditions in time.
We restrict ourselves to an autonomous formulation because the non-autonomous
case can always be formulated as system (1.5) by introduction of an extra ODE
state v̇i = 1 with initial value vi(t1) = t1.

The question of existence, uniqueness, and continuous dependence on the data
for the solution of IVPs with the differential equations (1.5) is even more challenging
than for PDE IVPs and must be investigated for restriced problem classes (e.g.,
when A is not dependent on the v(t) argument). Again, a thorough discussion of
this question exceeds the scope of this thesis.

3. The Optimal Control Problem

We now state the OCP which is the point of origin for all further investigations
of this thesis:

minimize
q∈L2((0,1);Q)
u∈W (0,1)

v∈C0([0,1];Rnv)

Φ(u(1), v(1)) (1.6a)

s. t. ∂tu = −A(q(t), u(t), v(t)), t ∈ (0, 1), (1.6b)

v̇ = fODE(q(t), u(t), v(t)), t ∈ (0, 1), (1.6c)

(u(0), v(0)) = rb(u(1), v(1)), (1.6d)

rc(q(t), v(t)) ≥ 0, t ∈ (0, 1), (1.6e)

re(v(1)) ≥ 0, (1.6f)

with nonlinear functions

Φ : H × Rnv → R, rb : H × Rnv → H × Rnv ,

rc : Q× Rnv → Rn
c
r , re : Rnv → Rn

e
r .

We now discuss each line of OCP (1.6) in detail.
The objective function Φ in line (1.6a) is different from what is typically treated

in PDE constrained optimization. Often, even for nonlinear optimal control prob-
lems, the objective functions are assumed to consist of a quadratic term for the
states, e.g., L2 tracking type in space or in the space-time cylinder, plus a quadratic
Tychonoff-type regularization term for the controls (see, e.g., Tröltzsch [150]) of the
type

1

2

∫ 1

0

‖u(t)− udesired(t)‖2Hdt+
γ

2

∫ 1

0

‖q(t)‖2Qdt. (1.7)

We remark that tracking type problems with objective (1.7) on the space-time
cylinder can always be cast in the form of OCP (1.6) by introduction of an additional
ODE state variable vi subject to

v̇i(t) = ‖u(t)− udesired(t)‖2H + γ‖q(t)‖2Q, vi(0) = 0,

3. THE Optimal Control Problem 7

with the choice Φ(u(1), v(1)) = vi(1)/2. The applications we are interested in,
however, can have economical objective functions which are not of tracking type.

Constraints (1.6b) and (1.6c) determine the dynamics of the considered system.
We have already described them in detail in Sections 1 and 2 of this chapter.

Initial or boundary value constraints are given by equation (1.6d). Typical
examples are pure initial value conditions via constant

rb(u(1), v(1)) := (u0, v0)

or periodicity conditions

rb(u(1), v(1)) := (u(1), v(1)).

Compared to initial value conditions the presence of boundary value conditions
makes it more difficult to use reduced approaches which rely on a solution operator
for the differential equations mapping a control q to a feasible state u. Instead of
solving one IVP, the solution operator would have to solve one Boundary Value
Problem (BVP) which is in general both theoretically and numerically more diffi-
cult. Thus we avoid this sequential approach in favor of a simultaneous approach in
which the intermediate control and state iterates of the method may be infeasible
for equations (1.6b) through (1.6d). Of course feasibility must be attained in the
optimal solution.

Inequality (1.6e) is supposed to hold for almost all t ∈ (0, 1) and can be used
to formulate constraints on the controls and ODE states. We deliberately do not
include PDE state constraints in the formulation which give rise to various theo-
retical difficulties and are currently a very active field of research. We allow for
additional inequalities on the ODE states at the end via inequality (1.6f). In the
context of chemical engineering applications, the constraints (1.6e) and (1.6f) can
comprise flow rate, purity, throughput constraints, etc.

Problems with free time-independent parameters can be formulated within
problem class (1.6) via introduction of additional ODE states vi with vanishing
time derivative v̇i(t) = 0. Although the software package MUSCOP (see Chap-
ter 10) treats time-independent parameters explicitly, we refrain from elaborating
on these issues in this thesis in order to avoid notational clutter.

OCP (1.6) also includes the cases of free start and end time via a time transfor-
mation, e.g., τ(t) = (1− t)τ1 + tτ2 ∈ [τ1, τ2], t ∈ [0, 1]. This case plays an important
role in this thesis, e.g., in periodic applications with free period duration, see Chap-
ter 14.

Concerning regularity of the functions involved in OCP (1.6), we take a prag-
matic view point: We assume that the problem can be consistently discretized
(along the lines of Chapter 2) and that the resulting finite dimensional optimization
problem is sufficiently smooth on each discretization level to allow for employment
of fast numerical methods (see Chapter 4).

CHAPTER 2

Direct Optimization: Problem discretization

The goal of this chapter is to obtain a discretized version of OCP (1.6). We
discuss a so-called direct approach and summarize its main advantages and dis-
advantages in Section 1 in comparison with alternative approaches. In Sections 2
and 3 we discretize OCP (1.6) in two steps. First we discretize in space and obtain
a large-scale ODE constrained OCP which we then discretize in time to obtain a
large-scale Nonlinear Programming Problem (NLP) presented in Section 5. The
numerical solution of this NLP is the subject of Part 2 in this thesis.

1. Discretize-then-optimize approach

We follow a direct approach to approximate the infinite dimensional optimiza-
tion problem (1.6) by finite dimensional optimality conditions by first discretizing
the optimization problem to obtain an NLP (discretize-then-optimize approach).
Popular alternatives are indirect approaches where infinite dimensional optimality
conditions are formulated (optimize-then-discretize approaches). These two main
routes are displayed in Figure 1.

To give a detailed list and comprehensive comparison of direct and indirect
approaches for OCPs is beyond the scope of this thesis. A short comparison for
ODE OCPs can be found, e.g., in Sager [136]. For PDE OCPs we refer the reader
to Hinze et al. [84, Chapter 3]. Both direct and indirect approaches have various
advantages and disadvantages which render one or the other more appropriate for a
concrete problem instance at hand. For the sake of brevity we restrict ourselves to
only state the main reason why we have decided to apply a direct approach: While
the most important property of indirect methods is certainly that they provide the

Infinite
dimensional
optimization

problem

optimize−−−−−→
Necessary infinite

dimensional
optimality
conditions

discretize

y ydiscretize

Finite
dimensional
optimization

problem

−−−−−→
optimize

Necessary finite
dimensional
optimality
conditions

Figure 1. The two main routes to approximate an infinite dimen-
sional optimization problem (upper left box) with necessary finite
dimensional optimality conditions (lower right box) are direct ap-
proaches (discretize-then-optimize, lower left path) versus indirect
approaches (optimize-then-discretize, upper right path).

9

10 2. DIRECT OPTIMIZATION: PROBLEM DISCRETIZATION

deepest insight into the mathematical structure of the solution of the particular
problem, the insight usually comes at the cost of heavy mathematical analysis,
which might be too time consuming or too difficult for a practitioner. The direct
approach that we lay out in this chapter enjoys the advantage that it can be applied
in a straight-forward, generic, and almost automatic way. We believe that this
property is paramount for successful deployment of the method in collaboration
with practitioners.

We have chosen a Direct Multiple Shooting approach for the following numerical
advantages: First, it has been shown in Albersmeyer [2] and Albersmeyer and Diehl
[4] that Multiple Shooting can be interpreted as a Lifted Newton method which
might reduce the nonlinearity of a problem and enlarge thus the domain of fast local
convergence (see Chapter 4). Second, we can supply good initial value guesses—if
available—for iterative solution methods through the local state variables. Third,
we can employ advanced numerical methods for the solution and differentiation of
the local IVPs (see Chapter 9). Fourth, due to the decoupling of the IVPs we can
parallelize the solution of the resulting NLP on the multiple shooting structure (see
Chapter 10).

2. Method Of Lines: Discretization in space

The first step in the discretization of OCP (1.6) consists of discretizing the
function spaces V and Q, e.g., by Finite Difference Methods (FDMs), Finite El-
ement Methods (FEMs), Finite Volume Methods (FVMs), Nodal Discontinuous
Galerkin Methods (NDGMs), or spectral methods. Introductions to these methods
are available in textbook form, e.g., LeVeque [107, 106], Braess [28], Hesthaven
and Warburton [82], and Hesthaven et al. [83]. The approach of discretizing first
in space and then in time is called Method Of Lines (MOL) and is often applied
for parabolic problems (see, e.g., Thomée [148]). We must exercise care that the
spatial discretization is appropriate for the concrete problem at hand. For instance,
an FEM for advection dominated problems must be stabilized, e.g., by a Stream-
line Upwind Petrov Galerkin formulation (see, e.g., Brooks and Hughes [30]), and
an NDGM for diffusion dominated problems must be stabilized by a jump penalty
term (see, e.g., Warburton and Embree [159]).

We assume that after discretization we obtain a finite dimensional space Qh ⊆
Q and a hierarchy of finite dimensional spaces V lh, l ∈ N, satisfying

V 1
h ⊂ V 2

h ⊂ · · · ⊂ V.
We choose this setting for the following reasons: For many applications, especially
in chemical engineering, an infinite dimensional control is virtually impossible to
implement on a real process. In the case of room heating for instance, the temper-
ature field is distributed in the three-dimensional room, but the degrees of freedom
for the control will still be the scalar valued position of the radiator operation knob.
In this case, a one-dimensional discretization Qh of Q is fully sufficient. For the
applications we consider, we always assume Qh to be a low dimensional space. It
is of paramount importance, however, to accurately resolve the system state u. For
this reason, we assume that the spaces V lh are high dimensional for for large l. The
numerical methods we describe in Part 2 will rely on and exploit these assumptions
on the dimensionality of Qh and V lh.

We can then use the finite dimensional spaces V lh and Qh to obtain a discretiza-
tion of the semilinear form a and thus the operator A from equation (1.2). On each
level l we are led to an ODE of the form

M l
uu̇

l(t) = fPDE(l)(q(t),ul(t), v(t)),

2. METHOD OF LINES: DISCRETIZATION IN SPACE 11

Level 4Level 1 Level 2 Level 3

1

Figure 2. First four levels of an exemplary hierarchy of nested
triangular meshes for the unit square obtained by uniform refine-
ment with N l

V = (2l−1 + 1)2 vertices on level l = 1, . . . , 4.

with symmetric positive-definite N l
V -by-N l

V matrix M l
u, ul(t) ∈ RN l

V , q(t) ∈ RNQ ,

and fPDE(l) : RNQ × RN l
V × Rnv → RN l

V . In this way we have approximated
PDE (1.1) with ODEs which are of large scale on finer discretization levels l. Let
us illustrate this procedure in an example.

Example 2. We continue the example of the heat equation (Example 1) on
the unit square Ω = (0, 1)2 with boundary control. For the discretization in space
we employ FEM. Let us assume that we have a hierarchy of nested triangular grids
for the unit square (compare Figure 2) with vertices ξli ∈ Ω, i = 1, . . . , N l

V , on level
l ∈ N. Let the set of triangular elements on level l be denoted by T l. We define
the basis functions ϕli by requiring

ϕli(ξ
l
j) = δij , ϕli is linear on each element T ∈ T l,

with δij denoting the Kronecker Delta. This construction yields the well-known hat
functions. We then define the spaces V lh simply as the span of the basis functions
ϕli, i = 1, . . . , N l

V .
For the discretization of Q we assume that a partition of ∂Ω in segments Sk,

k = 1, . . . , NQ, is given and choose Qh as the span of their characteristic functions
ψk = χSk , which yields a piecewise constant discretization of the control on the
boundary of the domain.

Let

ul =
∑N l

V

i=1
uliϕ

l
i ∈ V lh, wl =

∑N l
V

i=1
wl
iϕ
l
i ∈ V lh, q =

∑NQ

i=1
qiψi ∈ Qh

denote arbitrarily chosen discretized functions and their coordinates (in bold type-
face) within their finite dimensional spaces. Then we obtain the following expres-
sions for the terms occurring in equation (1.4) which allow for the evaluation of the
integrals via matrices:∫

Ω

ulwl =
∑N l

V

i,j=1
uli

(∫
Ω

ϕliϕ
l
j

)
wl
j =: (ul)TM l

Vw
l,

(state mass
matrix),∫

Ω

(∇ul)T∇wl =
∑N l

V

i,j=1
uli

(∫
Ω

(∇ϕli)T∇ϕlj
)
wl
j =: (ul)TSlwl,

(stiffness
matrix),∫

∂Ω

αwlq =
∑NQ

i=1

∑N l
V

j=1
qi

(∫
∂Ω

αψiϕ
l
j

)
wl
j =: qTM l

Qw
l,

(control-state
boundary
mass matrix),∫

∂Ω

βulwl =
∑N l

V

i,j=1
uli

(∫
∂Ω

βϕliϕ
l
j

)
wl
j =: (ul)TM l

∂w
l,

(state boundary
mass matrix).

The occurring matrices are all sparse because each basis function has by construc-
tion a support of only a few neighboring elements. We now substitute u(t), ϕ and

12 2. DIRECT OPTIMIZATION: PROBLEM DISCRETIZATION

q(t) in equation (1.4) with their discretized counterparts to obtain

u̇l(t)TM l
V e

l
i = −ul(t)TSleli − ul(t)TM l

∂e
l
i + q(t)TM l

Qe
l
i, for i = 1, . . . , N l

V ,

where eli denotes the i-th column of the N l-by-N l identity matrix. Exploiting
symmetry of M l

V , S
l, and M l

∂ yields the equivalent linear ODE formulation

M l
V u̇

l(t) = (−Sl −M l
∂)ul(t) + (M l

Q)Tq(t) =: fPDE(l)(q(t),ul(t), v(t)). (2.1)

It is well-known that the state mass matrix on the left hand side of equation (2.1) is
symmetric positive definite. To multiply equation (2.1) from the left with the dense
matrix (M l

V)−1 is often avoided in order to preserve sparsity of the right hand side
matrices.

We want to conclude Example 2 with the remark that in a FVM or an NDGM,
where the basis functions are discontinuous over element boundaries, the mass
matrix has block diagonal form and hence sparsity is preserved for (M l

V)−1. For
spectral methods, all occurring matrices are usually dense anyway. In both cases,
the inverse mass matrix is usually formulated explicitly in the right hand side of
equation (2.1).

3. Direct Multiple Shooting: Discretization in time

After approximation of PDE (1.1) with large-scale ODEs as we have described
in Section 2, we can employ Direct Multiple Shooting (see the seminal paper of Bock
and Plitt [25]) to discretize the ODE constrained OCP. The aim of this section is
to give an overview of Direct Multiple Shooting.

To this end let

0 = t0 < · · · < tnMS = 1

denote a partition of the time interval [0, 1], the so-called shooting grid. We further
employ a piecewise discretization of the semi-discretized control q(t) such that q(t)
is constant on the shooting intervals

Ii = (ti−1, ti), i = 1, . . . , nMS,

with values

q(t) =
∑nMS

i=1
qi−1χIi(t).

Piecewise higher order discretizations in time are also possible, as long as the
shooting intervals stay decoupled. Otherwise we loose the possibility for struc-
ture exploitation which is important for numerical efficiency reasons as we discuss
in Chapter 7. In this thesis we restrict ourselves to piecewise constant control
discretizations in time for reasons of simplicity.

We now introduce artificial initial values (sl,i,vi), i = 0, . . . , nMS, for the semi-
discretized PDE states ul(t) and the ODE states v(t), respectively. We define

fODE(l)(q(t),ul(t), v(t)) := fODE(
∑NQ

j=1
qj(t)ψj ,

∑N l
V

j=1
ulj(t)ϕj , v(t))

and assume that each local IVP

M l
uu̇

l(t) = fPDE(l)(qi−1,ul(t), v(t)), t ∈ Ii, ul(ti−1) = sl,i−1, (2.2a)

v̇(t) = fODE(l)(qi−1,ul(t), v(t)), t ∈ Ii, v(ti−1) = vi−1. (2.2b)

has a unique solution, denoted by the pair

(ul,i(t; qi−1, sl,i−1,vi−1),vl,i(t; qi−1, sl,i−1,vi−1)).

Local existence and uniqueness of (ul,i,vl,i) are guaranteed by the Picard-Lindelöf

theorem if the functions fPDE(l) and fODE(l) are Lipschitz continuous in the second

5. THE RESULTING NONLINEAR PROGRAMMING PROBLEM 13

and third argument. By means of (ul,i,vl,i) we obtain a piecewise, finite dimen-
sional parametrization of the state trajectories. To recover continuity of the entire
trajectory across the shooting grid nodes we have to impose matching conditions(

ul,i(ti; qi−1, sl,i−1,vi−1)
vl,i(ti; qi−1, sl,i−1,vi−1)

)
−
(
sl,i

vi

)
= 0, i = 1, . . . , nMS.

Remark 2.1. We introduce an additional artificial control variable qnMS on the
last shooting grid node in order to have the same structure of degrees of freedom in
each ti, i = 0, . . . , nMS. We shall always require qnMS = qnMS−1. This convention
simplifies the presentation and implementation of the structure exploitation that
we present in Chapter 7.

Remark 2.2. It is also possible and numerically advantageous to allow for
different spatial meshes on each shooting interval Ii in combination with a-posteriori
mesh refinement, see Hesse [81]. In that case the matching conditions have to be
formulated differently. This topic, however, is beyond the scope of this thesis.
We restrict ourselves to uniformly refined meshes which are equal for all shooting
intervals.

4. Discretization of path constraints

Before we can formulate the discretized optimization problem we have been
aiming at in this chapter, we need to repeat on each level l the construction of

fODE(l) from fODE for the remaining functions

Φl(sl,nMS ,vnMS) := Φ(
∑N l

V

j=1
sl,nMS

j ϕj ,v
nMS),

rb(l)(sl,nMS ,vl,nMS) := rb(
∑N l

V

j=1
sl,nMS

j ϕj ,v
l,nMS),

ri(q(t), v(t)) := rc(
∑NQ

j=1
qj(t)ψj , v(t)).

We observe that the path constraint containing ri is supposed to hold in infinitely
many points t ∈ [0, 1]. There are different possibilities to discretize such a constraint
(see Potschka [124] and Potschka et al. [125]). For the applications we treat in this
thesis it is sufficient to discretize path constraint (1.6e) on the shooting grid

ri(qi−1,vi−1) ≥ 0, i = 1, . . . , nMS.

5. The resulting Nonlinear Programming Problem

Finally we arrive at a finite dimensional optimization problems on each spatial
discretization level l

minimize
(qi,sl,i,vi)

nMS
i=0

Φl(sl,nMS ,vnMS) (2.3a)

s. t. rb(l)(sl,nMS ,vl,nMS)− (sl,0,vl,0) = 0, (2.3b)

ul,i(ti; qi−1, sl,i−1,vi−1)− sl,i = 0, i = 1, . . . , nMS, (2.3c)

vl,i(ti; qi−1, sl,i−1,vi−1)− vi = 0, i = 1, . . . , nMS, (2.3d)

qnMS − qnMS−1 = 0, (2.3e)

ri(qi−1,vi−1) ≥ 0, i = 1, . . . , nMS, (2.3f)

re(vnMS) ≥ 0. (2.3g)

Throughout we assume that all discretized functions are sufficiently smooth to
apply the numerical methods of Part 2. This includes that all functions need to be

at least twice continuously differentiable. In the case of the functions fPDE(l) and

14 2. DIRECT OPTIMIZATION: PROBLEM DISCRETIZATION

fODE(l) we might even need higher regularity to allow for efficient adaptive error
control in the numerical integrator.

For the efficient solution of NLP (2.3) we have developed an inexact Sequential
Quadratic Programming (SQP) method which we describe in Part 2. We conclude
this chapter with a summary of the numerical challenges:

Large scale. The NLPs have

nNLP(l) = (nMS + 1)
(
N l
V + nv

)
+ nMSNQ

variables and are thus considered large-scale for finer levels l. The numerical meth-
ods which we describe in Part 2 aim at the efficient treatment of NLP (2.3) for
large N l

V ≈ 105. The number of shooting intervals nMS will be between 101 and
102 which amounts to an overall problem size nNLP(l) ≈ 107. We want to remark

that this calculation does not include the values of ul,i which have to be computed
in intermediate time steps between shooting nodes. There can be between 101 and
102 time steps per interval.

Efficient derivative generation. It is inevitable for the solution of large-
scale optimization problems to use derivative-based methods. Hence we need nu-
merical methods which deliver consistent derivatives of the functions occurring in
NLP (2.3), especially in the matching conditions (2.3c) and (2.3d). In Chapter 9
we describe such a method which efficiently computes consistent derivatives of first
and second order in an automated way.

Structure exploitation. Efficient numerical methods must exploit the shoot-
ing structure of NLP (2.3). We present a condensing approach in Chapter 7 which
operates on linearizations of NLP (2.3). Furthermore we develop precondition-
ers in Chapter 5 which exploit special spectral properties of the shooting Wronksi
matrices. These spectral properties arise due to ellipticity of the operator A.

Mesh independent local convergence. One of the main results of this
thesis is that these preconditioners lead to mesh independent convergence of the
inexact SQP method, i.e., the number of iterations is asymptotically bounded by
a reasonably small constant for l → ∞. We prove this assertion for a model
problem in Chapter 5 and the numerical results that we have obtained on the
application problems in Part 3 suggest that this claim also holds for difficult real-
world problems.

Global convergence. Often there is only few a-priori information available
about the solution of real-world problems. Hence it is paramount to enforce con-
vergence of the inexact SQP method also from starting points far away from the
solution. However, it must be ensured that an early transition to fast local conver-
gence is preserved. We describe such a globalization strategy based on natural level
functions in Chapter 4.

CHAPTER 3

Elements of optimization theory

In this short chapter we consider the NLP

minimize
x∈Rn

f(x) (3.1a)

s. t. gi(x) = 0, i ∈ E , (3.1b)

gi(x) ≥ 0, i ∈ I, (3.1c)

where f : Rn → R and g : Rn → Rm are twice continuously differentiable functions
and the sets E and I form a partition of {1, . . . ,m} =: m = E ∪̇ I. In the
case of E = m, I = {}, NLP (3.1) is called Equality Constrained Optimization
Problem (ECOP).

1. Basic definitions

We follow Nocedal and Wright [119] in the presentation of the following basic
definitions.

Definition 3.1. The set

F = {x ∈ Rn | gi(x) = 0, i ∈ E , gi(x) ≥ 0, i ∈ I}
is called feasible set.

Definition 3.2. A point x ∈ F is called feasible point.

Definition 3.3. A point x∗ ∈ Rn is called global solution if x∗ ∈ F and

f(x∗) ≤ f(x) for all x ∈ F .
Definition 3.4. A point x∗ ∈ Rn is called local solution if x∗ ∈ F and if there

exists a neighborhood U ⊂ Rn of x∗ such that

f(x∗) ≤ f(x) for all x ∈ U ∩ F .
Most algorithms for NLP (3.1) do not guarantee to return a global solution,

which is virtually impossible if F is of high dimensionality as is the case in PDE
constrained optimization problems. Thus we restrict ourselves to finding only local
solutions. Research papers on global optimization can be found in Floudas and
Pardalos [55] and in the Journal of Global Optimization.

2. Necessary optimality conditions

The numerical algorithms to be described in Part 2 for approximation of a local
solution of NLP (3.1) are based on finding an approximate solution to necessary
optimality conditions. We present these conditions after the following required
definitions.

Definition 3.5. The active set at a feasible point x ∈ F is defined as

A(x) = {i ∈ m | gi(x) = 0}.

15

16 3. ELEMENTS OF OPTIMIZATION THEORY

Definition 3.6. The Linear Independence Constraint Qualification (LICQ)
holds at x ∈ F if the the active constraint gradients ∇gi(x), i ∈ A(x), are linear
independent.

Remark 3.7. There are also weaker constraint qualifications (see, e.g., Nocedal
and Wright [119]). For our purposes it is convenient to use the LICQ.

Definition 3.8. The Lagrangian function is defined by

L(z) = f(x)−
∑
i∈m

yigi(x),

where z := (x, y) ∈ Rn+m.

The following necessary optimality conditions are also called Karush-Kuhn-
Tucker (KKT) conditions [90, 97].

Theorem 3.9 (First-Order Necessary Optimality Conditions). Suppose that
x∗ ∈ Rn is a local solution of NLP (3.1) and that the LICQ holds at x∗. Then
there is a Lagrange multiplier vector y∗ ∈ Rm such that the following conditions
are satisfied at z∗ = (x∗, y∗):

∇xL(x∗, y∗) = 0, (3.2a)

gi(x
∗) = 0, i ∈ E , (3.2b)

gi(x
∗) ≥ 0, i ∈ I, (3.2c)

y∗i ≥ 0, i ∈ I, (3.2d)

y∗i gi(x
∗) = 0, i ∈ m. (3.2e)

Proof. See Nocedal and Wright [119].

Remark 3.10. The Lagrange multipliers y are also called dual variables, in
contrast to the primal variables x. We call z∗ = (x∗, y∗) primal-dual solution.

In the next definition we characterize a property which is favorable for the
determination of the active set in a numerical algorithm because small changes in
the problem data will not lead to changes in the active set at the solution.

Definition 3.11. Suppose z∗ = (x∗, y∗) is a local solution of NLP (3.1) sat-
isfying (3.2). We say that the Strict Complementarity Condition (SCC) holds if
yi > 0 for all i ∈ I ∩ A(x∗).

A useful sufficient optimality condition is based on the notion of two cones:

Definition 3.12. Let x ∈ F . The cone of linearized feasible directions is
defined by

Fl(x) = {d ∈ Rn | dT∇gi(x) = 0, i ∈ E , dT∇gi(x) ≥ 0, i ∈ A(x) ∩ I}.
Definition 3.13. Let x ∈ F . The cone of critical directions is defined by

C(x, y) = {d ∈ Fl(x) | dT∇gi(x) = 0, for all i ∈ A(x) ∩ I with yi > 0}.
The cone of critical directions plays an important role in the following sufficient

optimality condition.

Theorem 3.14. Let (x∗, y∗) satisfy the KKT conditions (3.2). If furthermore
the Second Order Sufficient Condition (SOSC)

dT∇2
xxL(x∗, y∗)d > 0 for all d ∈ C(x∗, y∗) \ {0}

holds then x∗ is a strict local solution.

Proof. See Nocedal and Wright [119].

Part 2

Numerical methods

CHAPTER 4

Inexact Sequential Quadratic Programming

In this chapter we develop a novel approach for the solution of inequality con-
strained optimization problems. We first describe inexact Newton methods in
Section 1 and investigate their local convergence in Section 2. In Section 3 we
review strategies for the globalization of convergence and explain a different ap-
proach based on generalized level functions and monotonicity tests. An example
in Section 4 illustrates the shortcomings of globalization strategies which are not
based on the so called natural level function. We review the Restrictive Monotonic-
ity Test (RMT) in Section 5 and propose a Natural Monotonicity Test (NMT) for
Newton-type methods based on a Linear Iterative Splitting Approach (LISA). This
combined approach allows for estimation of the critical constants which characterize
convergence. We finally present how these results can be extended to global inexact
SQP methods. We present efficient numerical solution techniques of the resulting
sequence of Quadratic Programming Problems (QPs) in Chapters 7 and 8.

1. Newton-type methods

We consider the problem of finding a zero of a nonlinear function F : D ⊆ RN →
RN which we assume to be continuously differentiable with Jacobian denoted by J .
This case is important for computing local solutions of an ECOP because its KKT
conditions (3.2) reduce to a system of nonlinear equations

F (z) :=

(
∇L(z)
g(x)

)
= 0,

where N = n+m and z = (x, y) are the compound primal-dual variables. We shall
discuss extensions for the inequality constrained case in Section 7.

The numerical methods of choice for the solution of F (z) = 0 are Newton-type
methods: Given an initial solution guess z0, we iterate

∆zk = −M(zk)F (zk), zk+1 = zk + αk∆zk, (4.1)

with scalars αk ∈ (0, 1] and matrices M(z) ∈ RN×N . The scalar αk is a damping
or underrelaxation parameter. We shall see in Sections 2 and 3 that the choice of
αk = 1 is necessary for fast convergence close to a solution but choices αk < 1 are
necessary to achieve convergence from initial guesses z0 which are not sufficiently
close to a solution.

Different choices of M lead to different Newton-type methods. Important
choices for M include Quasi-Newton methods (based on secant updates, see, e.g.,
Nocedal and Wright [119]), the Simplified Newton method (M(z) = J−1(z0)), and
the Newton method (M(z) = J−1(z)), provided the inverses exist. We have de-
veloped a method which uses Linear Iterative Splitting Approach (see Section 6.2)
with a Newton-Picard deflation preconditioner (described in Chapter 5) to evaluate
M .

Before we completely dive into the subject we want to clarify the naming of
methods. We use Newton-type method as a collective term to refer to methods which
can be cast in the form of equation (4.1). If the linearized subproblems are solved

19

20 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

by an iterative procedure we use the term inexact Newton method. Unfortunately
the literature is not consistent here: The often cited paper by Dembo et al. [40]
uses inexact Newton method in the sense of our Newton-type method and Newton-
iterative method in the sense of our inexact Newton method to distinguish between
solving

J̃(zk)∆zk = −F (zk) or J(zk)∆zk = −F (zk) + rk, (4.2)

where rk ∈ RN is a residual and J̃(zk) ≈ J(zk). Some authors, e.g., Morini [113],
further categorize inexact Newton-like methods which solve

J̃(zk)∆zk = −F (zk) + rk

in each step. From the point of view that equations (4.2) are merely characterizing
the backward and the forward error of ∆zk for J(zk)∆zk = −F (zk), we believe
that equations (4.2) should not be the basis for categorizing algorithms but rather
be kept in mind for the analysis of all Newton-type methods. The following lemma
shows that one can move from one interpretation to the other:

Lemma 4.1. Let ∆z∗ solve J(zk)∆z∗ = −F (zk). If ∆zk is given via

∆zk = −M(zk)F (zk) or J̃(zk)∆zk = −F (zk)

then the residual can be computed as

rk = J(zk)∆zk + F (zk).

Conversely, if rk and ∆zk are given and ‖∆zk‖2 > 0 then one possible J̃(zk) is
given by

J̃(zk) = J(zk)− rk(∆zk)T

(∆zk)T∆zk
.

Moreover, if J(zk) is invertible and (∆zk)T∆z∗ 6= 0 then

M(zk) = J̃(zk)−1 =

(
I +

(∆zk −∆z∗)(∆zk)T

(∆zk)T∆z∗

)
J(zk)−1.

Proof. The first assertion is immediate. The second assertion can be shown
via

J̃(zk)∆zk = −F (zk) + rk − rk
(∆zk)T∆zk

(∆zk)T∆zk
= −F (zk).

By virtue of the Sherman-Morrison-Woodbury formula (see, e.g., Nocedal and
Wright [119]) we obtain

M(zk) = J̃(zk)−1 = J(zk)−1 +
J(zk)−1 rk(∆zk)T

(∆zk)T∆zk
J(zk)−1

1− (∆zk)T

(∆zk)T∆zk
J(zk)−1rk

.

The last assertion then follows from J(zk)−1rk = ∆zk −∆z∗.
In this thesis we focus on computing ∆zk iteratively via the iteration

∆zki+1 = ∆zki − M̂(zk)(J(zk)∆zki + F (zk)), (4.3)

with M̂(zk) ∈ RN×N . We call iteration (4.3) Linear Iterative Splitting Approach
(LISA) to emphasize that the iteration (which we further discuss in Section 6.2) is
linear and based on a splitting

J(zk) = Ĵ(zk)−∆J(zk), M̂(zk) = Ĵ(zk)−1.

In this thesis Ĵ(zk) will be given by a Newton-Picard preconditioner (see Chap-

ter 5). For other possible choices of Ĵ(zk) in this context, which include Jacobi,
Gauß-Seidel, Successive Overrelaxation, etc., we refer the reader to Ortega and
Rheinboldt [120] and Saad [133]. There is no consistent naming convention avail-
able in the literature: We can find names like generalized linear iterations (Ortega

2. LOCAL CONVERGENCE 21

and Rheinboldt [120]) or basic linear methods (Saad [133]) for what we call LISA.
A characterization of M(zk) based on M̂(zk) for LISA in terms of a truncated
Neumann series shall be given in Lemma 4.27.

A linear iteration like (4.3) can in principle be accelerated by the use of Krylov-
space methods at the cost of making the iteration nonlinear. We abstain from
nonlinear acceleration in this thesis because the Newton-Picard preconditioners are
already powerful enough when used without acceleration (see Chapter 5).

In the following sections we review the theory for local and global convergence
of Newton-type methods.

2. Local convergence

We present a variant of the Local Contraction Theorem (see Bock [24]). Let
the set of Newton pairs be defined according to

N = {(z, z′) ∈ D ×D | z′ = z −M(z)F (z)}
and let ‖.‖ denote a norm of RN . We need two conditions on J and M :

Definition 4.2 (Lipschitz condition: ω-condition). The Jacobian J together
with the approximation M satisfy the ω-condition in D if there exists ω <∞ such
that for all t ∈ [0, 1], (z, z′) ∈ N

‖M(z′) (J(z + t(z′ − z))− J(z)) (z − z′)‖ ≤ ωt‖z − z′‖2.
Definition 4.3 (Compatibility condition: κ-condition). The approximation

M satisfies the κ-condition in D if there exists κ < 1 such that for all (z, z′) ∈ N
‖M(z′)(I− J(z)M(z))F (z)‖ ≤ κ‖z − z′‖.

Remark 4.4. If M(z) is invertible, then the κ-condition can also be written as

‖M(z′)(M−1(z)− J(z))(z − z′)‖ ≤ κ‖z − z′‖, ∀(z, z′) ∈ N .
With the constants from the previous two definitions we define

ck = κ+ (ω/2)‖∆zk‖
and for c0 < 1 the closed ball

D0 = B(z0; ‖∆z0‖/(1− c0)).

The following theorem characterizes the local convergence of a full step (i.e., αk = 1)
Newton-type method in a neighborhood of the solution. Because of its importance
we include the well-known proof.

Theorem 4.5 (Local Contraction Theorem). Let J and M satisfy the ω-κ-
conditions in D and let z0 ∈ D. If c0 < 1 and D0 ⊆ D, then zk ∈ D0 and the
sequence (zk) converges to some z∗ ∈ D0 with convergence rate

‖∆zk+1‖ ≤ ck‖∆zk‖ = κ‖∆zk‖+ (ω/2)‖∆zk‖2.
Furthermore, the a-priori estimate

‖zk+j − z∗‖ ≤ (ck)j

1− ck
‖∆zk‖ ≤ (c0)k+j

1− c0
‖∆z0‖

holds and the limit z∗ satisfies

M(z∗)F (z∗) = 0.

If additionally M(z) is continuous and nonsingular in z∗, then

F (z∗) = 0.

22 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

Proof (based on the Banach Fixed Point Theorem). The assumption
c0 < 1 and the Definition of D0 imply that z0, z1 ∈ D0. We assume that zk+1 ∈ D0.
Then

‖∆zk+1‖ = ‖M(zk+1)F (zk+1)‖
= ‖M(zk+1)

(
F (zk)− J(zk)M(zk)F (zk)

)
+M(zk+1)

(
F (zk+1)− F (zk) + J(zk)M(zk)F (zk)

)
‖

≤ κ‖∆zk‖+ ‖M(zk+1)

(∫ 1

0

dF

dt
(zk + t∆zk)dt− J(zk)∆zk

)
‖

≤ κ‖∆zk‖+

∫ 1

0

‖M(zk+1)
(
J(zk + t∆zk)− J(zk)

)
∆zk‖dt

≤ κ‖∆zk‖+ (ω/2)‖∆zk‖2 = ck‖∆zk‖.

It follows that the sequence (ck) is monotonically decreasing because

ck+1 = κ+
ω

2
‖∆zk+1‖ ≤ κ+ ck

ω

2
‖∆zk‖ = ck − (1− ck)

ω

2
‖∆zk‖ ≤ ck.

Telescopic application of the triangle inequality yields zk+2 ∈ D0 due to

‖zk+2 − z0‖ ≤
k+1∑
j=0

‖∆zj‖ ≤
k+1∑
j=0

(c0)j‖∆z0‖ ≤ ‖∆z
0‖

1− c0
.

By induction we obtain zk ∈ D0 for all k ∈ N. From

‖zk+j − zk‖ =

k+j−1∑
i=k

‖∆zi‖ ≤
j−1∑
i=0

(c0)k‖∆zi‖ ≤ (c0)k
‖∆z0‖
1− c0

follows that (zk) is a Cauchy sequence and thus converges to a fixed point z∗ ∈ D0.
For the a-priori estimate consider

‖zk+j − z∗‖ ≤
∞∑
i=0

‖∆zk+j+i‖ ≤
∞∑
i=0

(ck)i‖∆zk+j‖ ≤ (ck)j

1− ck
‖∆zk‖.

In the limit

z∗ = z∗ −M(z∗)F (z∗) ⇒ M(z∗)F (z∗) = 0

holds which shows the remaining assertions.

Remark 4.6. If F is linear we obtain ω = 0 and if furthermore M(z) is constant
the convergence theory is completely described by Theorem 4.26 to be presented.

Remark 4.7. Assume J is nonsingular throughout D0. Then the full step
Newton method with M(z) = J−1(z) converges quadratically in D0 due to κ = 0.

Remark 4.8. In accordance with Deuflhard’s algorithmic paradigm (see Deufl-
hard [43]) we assume the constants κ and ω to be the infimum of all possible candi-
dates which satisfy the inequalities in their respective definitions. These values are
in general computationally unavailable. Within the algorithms to be presented we
approximate the infima from below with computational estimates denoted by [κ]

and [ω] by sampling the inequalities over a finite subset Ñ ⊂ N which comprises
various iterates of the algorithm.

3. GLOBALIZATION OF CONVERGENCE 23

3. Globalization of convergence

Most strategies for enforcing global convergence of inexact SQP methods are
based on globalization techniques like trust region (see, e.g., Heinkenschloss and Vi-
cente [80], Heinkenschloss and Ridzal [79], Walther [156], Gould and Toint [64]) or
line search (see, e.g., Biros and Ghattas [20], Byrd et al. [32]). The explicit algorith-
mic control of Jacobian approximations is usually enforced via an adaptively chosen
termination criterion for an inner preconditioned Krylov solver for the solution of
the linearized system. In some applications, efficient preconditioners are available
which cluster the eigenvalues of the preconditioned system and thus effectively re-
duce the number of inner Krylov iterations necessary to solve the linear system
exactly (see Battermann and Heinkenschloss [9], Battermann and Sachs [10], Biros
and Ghattas [19]).

We shall show in Section 4 that both line search and trust region methods can
lead to unnecessarily damped iterates in the vicinity of the solution where fast local
convergence in the sense of the Local Contraction Theorem 4.5 is already possible.

Our aim in this section is to present the theoretical tools to understand this
undesirable effect and to introduce the idea of monotonicity tests.

We begin the discussion on the basis of the Newton method and extend it
to Newton-type methods in Section 6 and to inexact SQP methods for inequality
constrained optimization problems in Section 7.

3.1. Generalized level functions. It is well known that the local Newton
method with αk = 1 is affine invariant under linear transformations in the residual
and variable space:

Lemma 4.9. Let A,B ∈ GL(N). Then the iterates zk for the Newton method
on F (z) and the iterates z̃k for

F̃ (z̃) := AF (Bz̃)

with z̃0 := B−1z0 are connected via

z̃k = B−1zk, k ∈ N.

Proof. Let k ∈ N. We assume z̃k = B−1zk, obtain

z̃k+1 = z̃k − J̃(z̃k)−1F (z̃k) = z̃k −B−1J(Bz̃k)−1A−1AF (Bz̃k) = B−1zk+1,

and complete the proof by induction.
It is desirable to conserve at least part of the invariance for the determination

of the damping parameters αk. Our goal here are globalization strategies which are
invariant under linear transformations in the residual space with A ∈ GL(N), B =
I. This type of invariance is called affine covariance (see Deuflhard [43] for a
classification of invariants for local and global Newton-type methods). We shall
elaborate in Section 4 why affine covariance is important for problems which exhibit
high condition numbers of the Jacobian J(z∗) in the solution. This is the typical
case in PDE constrained optimization problems.

We can immediately see that the Lipschitz constant ω in Definition 4.2 and the
compatibility constant κ in Definition 4.3 are indeed independent of A. Thus they
lend themselves to be used in an affine invariant globalization strategy.

We conclude this section with a descent result for the Newton direction on
generalized level functions

T (z|A) := 1
2‖AF (z)‖22, A ∈ GL(N).

Generalized level functions extend the concept of the classical level function T (z|I)
and play an important role in affine invariant globalization strategies. The following

24 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

simple but nonetheless remarkable lemma (see, e.g., Deuflhard [43]) shows that the
Newton direction is a direction of descent for all generalized level functions.

Lemma 4.10. Let F (z) 6= 0. Then, for all A ∈ GL(N), the Newton increment
∆z = −J(z)−1F (z) satisfies

∆zT∇T (z|A) = −2T (z|A) < 0.

Proof. ∆zT∇T (z|A) = −F (z)TJ(z)−T
(
F (z)TATAJ(z)

)T
= −2T (z|A) < 0.

However, decrease T (z +α∆z|A) < T (z|A) might only be valid for α� 1. We
shall illustrate this problem with an example in Section 4. For the construction of
efficient globalization strategies, A must be chosen such that the decrease condition
is valid for a maximal range of α, as we shall discuss in Sections 5 and 6.

3.2. The Newton path. The Newton path plays a fundamental role in affine
invariant globalization strategies for the Newton method. We present two charac-
terizations of the Newton path, one geometrical and one based on a differential
equation.

For preparation let A ∈ GL(N) and define the level set associated with T (z|A)
according to

G(z|A) := {z′ ∈ D ⊆ RN | T (z′|A) ≤ T (z|A)}.
Iterative monotonicity (descent) with respect to T (z|A) can the be written in the
form

zk+1 ∈ G̊(zk|A), if G̊(zk|A) 6= {}.
To achieve affine invariance of the globalization strategy, descent must be indepen-
dent of A. Thus we define

G(z) :=
⋂

A∈GL(N)

G(z|A).

The geometric derivation of the Newton path due to Deuflhard [41, 42, 43] and
the connection to the continuous analog of the Newton method characterized by
Davidenko [37] is given by the following result.

Theorem 4.11. Let J(z) be nonsingular for all z ∈ D. For some Â ∈ GL(N)
let the path-connected component of G(z0|Â) in z0 be compact and contained in D.
Then the path-connected component of G(z0) is a topological path z : [0, 2] → RN ,
the so-called Newton path, which satisfies

F (z(α)) = (1− α)F (z0), (4.4a)

T (z(α)|A) = (1− α)2T (z0|A) ∀A ∈ GL(N), (4.4b)

dz

dα
(α) = −J(z(α))−1F (z0), (4.4c)

z(0) = z0, z(1) = z∗, (4.4d)

dz

dα

∣∣∣
α=0

= −J(z0)−1F (z0) = ∆z0. (4.4e)

Proof. See Deuflhard [43, Theorem 3.1.4].

Remark 4.12. The differential equation (4.4c) is derived from the homotopy

H(z, α) = F (z)− (1− α)F (z0) = 0, (4.5)

which gives rise to the function z(α) upon invocation of the Implicit Function
Theorem. After solving equation (4.5) for F (z0) and using the reparametrization

3. GLOBALIZATION OF CONVERGENCE 25

α(t) = 1 − exp(−t) we can recover the so-called continuous Newton method or
Davidenko differential equation (Davidenko [37])

J(z(t))ż(t) = −F (z(t)), t ∈ [0,∞), z(0) = z0. (4.6)

Theorem 4.11 justifies that the Newton increment ∆zk is a distinguished direc-
tion not only locally but also far away from a solution. It might only be too large,
hence necessitating the need for damping through αk.

In other words, the Newton path is the set of points generated from infinitesimal
Newton increments (denoted by ż(t) instead of ∆zk). Performing nonzero steps
αk∆zk in iteration (4.1) for the Newton method gives rise to a different Newton
path emanating from each zk, k ∈ N. It seems inevitable that for a proof of global
convergence based on the Newton path the iterates zk must be related to a single
Newton path, which we discuss in Section 5.

3.3. The natural level function and the Natural Monotonicity Test.
In this section we assemble results for the natural level function and the NMT.
For the presentation we follow Section 3.3 of Deuflhard [43]. At first, we restrict
the presentation to the Newton method. Extensions to Newton-type methods with
iterative methods for the linear algebra shall be discussed in Section 6. The main
purpose of this section is the presentation of the natural level functions, defined by

T ∗k (z) := T (z|J(zk)−1),

which have several attractive properties. We can already observe that descent in
T ∗k can be evaluated by testing for natural monotonicity

‖∆zk+1‖ < ‖∆zk‖,
where one potential step of the Simplified Newton method can be used to evaluate
∆zk+1 according to

J(zk)∆zk+1 = −F (zk+1).

As already mentioned, the Lipschitz constant ω plays a fundamental role in the
global convergence theory based on generalized level functions. In contrast to Bock
[24], however, Deuflhard [43] uses a different definition for the Lipschitz constant:

Definition 4.13 (ω̂-condition for the Newton method). The Jacobian J sat-
isfies the ω̂-condition in D if there exists ω̂ <∞ such that for all (z, z′) ∈ D ×D

‖J(z)−1 (J(z′)− J(z)) (z′ − z)‖ ≤ ω̂‖z′ − z‖2.
Remark 4.14. In order to compare the magnitudes of ω and ω̂ we define the

set of interpolated Newton pairs

Nt = {(z, z̃) ∈ D ×D | t ∈ [0, 1], (z, z′) ∈ N , z̃ = z + t(z′ − z), z 6= z̃}.
Then we can compute the smallest ω according to

ω = sup
(z,z′)∈N ,z 6=z′

t∈(0,1]

‖J(z′)−1 (J(z + t(z′ − z))− J(z)) t(z′ − z)‖
t2‖z′ − z‖2

= sup
(z,z̃)∈Nt

‖J(z − J(z)−1F (z))−1 (J(z̃)− J(z)) (z̃ − z)‖
‖z̃ − z‖2 ,

which coincides with Definition 4.13 of ω̂ except for the evaluation of the weighting
matrix in the Lipschitz condition at a different point. Because Nt is much smaller
than D×D, the constant ω̂ must be expected to be much larger than ω. This will
lead to smaller bounds on the step sizes αk. Furthermore, in practical computations
with a Newton-type method, only ω can be estimated efficiently from the iterates
because ω̂ is not explicitly restricted to the set of Newton pairs N .

26 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

Remark 4.15. Most proofs which rely on ω̂ can also be carried out in a similar
fashion with ω but some theoretical results cannot be stated as elegantly. As an
example, the occurrence of the condition number cond(AJ(zk)) in Theorem 4.16
relies on using ω̂. We take up the pragmatic position that ω should be used for all
practical computations but we also recede to ω̂ if we can gain theoretical insight
about qualitative convergence behavior of Newton-type methods.

The first theorem which relies on ω̂ characterizes step sizes αk which yield
optimal values for a local descent estimate of generalized level functions T (z|A) in
the Newton method.

Theorem 4.16. Let D be convex, J(z) nonsingular for all z ∈ D. Let further-
more J satisfy the ω̂-condition in D, zk ∈ D,A ∈ GL(N), and G(zk|A) ⊂ D. Let
∆zk denote the Newton direction and define the Kantorovich quantities

hk := ‖∆zk‖ω̂, hk := hk cond(AJ(zk)).

Then we obtain for α ∈ [0,min(1, 2/hk(A))] that

‖AF (zk + α∆zk)‖ ≤ tk(α|A)‖AF (zk)‖,
where

tk(α|A) := 1− α+ (1/2)α2hk(A).

The optimal choice of the damping factor in terms of this local estimate is

αk(A) := min(1, 1/hk(A)).

Proof. See Deuflhard [43, Theorem 3.12].
Theorem 4.16 lends itself to the following global convergence theorem.

Theorem 4.17. In addition to the assumptions of Theorem 4.16 let D0 denote
the path-connected component of G(z0|A) in z0 and assume that D0 ⊆ D is compact.
Then the damped Newton iteration with damping factors

αk ∈ [ε, 2αk(A)− ε]
and sufficiently small D0-dependent ε > 0 converges to a solution point z0.

Proof. See Deuflhard [43, Theorem 3.13].
Theorem 4.17 is a theoretical result for global convergence based on descent in

any Generalized level function T (z|A) with fixed A. However, the “optimal” step
size chosen according to Theorem 4.16 is reciprocally proportional to the condition
number cond(AJ(zk)). Thus a choice of A far away from J(zk)−1, e.g., A = I on
badly conditioned problems, will lead to quasi-stalling of the globalized Newton
method even within the domain of local contraction. Such a globalization strategy
is practically useless for difficult problems, even though there exists a proof of global
convergence.

This observation has led to the development of natural level functions T ∗k =
T (z|J(zk)−1). The choice of Ak = J(zk)−1 yields the optimal value of

1 ≤ cond2(AkJ(zk)) = 1,

and thus the largest value for the step size αk. As already mentioned at the begin-
ning of this section, we recall that descent in T ∗k can be evaluated by the NMT

‖∆zk+1‖ < ‖∆zk‖,
where ∆zk+1 is the increment for one potential Simplified Newton step.

Natural level functions have several outstanding properties as stated by Deufl-
hard [43, Section 3.3.2]:

4. A ROSENBROCK-TYPE EXAMPLE 27

Extremal properties: For A ∈ GL(N) the reduction factors tk(α|A) and
the theoretical optimal damping factors αk(A) satisfy

tk(α|Ak) = 1− α+ (1/2)α2hk ≤ tk(α|A),

αk(Ak) = min(1, 1/hk) ≥ αk(A).

Steepest descent property: The steepest descent direction for T (z|A) in
zk is

−∇T (zk|A) = −(AJ(zk))TAF (zk).

With A = Ak we obtain

∆zk = −∇T (zk|Ak),

which means that the damped Newton method in zk is a method of steep-
est descent for the natural level function T ∗k .

Merging property: Full steps and thus fast local convergence are guaran-
teed close to the solution

‖∆zk‖2 ≤ 1/ω̂ ⇒ hk ≤ 1 ⇒ αk(Ak) = 1.

Asymptotic distance function: For F ∈ C2(D), we verify that

T (z|J(z∗)−1) = 1
2‖z − z∗‖22 +O(‖z − z∗‖32).

Hence the NMT asymptotically estimates monotonicity in the distance to
the solution. The use of Ak can be considered a nonlinear preconditioner.

However, a straight-forward proof of global convergence similar to Theorem 4.17
is not possible because Ak is not kept fixed for all iterations. A Newton-type method
with global convergence proof based on the Newton path is outlined in Section 5.

4. A Rosenbrock-type example

In order to appreciate the significance of the natural level function let us con-
sider the following example due to Bock [24] and the discussion therein. We use
the Newton method to find a zero of the function

F (z) =

(
z1

50z2 + (z1 − 50)2/4

)
with starting guess z0 = (50, 1) and solution z∗ = (0,−12.5) (compare Figure 1).
We observe that the classical level set (contained within the dashed curve) is shaped
like a bent ellipse. The excentricity of the ellipse is due to the condition number
of J(z0), which is cond2(J(z0)) = 50. The ellipse is bent because of the mild
nonlinearity in the second component of F . A short computation yields ω ≤ 0.01.

We further observe that the direction of steepest descent for the classical level
function T (z|I) and for the natural level function T (z|J(z0)−1) describe an angle
of 87.7 degrees. Thus the Newton increment, which coincides with the direction of
steepest descent for the natural level function (see Section 3.3), is almost parallel to
the tangent on the classical level set. Consequently only heavily damped Newton
steps lead to a decrease in the classical level function. We obtain optimal descent
in T (z|I) with a stepsize of α0 ≈ 0.077, although the solution z∗ can be reached
with two iterations of a full step Newton method. This behavior illustrates how
the requirement of descent in the classical level function impedes fast convergence
within the domain of local contraction.

In real-world problems the conditioning of J(z∗) is typically a few orders of
magnitude higher than 50, leading to even narrower valleys in the classical level
function. Additionally, nonlinear and highly nonlinear problems with larger ω give
rise to higher curvature of these valleys, rendering the requirement of descent in
the classical level function completely inappropriate.

28 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

z1 coordinate

z 2
co
o
rd
in
a
te

-50 0 50
-80

-60

-40

-20

0

20

40

60

Figure 1. Rosenbrock-type example (adapted from Bock [24]):
The Newton increment (solid arrow) is almost perpendicular to the
direction of steepest descent for the classical level function T (z|I)
(dashed arrow) in the initial iterate (marked by ◦). Only heavily
damped Newton steps lead to descent in the classical level func-
tion due to the narrow and bent classical level set (contained within
the dashed curve). In contrast, the Newton step is completely con-
tained within the more circle-shaped natural level set (contained
within the solid curve) corresponding to the natural level function
T (z|J(z0)−1). Within two full Newton steps, the solution (marked
by ×) is reached.

Especially in the light of inexact Newton methods as we describe in Section 6,
the use of natural level functions T (z|J(zk)−1) is paramount: Even relatively small
perturbations of the exact Newton increment can result in the inexact Newton
increment being a direction of ascent in T (z|I).

5. The Restrictive Monotonicity Test

Bock et al. [26] have developed a damping strategy called the RMT which can
be interpreted as a step size control for integration of the Davidenko differential
equation (4.6) with the explicit Euler method. The Euler method can be extended
by a number of so called back projection steps which diminish the distance of the
iterates to the Newton path emanating from z0. The quantities involved in the
first back projection must anyway be computed to control the step size. Numerical
experience seems to suggest that more than one back projection step does not
improve convergence considerably and should thus be avoided in all known cases.

6. A NATURAL MONOTONICITY TEST FOR LISA-NEWTON METHODS 29

However, repeated back projection steps provide the theoretical benefit of making
a proof of global convergence of the RMT possible. In particular, the RMT does
not lead to iteration cycles on the notorious example by Ascher and Osborne [7] in
contrast to the NMT.

6. A Natural Monotonicity Test for LISA-Newton methods

In this section we give a detailed description of an affine covariant globalization
strategy for a Newton-type method based on iterative linear algebra. The linear
solver must supply error estimates in the variable space. This strategy is described
in Deuflhard [43, Section 3.3.4] for the linear solvers CGNE (see, e.g., Saad [133])
and GBIT (due to Deuflhard et al. [44]). We describe a LISA within the Newton-
type framework in Section 6.2. We have also developed a suitable preconditioner
for the problem class (2.3) which we present in Chapter 5.

6.1. Estimates for natural monotonicity. Let ∆zk denote the exact New-
ton step and δzk the inexact Newton step obtained from LISA. Furthermore, define
the residual

rk := J(zk)(δzk −∆zk).

We want to characterize the error of LISA by the quantity

δk := ‖δzk −∆zk‖/‖δzk‖.
The framework for global convergence is natural monotonicity subject to perturba-
tions due to the inexactness of δzk. First, we study the contraction factors

Θk(α) = ‖∆zk+1(α)‖/‖∆zk‖
in terms of the exact Newton steps ∆zk and the exact Simplified Newton steps
∆zk+1(α) defined via

J(zk)∆zk+1(α) = −F (zk + αδzk).

We emphasize the occurrence of the inexact Newton step δzk on the right hand
side.

Lemma 4.18. Let δk <
1
2 and define hδk := ω̂‖δzk‖. Then we obtain the estimate

Θk(α) ≤ 1−
(

1− δk
1− δk

)
α+

1

2
α2 hδk

1− δk
. (4.7)

The optimal damping factor is

αk = min(1, (1− 2δk)/hδk).

If we implicitly define ρ via

δk =
ρ

2
αhδk (4.8)

and assume that ρ ≤ 1 we obtain the optimal damping factor

αk = min(1, 1/
(
(1 + ρ)hδk

)
). (4.9)

Proof. See Deuflhard [43, Lemma 3.17].
This test can and should not be directly implemented because the computation

of the constant hδk and the exact Simplified Newton step ∆zk+1 is prohibitively
expensive.

An appropriate replacement for the nonrealizable Θk is the inexact Newton
path z̃(α), α ∈ [0, 1], which we can implicitly define via

F (z̃(α)) = (1− α)F (zk) + αrk.

30 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

We immediately observe that z̃(0) = zk, ˙̃z(0) = δzk, but z̃(1) 6= z∗ if rk 6= 0. We
can now define an exact Simplified Newton step on the perturbed residual via

J(zk)∆̃zk+1 = −F (zk + αδzk) + rk. (4.10)

Lemma 4.19. With the current notation and definitions we obtain the estimate

‖∆̃zk+1 − (1− α)δzk‖ ≤ 1
2α

2hδk‖δzk‖.
Proof. See Deuflhard [43, Lemma 3.18].
For computational efficiency reasons we must also refrain from solving equa-

tion (4.10) exactly. Instead we use LISA which introduces another residual error,

denoted by r̃k+1
i and defined for each inner iteration (LISA iteration) i. Then we

can define an i-dependent inexact Simplified Newton step via

J(zk)δ̃zk+1
i = (−F (zk + αδzk) + rk) + r̃k+1

i .

As in the above formula, we need to keep the dependence of δ̃zk+1
i on αk in mind but

drop it in the notation for the sake of brevity. It is now paramount for the efficiency
of the Newton-type method to balance the accuracies of the inner iterations with
the nonlinearity of the problem.

Lemma 4.19 suggests to use a so-called cross-over of initial values [43] for LISA
according to

δ̃zk+1
0 = (1− α)δzk, δzk0 = δ̃zk, (4.11)

which predict the solution to first order in α.
We substitute the nonrealizable contraction factor Θk now by

Θ̃k = ‖δ̃zk+1‖/‖δzk‖,
which can be computed efficiently. The following lemma characterizes the depen-

dence of Θ̃k on α.

Lemma 4.20. Assume that LISA for equation (4.10) with initial value cross-
ing (4.11) has been iterated until

ρ̃i =
‖∆̃zk+1 − δ̃zk+1

i ‖
‖∆̃zk+1 − δ̃zk+1

0 ‖
< 1. (4.12)

Then we obtain the estimate

‖δ̃zk+1
i − (1− α)δzk‖ ≤ 1 + ρ̃i

2
α2hδk‖δzk‖.

Proof. The proof for the LISA case is the same as for the GBIT case, see Deu-
flhard [43, Lemma 3.20].

The quantity ρ̃i, however, cannot be evaluated directly because we must not

compute ∆̃zk+1 exactly for efficiency reasons. Instead we define the computable
estimate

ρi =
‖∆̃zk+1 − δ̃zk+1

i ‖
‖δ̃zk+1

i − δ̃zk+1
0 ‖

≈ ε̃i

‖δ̃zk+1
i − δ̃zk+1

0 ‖
, (4.13)

where ε̃i is an estimate for the error of LISA, see Section 6.2.

Lemma 4.21. With the notation and assumptions of Lemma 4.20 we have

‖∆̃zk+1 − δ̃zk+1
i ‖ ≤ ρi(1 + ρ̃i)‖∆̃zk+1 − δ̃zk+1

0 ‖.
Proof. We follow Deuflhard [43, Lemma 3.20 for GBIT and below]: The

application of the triangle inequality and assumptions (4.12) and (4.11) yield

‖δ̃zk+1
i − (1− α)δzk‖ ≤ ‖∆̃zk+1 − (1− α)δzk‖+ ‖δ̃zk+1

i − ∆̃zk+1‖
= (1 + ρ̃i)‖∆̃zk+1 − (1− α)δzk‖.

6. A NATURAL MONOTONICITY TEST FOR LISA-NEWTON METHODS 31

Using definition (4.13) on the left hand side then delivers the assertion.
An immediate consequence of Lemma 4.21 is the inequality

ρ̃i ≤ ρi(1 + ρ̃i). (4.14)

Deuflhard [43] proposes to base the estimation of ρ̃i on equating the left and right
hand sides of inequality (4.14) to obtain

ρi = ρ̃i/(1 + ρ̃i), or ρ̃i = ρi/(1− ρi) for ρi < 1. (4.15)

Then accuracy control for the inner iterations can be based on the termination
condition

ρ̃i ≤ ρ̃max with ρ̃max ≤ 1
4 ,

or, following (4.15),

ρi ≤ ρmax with ρmax ≤ 1
3 .

We feel urged to remark that this is heuristic insofar as from inequality (4.14) we
can only conclude

ρi ≥ ρ̃i/(1 + ρ̃i) (and not “≤”).

The optimal damping factor αk from Lemma 4.18 depends on the unknown
hδk = ω̂‖δzk‖ which must be approximated. Using the [.] notation (see Remark 4.8)
we approximate hδk with a so-called Kantorovich estimate

[hδk] = [ω̂]‖δzk‖ ≤ hδk,
which leads via equation (4.8) to a computable estimate of the optimal step size

[αk] = min(1, (1− 2δk)/[hδk]) = min(1, 1/
(
(1 + ρ)[hδk]

)
).

Based on Lemma 4.20 we obtain an a-posteriori Kantorovich estimate

[hδk]i =
2‖δ̃zk+1

i − δ̃zk+1
0 ‖

(1 + ρ̃i)α2‖δzk‖ =
2‖δ̃zk+1

i − (1− α)δzk‖
(1 + ρ̃i)α2‖δzk‖ ≤ hδk.

Replacing ρ̃i by ρi yields a computable a-posteriori Kantorovich estimate

[hδk]i =
2(1− ρi)‖δ̃zk+1

i − δ̃zk+1
0 ‖

α2‖δzk‖ =
2(1− ρi)‖δ̃zk+1

i − (1− α)δzk‖
α2‖δzk‖ ≤ hδk. (4.16)

From the definition of [hδk] we can also derive a computable a-priori Kantorovich
estimate

[hδk+1] =
‖δzk+1‖
‖δzk‖ [hδk]∗, (4.17)

where [hδk]∗ denotes the Kantorovich estimate after the last inner iteration.
The following bit counting lemma finally supplies bounds for the exact and

inexact contraction factors.

Lemma 4.22. Let an inexact Newton method with step sizes α = [αk] be realized.
Assume that the leading binary digit of [hδk] is correct, i.e.,

0 ≤ hδk − [hδk] < σmax(1/(1 + ρ), [hδk]) for some σ < 1.

Then the exact natural contraction factor satisfies

Θk =
‖∆zk+1‖
‖∆zk‖ < 1− 1− σ(1 + 2ρ)

2 + ρ(1− σ)
α.

The inexact natural contraction factor is bounded by

Θ̃k =
δ̃zk+1

‖δzk‖ < 1−
(

1− 1

2

(1 + ρ̃)(1 + σ)

1 + ρ

)
α. (4.18)

32 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

Proof. We recall bound (4.7) in the form

Θk ≤ 1−
(

1− δk
1− δk

− αhδk
2(1− δk)

)
α. (4.19)

We now find a bound for αhδk with optimal realizable step size

α = [αk] = min(1, 1/
(
(1 + ρ)[hδk]

)
).

If α = 1 we obtain [hδk] ≤ 1/(1 + ρ) and thus

αhδk ≤ [hδk] + σmax(1/(1 + ρ), [hδk]) ≤ 1 + σ

1 + ρ
.

If α < 1 we obtain the same bound

αhδk =
hδk

(1 + ρ)[hδk]
<

[hδk] + σmax(1/(1 + ρ), [hδk])

(1 + ρ)[hδk]
=

1 + σmax(α, 1)

1 + ρ
=

1 + σ

1 + ρ
.

Therefore δk can be bounded in ρ and σ according to

δk =
ρ

2
αhδk ≤

ρ(1 + σ)

2(1 + ρ)
,

which in turn yields for the factor in parentheses in equation (4.19)

1− δk
1− δk

− αhδk
2(1− δk)

≥ 1−
ρ(1+σ)
2(1+ρ)

1− ρ(1+σ)
2(1+ρ)

−
1+σ
1+ρ

2
(

1− ρ(1+σ)
2(1+ρ)

)
= 1− ρ(1 + σ) + (1 + σ)

2(1 + ρ)− ρ(1 + σ)
=

2 + ρ(1− σ)− ρ(1 + σ)− 1− σ
2 + ρ(1− σ)

=
1− σ(1 + 2ρ)

2 + ρ(1− σ)
,

which proves the first assertion. For the inexact natural contraction factor we use
the triangle inequality in combination with Lemma 4.20 to obtain

Θ̃k = ‖δ̃zk+1‖/‖δzk‖ ≤
(

(1− α)‖δzk‖+ ‖δ̃zk+1 − (1− α)δzk‖
)
/‖δzk‖

≤ 1− α+
1 + ρ̃

2
α2hδk ≤ 1−

(
1− 1

2

(1 + ρ̃)(1 + σ)

1 + ρ

)
α,

which shows the second assertion.

Remark 4.23. With the additional assumption that σ < 1/(1 + 2ρ) we obtain
Θk < 1.

Based on Lemma 4.22 we can now formulate an inexact NMT. To this end we
substitute the bound (4.18) by the computable inexact NMT

Θ̃k =
‖δ̃zk+1‖
‖δzk‖ < 1− ρ− ρ̃

1 + ρ
α, (4.20)

by replacing σ with its upper bound σ = 1. In order to be a meaningful test we
additionally require ρ̃ < ρ. The inexact NMT (4.20) becomes computable if we
select a ρ < 1 and further impose for the relative error of the inner LISA that

δk ≤
ρ

2
α[hδk] ≤ ρ(1 + σ)

2(1 + ρ)

which is substituted by the computable condition

δk ≤
ρ

2(1 + ρ)
=: δ ≤ 1

4

for the case of α < 1.

6. A NATURAL MONOTONICITY TEST FOR LISA-NEWTON METHODS 33

If in the course of the computation the inexact NMT is not satisfied, we reduce
the step size on the basis of the a-posteriori Kantorovich estimate (4.16), denoted
by [hδk]∗, according to

αnew
k := max(min(1/

(
(1 + ρ)[hδk]∗

)
, α/2), αmaxredα)

∣∣∣
α=αold

k

.

Taking the min and max is necessary to safeguard the stepsize adaption against
too cautious (reduction by at least a factor of two) and too aggressive changes
(reduction by at most a factor of αmaxred ≈ 0.1). Especially aggressive reduction
must be safe-guarded because the computation of the Kantorovich estimate [hδk]
in equation (4.16) is inflicted with a cancellation error which is then amplified by
1/α2. Furthermore, the cancellation error gets worse for smaller α because then

δ̃zk+1 is closer and closer to (1− α)δzk as a consequence of Lemma 4.20.
For the initial choice for αk we recede to the a-priori Kantorovich estimate (4.17)

via

αk+1 = min(1, 1/
(
(1 + ρ)[hδk]

)
)

The initial step size α0 has to be supplied by the user. As a heuristic one can choose
α0 = 1, 0.01, 0.0001 for mildly nonlinear, nonlinear, and highly nonlinear problems,
respectively.

6.2. A Linear Iterative Splitting Approach. The goal of this section is
to characterize the convergence and to give error estimates for LISA. Furthermore
we address the connection of the convergence rate of LISA with the asymptotic
convergence of the LISA-Newton method. To this end let Ĵ , M̂ ∈ RN×N and
F̂ ∈ RN . We approximate ζ ∈ RN which satisfies

Ĵζ = −F̂
via the iteration

ζi+1 = ζi − M̂
(
Ĵζi + F̂

)
= (I− M̂Ĵ)ζi − M̂F̂ . (4.21)

The iteration is formally based on the splitting

Ĵ = M̂−1 − ∆̂J.

We have been using this setting in Section 6.1 with Ĵ = J(zk) and F̂ = F (zk)

or F̂ = F (zk + αkδz
k) to approximate ζ = ∆zk or ζ = ∆̃zk+1, respectively. The

matrix M̂ is a preconditioner which can be used in a truncated Neumann series to
describe the approximated inverse M(z). We address this issue later in Lemma 4.27.

6.2.1. Affine invariant convergence of LISA.

Lemma 4.24. Let A,B ∈ GL(N) yield transformations of F̂ , Ĵ , and M̂ which
satisfy

F̃ = AF̂ , J̃ = AĴB, M̃ = B−1M̂A−1.

Then LISA is affine invariant under A and B.

Proof. Assume ζ̃i = B−1ζi. Then we have

ζ̃i+1 = (I− M̃J̃)ζ̃i − M̃F̃ =
(
I−B−1M̂A−1AĴB

)
B−1ζi −B−1M̂A−1AF̂

= B−1
[(

I− M̂Ĵ
)
ζi − M̂F̂

]
= B−1ζi+1.

Induction yields the assertion.

34 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

Corollary 4.25. A full-step LISA-Newton method is affine invariant under
transformations A,B ∈ GL(N) with

F̃ (z̃) = AF̂ (Bz̃)

if the matrix function M̂(z) satisfies

M̃(z̃) = B−1M̂(Bz̃)A−1.

Proof. Lemmata 4.9 and 4.24.
The Newton-Picard preconditioners in Chapter 5 satisfy this relation at least

partially which leads to scaling invariance of the Newton-Picard LISA-Newton
method (see Chapter 5).

The convergence requirements of LISA are described by the following theorem:

Theorem 4.26. Let

κlin := σr(I− M̂Ĵ).

If κlin < 1 then M̂ and Ĵ are invertible and LISA (4.21) converges for all F̂ , ζ0 ∈
RN . Conversely, if LISA converges for all F̂ , ζ0 ∈ RN , then κlin < 1. The asymp-
totic linear convergence factor is given by κlin.

Proof. See Saad [133, Theorem 4.1].

6.2.2. Connection between linear and nonlinear convergence. We now investi-
gate the connection of the preconditioner M̂(z) with the approximated inverse M(z)
of the Local Contraction Theorem 4.5. The results have already been given by Or-
tega and Rheinboldt [120, Theorem 10.3.1]. We translate them into the framework
of the Local Contraction Theorem 4.5.

Lemma 4.27. Let ζ0 = 0 and l ≥ 1. Then the l-th iterate of LISA is given by
the truncated Neumann series for M̂Ĵ according to

ζl = −
[
l−1∑
i=0

(I− M̂Ĵ)i

]
M̂F̂ .

Proof. Let l ∈ N and assume that the assertion holds for ζl. Then we obtain

ζl+1 = (I− M̂Ĵ)ζl − M̂F̂ = −
[(

l−1∑
i=0

(I− M̂Ĵ)i+1

)
+ I

]
M̂F̂

= −
[

l∑
i=0

(I− M̂Ĵ)i

]
M̂F̂ .

For l = 1 we have ζ1 = −M̂F̂ and we complete the proof by induction.
The following lemma shows that M , defined by l LISA steps, is almost the

inverse of J .

Lemma 4.28. Let the approximated inverse be defined according to

M(z) =

[
l−1∑
i=0

(I− M̂(z)J(z))i

]
M̂(z) = M̂(z)

[
l−1∑
i=0

(I− J(z)M̂(z))i

]
.

Then it holds that

M(z)J(z) = I− (I− M̂(z)J(z))l,

J(z)M(z) = I− (I− J(z)M̂(z))l.

6. A NATURAL MONOTONICITY TEST FOR LISA-NEWTON METHODS 35

Proof. With the abbreviation A := I−M̂(z)J(z) we obtain the first assertion

M(z)J(z) =

[
l−1∑
i=0

Ai

]
(I−A) =

l−1∑
i=0

Ai −
l∑
i=1

Ai = I− (I− M̂(z)J(z))l.

The second assertion follows with the same argument.

Theorem 4.29. Let z∗ ∈ D satisfy M̂(z∗)F (z∗) = 0. For the LISA-Newton

method with continuous preconditioner M̂(z) and l steps of LISA with starting guess
ζ0 = 0, the following two assertions are equivalent:

i) The LISA at z∗ converges for all starting guesses and right hand sides,
i.e.,

σr(I− M̂(z∗)J(z∗)) ≤ κlin < 1.

ii) The matrices M̂(z∗) and J(z∗) are invertible and for every ε > 0 there ex-
ists a norm ‖.‖∗ and a neighborhood U of z∗ such that the κ-condition 4.3
for M(z) in U based on ‖.‖∗ is satisfied with

κ ≤ κllin + ε (where κlin < 1).

Proof. i) ⇒ ii): By virtue of Theorem 4.26 it holds that

σr(I− M̂(z∗)J(z∗)) ≤ κlin < 1

and that M̂(z∗) and J(z∗) are invertible. Recall that we have

I−M(z∗)J(z∗) = (I− M̂(z∗)J(z∗))l

by Lemma 4.28. Let ε > 0. Then the Hirsch Theorem delivers a norm ‖.‖∗ such
that

‖I−M(z∗)J(z∗)‖∗ ≤ σr(I− M̂(z∗)J(z∗))l + ε/2 ≤ κllin + ε/2.

By continuity of F, J, M̂ , ‖.‖∗, and the inverse we obtain the existence of a neigh-
borhood U of z∗ such that all z ∈ U satisfy

‖M(z −M(z)F (z))(I− J(z)M(z))F (z)‖∗
≤ ‖M(z −M(z)F (z))(M−1(z)− J(z))‖∗‖M(z)F (z)‖∗
≤ (κllin + ε)‖M(z)F (z)‖∗

because

M(z∗ −M(z∗)F (z∗))(M−1(z∗)− J(z∗)) = I−M(z∗)J(z∗).

Comparison with the κ-condition 4.3 yields

κ ≤ κllin + ε.

ii) ⇒ i): Let ẑ be an eigenvector to the eigenvalue λmax of I −M(z∗)J(z∗) with
largest magnitude. Without loss of generality assume that

z(t) := z∗ + tẑ ∈ U, t ∈ (0, 1].

Because M(z∗) is invertible we obtain F (z∗) = 0 and write F (z(t)) in the form

F (z(t)) = F (z∗ + tẑ)− F (z∗) = t

∫ 1

0

J(z∗ + τtẑ)ẑdτ,

which leads to

z′(t)− z(t) := −M(z(t))F (z(t)) = −tM(z(t))

∫ 1

0

J(z(τt))dτ ẑ.

36 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

From the κ-condition 4.3 we infer the inequality

t‖M(z′(t))(M(z(t))−1 − J(z(t)))M(z(t))

∫ 1

0

J(z(τt))dτ ẑ‖∗

≤ tκ‖M(z(t))

∫ 1

0

J(z(τt))dτ ẑ‖∗.

After division by t we take the limit t→ 0 and obtain

κ‖M(z∗)J(z∗)ẑ‖∗ ≥ ‖M(z∗)J(z∗)(I−M(z∗)J(z∗))ẑ‖∗ = |λmax|‖M(z∗)J(z∗)ẑ‖∗.
Thus we have

κllin + ε ≥ κ ≥ |λmax| = σr(I−M(z∗)J(z∗)) = σr(I− M̂(z∗)J(z∗))l,

independent of ‖.‖∗. Letting ε→ 0 yields assertion i).
Let us halt shortly to discuss the previous results: Far away from the solution

the use of LISA allows for adaptive control of the angle between the search direction
and the tangent on the Newton path according to Lemma 4.28. Theorem 4.29
guarantees that although a LISA-Newton method with larger number l of inner
iterations is numerically more expensive per outer iteration than using l = 1, the
numerical effort in the vicinity of the solution is asymptotically fully compensated
by less outer inexact Newton iterations.

6.2.3. Convergence estimates for LISA. To simplify the presentation we denote
the LISA iteration matrix by

A = I− M̂Ĵ.

Lemma 4.30. Assume ‖A‖ ≤ κ̂ < 1. Then the following estimates hold:

‖ζl+1 − ζl‖ ≤ κ̂l‖ζ1 − ζ0‖,

‖ζl − ζ∞‖ ≤
κ̂l

1− κ̂‖ζ1 − ζ0‖.

Proof. Let l ≥ 1. The first assertion follows from

‖ζl+1 − ζl‖ = ‖A(ζl − ζl−1)‖ ≤ ‖Al‖‖ζ1 − ζ0‖ ≤ κ̂l‖ζ1 − ζ0‖.
Thus we obtain

‖ζl − ζ∞‖ ≤
∞∑
k=l

‖ζk − ζk+1‖ ≤
∞∑
k=l

κ̂k‖ζ1 − ζ0‖ ≤
κ̂l

1− κ̂‖ζ1 − ζ0‖,

which proves the second assertion.

6.2.4. Estimation of κ̂. In order to make use of Lemma 4.30 we need a com-
putable estimate [κ̂] of κ̂. We present three approaches which are all based on
eigenvalue techniques. They differ mainly in the assumptions on the iteration ma-
trix A, in the required numerical effort, and in memory consumption.

For l = 1, 2, . . . we define

δζl = ζl − ζl−1.

We have already observed in the proof of Lemma 4.30 that

δζl+1 = Aδζl = Alδζ1.

Thus LISA behaves like a Power Method (see, e.g., Golub and van Loan [60]). The
common idea behind all three κ̂ estimators is to obtain a good estimate for σr(A)
by approximation of a few eigenvalues during LISA. Based on Theorem 4.29 we
expect σr(A) to be a good asymptotic estimator for the norm-dependent κ̂.

6. A NATURAL MONOTONICITY TEST FOR LISA-NEWTON METHODS 37

Lemma 4.31 (Rayleigh κ-estimator). Let A be diagonalizable and the eigenval-
ues µi, i = 1, . . . , N be ordered according to

|µ1| > |µ2| ≥ · · · ≥ |µN |
with a gap in modulus between the first and second eigenvalue. If furthermore δζ1
has a component in the direction of the eigenvector corresponding to µ1 we obtain

[κ̂]l :=
δζT
l δζl+1

δζT
l δζl

→ σr(A) for l→∞.

Proof. The proof coincides with the convergence proof for the Power Method.
For a discussion of the convergence we refer the reader to Wilkinson [163] and
Parlett and Poole [122]. The quotient

δζT
l δζl+1

δζT
l δζl

=
δζT
l Aδζl
δζT
l δζl

.

in the assertion is the Rayleigh quotient.
We observe that only the last iterate needs to be saved in order to evaluate the

Rayleigh κ-estimator which can thus be implemented efficiently with low memory
requirements. The possibly slow convergence of δζl towards the dominant eigen-
vector if |µ1| is close to |µ2| does not pose a problem for the Rayleigh κ-estimator
because we are only interested in the eigenvalue, not the corresponding eigenvector.
However, the Rayleigh κ-estimator is not suitable in many practical applications
because the assumption that A is diagonalizable is often violated.

We have developed the following κ-estimator for general matrices:

Lemma 4.32 (Root κ-estimator). Let σr(A) > 0 and let δζ1 have a compo-
nent in the dominant invariant subspace corresponding to the eigenvalues of A with
largest modulus. Then the quotient of roots

[κ̂]l+1 :=
‖δζl+1‖1/l
‖δζ1‖1/l

, l ≥ 1,

yields an asymptotically correct estimate of σr(A) for l→∞.

Proof. Matrix submultiplicativity yields the upper bound

‖δζl+1‖1/l
‖δζ1‖1/l

=
‖Alδζ1‖1/l
‖δζ1‖1/l

≤ ‖A
l‖1/l‖δζ1‖1/l
‖δζ1‖1/l

= ‖Al‖1/l,

which tends to σr(A) for l→∞.
We construct a lower bound in three steps: First, we write down a Jordan

decomposition

A = XΛX−1,

where X ∈ GL(N) and Λ is a block diagonal matrix consisting of m Jordan blocks
Jpj (λj) of sizes pj , j = 1, . . . ,m, corresponding to the eigenvalues λj . From the
identity

Al = XΛlX−1

we see that the columns of X corresponding to each Jordan block span a cyclic
invariant subspace of Al. There exists a constant c > 0 such that

‖z‖ ≥ c‖z‖X := c‖X−1z‖2
because all norms on a finite dimensional space are equivalent. With z := X−1δζ1
we obtain a reduction of the problem to Jordan form

‖Alδζ1‖1/l ≥ c1/l‖Λlz‖1/l2 . (4.22)

38 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

Second, we reduce further to one Jordan block via

‖Λlz‖22 =

m∑
j=1

‖Jpj (λj)z̃
j‖22 ≥ ‖Jp1

(λ1)z̃1‖22, (4.23)

where z̃j is the subvector of z corresponding to the Jordan block Jpj (λj). Without

loss of generality we choose the ordering of the Jordan blocks such that |λ1| = σr(A)
and z̃1 6= 0 due to the assumption of the lemma.

Third, we investigate one single Jordan block Jp1(λ1). To avoid unnecessary
notational clutter we drop the j = 1 indices. Let l ≥ p. Then we obtain

σr(A)−l‖Jp(λ)lz̃‖2 = |λ|−l‖

λl

(
l
1

)
λl−1 · · ·

(
l

p−1

)
λl−(p−1)

. . .
. . .

...
. . .

(
l
1

)
λl−1

λl

 z̃‖2

=

(
l

p− 1

)
‖

1

(l
p−1)

(l
1)

(l
p−1)

λ−1 · · · (l
p−1)

(l
p−1)

λ−(p−1)

. . .
. . .

...
. . . (l

1)
(l
p−1)

λ−1

1

(l
p−1)

︸ ︷︷ ︸

=:Ã(l)

z̃‖2

≥ ‖Ã(l)z̃‖2.
To estimate the quotients of binomials we assume k ≥ j and obtain(

l
j

)(
l
k

) =
k!(l − k)!

j!(l − j)! =
k(k − 1) · · · (k − j + 1)

(l − j) · · · (l − k + 1)
,

which tends to zero for l→∞. This shows that the (1, p) entry of Ã(l) dominates

for large l. Thus ‖Ã(l)z̃‖2 converges to

σr(A)1−p|z̃p| > 0.

(If |z̃p| = 0 we can use the same argument with the last non-vanishing component
of z̃.) Consequently we can find l0 ∈ N such that

σr(A)−l‖Jp(λ)lz̃‖2 ≥
1

2
σr(A)1−p|z̃p| > 0 for all l ≥ l0. (4.24)

We now combine equations (4.22), (4.23), and (4.24) and obtain for l ≥ l0 that

‖Alδζ1‖1/l
‖δζ1‖1/l

≥ σr(A)

(
cσr(A)1−p|z̃p|

2‖δζ1‖

)1/l

,

which tends to σr(A) for l→∞.
We believe it is helpful at this point to investigate two prototypical classes of

non-diagonalizable matrices to appreciate the convergence of LISA from a geomet-
rical point of view. We restrict the discussion to the case F̂ = 0 because we can
then exploit the fact that ζl+1 = Aζl as well as δζl+1 = Aδζl.

Example 3 (Jordan matrices). In the proof of Lemma 4.32 we have already
seen that the cyclic invariant subspaces of A are spanned by the columns of X
corresponding to each Jordan block. Thus the convergence in the case where A is
one Jordan block is prototypical.

6. A NATURAL MONOTONICITY TEST FOR LISA-NEWTON METHODS 39

Let thus λ ∈ [0, 1) and

A = JN (−λ) :=

−λ 1

. . .
. . .

. . . 1
−λ

 .

We immediately see that σr(A) = λ < 1 and so we obtain convergence of the

iteration for all starting values ζ0 and right hand sides F̂ by virtue of Theorem 4.26.
In particular, we now choose ζ0 = eN , the last column of the N -by-N identity
matrix. If λ = 0 we obtain

ζl =

{
eN−l for l < N,

0 for l ≥ N,
i.e., ζl circulates backwards through all basis vectors ej and then suddenly drops
to zero. Figure 2 depicts iterations with varying λ and N . We observe that the
Jordan structure leads to non-monotone transient convergence behavior in the first
iterations. Only in the diagonalizable case of N = 1 is the convergence monotone.

Figure 2 also suggests that the Root κ-estimator of Lemma 4.32 can grossly
overestimate σr(A) in a large preasymptotic range of iterations.

Example 4 (Multiple eigenvalues of largest modulus). Consider the N -by-N
permutation matrix

P =

1

. . .

1
1

 .

The eigenvalues of P are given by the complex roots of the characteristic polynomial
λN − 1. Thus they all satisfy |λi| = 1. Let X ∈ GL(N) and κ ∈ [0, 1). Then the
matrix

A := κXPX−1

has all the eigenvalues satisfying |κλi| = κ = σr(A). Again, Theorem 4.26 yields
convergence of LISA for all starting values ζ0. By virtue of PN = I we obtain

AjN = (κN)jI,
which results in monotone N -step convergence. The behavior between the first and
N -th step can be non-monotone in an arbitrary norm as displayed in Figure 3. If
we take instead the X-norm

‖z‖X := ‖X−1z‖2
we immediately obtain monotone convergence by virtue of

‖Aζ‖X ≤
(

sup
‖z‖X=1

‖Az‖X
)
‖ζ‖X =

(
sup

‖X−1z‖2=1

κ‖PX−1z‖2
)
‖ζ‖X = κ‖ζ‖X .

In practical computations, however, the construction of a Hirsch-type norm like
‖.‖X is virtually impossible and thus a κ-estimator should be norm-independent.

This leads us to a third approach for the estimation of κ̂.

Lemma 4.33 (Ritz κ-estimator). Let δζ1 have a component in the dominant
invariant subspace corresponding to the eigenvalues of A with largest modulus. De-
fine

Z(i, j) = (δζi, . . . , δζj)

40 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

λ = 0.9
E
rr
o
r

λ = 0.7

λ = 0.5

E
rr
o
r

Iteration

λ = 0.3

Iteration

0 5 10 15 200 5 10 15 20

0 5 10 15 200 5 10 15 20

10−15

10−10

10−5

100

105

10−8

10−6

10−4

10−2

100

102

10−4

10−2

100

102

10−1

100

101

102

103

Figure 2. The errors of the iterates of LISA in the Euclidean
norm ‖.‖2 with a Jordan iteration matrix given by Example 3
exhibit non-monotone transient convergence behavior. The sub-
figures depict different values for λ. The iterations are performed
with values for N = 1, . . . , 5, marked by •,5, ∗, ◦,×, respectively.

and let R ∈ Rp×p be an invertible matrix such that Z(1, p) = QR with orthonormal
Q ∈ RN×p and maximal p ≤ l. Then

[κ̂]l+1 := σr(R
−TZ(1, p)TZ(2, p+ 1)R−1)

yields the exact σr(A) after at most N iterations.

Proof. Consider the Ritz values µj , j = 1, . . . , p of A on the Krylov space

Kl(A, δζ1) := span(A0δζ1, . . . , A
lδζl).

The Ritz values solve the following variational eigenvalue problem: Find v ∈
Kl(A, δζ1) such that

wT(Av − µv) = 0, for all w ∈ Kl(A, δζ1). (4.25)

6. A NATURAL MONOTONICITY TEST FOR LISA-NEWTON METHODS 41

Iterations

E
rr
o
r

0 5 10 15 20
10−6

10−4

10−2

100

102

Figure 3. The errors of the iterates of LISA with a 5-by-5 ma-
trix A = 1

2XPX
−1 given by Example 4 exhibit non-monotone

cyclic convergence behavior in the Euclidean norm ‖.‖2 (• marks).
The convergence is monotone if measured in the X-norm ‖z‖X :=
‖X−1z‖2 (◦ marks). We chose the matrix X to be a random sym-
metric matrix with condition number 100.

Because Q spans an orthonormal basis of Kl(A, δζ1) equation (4.25) is equivalent
to the standard eigenvalue problem

QT(AQṽ − µQṽ) = QTAQṽ − µṽ = 0.

Recall that Q = Z(1, p)R−1. Thus we substitute

H := QTAQ = R−TZ(1, p)TAZ(1, p)R−1 = R−TZ(1, p)TZ(2, p+ 1)R−1.

Hence, as soon as the dimension of the Krylov space Kl(A, δζ1) ⊆ RN becomes
stationary when l grows, we obtain σr(H) = σr(A).

The Ritz κ-estimator of Lemma 4.33 yields the most reliable estimates for the
spectral radius of A. However, the large memory requirement for storing Z(1, l) is
not feasible in practice. Our experience is that a moderate bound on p still provides
useful estimates for κ̂.

Remark 4.34. In the implementation MUSCOP, which we describe in Chap-
ter 10, we explicitly compute Q and R by a QR decomposition. This extra effort is
negligible if the matrix vector products with A dominate the overall effort, which
is certainly the case in MUSCOP especially on finer spatial grids.

Remark 4.35. We further propose that one should build the matrix Q iter-
atively, e.g., via an Arnoldi process with upper Hessenberg matrix R (see, e.g.,
Golub and van Loan [60]). This raises a couple of further questions which would
have to be addressed and exceed the scope of this thesis: If an orthonormal basis

42 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

of the Krylov space is anyway available, is a different solver for the linear systems
more appropriate? GMRES by Saad and Schultz [134], e.g., is explicitly built on
an Arnoldi process but lacks the property of affine invariance in the residual space
and an error criterion in the variable space. Furthermore, a connection between
the nonlinear κ and a descriptive constant for convergence of the linear solver like
in Theorem 4.29 should be investigated.

6.2.5. Adaptive κ improvement. Based on the κ-estimators from Section 6.2.4
we can adaptively control the quality of the preconditioner M(z). The procedure is
as follows: Let κmax < 1 and an integer ipre be given. If in the i-th LISA iteration

i > ipre and [κ̂]i > κmax (4.26)

then we need to improve the quality of M(x) to decrease κ. The integer ipre is a
safeguard to discard preasymptotic estimates of κ̂ which have not come close to
the actual spectral radius of the iteration matrix yet. In our numerical experience
with the applications that we present in Part 3, κmax =

√
1/2 and ipre = 8 produce

reasonable results.
Depending on the type of preconditioner M(z) the improvement can consist of

different strategies: In an adaptive Simplified Newton Method, e.g., we keep M(z)
constant until condition (4.26) is satisfied which triggers a new evaluation of M at
the current iterate zk. In Chapter 5 we describe a two-grid preconditioner M(z)
which can be improved by refinement of the coarse grid if condition (4.26) holds.

6.3. GINKO Algorithm. We distill the algorithmic ingredients for the pre-
sented Global inexact Newton method with κ and ω monitoring (GINKO) into con-
cise form in Algorithm 1.

7. Inequality constrained optimization problems

We have developed an approach how inequality constrained optimization prob-
lems can be treated on the basis of an NMT LISA-Newton method (see Section 6).
We especially focus on the direct use of the GINKO Algorithm 1 for the solution
of NLP problem (3.1) which we have formulated in Chapter 3 as

minimize
x∈Rn

f(x)

s. t. gi(x) = 0, i ∈ E ,
gi(x) ≥ 0, i ∈ I,

with E ∪̇ I = {1, . . . ,m} =: m.
The quintessence of our approach is to formulate the stationarity and primal

feasibility condition of the KKT conditions (3.2) in a function F and ensure that
dual feasibility and complementarity hold in the solution via suitable choice of M .

We treat the case with exact derivatives in Section 7.1 and the extension to
inexact derivatives in a LISA-Newton method in Section 7.2.

7.1. SQP with exact derivatives. SQP is a collective term for certain
methods that find critical points of NLP problems. A critical point is a pair
z = (x, y) ∈ Rn+m of primal and dual variables which satisfies the KKT condi-
tions (see Theorem 3.9). SQP methods approximate critical points via sequential
solution of QPs which stem from some (approximated) linearization of the NLP
around the current iterate. Various variants exist which differ mostly in the way
how QP subproblems are formulated and which globalization strategy is used. For
an introduction see, e.g., Nocedal and Wright [119].

7. INEQUALITY CONSTRAINED OPTIMIZATION PROBLEMS 43

Algorithm 1: Global inexact Newton method with κ and ω monitoring
(GINKO)

input: z0, α0, αmin, αmaxred, κmax, ρ, ρ̄max, imax, kmax, lmax, ipre,TOL
evaluate F0 = F (z0), set δz0

0 = 0, k = 0
k if k ≥ kmax then Error: Maximum outer Newton iterations reached

set l = 0
l if l ≥ lmax then Error: Maximum iterations for κ improvement reached

set j = 0, κ = 0, δzk = not found
j if δzk 6= not found then

if αk < αmin then Error: Minimum step size reached
set zk+1 = zk + αkδz

k, δzk0 = (1− αk)δzk

evaluate Fk+1 = F (zk+1)

set i = 0
i if i ≥ imax then Error: Maximum inner iterations reached

if δzk = not found then compute residual rki = −Fk − J(zk)δzki
else compute residual rki = −Fk+1 − rk − J(zk)δzki
refine increment iterate δzki+1 = δzki + M̂(zk)rki
if i < 1 then set i = i+ 1 and goto i
estimate contraction [κ̂] ≈ κ̂
if i > ipre and [κ̂] > κmax then ameliorate M̂(zk), set l = l + 1, and goto l
if δzk = not found then

estimate error δi+1
k = [κ̂]‖δzki+1 − δzki ‖/

(
(1− [κ̂])‖δzki+1‖

)
if [(α < 1) ∧ (δi+1

k > ρ/(2(1 + ρ)))] ∨ [(α = 1) ∧ (δi+1
k > (ρ/2)[hδk])] then

set i = i+ 1 and goto i

set δzk = δzki+1 and save i, δzki , δz
k
i+1

if ‖δzk‖ < TOL then terminate with solution zk+1 = zk + δzk

compute residual rk = −Fk − J(zk)δzk

if k > 0 then
adapt a-priori Kantorovich estimate [hδk] = (‖δzk‖/‖δzk−1‖)[hδk−1]∗
adapt step size αk = max(min(1, 1/

(
(1 + ρ)[hδk]

)
), αmaxredαk−1)

set δ∗k = ‖δzki+1 − δzki ‖/‖δzki+1‖, δzk0 = δzk, j = 0 and goto j

else
recheck accuracy of δzk: δk = [κ̂]δ∗k/(1− [κ̂])
if [(α < 1) ∧ (δk > ρ/(2(1 + ρ)))] ∨ [(α = 1) ∧ (δk > (ρ/2)[hδk])] then

restore i, δzki , δz
k
i+1, set δzk = not found, i = i+ 1, and goto i

compute ρ̄i+1 = [κ̂]‖δzki+1 − δzki ‖/
(
(1− [κ̂])‖δzki+1 − (1− αk)δzk‖

)
if ρ̄i+1 > ρ̄max then set i = i+ 1 and goto i
compute a-posteriori Kantorovich estimate
[hδk]∗ = 2(1− ρ̄i+1)‖δzk+1

i+1 − δzk+1
0 ‖/(α2

k‖δzk‖)
compute monitor Θk = ‖δzk+1‖/‖δzk‖
if Θk ≥ 1− (ρ− ρ̃)/(1 + ρ) then

adapt step size αk = max(min(1, 1/
(
(1 + ρ)[hδk]∗

)
), αmaxredαk−1)

goto j

set δzk+1
0 = δzki+1, k = k + 1, and goto k

We now present our novel SQP approach. Let N = n + m and the function
F : RN → RN be defined according to

F (z) =

(
F1(z)
F2(z)

)
:=

(
∇xL(x, y)
g(x)

)
(4.27)

44 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

with Jacobian

J(z) =

(
J1(z) −J2(z)T

J2(z) 0

)
=

(
∇2
xxL(z) −∇g(x)
∇g(x)T 0

)
.

We observe that J is in general singular because g is not restricted to only active
constraints. For instance if g contains upper and lower bounds on a variable then
the corresponding two columns in ∇g(x) are linearly dependent for all z ∈ RN . We
shall see later that J is invertible on a suitably defined subspace (see Remark 4.38).

Now we generalize the use of an approximated inverse matrix M(z) in the step
computation to a nonlinear function J⊕ : RN+N → RN to compute

∆z = J⊕(z,−F̂) instead of ∆z = −M(z)F̂ ,

where we have dropped the iteration index k for clarity. We define J⊕ implicitly
in two steps. The fist step consists of computation of the primal-dual solution
z̃ = (x̃, ỹ) ∈ Rn+m of the QP

minimize
x̃∈Rn

1

2
x̃TJ1(z)x̃+

(
F̂1 − J1(z)x+ J2(z)Ty

)T

x̃ (4.28a)

s. t.
(
J2(z)x̃+

(
F̂2 − J2(z)x

))
i

= 0, i ∈ E , (4.28b)(
J2(z)x̃+

(
F̂2 − J2(z)x

))
i
≥ 0, i ∈ I, (4.28c)

which is not formulated in the space of increments ∆z = (∆x,∆y) ∈ Rn+m but
rather in the space of variables z̃ = z + ∆z. In the second step we reverse this
transformation and obtain ∆z = z̃ − z.

Lemma 4.36. Assume that QP (4.28) at z ∈ RN has a unique solution. If
ẑ = (x̂, ŷ) ∈ RN satisfies ŷi ≥ −yi for i ∈ I then

J⊕(z, J(z)ẑ) = ẑ.

Proof. Let ẑ = (x̂, ŷ) ∈ RN be given and define

F̂ = −J(z)ẑ =

(
−J1(z)x̂+ J2(z)ŷ

−J2(z)x̂

)
.

To prove the lemma we show that J⊕(z,−F̂) = ∆z = ẑ. With aforementioned

choice of F̂ QP (4.28) becomes

minimize
x̃∈Rn

1

2
x̃TJ1(z)x̃−

(
J1(z)(x̂+ x)− J2(z)T(ŷ + y)

)T
x̃

s. t. J2(z)i (x̃− x̂− x) = 0, i ∈ E ,
J2(z)i (x̃− x̂− x) ≥ 0, i ∈ I.

Its stationarity condition reads

J1(z) (x̃− x̂− x)− J2(z) (ỹ − ŷ − y) = 0.

We thus observe that z̃ = ẑ + z is stationary and primal feasible. Dual feasibility
holds due to ỹi = ŷi+yi ≥ 0 for i ∈ I by assumption. Complementarity is satisfied
by virtue of x̃− x̂− x = 0. Thus ∆z = z̃ − z = ẑ.

Lemma 4.36 reveals that under the stated assumptions J⊕ operates linear on
the second argument like a generalized inverse of J .

Theorem 4.37. Assume that αk−1 = 1 and that the solutions of QP (4.28)
at (zk−1,−F (zk−1)) and (zk,−F (zk)) share the same active set A and satisfy the
SOSC and the SCC. Then there exists a matrix Mk and a neighborhood U of F (zk)
such that

−MkF̂ = J⊕(zk,−F̂) for all F̂ ∈ U.

7. INEQUALITY CONSTRAINED OPTIMIZATION PROBLEMS 45

Proof. We first notice that the solution z̃k−1 of QP (4.28) at (zk−1,−F (zk−1))
satisfies

zk = zk−1 + ∆zk−1 = z̃k−1.

Thus we have for all inactive inequality constraints that

yki = ỹk−1
i = 0 and yk+1

i = ỹki = 0 for i ∈ m \ A
by virtue of complementarity. It follows that ∆yki = 0, i ∈ m \ A and thus we can
set all rows n + i, i ∈ m \ A of Mk to zero. Due to invariance of the active set A
we obtain for the remaining variables the linear system(

J1(zk) −J2(zk)T
A

J2(zk)A 0

)(
xk+1

yk+1
A

)
+

(
F1(zk)
F2(zk)A

)
= 0, (4.29)

whose solution depends linearly on F (zk) and defines the submatrix of Mk corre-
sponding to primal and active dual variables. We further notice that zk+1 does not
depend on F2(zk)m\A. Thus we can set all remaining columns n + i, i ∈ m \ A of

Mk to zero. This fully defines the matrix Mk.
Because the SOSC and the SCC hold, the active set A is stable under pertur-

bations (see, e.g., Robinson [130]) which yields the existence of a neighborhood U
of F (zk) such that

−MkF̂ = J⊕(zk,−F̂) for all F̂ ∈ U.
This completes the proof.

The proof of Theorem 4.37 explicitly constructs a matrix M(zk) as the lin-
earization of J⊕(zk, .) around −F (zk) which exists under the stated assumptions.
Thus we can invoke the Local Contraction Theorem 4.5 if the solution z∗ satisfies
the SOSC and the SCC.

Remark 4.38. In the case of varying active sets between two consecutive QPs
the action of J⊕(zk,−F (zk)) can be interpreted as an affine linear function consist-
ing of an offset for ∆z plus a linear term −MkF (zk), where M can be constructed
like in Theorem 4.37 with a small enough step size αk > 0 such that F (zk+1) ∈ U .
From a geometrical point of view the overall iteration takes place on nonlinear
segments given by the QP active sets with jumps between these segments. The
assumption that the reduced Jacobian given in equation (4.29) is invertible on each
segment is now as unrestrictive as the assumption of invertibility of J(zk) for the
root finding problem F (z) = 0.

Remark 4.39. Algorithmically, the evaluation of Mk is performed in the fol-
lowing way: If Mk is evaluated for the first time, a full QP (4.28) is solved. For all
further evaluations the active (or working) set is kept fixed and a purely equality
constrained QP is solved.

Remark 4.40. We are not aware of results how the jumps due to J⊕ can
be analyzed within the non-local theory developed in Section 6 for globalization
based on an NMT. We have not yet attempted an approach to fill this gap yet,
either. However, the numerical results that we present in Part 3 are encouraging
to undertake such a probably difficult endeavor.

The following theorem ensures that limit points of the SQP iteration with J⊕

are indeed KKT points or even local solutions if SOSC holds on the QP level.

Theorem 4.41. If the SQP method with J⊕ converges to z∗ then z∗ is a KKT
point of NLP (3.1). Furthermore, the conditions SOSC and SCC transfer from
QP (4.28) at z∗ to NLP (3.1) (at z∗).

46 4. INEXACT SEQUENTIAL QUADRATIC PROGRAMMING

Proof. If the SQP method converges it must hold that

0 = −M(z∗)F (z∗) = J⊕(z∗, F (z∗)),

i.e., z̃ = z∗ is a solution of

minimize
x̃∈Rn

1

2
x̃TJ1(z∗)x̃+

(
F1(z∗)− J1(z∗)x∗ + J2(z∗)Ty∗

)T
x̃

s. t. (J2(z∗)x̃+ F2(z∗)− J2(z∗)x∗)i = 0, i ∈ E ,
(J2(z∗)x̃+ F2(z∗)− J2(z∗)x∗)i ≥ 0, i ∈ I.

We immediately observe primal feasibility for F2(z∗) = g(z∗). From QP stationarity
we obtain NLP stationarity by virtue of

0 = J1(z∗)x̃+ F1(z∗)− J1(z∗)x∗ + J2(z∗)Ty∗ − J2(z∗)Tỹ = F1(z∗) = ∇xL(z∗).

Dual feasibility and complementarity for the NLP as well as SOSC and SCC follow
directly from the QP.

7.2. Inexact SQP. The goal of this section is to present how the application
of an approximation of J⊕ within a LISA-Newton method (see Section 6) can be
evaluated. Let us assume that we have an approximation of the Jacobian matrix
(e.g., via a Newton-Picard approximation described in Chapter 5) given by

J(zk) =

(
∇2
xxL(zk) −∇g(xk)
∇g(xk)T 0

)
≈
(
Bk −(Ck)T

Ck 0

)
=: Ĵk.

We perform the construction of a preconditioner M̂(zk) for LISA based on Ĵk now
analogously to the construction of J⊕(zk, .) from J(zk). The key point is that the
transformation now requires the sum of the current Newton and the current LISA
iterate zk + δzkl . Dropping the index k we solve the QP

minimize
x̃∈Rn

1

2
x̃TBx̃+

(
F̂1 − C(x+ δxl) + CT(y + δyl)

)T

x̃ (4.30a)

s. t.
(
Cx̃+

(
F̂2 − C(x+ δxl)

))
i

= 0, i ∈ E , (4.30b)(
Cx̃+

(
F̂2 − C(x+ δxl)

))
i
≥ 0, i ∈ I, (4.30c)

and reverse the transformation afterwards via ∆zk = z̃k − zk − δzkl .
Remark 4.39 about the evaluation of Mk is also valid in the context of inexact

SQP for M̂k.

CHAPTER 5

Newton-Picard preconditioners

For completeness we give the following excerpt from the preprint Potschka et al.
[128] here with adaptions in the variable names to fit the presentation in this thesis.

We present preconditioners for the iterative solution of symmetric indefinite
linear systems

Ĵz =

(
Ĵ1 ĴT

2

Ĵ2 0

)(
x
y

)
= −

(
F̂1

F̂2

)
=: −F̂ ,

with Ĵ ∈ R(n+m)×(n+m), z, F̂ ∈ Rn+m derived from equation (4.29) within the
framework of an SQP method (see Chapter 4). Note that we have swapped the

sign of y to achieve symmtery of Ĵ . It is well known (see, e.g., Nocedal and Wright

[119]) that Ĵ is invertible if Ĵ2 has full rank and Ĵ1 is positive definite on the

nullspace of Ĵ1. For weaker sufficient conditions for invertibility of Ĵ and a survey
of solution techniques we refer the reader to Benzi et al. [16].

We base our investigations on the following linear-quadratic model problem:
Let Ω ⊂ Rd be a bounded open domain with Lipschitz boundary ∂Ω and let Σ :=
(0, 1) × ∂Ω. We seek controls q ∈ L2(Σ) and corresponding states u ∈ W (0, 1)
which solve the time-periodic PDE OCP

minimize
q∈L2(Σ),u∈W (0,1)

J(u(1; .), q) :=
1

2

∫
Ω

(u(1; .)− û)2 +
γ

2

∫∫
Σ

q2 (5.1a)

s. t. ∂tu = D∆u, in (0, 1)× Ω, (5.1b)

∂νu+ αu = βq, in (0, 1)× ∂Ω, (5.1c)

u(0; .) = u(1; .), in Ω, (5.1d)

with û ∈ L2(Ω), α, β ∈ L∞(∂Ω) non-negative a.e., ‖α‖L∞(∂Ω) > 0, and D, γ > 0.
This problem is an extension of the parabolic optimal control problem presented,
e.g., in the textbook of Tröltzsch [150].

Our focus here lies on splitting approaches

Ĵ = J̃ −∆J

with J̃ ,∆J ∈ R(n1+n2)×(n1+n2) and J̃ invertible. We employ these splittings in a
LISA (see Chapter 4) which has the form

zk+1 = zk − J̃−1(Ĵzk + F̂) = J̃−1∆Jzk − J̃−1F̂ . (5.2)

As a guiding principle, the iterations should not be forced to lie on the subset of
feasible (possibly non-optimal) points, which satisfy Ĵ2x

k = −F̂2 for all k, i.e., the
PDE constraints are allowed to be violated in iterates away from the optimal solu-
tion. Instead, feasibility and optimality are supposed to hold only at the solution.
The presence or absence of this property defines the terms sequential/segregated
and simultaneous/all-at-once/coupled method, whereby a method with only feasi-
ble iterates is called sequential or segregated. The preconditioners we present work
on formulations of the problem which lead to simultaneous iterations. From a com-
putational point of view, simultaneous methods are more attractive because it is
not necessary to find an exact solution of Ĵ2x

k = −F̂2 in every iteration.

47

48 5. NEWTON-PICARD PRECONDITIONERS

This chapter is organized as follows: In Section 1 we give a short review of the
Newton-Picard related literature. We discuss the discretization of problem (5.1)
afterwards in Section 2. In Section 3 we present the Newton-Picard preconditioners
in the framework of LISA (see Chapter 4). For the discretized problem we discuss
the cases of classical Newton-Picard projective approximation and of a coarse-
grid approach for the constraint Jacobians. The importance of the choice of the
scalar product for the projection is highlighted. We establish a mesh independent
convergence result for LISA based on classical Newton-Picard splitting. In this
section we also outline the fast solution of the subproblems, present pseudocode,
and analyze the computational complexity. Moreover we discuss extensions to
nonlinear problems and the Multiple Shooting case in Section 4.

In Chapter 11 of this thesis we present numerical results for different sets
of problem and discretization parameters for the Newton-Picard preconditioners.
Moreover we compare the indefinite Newton-Picard preconditioners with a symmet-
ric positive definite Schur complement preconditioner in a Krylov method setting.

1. The Newton-Picard method for finding periodic steady states

In the context of bifurcation analysis of large nonlinear systems Jarausch and
Mackens [88] have developed the so-called Condensed Newton with Supported Pi-
card approach to solve fixed point equations which have a few unstable or slowly
converging modes. Their presentation is restricted to systems with symmetric Jaco-
bian. Shroff and Keller [145] extended the approach to the unsymmetric case with
the Recursive Projection Method by using more sophisticated numerical methods
for the identification of the slow eigenspace. There are two articles in volume 19(4)
of the SIAM Journal on Scientific Computing which are both based on [88, 145]:
Lust et al. [108] successfully applied the Newton-Picard method for computation
and bifurcation analysis of time-periodic solutions of PDEs and Burrage et al. [31]
develop the notion of deflation preconditioners. To our knowledge the first paper
on deflation techniques is by Nicolaides [117] who explicitly introduces deflation as
a modification to the conjugate gradient method and not as a preconditioner in
order to improve convergence.

2. Discretization of the model problem

A full space-time discretization of problem (5.1) would lead to prohibitively
large memory requirements for d = 3. Thus, we employ a shooting approach which
reduces the degrees of freedom for the state variables to only the initial value. Let
us recapitulate the discretization steps outlined in Chapter 2 and apply them to the
model problem (5.1). We discretize the controls in space with nq form functions ψ̃l
whose amplitude can be controlled in time, i.e.,

q(t, x) =
∑nq

l=1
ql(t)ψ̃l(x), ql ∈ L2(0, 1), ψ̃l ∈ L2(∂Ω).

In weak variational form a solution u ∈ W (0, 1) of PDE (5.1b) satisfies for all
ϕ ∈ H1(Ω) and almost all t ∈ [0, 1] the equation∫

Ω

ut(t)ϕ = −D
∫

Ω

∇u(t)T∇ϕ+D

∫
∂Ω

∂νu(t)ϕ (5.3a)

= −D
∫

Ω

∇u(t)T∇ϕ−D
∫
∂Ω

αu(t)ϕ+D

∫
∂Ω

βq(t)ϕ. (5.3b)

We continue with discretizing the state u in space using a Galerkin approach. Let
ϕi ∈ H1(Ω), i = 1, . . . , nu, denote linear independent functions, e.g., FEM hat func-
tions on a mesh with nu vertices, and define the matrices S,Q,M ∈ Rnu×nu , U ∈

2. DISCRETIZATION OF THE MODEL PROBLEM 49

Rnu×nqm and the vector û ∈ Rnu according to

Sij = D

∫
Ω

∇ϕT
i ∇ϕj , Qij = D

∫
∂Ω

αϕiϕj , Uil = D

∫
∂Ω

βϕiψ̃l,

Mij =

∫
Ω

ϕiϕj , ûi =

∫
Ω

ûϕi.

It is well known that the mass matrix M is symmetric positive definite. We can
now discretize equation (5.3) with MOL: The matrix of the discretized spatial dif-
ferential operator is L = −S−Q which leads to the Ordinary Differential Equation
(ODE)

M u̇(t) = Lu(t) + U(q1(t) · · · qnq (t))T, (5.4)

where u(t) =
∑nu

i=1 ui(t)ϕi. Then, we discretize each ql(t) using piecewise constant
functions on m intervals. We uniquely decompose i = itm+iq with it = b(i−1)/mc
and iq = i− itm. Thus, 0 ≤ it < m, 1 ≤ iq ≤ nq and we can define

ψi(t, x) = χ[it/m,(it+1)/m](t)ψ̃iq (x) ∈ L2(Σ)

as a basis for the discrete control space. Here χ denotes the characteristic function
of the subscript interval. We can then define the symmetric positive definite control
mass matrix N ∈ Rnqm×nqm according to

Nij =

∫∫
Σ

ψiψj .

Moreover we denote the discretized controls by q ∈ Rnqm.
It is well known that the end state u(1) depends linearly on u(0) and q due

to linearity of ODE (5.4). Thus, there exist unique matrices Gu ∈ Rnu×nu and
Gq ∈ Rnu×nqm such that

u(1) = Guu(0) +Gqq.

Now we construct formulas for Gu and Gq. We first consider solutions of ODE (5.4)
for initial value u(0) = u0 and controls q̃ ∈ Rnq which are constant in time. We
can easily verify that the solution is given by the expression

u(t) = exp(tM−1L)u0 +
(
exp(tM−1L)− Inu

)
L−1U q̃, (5.5)

where Inu
denotes the nu-by-nu identity matrix. If we consider the special case

q̃ = 0 we immediately observe that matrix Gu is given by the matrix exponential

Gu = exp(M−1L). (5.6)

Because ODE (5.4) is autonomous the matrix Gq can be composed piece by piece
on the control time grid based on the matrices ∂Gu := exp((1/m)M−1L) and
∂Gq := (∂Gu − Inu

)L−1U for a single interval. We obtain

Gq =
(
∂Gm−1

u ∂Gq · · · ∂G1
u∂Gq ∂G0

u∂Gq
)
. (5.7)

We now investigate spectral properties of Gu. We start by showing that the
unsymmetric matrix M−1L has a basis of M -orthonormal real eigenvectors and
only real eigenvalues.

Lemma 5.1. There exists an invertible matrix Z ∈ Rnu×nu and a diagonal
matrix Ẽ ∈ Rnu×nu such that

ZTMZ = Inu and M−1LZ = ZẼ.

Proof. The matrix L = −S−Q is symmetric as a sum of symmetric Galerkin
matrices. We decompose

M = RT
MRM

50 5. NEWTON-PICARD PRECONDITIONERS

with invertible RM ∈ Rnu×nu , e.g., by Cholesky decomposition, and use matrix
RM for the equivalence transformation

RM (M−1L)R−1
M = R−T

M LR−1
M

of M−1L to a symmetric matrix. Thus, there exists an invertible matrix Z̃ ∈
Rnu×nu of eigenvectors of R−T

M LR−1
M satisfying Z̃TZ̃ = Inu

and a diagonal real

matrix of eigenvalues Ẽ ∈ Rnu×nu such that

R−T
M LR−1

M Z̃ = Z̃Ẽ (or, equivalently, R−1
M R−T

M LR−1
M Z̃ = R−1

M Z̃Ẽ).

We define Z := R−1
M Z̃ and immediately obtain the assertions.

Now we prove a negative upper bound on the eigenvalues of M−1L.

Lemma 5.2. There exists a grid-independent scalar ¯̃µ < 0 such that all eigen-
values µ̃ of M−1L satisfy µ̃ ≤ ¯̃µ.

Proof. Let (v, µ̃) ∈ Rnu × R,v 6= 0, be an eigenpair of M−1L

M−1Lv = µ̃v,

and define v =
∑nu

i=1 viϕi ∈ H1(Ω). We now follow a step in a proof of Tröltzsch
[150, Satz 2.6]: By the assumption of ‖α‖L∞(∂Ω) > 0 there exists a measurable
subset Γ ⊂ ∂Ω with positive measure and a scalar δ > 0 with α ≥ δ a.e. on Γ. We
obtain

µ̃‖v‖2L2(Ω) = µ̃vTMv = vTLv

= −D
(∫

Ω

∇vT∇v +

∫
∂Ω

αv2

)
≤ −D

(∫
Ω

‖∇v‖22 + δ

∫
Γ

v2

)
.

Then we apply the generalized Friedrichs inequality [150, Lemma 2.5] which yields
a Γ-dependent constant c(Γ) > 0 such that

µ̃‖v‖2L2(Ω) ≤ −D
(∫

Ω

‖∇v‖22 + δ

∫
Γ

v2

)
≤ Dmin(1, δ)

c(Γ)

(
−‖v‖2H1(Ω)

)
.

With −‖v‖2H1(Ω) ≤ −‖v‖2L2(Ω) we obtain the assertion for ¯̃µ := −Dmin(1, δ)/c(Γ) <

0.

Lemma 5.3. Let µ ∈ C be an eigenvalue of Gu. Then µ is real and there exists
a grid-independent scalar µ̄ < 1 such that 0 < µ ≤ µ̄.

Proof. The matrix Gu has the same eigenvectors as the matrix M−1L. Thus,
the assertion is a direct consequence of equation (5.6) and Lemma 5.2 with µ̄ =
exp(¯̃µ) ∈ (0, 1).

We now formulate the finite dimensional linear-quadratic optimization problem

minimize
u0∈Rnu ,q∈Rnqm

1

2
uT

0 Mu0 − ûTu0 + γqTNq (5.8a)

s. t. M(Gu − Inu
)u0 +MGqq = 0. (5.8b)

Lemma 5.4. Problem (5.8) has a unique solution.

Proof. Due to convexity of problem (5.8), necessary optimality conditions
are also sufficient, i.e., if there exists a multiplier vector λ ∈ Rnu such that for
u0 ∈ Rnu , q ∈ Rnqm it holds that M 0 (GT

u − Inu
)M

0 γN GT
qM

M(Gu − Inu
) MGq 0

u0

q
λ

 =

û0
0

 (5.9)

3. NEWTON-PICARD FOR OPTIMAL CONTROL PROBLEMS 51

then (u0, q,λ) is a primal-dual optimal solution and, conversely, all optimal solu-
tions must satisfy condition (5.9). The constraint Jacobian

M
(
Gu − Inu Gq

)
has full rank due to Gu − Inu

being invertible by virtue of Lemma 5.3. The Hes-
sian blocks M and γN are positive definite. Thus, the symmetric indefinite linear
system (5.9) is non-singular and has a unique solution.

3. Newton-Picard for optimal control problems

In this section we investigate how the Newton-Picard method for the forward
problem (i.e., solving for a periodic state for given controls) can be exploited in a
simultaneous optimization approach.

3.1. General considerations. For large values of nu it is prohibitively ex-
pensive to explicitly form the matrix in equation (5.9) because the matrix Gu is a
large, dense nu-by-nu matrix. Thus, we cannot rely on direct linear algebra for the
solution of equation (5.9). However, we observe that matrix-vector products are
relatively economical to evaluate: The cost of an evaluation of Guv is the cost of
a numerical integration of ODE (5.4) with initial value v and controls q = 0. The
evaluation of GT

uv can be computed using the identities

MGu = M exp(M−1L) = exp(LM−1)M = GT
uM ⇔ GT

uv = MGuM
−1v.
(5.10)

Matrix vector products with Gq and GT
q can then be evaluated based on equa-

tion (5.7).
The main difficulty here are the large and dense Gu blocks and thus approaches

based on the paper of Bramble and Pasciak [29] and also constraint preconditioners
(e.g., Gould et al. [66]), which do not approximate the blocks containing Gu but
only the M and γN blocks, do not attack the main difficulty of the problem and
will thus be not considered further in this thesis.

3.2. Simultaneous Newton-Picard iteration. LISA for the linear system
(5.9) yields a simultaneous optimization method because the iterations will in gen-
eral not satisfy the periodicity constraint before convergence. The type of precon-
ditioners we study here is of the following form: Let G̃u denote an approximation
of Gu and regard the exact and approximated matrices

Ĵ :=

 M 0 (GT
u − Inu)M

0 γN GT
qM

M(Gu − Inu) MGq 0

 ,

J̃ :=

 M 0 (G̃T
u − Inu

)M
0 γN GT

qM

M(G̃u − Inu) MGq 0

 .

We investigate two choices for G̃u: The first is based on the classical Newton-
Picard projective approximation [108] for the forward problem, the second is based
on a two-grid idea.

3.2.1. Classical Newton-Picard projective approximation. The principle of the
Newton-Picard approximation is based on observations about the spectrum of the
monodromy matrix Gu (see Figure 1 in Chapter 11 on page 110). The eigenvalues
µi cluster around zero and there are only few eigenvalues that are close to the unit
circle. The cluster is a direct consequence of the dissipativity of the underlying
heat equation, i.e., high-frequency components in space get damped out rapidly.

52 5. NEWTON-PICARD PRECONDITIONERS

Thus, the zero matrix is a good approximation of Gu in directions of eigenvec-
tors corresponding to small eigenvalues. The rationale behind a Newton-Picard
approximation consists of approximating Gu exactly on the low-dimensional space
of eigenvectors corresponding to large eigenvalues. To this end, let the columns
of the orthonormal matrix V ∈ Rnu×p be the p eigenvectors of Gu with largest
eigenvalues µi such that

GuV = V E, E ∈ Rp×p diagonal.

Now, we approximate the matrix Gu with

G̃u = GuΠ,

where Π is a projector onto the dominant subspace of Gu. Lust et al. [108] proposed
to use

Π = V V T, (5.11)

which is an orthogonal projector in the Euclidean sense. This works well for the
solution of the pure forward problem but in a simultaneous optimization approach,
this choice may lead to undesirable loss of contraction, as shown in Chapter 11.
We propose to use a projector that instead takes the scalar product of the infinite
dimensional space into account. The projector maps a vector w ∈ Rnu to the
closest point V v,v ∈ Rp, of the dominant subspace in an L2 sense, by solving the
minimization problem

minimize
v∈Rp

1

2
‖w − v‖2L2(Ω) =

1

2
vTV TMV v − vTV TMw +

1

2
wTMw,

where w =
∑nu

i=1wiϕi and v =
∑nu

i=1 (V v)i ϕi. The projector is therefore given by

Π = VM−1
p V TM, where Mp = V TMV ∈ Rp×p. (5.12)

Thus, we approximate Gu with

G̃u = V EM−1
p V TM.

To compute the inverse of G̃u − Inu
we have the following lemma which we invoke

with P = V and R = M−1
p V TM :

Lemma 5.5. Let G̃u ∈ Rnu×nu , P ∈ Rnu×p, R ∈ Rp×nu , and E ∈ Rp×p satisfy

G̃u = PER and RP = Ip.

If E − Ip is invertible then the inverse of G̃u − Inu is given by

(G̃u − Inu
)−1 = PXR− Inu

, where X = (E − Ip)−1 + Ip.

Proof. Based on the Sherman-Morrison-Woodbury formula (see, e.g., Nocedal
and Wright [119]) we obtain

(G̃u − Inu)−1 = (−Inu + PER)−1 = −Inu − P (Ip − ERP)−1ER

= P (E − Ip)−1ER− Inu
.

The result follows from the identity (E− Ip)−1(Ip+E− Ip) = (E− Ip)−1 + Ip = X.

Computation of the inverse thus only needs the inversion of the small p-by-p
matrices E − Ip and Mp. For inversion of G̃T

u − Inu
we obtain similar to equa-

tion (5.10)

MG̃uM
−1 = MGuVM

−1
p V T = GT

uMVM−1
p V T = (GuΠ)T = G̃T

u

and consequently

(G̃T
u − Inu)−1 =

(
M(G̃u − Inu)M−1

)−1

= M(G̃u − Inu)−1M−1. (5.13)

3. NEWTON-PICARD FOR OPTIMAL CONTROL PROBLEMS 53

A dominant subspace basis V for the p-dimensional dominant eigenspace of
M−1L and thus Gu can, e.g., be computed via an Implicitly Restarted Arnoldi
Method (IRAM), see Lehoucq and Sorensen [101], for the (generalized) eigenvalue
problem

M−1LV − V Ẽ = 0 ⇔ LV −MV Ẽ = 0.

On the basis of equation (5.6) we obtain E := exp(Ẽ).

3.2.2. Two-grid Newton-Picard. This variant is based on the observation that
for the heat equation the slow-decaying modes are the low-frequency modes and
the fast-decaying modes are the high-frequency modes. Low-frequency modes can
be approximated well on coarse grids. Thus we propose a method with two grids in
which G̃u is calculated only on a coarse grid, while the remaining computations are
performed on the fine grid. Let P and R denote the prolongation and restriction
matrices between the two grids and let superscripts c and f denote coarse and fine
grid, respectively. Then, Gf

u is approximated by

G̃f
u = PER, with E := Gc

u,

i.e., we first project from the fine grid to the coarse grid, evaluate the exact Gc
u

on the coarse grid, and prolongate the result back to the fine grid. Note that in
contrast to classical Newton-Picard, E is now not a diagonal matrix.

We use conforming grids, i.e., the Finite Element basis on the coarse grid can
be represented exactly in the basis on the fine grid. Thus, the prolongation P can

be obtained by interpolation. Let uf ∈ Rnf
u ,uc ∈ Rnc

u and define

uf =
∑nf

u

i=1
uf
iϕ

f
i ∈ H1(Ω), uc =

∑nc
u

i=1
uc
iϕ

c
i ∈ H1(Ω).

We define the restriction R in an L2 sense, such that given uf on the fine grid we
look for the projector R : uf 7→ uc such that

(ϕc
i , u

c)L2(Ω) =
(
ϕc
i , u

f
)
L2(Ω)

for all i = 1, . . . , nc
u,

or, equivalently,

M cuc = PTM fuf.

We then obtain

R = (M c)
−1
PTM f.

Due to P being an exact injection, it follows that PTM fP = M c and thusRP = Inc
u
.

Lemma 5.5 then delivers the inverse of G̃f
u − Inf

u
in the form

(G̃f
u − Inf

u
)−1 = P

[
(Gc

u − Inc
u
)−1 + Inc

u

]
R− Inf

u
,

which can be computed by only an inversion of a nc
u-by-nc

u matrix from the coarse
grid and the inversion of the coarse grid mass matrix in the restriction operator.
We obtain an expression for the inverse of the transpose similar to equation (5.13)
via (

(G̃f
u)T − Inf

u

)−1

= M
(
G̃f
u − Inf

u

)−1

M−1.

3.3. Convergence for classical Newton-Picard. In this section we show
that for problem (5.1), LISA (5.2) with classical Newton-Picard preconditioning
converges with a grid-independent contraction rate.

For the proof of Theorem 5.7 we need the following lemma. The lemma asserts
the existence of a variable transformation which transforms the Hessian blocks to
identity, and furthermore reveals the structure of the matrices on the subspaces of
fast and slow modes.

54 5. NEWTON-PICARD PRECONDITIONERS

Lemma 5.6. Let p ≤ nu, EV = diag(µ1, . . . , µp), EW = diag(µp+1, . . . , µnu
).

Then, there exist matrices V ∈ Rnu×p and W ∈ Rnu×(nu−p) such that with Z =(
V W

)
the following conditions hold:

(i) Z is a basis of eigenvectors of Gu, i.e., GuZ = (V EV WEW).
(ii) Z is M -orthonormal, i.e., ZTMZ = Inu

.
(iii) There exists a non-singular matrix T such that

TTJ̃T =

Inu−p 0 0 0 −Inu−p

0 Ip 0 EV − Ip 0
0 0 γN GT

qMV GT
qMW

0 EV − Ip V TMGq 0 0
−Inu−p 0 WTMGq 0 0

 ,

TT∆JT =

0 0 0 0 −EW
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−EW 0 0 0 0

 .

Proof. The existence of the matrices V and W , as well as conditions (i) and
(ii) follow from Lemma 5.1. To show (iii), we choose

T =

W V 0 0 0
0 0 Inqm 0 0
0 0 0 V W

 .

Due to M -orthonormality (ii) of V , the Newton-Picard projector from equation
(5.12) simplifies to Π = V V TM . Using V TMW = 0, V TMV = Ip, and GT

uMV =
MGuV = MVEV we obtain

TT∆JT = TT

 0 0
(
ΠT − Inu

)
GT
uM

0 0 0
MGu (Π− Inu

) 0 0

W V 0 0 0
0 0 Inqm 0 0
0 0 0 V W

=

WT 0 0
V T 0 0
0 Inqm 0
0 0 V T

0 0 WT

 0 0 0 0 −MGuW

0 0 0 0 0
−MGuW 0 0 0 0

 =

0 0 0 0 −EW
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−EW 0 0 0 0

 .

Similarly, we obtain for J̃ the form

TTJ̃T

= TT

 M 0 (MV V TGT
u − Inu)M

0 γN GT
qM

M(GuV V
TM − Inu) MGq 0

W V 0 0 0
0 0 Inqm 0 0
0 0 0 V W

=

WT 0 0
V T 0 0
0 Inqm 0
0 0 V T

0 0 WT

 MW MV 0 MV (EV − Ip) −MW

0 0 γN GT
qMV GT

qMW
−MW MV (EV − Ip) MGq 0 0

=

Inu−p 0 0 0 −Inu−p

0 Ip 0 EV − Ip 0
0 0 γN GT

qMV GT
qMW

0 EV − Ip V TMGq 0 0
−Inu−p 0 WTMGq 0 0

 .

3. NEWTON-PICARD FOR OPTIMAL CONTROL PROBLEMS 55

We now state the central theorem of this section.

Theorem 5.7. Let µi, i = 1, . . . , nu, denote the eigenvalues of Gu ordered in
descending modulus, let 1 < p ≤ nu, and assume µp > µp+1. We further assume
the existence of a linear operator Ḡu : L2(Σ)→ L2(Ω) which is continuous, i.e.,

‖Ḡqq‖L2(Ω) ≤ C1‖q‖L2(Σ) for all q ∈ L2(Σ), (5.14)

and satisfies the discretization error condition

‖
∑nu

j=1
(Gqq)jϕj − Ḡqq‖L2(Ω) ≤ C2‖q‖L2(Σ) for all q ∈ Rnqm, q =

∑nqm

i=1
qiψi,

(5.15)
with constants C1, C2 ∈ R. If

γ > (C1 + C2)2/(1− µ1)2

then LISA (5.2) with Newton-Picard preconditioning applied to problem (5.1) con-
verges with a contraction rate of at most µp+1/µ1.

Proof. Due to Theorem 4.26 the contraction rate is given by the spectral
radius σr(J̃

−1∆J) = σr(T
−1J̃−1T−TTT∆JT). We obtain the eigenvalue problem(
TTJ̃T

)−1

TT∆JTv − σv = 0,

which is equivalent to solving the generalized eigenvalue problem

−TT∆JTv + σTTJ̃Tv = 0,

with the matrices given by Lemma 5.6. We prove the theorem by contradiction.
Assume that there is a complex eigenpair (v, σ) such that |σ| ≥ µp+1/µ1 > µp+1.
Division by σ yields the system

(1/σ)EWv5 + v1 − v5 = 0, (5.16a)

v2 + (EV − Ip)v4 = 0, (5.16b)

γNv3 +GT
qM (V v4 +Wv5) = 0, (5.16c)

(EV − Ip)v2 + V TMGqv3 = 0, (5.16d)

(1/σ)EWv1 − v1 +WTMGqv3 = 0, (5.16e)

where v was divided into five parts v1, . . . ,v5 corresponding to the blocks of the
system. Because |σ| > µp+1 we obtain invertibility of Inu−p − (1/σ)EW and thus
we can eliminate

v5 = (Inu−p − (1/σ)EW)
−1
v1, v4 = (Ip − EV)

−1
v2, (5.17a)

v2 = (Ip − EV)
−1
V TMGqv3, v1 = (Inu−p − (1/σ)EW)

−1
V TMGqv3. (5.17b)

Substituting these back in equation (5.16c) yields(
γN +GT

qMV (Ip − EV)
−2
V TMGq

+GT
qMW

(
Inu−p − σ−1EW

)−2
WTMGq

)
v3 = 0.

We denote the complex valued matrix on the left hand side with A(σ). The final
step of the proof consists of showing that A(σ) is invertible if γ is large enough.
Since M and N are positive definite matrices they have Cholesky decompositions

M = RT
MRM , N = RT

NRN

with invertible RM ∈ Rnu×nu , RN ∈ Rnqm×nqm. If we define

B(σ) :=

(
Ip − EV 0

0 Inu−p − σ−1EW

)−1(
V
W

)
RT
MRMGqR

−1
N ∈ Cnqm×nqm

56 5. NEWTON-PICARD PRECONDITIONERS

we obtain

γ−1R−T
N A(σ)R−1

N = Inqm + γ−1B(σ)TB(σ).

We now estimate the two-norm

‖B(σ)TB(σ)‖2 ≤ ‖RMGqR−1
N ‖22‖RM (V W)‖22‖

(
Ip − EV 0

0 Inu−p − σ−1EW

)−1

‖22.
(5.18)

We consider each of the norms on the right hand side of inequality (5.18) separately.
Due to Lemma 5.6 (ii) we obtain

‖RM (V W)‖22 = 1.

The matrix in the last term of inequality (5.18) is a diagonal matrix and so the
maximum singular value of it can be easily determined. Due to |σ| > µp+1/µ1 we
have that

‖
(
Ip − EV 0

0 Inu−p − σ−1EW

)−1

‖2 ≤
1

1− µ1
.

The first term of inequality (5.18) can be bounded considering

‖RMGqR−1
N ‖2 = sup

‖RNq‖2=1
q∈Rnqm

‖RMGqq‖2 = sup
q=

∑nqm

i=1 qiψi∫∫
Σ
q2=1

(∫
Ω

(∑nu

j=1
(Gqq)jϕj

)2
) 1

2

= sup
q=

∑nqm

i=1 qiψi

‖q‖L2(Σ)=1

‖
∑nu

j=1
(Gqq)jϕj − Ḡqq + Ḡqq‖L2(Ω)

≤ C2 + sup
q=

∑nqm

i=1 qiψi

‖q‖L2(Σ)=1

‖Ḡqq‖L2(Ω) ≤ C2 + sup
q∈L2(Σ)
‖q‖L2(Σ)=1

‖Ḡqq‖L2(Ω)

≤ C1 + C2.

If now γ > (C1 + C2)2/(1 − µ1)2 then ‖γ−1B(σ)TB(σ)‖2 < 1 and thus A(σ) is
invertible. It follows that v3 = 0, which implies v = 0 via equations (5.17). Thus,
(v, σ) cannot be an eigenpair.

The main result of this section is now at hand:

Corollary 5.8. The asymptotic convergence rate of LISA with classical New-
ton-Picard preconditioning on the model problem is mesh independent, provided γ
is large enough.

Proof. For finer and finer discretizations the largest p+1 eigenvalues of M−1L
converge. Thus, also the eigenvalues µ1 and µp+1 of Gu converge to some µ̄1 < µ̃
and µ̄p+1 ≤ µ̄1, with µ̄ given by Lemma 5.3. We construct Ḡq as the infinite
dimensional counterpart to Gq, i.e., Ḡq maps controls in L2(Σ) to the end value of
the heat equation (5.1b)–(5.1c) with zero initial values for the state. This operator
is continuous (see, e.g., Tröltzsch [150]). Let ε > 0. We can assume that Gq satisfies
the discretization error condition (5.15) with C2 = ε for a fine enough and also for
all finer discretizations. Define

γ̄ = (C1 + ε)2/(1− µ̄)2.

Theorem 5.7 yields that if γ > γ̄ then the asymptotic convergence rate of LISA is
below the the mesh independent bound µ̄p+1/µ̄1.

We remark here that our numerical experience suggests the conjecture that the
contraction rate is actually µp+1 instead of µp+1/µ1.

3. NEWTON-PICARD FOR OPTIMAL CONTROL PROBLEMS 57

3.4. Numerical solution of the approximated linear system. The im-
plicit inversion of the preconditioner J̃ can be carried out by block elimination. To
simplify notation we denote the residuals by ri, i = 1, 2, 3. We want to solve M 0 (G̃T

u − Inu
)M

0 γN GT
qM

M(G̃u − Inu) MGq 0

u0

q
λ

 =

r1

r2

r3

 .

Solving the last block-row for u0 and the first for λ, the second block-row becomes

Hq = r2 −GT
q

(
G̃T
u − Inu

)−1
(
r1 −M

(
G̃u − Inu

)−1

M−1r3

)
=: r̃, (5.19)

with the nqm-by-nqm symmetric positive-definite matrix

H = γN +GT
q

(
G̃T
u − Inu

)−1

M
(
G̃u − Inu

)−1

Gq.

If nqm is moderately small we can set up Gq as well as (G̃u − Inu)−1Gq according
to Lemma 5.5 or the two-grid analog and thus form matrix H explicitly. Then,
equation (5.19) can be solved for q via Cholesky decomposition of H. Alterna-
tively, we can employ a Preconditioned Conjugate Gradient (PCG) method with
preconditioner N .

Lemma 5.9. Assume there exists a linear operator Ḡu : L2(Σ)→ L2(Ω) which
satisfies assumptions (5.14) and (5.15). Then the spectral condition number of
matrix N−1H is bounded by

cond2(N−1H) ≤ 1 +
(C1 + C2)2

γ(1− µ̄)2
,

with µ̄ from Lemma 5.3.

Proof. The spectral condition number of N−1H is equal to the ratio of largest
to smallest eigenvalue of N−1H. Let (q, σ) ∈ Rnqm × R be an eigenpair of N−1H,
i.e.,

Hq − σNq = 0

and define q =
∑nqm
i=1 qiψi ∈ L2(Σ). We obtain

σqTNq = qTHq = γqTNq + ‖RM (G̃u − Inu
)−1R−1

M RMGqq‖22 (5.20a){
≥ γqTNq ⇒ σ ≥ γ,
≤ γqTNq + ‖RM (G̃u − Inu

)−1R−1
M ‖22‖RMGqq‖22,

(5.20b)

By virtue of Lemma 5.3 the largest singular value of G̃u − Inu
is bounded by 1− µ̄

and thus we obtain

‖RM (G̃u − Inu
)−1R−1

M ‖22 ≤ 1/(1− µ̄)2. (5.21)

For the remaining norm we consider

‖RMGqq‖2 = ‖
∑nqm

i=1
(Gqq)iψi‖L2(Σ) (5.22a)

≤ ‖
∑nqm

i=1
(Gqq)iψi − Ḡqq‖L2(Σ) + ‖Ḡqq‖L2(Σ) (5.22b)

≤ (C1 + C2)‖q‖L2(Σ) = (C1 + C2)‖RNq‖2. (5.22c)

We now combine inequalities (5.20), (5.21), and (5.22) to obtain the assertion.
As a consequence of Lemma 5.9 we obtain that the number of required PCG

iterations bounded by a grid-independent number. In our numerical experience 10–
20 PCG iterations usually suffice for a reduction of the relative residual to 10−6.

58 5. NEWTON-PICARD PRECONDITIONERS

Solving for u0 and λ is then simple:

u0 =
(
G̃u − Inu

)−1 (
M−1r3 −Gqq

)
, λ = M−1

(
G̃T
u − Inu

)−1

(r1 −Mu0) .

Note that once Gq and G̃u (in a suitable representation) have been calculated no
further numerical integration of the system dynamics is required.

3.5. Pseudocode. In this section we provide pseudocode to sketch the imple-
mentation of the proposed Newton-Picard preconditioners. We focus on the case
nqm � nu in which it is economical to solve equation (5.19) by forming H and
using Cholesky decomposition, but we also discuss implementation alternatives for
the case of large nqm. We use a Matlab R© oriented syntax here and assume that
the reader is familiar with linear algebra routines in Matlab R©. For readability pur-
poses we further assume that matrices L,M,Lc,M c, P,R,E,X,N and dimensions
nu, nq,m are globally accessible in each function. We do not discuss the assembly
of Galerkin matrices L,M,Lc,M c, and U or grid transfer operators P and R here.

The first function computes the matrices needed to evaluate the classical New-
ton-Picard preconditioner later. For numerical stability it is advantageous to per-
form IRAM in eigs with the symmetrified version (see proof of Lemma 5.1) and
to explicitly set the option that the matrix is real symmetric (not shown in pseu-
docode).

Function [P,R,E,X] = classicalApprox

output: Matrices P ∈ Rnu×p, R ∈ Rp×nu with RP = Ip, matrices
E,X ∈ Rp×p

RM = chol(M);
[Ṽ , Ẽ] = eigs(@(u) RT

M \ (L * (RM \ u)), nu, p, ’la’);

P = RM \ Ṽ ;
R = PT * M ;
E = diag(exp(diag(Ẽ)));
X = diag(1./(diag(E)− 1) + 1);

For the two-grid version, we assume that the prolongation P and restriction R
are given. Because the occurring matrices are small, we can employ the LAPACK
methods in eig instead of IRAM in eigs.

Function [E,X] = coarseGridApprox

output: Coarse grid approximation E ∈ Rnc
u×nc

u of Gu, matrix X ∈ Rnc
u×nc

u

[Ṽ , Ẽ] = eig(full(Lc), full(M c));

E = Ṽ * diag(exp(diag(Ẽ))) / Ṽ ;
X = inv(E − Inc

u
) + Inc

u
;

Now P,R,E,X are known and we can formulate matrix vector and matrix
transpose vector products with G̃u.

Function u1 = Gup(u0)

input : u0 ∈ Rnu

output: u1 = G̃uu0 ∈ Rnu

u1 = (P * (E * (R * u0)));

Function u0 = GupT(u1)

input : u1 ∈ Rnu

output: u0 = G̃T
uu1 ∈ Rnu

u0 = (RT * (ET * (PT * u1)));

In the same way we can evaluate matrix vector and matrix transpose vector
products with the inverse of G̃u − Inu

according to Lemma 5.5.

3. NEWTON-PICARD FOR OPTIMAL CONTROL PROBLEMS 59

Function u = iGupmI(r)

input : r ∈ Rnu

output: u = (G̃u − Inu)−1r

u = (P * (X * (R * r)))− r;

Function r = iGupTmI(u)

input : u1 ∈ Rnu

output: r = (G̃T
u − Inu)−1u

r = (RT*(XT*(PT*u)))− u;

We want to remark that we take the liberty to call the four previous functions
also with matrix arguments. In this case the respective function is understood to
return a matrix of the same size and to be evaluated on each column of the input
matrix. For the computation of matrix vector products with Gu and Gq we define
an auxiliary function which integrates ODE (5.4) for given initial state and control
variables. The control coefficients are constant in time.

Function ue = dG(∆t,us, q̃)

input : Duration ∆t, initial value us ∈ Rnu , control coefficients q̃ ∈ Rnq

output: End state ue ∈ Rnu after time ∆t

Solve ODE (5.4) with initial value us and constant control q̃, e.g., by
ode15s;

Based on the previous function we can now assemble matrix Gq. There are
alternative ways for the assembly. We have chosen an approach for the case that
large intervals for dG can be efficiently and accurately computed through adaptive
step size control as in, e.g., ode15s.

Function Gq = computeGq

output: Matrix Gq ∈ Rnu×nqm

for j = 1 : nq do
Gq(:, j + nq * (m− 1)) = dG(1 / m, 0, Inq

(:, j));

for i = 1 : m− 1 do
for j = 1 : nq do

Gq(:, j + nq * (i− 1)) = dG(1− i / m,Gq(:, j + nq * (m− 1)), 0);

We can alternatively compute matrix vector and matrix transpose vector prod-
ucts with Gq via the following functions. For the transpose we exploit the expression(

∂Giu∂Gq
)T

= UTL−1
(
∂GT

u − Inu

) (
∂GT

u

)i
= UTL−1M

(
∂Gi+1

u − ∂Giu
)
M−1.

Function u1 = Gq(q)

input : q ∈ Rnqm

output: u1 = Gqq ∈ Rnu

u1 = zeros(nu, 1);
for i = 0 : m− 1 do

u1 = dG(1 / m, u1, q(i * nq + (1 : nq)));

Function q = GqT(λ)

input : λ ∈ Rnu

output: q = GT
q λ ∈ Rnqm

q = zeros (nq * m,1); λ̃+ = M \ λ;
for i = m− 1 : −1 : 0 do

λ̃ = λ̃+; λ̃+ = dG(1 / m, λ̃, 0);
q(i * nq + (1 : nq)) = UT * (L \ (M * (λ̃+ − λ̃)));

60 5. NEWTON-PICARD PRECONDITIONERS

We can also formulate functions for matrix vector and matrix transpose vector
products with Gu.

Function u1 = Gu(u0)

input : u0 ∈ Rnu

output: u1 = Guu0 ∈ Rnu

u1 = dG(1,u0, 0);

Function u0 = GuT(λ)

input : λ ∈ Rnu

output: u0 = GT
uλ ∈ Rnu

u0 = M * dG(1,M \ λ, 0);

For the evaluation of the preconditioner we employ a Cholesky decomposition
of matrix H which can be obtained with the following function.

Function RH = decompH

output: Cholesky factor RH ∈ Rnqm×nqm of H = RT
HRH

V = iGupmI(Gq);
RH = chol(γ * N + V T * M * V);

We can finally state the function for a matrix vector product with the symmetric
indefinite matrix Ĵ . For readability we split up the argument and result into three
subvectors.

Function [r1, r2, r3] = J(u, q, λ)

input : u ∈ Rnu , q ∈ Rnqm,λ ∈ Rnu

output: [r1; r2; r3] = J [u; q;λ] ∈ Rnu+nqm+nu

r1 = M * u+ GuT(λ)− λ;
r2 = γ * N * q +GT

q * λ;
r3 = Gu(u)− u+Gq * q;

At last we present pseudocode for matrix vector products with the precondi-
tioner J̃−1. Again, we split up the argument and result into three subvectors.

Function [u, q,λ] = iJp(r1, r2, r3)

input : r1 ∈ Rnu , r2 ∈ Rnqm, r3 ∈ Rnu

output: [u; q;λ] = J̃−1[r1; r2; r3] ∈ Rnu+nqm+nu

q = RH \ (RT
H \ (r2 − iGupTmI(GT

q * (r1 −M * iGupmI(r3)))));
u = iGupmI(r3 −Gq * q);
λ = iGupTmI(r1 −M * u);

We can also substitute the functions Gq and GqT for the occurrences of Gq and
GT
q in J and iJp.

3.6. Algorithmic complexity. In this section we discuss the algorithmic
complexity of the proposed method. To simplify analysis we only count the num-
ber of necessary (fine grid) system integrations which are required when evaluating
matrix vector or matrix transpose vector products with Gu, Gq, or (Gu Gq). We
shall see that we need O(‖Ĵz0 + F̂‖/εO) simulations to solve the optimization prob-
lem (3.1) up to an absolute tolerance of εO > 0.

3. NEWTON-PICARD FOR OPTIMAL CONTROL PROBLEMS 61

If we solve the reduced systems (5.19) exactly then we obtain a grid independent
contraction bound κ = σr(J̃

−1∆J) by virtue of Corollary 5.8. By Lemma 5.9
we know that we can solve the reduced system (5.19) up to a relative residual
tolerance εH > 0 using PCG with a grid-independently bounded number k of
iterations. A backward analysis in the sense of Lemma 4.1 yields a matrix H̃ such
that ‖H − H̃‖ ≤ ‖r̃‖εH and such that the PCG iterate qk satisfies H̃qk = r̃.
Additionally, matrix vector products with the inverse mass matrix M−1 need to be
evaluated. This can also be done at linear cost using diagonal preconditioners with
PCG (see Wathen [160]) to tolerance εM > 0. A similar backward analysis as for H̃

yields a perturbed mass matrix M̃ . Because the eigenvalues of the now H̃ and M̃
dependent iteration matrix (as a perturbation of J̃−1∆J) depend continuously on

the entries of H̃ and M̃ we obtain that for each κ̃ ∈ (κ, 1) there exist εH , εM > 0 such
that the contraction rate of the outer iteration is bounded by κ̃. Thus, we can solve
the optimization problem (3.1) up to a tolerance εO > 0 within O(‖Ĵz0 + F̂‖/εO)
iterations.

We now count the number of system integrations per iteration under the as-
sumption that we perform nH inner PCG iterations per outer iteration. For the
evaluation of matrix vector products with Ĵ we need two system integrations for
maxtrix vector products with (Gu Gq) and its transpose. Concerning the matrix
vector product with the preconditioner J̃−1 we observe that multiplications with
G̃u and (G̃u − Inu

)−1 do not need any system integrations. However, the setup
of r̃ in equation (5.19) requires one integration for a matrix vector product with
Gq. Furthermore, each inner PCG iteration requires two additional simulations for
matrix vector products with Gq and its transpose. Thus we need 3 + 2nH system
simulations per outer iteration which yields an optimal complexity of O(1/εO) sys-
tem integrations for the solution of the optimization problem (3.1) up to tolerance
εO.

When performed this way the additional linear algebra consists of matrix vector
multiplications with sparse matrices, lower order vector computations, and dense
linear algebra for system sizes bounded by a factor of the grid-independent numbers
p or nc

u, respectively.
In the case of classical Newton-Picard approximation we need to add the com-

plexity of IRAM for the one-time determination of the dominant subspace spanned
by V . A detailed analysis of the numerical complexity for this step is beyond the
scope of this thesis. Suffice it that based on Saad [133, Theorem 6.3 and Chebyshev
polynomial approximation (4.49)] together with the approximation µnu

≈ 0 we as-
sume that the tangent of the angle between the p-th eigenvector of Gu and the l-th
Krylov subspace decreases linearly in l with a factor depending on the ultimately
grid-independent ratio µp/µp+1 which we assume to be greater than one. We need
one matrix vector product with Gu per Arnoldi iteration. Because this computa-
tion is only needed once independently of εO the asymptotic complexity O(1/εO)
does not deteriorate. It does, however, have an effect for practical computations
(see Section 3) and can easily dominate the overall cost of the algorithm already
for modest values of p.

We have also found the approach with explicit solution of equation (5.19) via
Cholesky decomposition of H beneficial for the practical computations presented
in Chapter 11. Although we obtain a one-time cubic complexity in nqm and a
square complexity in nqm per outer iteration, the runtime can be much faster than
iterative solution of equation (5.19) because per outer iteration only two system
integrations are required instead of 3 + 2nH .

62 5. NEWTON-PICARD PRECONDITIONERS

We want to close this section with the remark that the optimal choice of p,
κ̃, εM , and εH is a complex optimization problem which exceeds the scope of this
thesis.

4. Extension to nonlinear problems and Multiple Shooting

So far we have focused our investigation of Newton-Picard preconditioning on
the linear model problem (5.1). For nonlinear problems we have to deal with the
difficulty that the matrix Gu depends on the current iterate and that thus the domi-
nant subspace can change from one SQP iteration to another. The extension of the
two-grid Newton-Picard preconditioner to nonlinear problems is straight-forward
because the dominant subspace is implicitly given by the coarse grid approxima-
tion. For the classical Newton-Picard preconditioner, however, the situation is more
complicated.

Lust et al. [108] use a variant of the Subspace Iteration, originally developed
by Stewart [147], to update the basis V of the dominant subspace approximation in
each SQP iteration. The Subspace Iteration is an iterative method for the compu-
tation of eigenvalues and eigenvectors. Each iteration consists of three steps (see,
e.g., Saad [131]):

(1) Compute V := GuV .
(2) Orthonormalize V .
(3) Use the QR algorithm on V TGuV to compute its Schur vectors Y and

update V := V Y (Schur-Rayleigh-Ritz step).

Locking and shifting techniques can improve efficiency of the method in practical
implementations (see Saad [131]).

The Subspace Iteration is also used simultaneously such that only a few Sub-
space Iterations (ideally only one) are needed per SQP step. Potschka et al. [127]
present preliminary numerical results for Newton-Picard inexact SQP without LISA
and using the Euclidean projector.

The reader has surely noticed that we have so far in this chapter only considered
the case of Single but not Multiple Shooting. Again, the two-grid preconditioner
can be extended in a rather canonical way (see Chapter 7 for the remaining details).
For the classical Newton-Picard preconditioner we can sketch two approaches:

Sequential approach. We perform the Subspace Iteration on the product of the
local shooting matrices Gu := GnMS

u . . . G1
u. The main drawback of the sequential

approach is that it is impossible to compute GuV in parallel because the result of
G1
uV must be available to compute G2

uG
1
uV and so forth.

Simultaneous approach. We introduce a local dominant subspace approxima-
tion basis V i on each shooting interval and perform the Subspace Iterations in a
decoupled way. It is, however, at least unclear how the local error propagates to
the accumulated error in the product because GiuV

i and V i+1 will in general not
span the same subspace. Furthermore, the convergence speed of the Subspace Iter-
ation decreases with shorter time intervals, which can be seen for the linear model
problem by considering the matrix exponential for Giu on a shooting interval of
length τ . We obtain for the eigenvalues that µij = exp(τ µ̃ij). Thus for smaller τ we
obtain larger eigenvalue moduli and ratios which impair the convergence speed of
the Subspace Iteration on each interval.

Based on these considerations we have decided to develop only the two-grid
version fully for nonlinear problems and Multiple Shooting. For an appropriate
Hessian approximation for nonlinear problems we also refer the reader to Chapter 7.

CHAPTER 6

One-shot one-step methods and their limitations

We want to address the basic question if the results of Chapter 5 for the con-
vergence of the Newton-Picard LISA can be extended to general one-shot one-step
methods. We shall explain this class of problems and see that in the general case
no such result as Theorem 5.7 for the model problem (5.1) is possible. For com-
pleteness we quote large passages of the technical report Potschka et al. [129] with
modifications concerning references to other parts of this thesis.

Many nonlinear problems

g(xs, xc) = 0, x = (xs, xc) ∈ Rm+(n−m), g ∈ C1(Rn,Rm), (6.1)

with fixed xc can be successfully solved with Newton-type methods (see Chapter 4)

given x0
s , xk+1

s = xks −G−1
k g(xks , xc). (6.2)

In most cases a cheap approximation Gk ≈ ∂g
∂xs

(xks , xc) with linear contraction rate
of, say, κ = 0.8 is already good enough to produce an efficient numerical method. In
general, cheaper computation of the action of G−1

k on the residual compared to the
action of (∂g∂xs

)−1 must compensate for the loss of locally quadratic convergence of a
Newton method to obtain an overall performance gain within the desired accuracy.
It is a tempting idea to use the same Jacobian approximations Gk from the Newton-
type method in an inexact SQP method for the optimization problem with the same
constraint

min
x∈Rn

f(x) s.t. g(x) = 0. (6.3)

From this point of view we call problem (6.1) the forward problem of optimization
problem (6.3) and we will refer to the variables xc as control or design variables
and to xs as state variables.

Using (inexact) SQP methods which do not satisfy g = 0 in every iteration
for (6.3) is usually called simultaneous, or all-at-once approach and has proved to
be successful for several applications, e.g., in aerodynamic shape optimization Bock
et al. [27], Hazra et al. [78], chemical engineering Potschka et al. [127], or for
the model problem (5.1) in Chapter 5. Any inexact SQP method for equality
constrained problems of the form (6.3) is equivalent to a Newton-type method for
the necessary optimality conditions

∇xL(x, y) = 0, g(x) = 0,

as we have seen in Chapters 3 and 4. We are lead to a Newton-type iteration for
the primal-dual variables z = (x, y) ∈ Rn+m

zk+1 = zk −
(
Hk AT

k

Ak 0

)−1(∇zL(zk)
g(xk)

)
, (6.4)

where Hk is an approximation of the Hessian of the Lagrangian L and Ak is an
approximation of the constraint Jacobian

dg

dx
≈ Ak =

(
A1k A2k

)
.

63

64 6. ONE-SHOT ONE-STEP METHODS AND THEIR LIMITATIONS

Note that like in Chapter 5 we use a plus sign in the definition of the Lagrangian
here to obtain symmetry of the KKT matrices. If A1k = Gk holds the method
is called one-step because exactly one step of the solver for the forward and the
adjoint problem is performed per optimization iteration.

The discretized model problem (5.1) in Chapter 5 has exactly this structure
where Ak is implicitly given by a Newton-Picard preconditioner for the forward
problem of finding a periodic steady state. Theorem 5.7 shows that in the case of
the model problem we achieve almost the same contraction for the optimization
problem by simply reusing Gk in equation (6.4).

In the remainder of this chapter we illustrate with examples that in general only
little connection exists between the convergence of Newton-type methods (6.2) for
the forward problem and the convergence of simultaneous one-step inexact SQP
methods (6.4) for the optimization problem because the coupling of control, state,
and dual variables gives rise to an intricate feedback between each other within the
optimization problem.

Griewank [70] discusses that in order to guarantee convergence of the simulta-
neous optimization method this feedback must be broken up, e.g., by keeping the
design y fixed for several optimization steps, or by at least damping the feedback
in the update of the design y by the use of “preconditioners” for which he derives
a necessary condition for convergence based on an eigenvalue analysis.

We are interested in the different but important case where there exists a
contractive method for the forward problem (e.g., Bock et al. [27], Hazra et al.
[78], Potschka et al. [127], and Chapter 5). If applied to the linearized forward
problem, we obtain preconditioners which are contractive, i.e., the eigenvalues of the
preconditioned system lie in a ball around 1 with radius less than 1. The contraction
property suggests the use of a simultaneous one-step approach. However, we can
show that contraction for the forward problem is neither sufficient nor necessary
for convergence of the simultaneous one-step method.

The structure of this chapter is the following: Based on the Local Contrac-
tion Theorem 4.5 we present in Section 1 illustrative, counter-intuitive examples
of convergence and divergence for the forward and optimization problem which
form the basis for the later investigations on recovery of convergence. We continue
with presenting a third example and three prototypical subproblem regularization
strategies in Section 2 and perform an asymptotic analysis for large regularization
parameters in Section 3. We also show de facto loss of convergence for one of
the examples and compare the regularization approaches to Griewank’s One-Step
One-Shot preconditioner.

1. Illustrative, counter-intuitive examples in low dimensions

Consider the following linear-quadratic optimization problem

min
x=(xs,xc)∈Rn

1
2x

THx, s.t. (A1 A2)x = 0 (6.5)

with symmetric positive-definite Hessian H and invertible A1. The unique solution

is x∗ = 0. As before we approximate A1 with Ã1 such that we obtain a contracting

method for the forward problem. Without loss of generality, let Ã1 = I (otherwise

multiply the constraint in (6.5) with Ã−1
1 from the left). We shall now have a look

at instances of problem (6.5) with n = m = 2. We stress that there is nothing
obviously pathologic about the following examples. The exact and approximated
constraint Jacobians have full rank, the Hessians are symmetric positive-definite,

2. SUBPROBLEM REGULARIZATION 65

and A1 is always diagonalizable or even symmetric. We use the notation

A =
(
A1 A2

)
, Ã =

(
Ã1 A2

)
, K =

(
H AT

A 0

)
, K̃ =

(
H ÃT

Ã 0

)
.

In all examples, the condition numbers of K and K̃ are below 600.

1.1. Fast forward convergence, optimization divergence. As a first in-
stance we investigate problem (6.5) for the special choice of

(
H AT

)
=

0.67 0.69 −0.86 −0.13 1 −0.072
0.69 19 2.1 −1.6 −0.072 0.99
−0.86 2.1 1.8 −0.33 −0.95 0.26
−0.13 −1.6 −0.33 0.78 −1.1 −0.19

 , (Ex1)

According to the Local Contraction Theorem 4.5 and Remark 4.6 the choice of

Ã1 = I leads to a fast linear contraction rate for the forward problem of

κF = σr(I− Ã−1
1 A1) = σr(I−A1) ≈ 0.077 < 1.

However, for the contraction rate of the inexact SQP method with exact Hessian
and exact constraint derivative with respect to xc, we get

κO = σr(I− K̃−1K) ≈ 1.07 > 1.

Thus the full-step inexact SQP method does not have the property of linear local
convergence. In fact it diverges if the starting point z0 has a non-vanishing com-

ponent in the direction of any generalized eigenvector of I− K̃−1K corresponding
to a Jordan block with diagonal entries greater than 1.

1.2. Forward divergence, fast optimization convergence. Our second
example is

(
H AT

)
=

17 13 1.5 −0.59 0.27 −0.6
13 63 7.3 −4.9 −0.6 0.56
1.5 7.3 1.2 −0.74 −0.73 −3.5
−0.59 −4.9 −0.74 0.5 −1.4 −0.0032

 . (Ex2)

We obtain

κF = σr(I− Ã−1
1 A1) ≈ 1.20 > 1, κO = σr(I− K̃−1K) ≈ 0.014 < 1,

i.e., fast convergence of the method for the optimization problem but divergence
of the method for the forward problem. From these two examples we see that in
general only little can be said about the connection between contraction for the
forward and the optimization problem.

2. Subproblem regularization without changing the Jacobian
approximation

We consider another example which exhibits de facto loss of convergence for
Griewank’s One-Step One-Shot method and for certain subproblem regularizations.
By de facto loss of convergence we mean that although κF is well below 1 (e.g.,
below 0.5), κO is greater than 0.99. With

(
H AT

)
=

0.83 0.083 0.34 −0.21 1.1 0
0.083 0.4 −0.34 −0.4 1.7 0.52
0.34 −0.34 0.65 0.48 −0.55 −1.4
−0.21 −0.4 0.48 0.75 −0.99 −1.8

 (Ex3)

we obtain

κF = σr(I− Ã−1
1 A1) ≈ 0.48 < 1, κO = σr(I− K̃−1K) ≈ 1.54 > 1.

66 6. ONE-SHOT ONE-STEP METHODS AND THEIR LIMITATIONS

λ

C
o
n
tr
a
ct
io
n
κ

-1 -0.5 0 0.5 1
0

10

20

Figure 1. De facto loss of convergence with One-Step One-Shot
preconditioning 1

2H(−1). Vertical close-up around κ = 1.

The quantities Nxx, Gy, Gu in the notation of Griewank [70] are

Nxx = µH, Gy = I− Ã−1
1 A1, Gu = −A2,

where µ > 0 is some chosen weighting factor for relative scaling of primal and dual
variables. Based on

Z(λ) = (λI−Gy)
−1
Gu, H(λ) = (Z(λ)T, I)Nxx(Z(λ)T, I)T,

we see that all the assertions of Proposition 3 of Griewank [70] hold with the choice
of preconditioner H∗ = 1

2H(−1). However, this choice leads to de facto loss of
contraction for all choices of µ, as can be seen in Figure 1.

We now investigate three different modifications of the subproblems which do
not alter the Jacobian blocks of the KKT systems. These modifications are based
on

κO = σr(I− K̃−1K) = σr(K̃
−1(K̃ −K)),

which suggests that small eigenvalues of K̃ might lead to large κO. Thus we regu-

larize K̃ such that the inverse K̃−1 does not have large eigenvalues in the directions

of inexactness of ∆K = K̃ −K.
We consider three prototypical regularization methods here which all add a

positive multiple α of a matrix Λ to K̃. The regularizing matrices are

Λp =

I 0 0
0 I 0
0 0 0

 , Λpd =

I 0 0
0 I 0
0 0 −I

 , Λhp =

0 0 0
0 I 0
0 0 0

 ,

where the subscripts stand for primal, primal-dual, and hemi-primal (i.e., only in
the space of design variables), respectively.

3. Analysis of the regularized subproblems

We investigate the asymptotic behavior of the subproblem solution for α→∞
for the primal, primal-dual, and hemi-primal regularization. We assume invertibil-
ity of the approximation Ã1k and drop the iteration index k. We generally assume
that H is positive-definite on the nullspace of the approximation Ã.

Consider the α-dependent linear system for the step determination of the in-
exact SQP method (

K̃ + αΛ
)(∆x(α)

∆y(α)

)
=

(
−`
−r

)
, (6.6)

where ` is the current Lagrange gradient and r is the current residual of the equality
constraint. We use a nullspace method to solve the α-dependent system (6.6). Let
matrices Y ∈ Rn×m and Z ∈ Rn×(n−m) have the properties

ÃZ = 0, (Z Y)T(Z Y) =

(
ZTZ 0

0 Y TY

)
, det(Y Z) 6= 0.

3. ANALYSIS OF THE REGULARIZED SUBPROBLEMS 67

In other words, the columns of Z span the nullspace of Ã. These are completed to
form a basis of Rn by the columns of Y which are orthogonal to the columns of Z.
In the new basis, we have ∆x = Y p+ Zq, with (p, q) ∈ Rn.

3.1. Primal regularization. The motivation for the primal regularization
stems from an analogy to the Levenberg-Marquardt method which, in the case
of unconstrained minimization, is equivalent to a trust-region modification of the
subproblem (see, e.g., Nocedal and Wright [119]). It turns out that the regular-
ization with Λp bends the primal subproblem solutions towards the step of small-
est Euclidean norm onto the linearized feasible set. However, it leads to a blow-
up in the dual solution. From the following Lemma we observe that the primal
step for large α is close to the step obtained by the Moore-Penrose-Pseudoinverse

Ã+ = ÃT(ÃÃT)−1 for the underdetermined system (6.1) and that the step in the
Lagrange multiplier blows up for r 6= 0, and thus convergence cannot be expected.

Lemma 6.1. Under the general assumptions of Section 3 the solution of equa-
tion (6.6) for the primal regularization for large α is asymptotically given by

∆x(α) = −Ã+r + (1/α)ZZ+
(
HÃ+r − `

)
+ o(1/α),

∆y(α) = α(ÃÃT)−1r + (Ã+)T(HÃ+r − `) + o(1).

Proof. From the second block-row of equation (6.6) and the fact that ÃY

is invertible due to Ã having full rank we obtain p = −(ÃY)−1r. Premultiplying
the first block-row of equation (6.6) with ZT from the left yields the α-dependent
equation

ZTHY p+ ZTHZq + αZTZq + ZT` = 0. (6.7)

Let α > 0 and β = 1/α. Solutions of equation (6.7) satisfy

Φ(q, β) :=
(
βZTHZ + ZTZ

)
q + βZT

(
`−HY (ÃY)−1r

)
= 0.

It holds that Φ(0, 0) = 0 and ∂Φ
∂q (0, 0) = ZTZ is invertible, as Z has full rank.

Therefore the Implicit Function Theorem yields the existence of a neighborhood
U ⊂ R of 0 and a continuously differentiable function q̄ : U → Rm such that
q̄(0) = 0 and

Ψ(β) := Φ(q̄(β), β) = 0 ∀β ∈ U.
Using 0 = dΨ

dβ = ∂Φ
∂q

dq̄
dβ + ∂Φ

∂β and Taylor’s Theorem we have

q̄(β) = q̄(0) +
dq̄

dβ
(0)β + o(β) = β(ZTZ)−1ZT

(
HY (ÃY)−1r − `

)
+ o(β),

which lends itself to the asymptotic

∆x(α) = −Y (ÃY)−1r + (1/α)Z(ZTZ)−1ZT
(
HY (ÃY)−1r − `

)
+ o(1/α) (6.8)

of the primal solution of equation (6.6) for large regularization parameters α.
Consider a special choice for the matrices Y and Z based on the QR decompo-

sition Ã = Q
(
R B

)
with unitary Q and invertible R. We define

Z =

(
−R−1B

I

)
, Y =

(
RT

BT

)
= ÃTQ

and obtain Y (ÃY)−1 = ÃTQQ−1(ÃÃT)−1 = Ã+, which yields the first assertion
of the Lemma.

For the corresponding dual solution we multiply the first block-row of equa-
tion (6.6) with Y T from the left to obtain

Y T(H + αI)∆x(α) + (ÃY)
T

∆λ(α) + Y T` = 0.

68 6. ONE-SHOT ONE-STEP METHODS AND THEIR LIMITATIONS

After some rearrangements and with the help of the identity

(Ã+)T(I− ZZ+) = (ÃY)
−T

Y T (I− Z(ZTZ)−1ZT) = (Ã+)T

we obtain the second assertion of the Lemma.

3.2. Primal-dual regularization. The primal-dual regularization is moti-
vated by moving all eigenvalues of the regularized KKT matrix away from zero. It

is well known that under our assumptions the matrix K̃ has n+m positive and n
negative eigenvalues (see Gould [62]). The primal regularization method only moves
the positive eigenvalues away from zero. By adding the −I term to the lower right
block, also the negative eigenvalues can be moved away from zero while conserving

the inertia of K̃.

Lemma 6.2. Under the general assumptions of Section 3 the solution of equa-
tion (6.6) for the primal-dual regularization with large α is asymptotically given
by (

∆x(α)
∆y(α)

)
= − 1

α
Λpd

(
`
r

)
+ o(1/α) =

1

α

(
−`
r

)
+ o(1/α).

Proof. Define again β = 1/α, z = (∆x,∆y), and

Φ(z, β) = (βK̃ + Λpd)z + β

(
`
r

)
.

It holds that

Φ(0, 0) = 0,
∂Φ

∂z
= βK̃ + Λpd,

∂Φ

∂z
(0, 0) = Λpd.

The Implicit Function Theorem and Taylor’s Theorem yield the assertion.
Consider the limit case (

∆x(α)
∆y(α)

)
= − 1

α
Λpd

(
`
r

)
and the corresponding local contraction rate κpd = σr(I−(1/α)ΛpdK̃). If all the real

parts of the (potentially complex) eigenvalues of the matrix ΛpdK̃ are larger than
0, contraction for large α can be recovered although contraction may be extremely
slow, leading to de facto loss of convergence.

3.3. Hemi-primal regularization. In this section we are interested in a reg-
ularization of K̃ only on the design variables xc with Λhp. From the following
Lemma we observe that for large α, the primal solution of the hemi-primal reg-
ularized subproblem tends toward the step obtained from equation (6.2) for the
underdetermined system (6.1) and that the dual variables do not blow up for large
α in the hemi-primal regularization.

Lemma 6.3. Under the general assumptions of Section 3 the solution of equa-
tion (6.6) for the hemi-primal regularization is for large α asymptotically given
by

∆x(α) =

(
−Ã−1

1 r
0

)
+ (1/α)ZZT

(
H

(
Ã−1

1 r
0

)
− `
)

+ o(1/α), (6.9a)

∆y(α) =

(
Ã−1

1

0

)T(
H

(
Ã−1

1 r
0

)
− `
)

+ o(1), (6.9b)

with the choice Z =
(

(−Ã−1
1 A2)T I

)T

and Y = (Ã1 A2)T = ÃT.

3. ANALYSIS OF THE REGULARIZED SUBPROBLEMS 69

Proof. By our general assumption Ã1 is invertible and the previous assump-

tions on Y and Z are satisfied. Again it holds that Y (ÃY)−1 = Ã+. We recover
p as before. Let β = 1/α. We can define an implicit function to determine q(β)
asymptotically via

Φ(q, β) = (βZTHZ + I)q + Y2p+ βZT (HY p+ `) ,

where we used that ZT
2 Z2 = I. It holds that Φ(−AT

2 p, 0) = 0 and ∂Φ
∂q (−AT

2 p, 0) = I.
Thus the Implicit Function Theorem together with Taylor’s Theorem yields

q(β) = −AT
2 p− βZT

(
HY p+ `−HZAT

2 p
)

+ o(β).

By resubstitution of p and q(1/α) by the use of the identity

(Y − ZAT
2)(ÃY)−1 = (Ã

−T

1 0)T

we recover the first assertion of the Lemma.
For the dual solution, we again multiply the first block-row of equation (6.6)

with Y T from the left to obtain

Y T

(
H + α

(
0 0
0 I

))
∆x(α) + (ÃY)

T

∆y(α) + Y T` = 0,

which after some rearrangements yields the second assertion.
Consider the limit case α→∞. We recover from equation (6.9a) that

∆zk =

(
−Ã−1

1 rk
0

)
.

Hence xkc = x∗c stays constant and xk converges to a feasible point x∗ with the con-
traction rate κF of the Newton-type method for problem (6.1). For the asymptotic
step in the dual variables we then obtain

∆yk = −Ã−T

1 (∇xf(xk) +∇xg(xk)yk) +
(
Ã
−T

1 0
)
H
(
Ã
−T

1 0
)T

rk.

For the convergence of the coupled system with xk and yk let us consider the
Jacobian of the iteration (xk+1, yk+1) = T (xk, yk) (with suitably defined T)

dT

d(x, y)
=

(
I− Ã−1

1 ∇xg(x)T 0

∗ I− Ã−T

1 ∇xg(x)

)
.

Hence (xk, yk) converges with linear convergence rate κF, and yk converges to

y∗ = −Ã−T

1 ∇xf(x∗, y∗).

Thus the primal-dual iterates converge to a point which is feasible and stationary
with respect to xs but not necessarily to xc. Taking α large but finite we see that
the hemi-primal regularization acts in the same way as the preconditioner H∗ in
Griewank’s One-Step One-Shot approach, namely damping design updates while
correcting state and dual variables with a contraction of almost κF.

3.4. Divergence and de facto loss of convergence for subproblem reg-
ularizations. Figure 2 depicts the dependence of κO of the optimization method
on the regularization parameter α and the choice of regularization (primal, primal-
dual, and hemi-primal) on example Ex3. The example was specifically constructed
to show de facto loss of convergence for all three regularizations. Obviously the
primal regularization does not even reach κO = 1. Comparing Figures 1 and 2 we
see that Griewank’s One-Step One-Shot preconditioner achieves a better contrac-
tion than any of the investigated regularization strategies. But the improvement
is marginal and only within a small range for µ. For the sake of fairness we feel
urged to remark here that Griewank’s One-Step One-Shot method is designed for
problems in aerodynamic shape optimization where the forward contraction κF is

70 6. ONE-SHOT ONE-STEP METHODS AND THEIR LIMITATIONS

Regularization α

C
o
n
tr
a
ct
io
n
κ
O

Regularization α

C
o
n
tr
a
ct
io
n
κ
O

10−4 10−3 10−2 10−1 100 101 102 103 104 105 106

10−4 10−3 10−2 10−1 100 101 102 103 104 105 106

0.995

1

1.005

0.5

1

1.5

2

2.5

Figure 2. Divergence of the primal regularization (− ·) and de
facto loss of convergence for primal-dual (−−) and hemi-primal
(−) regularization for example Ex3 depending on the regularization
value α. The lower diagram is a vertical close-up around κO = 1
of the upper diagram.

already close to 1. The investigated example here has κF < 1/2 and is thus not a
typical example. However, we believe it helps to shed some light on the way the
One-Step One-Shot preconditioner works.

We also want to remark that the above discussion is not a proof of convergence
for the primal-dual or hemi-primal regularization approach. Nonetheless we have
given a counter-example which shows failure of the primal regularization approach.
With the de facto loss of convergence in mind we believe that a proof of convergence
for the other regularization strategies is of only limited practical importance.

CHAPTER 7

Condensing

Especially on fine space discretizations we obtain large scale quadratic sub-
problems (4.30) in the inexact SQP method described in Chapter 4. The goal of
this chapter is to present a condensing approach which is one of two steps for the
solution of these large scale QPs. It consists of a structure exploiting elimination of
all discretized PDE variables from the QP. The resulting equivalent QP is of much
smaller, grid-independent size and can then, in a second step, be solved by, e.g., a
Parametric Active Set Method (PASM) which we describe in Chapter 8.

In Section 1 of this chapter we describe the typical multiple shooting structure.
We highlight the additional Newton-Picard structures in Section 2. Then we present
the exploitation of these structures for the elimination of the discretized PDE states
in a rather general way in Section 3 and develop a particular Newton-Picard Hessian
approximation which fits well in the condensing framework in Section 4. Based on
the introduced notation we end this chapter with a result of scaling invariance of
the Newton-Picard LISA-Newton method in Section 5.

1. Multiple shooting structure

In their seminal paper, Bock and Plitt [25] have described a condensing tech-
nique for the quadratic subproblems arising in an SQP method for Direct Multiple
Shooting. We specialize this approach for the case that either fixed initial values or
boundary value equality constraints are posed on the PDE states. In Section 2 we
extend the approach with the exploitation of the Newton-Picard structure in the
approximated Hessian and Jacobian matrices (see Chapter 5).

Recall the discretized NLP (2.3) on level l. To avoid notational clutter we drop
the discretization level index l. The NLP (2.3) then reads

minimize
(qi,si,vi)

nMS
i=0

Φ(snMS ,vnMS) (7.1a)

s. t. rb
s(snMS ,vnMS)− s0 = 0, (7.1b)

rb
v(snMS ,vnMS)− v0 = 0, (7.1c)

ui(ti; qi−1, si−1,vi−1)− si = 0, i = 1, . . . , nMS, (7.1d)

vi(ti; qi−1, si−1,vi−1)− vi = 0, i = 1, . . . , nMS, (7.1e)

qnMS − qnMS−1 = 0, (7.1f)

ri(qi−1,vi−1) ≥ 0, i = 1, . . . , nMS, (7.1g)

re(vnMS) ≥ 0, (7.1h)

where we have split up the boundary condition rb into two parts rb
s and rb

v . We
abbreviate derivatives that occur in the remainder of this chapter according to

Rb
ss :=

∂rb
s

∂snMS
, Rb

sv :=
∂rb

s

∂vnMS
, Rb

vs :=
∂rb

v

∂snMS
, Rb

vv :=
∂rb

v

∂vnMS
,

71

72 7. CONDENSING

Giq :=
∂ui

∂qi−1
, Gis :=

∂ui

∂si−1
, Giv :=

∂ui

∂vi−1
,

Hi
q :=

∂vi

∂qi−1
, Hi

s :=
∂vi

∂si−1
, Hi

v :=
∂vi

∂vi−1
,

Ri,i
q :=

∂ri

∂qi−1
, Ri,i

v :=
∂ri

∂vi−1
, Re :=

re

∂vnMS
.

Let the Lagrangian of NLP (7.1) be denoted by L. It is well-known (see, e.g.,
Bock and Plitt [25]) that due to the at most linear coupling between variables
corresponding to shooting nodes i and i+ 1 the Hessian matrix of the Lagrangian
L has block diagonal form. Our goal is to eliminate all PDE state variables si and
so we regroup the variables in the order

(s0, . . . , snMS ,v0, . . . ,vnMS , q0, . . . , qnMS).

The elimination is based on the s0-dependent part of boundary condition (7.1b) and
on the matching conditions (7.1d). Thus we also shuffle the constraint order such
that they are the first ns(nMS + 1) constraints. We are lead to consider NLP (7.1)
in the ordering

minimize
(x1,x2)∈Rn1+n2

f(x1, x2) (7.2a)

s. t. gi(x1, x2) = 0, i ∈ E1, (7.2b)

gi(x1, x2) = 0, i ∈ E2, (7.2c)

gi(x1, x2) ≥ 0, i ∈ I, (7.2d)

where |E1| = n1. In Section 2 we describe how to exploit gi, i ∈ E1, for partial
reduction on the QP level. Now x1 contains only the discretized PDE state variables
and gi, i ∈ E1, comprises the boundary and matching conditions (7.1b) and (7.1d).

Then the compound derivative of the constraints has the form

C =

C11 C12

C21 C22

C31 C32

=

−I Rb
ss Rb

sv

G1
s −I G1

v G1
q

. . .
. . .

. . .
. . .

GnMS
s −I GnMS

v GnMS
q

Rb
vs −I Rb

vv

H1
s H1

v −I H1
q

. . .
. . .

. . .
. . .

HnMS
s HnMS

v −I HnMS
q

I −I
Ri,1
v Ri,1

q

. . .
. . .

Ri,nMS
v Ri,nMS

q

Re,nMS
v

.

We want to stress that contrary to the appearance the block C11 is several orders of
magnitude larger than the blocks C22 and C32 on fine spatial discretization levels.

2. NEWTON-PICARD STRUCTURE 73

The next lemma shows that under suitable assumptions C11 is invertible. We
use products of non-commuting matrices where the order is defined via

nMS∏
i=1

Gis := GnMS
s · · ·G1

s and

0∏
i=1

Gis = I by convention.

Lemma 7.1. Let MB = I − (
∏nMS

i=1 G
i
s)R

b
ss. If MB is invertible so is C11 and

the inverse is given by C−1
11 =

−I −(
∏0
i=1G

i
s)R

b
ss

. . .
...

−I −(
∏nMS−1
i=1 Gis)R

b
ss

−I

I

. . .

I
M−1
B

I∏1
i=1G

i
s I

...
. . .

. . .∏nMS

i=1 G
i
s · · ·

∏nMS

i=nMS
Gis I

 .

Proof. We premultiply C11 with the matrices in the assertion one after the
other to obtain

I
G1
s I

...
. . .

. . .∏nMS

i=1 G
i
s · · · GnMS

s I

−I Rb

ss

G1
s −I

. . .
. . .

GnMS
s −I

 =

−I (

∏0
i=1G

i
s)R

b
ss

−I (
∏1
i=1G

i
s)R

b
ss

. . .
...

−MB

 ,

I

. . .

I
M−1
B

−I (

∏0
i=1G

i
s)R

b
ss

−I (
∏1
i=1G

i
s)R

b
ss

. . .
...

−MB

 =

−I (

∏0
i=1G

i
s)R

b
ss

−I (
∏1
i=1G

i
s)R

b
ss

. . .
...
−I

 ,

−I −(

∏0
i=1G

i
s)R

b
ss

. . .
...

−I −(
∏nMS−1
i=1 Gis)R

b
ss

−I

−I (

∏0
i=1G

i
s)R

b
ss

−I (
∏1
i=1G

i
s)R

b
ss

. . .
...
−I

 = I.

This proves the assertion.
The assumption of invertibility of MB is merely that one is not an eigenvalue

of the matrix

GB :=

(
nMS∏
i=1

Gis

)
Rb
ss

which coincides with the monodromy matrix of the periodicity condition (7.1b) in
the solution of NLP (7.1).

2. Newton-Picard structure

Now we investigate the structures arising from the approximation of the blocks
in C via Newton-Picard (see Chapter 5). We want to stress that it does not matter
if the two-grid or classical version of Newton-Picard is applied. We only assume
that there exists a prolongation operator P and a restriction operator R which
satisfy

RP = I. (7.3)

We now approximate the blocks in C. Let hatted matrices (̂) denote the evaluation
of a matrix on either a coarse grid (two-grid variant) or on the dominant subspace
(classical variant). Then we assemble the approximations (̃) from the hatted ma-
trices preceded and/or succeeded by appropriate prolongation and/or restriction

74 7. CONDENSING

matrices according to

R̃b
ss = PR̂b

ssR, R̃b
sv = PR̂b

sv, R̃b
vs = R̂b

vsR, R̃b
vv = R̂b

vv, (7.4a)

G̃iq = PĜiq, G̃is = PĜisR, G̃iv = PĜis, (7.4b)

H̃i
q = Ĥi

q, H̃i
s = Ĥi

sR, H̃i
v = Ĥi

v, (7.4c)

R̃i,i
q = R̂i,i

q , R̃i,i
v = R̂i,i

v , R̃e = R̂e. (7.4d)

The following lemma shows that the approximation of MB can be cheaply evaluated
and inverted because it only involves operations on the coarse grid or on the low-
dimensional dominant subspace.

Lemma 7.2. Let

ĜB :=

(
nMS∏
i=1

Ĝis

)
R̂b
ss, G̃B :=

(
nMS∏
i=1

G̃is

)
R̃b
ss, M̂B := I− ĜB , M̃B := I− G̃B .

If M̂B is invertible so is M̃B and it holds that

M̃−1
B =

(
I− PĜBR

)−1

= I− P
(
I− M̂−1

B

)
R.

Proof. From equation (7.3) we obtain

G̃B =

(
nMS∏
i=1

PĜisR

)
PR̂b

ssR = PĜBR

and thus

M̃B = I− PĜBR.
The calculation

M̃BM̃
−1
B =

(
I− PĜBR

)(
I− P

[
I−

(
I− ĜB

)−1
]
R

)
= I− PĜBR− P

(
I− ĜB

)[
I−

(
I− ĜB

)−1
]
R

= I− P
[
ĜB + I− ĜB − I

]
R = I

yields the assertion.
The structure of C and the assertion of Lemma 7.1 is also preserved if we use the

proposed approximations. Thus Lemma 7.2 suggests that it is possible to compute
the inverse of the approximation of the large block C11 in a cheap way. We prove
this supposition in Theorem 7.3 but before we need to introduce another notational
convention, the Kronecker product of two matrices. We only use the special case
where the left-hand factor is the identity and thus we have for an arbitrary matrix
A that

Ip×p ⊗A :=

A . . .

A

 (p instances of A blocks on the diagonal).

Theorem 7.3. Define the projectors

Πslow = InMS×nMS ⊗ (PR), Πfast = I−Πslow.

Then

C̃−1
11 Πslow = (I⊗ P)Ĉ−1

11 (I⊗R), C̃−1
11 Πfast = −Πfast.

2. NEWTON-PICARD STRUCTURE 75

Proof. Lemma 7.1 yields a decomposition of C−1
11 into a product of the three

matrices A1A2A3. The same type of decomposition holds when the blocks in C are
substituted by their tilde or hat counterparts. We now show in three steps that

Ãk(I⊗ P) = (I⊗ P)Âk, k = 1, 2, 3,

from which we can immediately infer the assertion

C̃−1
11 Πslow = Ã1Ã2Ã3(I⊗ (PR)) = (I⊗ P)Â1Â2Â3(I⊗R) = (I⊗ P)Ĉ−1

11 (I⊗R).

The cases k = 1, 3 follow from j2∏
i=j1

G̃is

P =

 j2∏
i=j1

(PĜisR)

P = P

 j2∏
i=j1

Ĝis

 ,

R̃b
ssP = PR̂b

ssRP = PR̂b
ss.

The case k = 2 only involves the inverse given by Lemma 7.2

M̃−1
B P =

(
I− P

(
I− M̂−1

B

)
R
)
P = PM̂−1

B .

The proof of the assertion for Πfast is based on equation (7.3) which yields

R(I− PR) = R−RPR = 0. (7.5)

We obtain

Ã1Πfast = −Πfast, Ã2Πfast = Πfast, Ã3Πfast = Πfast,

because all off-diagonal blocks are eliminated due to equation (7.5) and

M̃−1
B (I− PR) =

(
I− P

(
I− M̂−1

B

)
R
)

(I− PR) = I− PR.

From equation (7.5) follows also immediately that

ΠfastΠfast = I⊗ [(I− PR)(I− PR)] = Πfast,

i.e., Πfast is idempotent and thus indeed a projector. Hence we obtain

C̃−1
11 Πfast = Ã1Ã2Ã3Πfast = −Πfast

which shows the last assertion.

Corollary 7.4. If it exists, the Newton-Picard approximation of block C11

has the inverse

C̃−1
11 = (I⊗ P)

(
Ĉ−1

11 + I
)

(I⊗R)− I.

Proof. Consider

C̃−1
11 = C̃−1

11 Πslow + C̃−1
11 Πfast = (I⊗ P)Ĉ−1

11 (I⊗R) + (I⊗ (PR))− I

= (I⊗ P)
(
Ĉ−1

11 + I
)

(I⊗R)− I,

which follows directly from Theorem 7.3.

Remark 7.5. The inversion of C̃11 via the formula from Corollary 7.4 also
reduces the number of needed restrictions to the minimum of nMS. This is important
for FEM discretizations where an L2 restriction involves the inversion of a reduced
mass matrix.

Thus we see that the condensing operations involving C̃11 can be efficiently
computed involving only operations on the coarse grid or on the small Newton-
Picard subspace plus nMS prolongations and restrictions.

76 7. CONDENSING

3. Elimination of discretized PDE states

We now consider QPs with a structure inherited from NLP (7.2)

minimize
(x1,x2)∈Rn1+n2

1

2

(
x1

x2

)T(
B11 B12

B21 B22

)(
x1

x2

)
+

(
b1
b2

)T(
x1

x2

)
(7.6a)

s. t. C11x1 + C12x2 = c1, (7.6b)

C21x1 + C22x2 = c2, (7.6c)

C31x1 + C32x2 ≥ c3. (7.6d)

Imagine the variable vector x1 comprising all discretized PDE states and the small
variable vector x2 containing the remaining degrees of freedom. The proof of the
following theorem can be carried out via KKT transformation rules as in Leineweber
[104]. We want to give a slightly shorter proof here which can be interpreted as a
partial null-space approach.

Theorem 7.6. Assume that C11 in QP (7.6) is invertible and define

Z =

(
−C−1

11 C12

I

)
, B′ = ZTBZ,

c′1 = C−1
11 c1, b′ = B21c

′
1 + b2 − CT

12C
−T
11 (B11c

′
1 + b1),

c′2 = c2 − C21c
′
1, C ′2 = C22 − C21C

−1
11 C12,

c′3 = c3 − C31c
′
1, C ′3 = C32 − C31C

−1
11 C12.

Let furthermore (x∗2, y
∗
E2 , y

∗
I) ∈ Rn2+m2+m3 be a primal-dual solution of the QP

minimize
x2∈Rn2

1

2
xT

2 B
′x2 + b′Tx2 s. t. C ′2x2 = c′2, C ′3x2 ≥ c′3. (7.7)

If we choose

x∗1 = C−1
11 (c1 − C12x

∗
2), (7.8a)

y∗E1 = C−T
11

(
(B12 −B11C

−1
11 C12)x∗2 +B11c

′
1 + b1 − CT

21y
∗
E2 − CT

31y
∗
I
)

(7.8b)

then (x∗, y∗) := (x∗1, x
∗
2, y
∗
E1 , y

∗
E2 , y

∗
I) is a primal-dual solution of QP (7.6).

Proof. We first observe that constraint (7.6b) is equivalent to equation (7.8a)
and that thus (

x∗1
x∗2

)
= Zx∗2 +

(
c′1
0

)
is satisfied. Let us define

Y =

(
I
0

)
.

The unit upper triangular matrix Q :=
(
Y Z

)
is invertible and we can multiply

the stationarity condition of QP (7.6) from the left with QT to obtain the equivalent
system of equations

0 = Y TBZx∗2 +B11c
′
1 + b1 − CT

11y
∗
E1 − CT

21y
∗
E2 − CT

31y
∗
I , (7.9a)

0 = ZTBZx∗2 + ZT

((
B11

B21

)
c′1 + b

)
− ZT

C11 C12

C21 C22

C31 C32

Ty∗E1y∗E2
y∗I

 . (7.9b)

Expansion of Y TBZ yields that condition (7.9a) is equivalent to equation (7.8b)
and by virtue of

CZ =

C11 C12

C21 C22

C31 C32

(−C−1
11 C12

I

)
=

 0
C ′2
C ′3

4. NEWTON-PICARD HESSIAN APPROXIMATION 77

condition (7.9b) is equivalent to the stationarity condition of QP (7.7)

B′x∗2 + b′ − C ′2Ty∗E2 − C ′3Ty∗I = 0.

Feasibility is guaranteed by

C21x
∗
1 + C22x

∗
2 = C21C

−1
11 (c1 − C12x

∗
2) + C22x

∗
2 = c2 ⇔ C ′2x

∗
2 = c′2,

C31x
∗
1 + C32x

∗
2 = C31C

−1
11 (c1 − C12x

∗
2) + C32x

∗
2 ≥ c3 ⇔ C ′3x

∗
2 ≥ c′3.

Finally complementarity holds because the multipliers y∗I for the inequalities are
the same in the condensed QP (7.7) and in the structured QP (7.6).

The condensed QP (7.7) is of much smaller size than QP (7.6) and its size does
not depend on the spatial discretization level. It still exhibits the typical multiple
shooting structure in the ODE states and could thus be condensed one more time.
In the examples which we present in Part 3, however, the computational savings
are only marginal between skipping the second condensing and solving QP (7.7)
directly with the method we describe in Chapter 8.

4. Newton-Picard Hessian approximation

We can efficiently evaluate the quantities that must be computed to set up the
condensed QP (7.7) of Theorem 7.6 by once again exploiting the Newton-Picard
structure in the approximations of the constraint Jacobian: The partial null-space
basis can be evaluated purely on the slow subspace because

Z̃ =

(
−C̃−1

11 C̃12

I

)
=

(
−(I⊗ P)Ĉ−1

11 (I⊗R)(I⊗ P)Ĉ12

I

)
=

(
−(I⊗ P)Ĉ−1

11 Ĉ12

I

)
.

This observation suggests a projected Newton-Picard approximation of the Hessian
matrix via

B̃fast =

(
(I⊗Πfast)TB11(I⊗Πfast) 0

0 0

)
,

B̃slow =

(
(I⊗R)TB̂11(I⊗R) (I⊗R)TB̂12

B̂21(I⊗R) B̂22

)
,

B̃ = B̃fast + B̃slow.

Consequently we have

Z̃TB̃fastZ̃ = 0

and thus we can also compute the condensed Newton-Picard Hessian matrix purely
on the slow subspace according to

B̃′ = Z̃TB̃Z̃ = ẐTB̂Ẑ with Ẑ =

(
−Ĉ−1

11 Ĉ12

I

)
.

The Hessian term B̃fast only plays a role in the evaluation of B̃c′1. Thus we only
need to evaluate one matrix vector product with the exact Hessian matrix for the
solution of the large structured Newton-Picard quadratic subproblem. In the two-
grid variant all remaining matrix vector products with the approximated Hessian
only require the coarse-grid operations.

Numerical experience on the application problems of Part 3 has shown that a
pure coarse grid Hessian approximation leads to a substantial loss of contraction for
the Newton-Picard LISA-Newton method while the contraction with the Newton-
Picard Hessian approximation yields contractions which are almost as good as when
a pure fine grid Hessian is used.

78 7. CONDENSING

5. Scaling invariance of the Newton-Picard LISA-Newton method

Based on Corollary 4.25 we know that if a preconditioner respects the trans-
formation property of Lemma 4.24 we obtain affine invariance of the LISA-Newton
method. We now show that the Newton-Picard preconditioners partly satisfy the
transformation property. As a result we obtain invariance of the Newton-Picard
LISA-Newton method with respect to scaling. To be precise let α, β ∈ R, and

a1 ∈ Rn1 , a1
i = α, i ∈ 1, . . . , n1, a2 ∈ R|E2|, a3 ∈ R|I|, a = (a1, a2, a3),

d1 ∈ Rn1 , d1
i = β, i ∈ 1, . . . , n1, d2 ∈ Rn2

+ , d = (d1, d2),

and assume that no entry of a and d vanishes. Moreover we define

Ai = diag(ai), i = 1, 2, 3, A = diag(a), Di = diag(di), i = 1, 2, D = diag(d).

We now consider the family of scaled NLPs of the form of NLP (7.2)

minimize
x=(x1,x2)∈Rn1+n2

f(βx1, D2x2) (7.10a)

s. t. αgi(βx1, D2x2) = 0, i ∈ E1, (7.10b)

aigi(βx1, D2x2) = 0, i ∈ E2, (7.10c)

aigi(βx1, D2x2) ≥ 0, i ∈ I. (7.10d)

With y = (y1, y2, y3) ∈ Rn1+|E2|+|I| we obtain the scaled Lagrangian

Lsc(x, y) = f(Dx)−
∑

i∈E1
αyigi(Dx)−

∑
i∈E2∪I

aiyigi(Dx)

and its gradient

∇xLsc(x, y) = D∇f(Dx)−
∑

i∈E1
αyiD∇gi(Dx)−

∑
i∈E2∪I

aiyiD∇gi(Dx),

After introducing the scaled variables xsc = D−1x and ysc = A−1y we can establish
for the function F of Section 7.1 in Chapter 4 and its scaled counterpart that

F sc(xsc, ysc) =

(
D∇xL(x, y)
Ag(Dx)

)
= diag(D,A)F (x, y),

dF sc(xsc, ysc)

d(xsc, ysc)
=

(
D 0
0 A

)
dF (x, y)

d(x, y)

(
D 0
0 A

)
According to Lemma 4.24 we need to verify that the Newton-Picard approximation
satisfies the same transformation rule. Let Â1 = diag(α) and D̂1 = diag(β) denote
the scaling matrices corresponding to A1 and D1 on the coarse grid. Then we can
immediately see that the transformation rule for the blocks of C in equations (7.4)
and for the two-grid Newton-Picard Hessian approximation of Section 4 satisfies
the assumption for Lemma 4.24 due to

(I⊗ P)Â1 = αI⊗ P = A1(I⊗ P) and D̂1(I⊗R) = βI⊗R = (I⊗R)D1.

Thus the Newton-Picard LISA-Newton method is scaling invariant.

CHAPTER 8

A Parametric Active Set method for QP solution

Most of this chapter is an excerpt form the technical report Potschka et al. [126]
which we include here for completeness. The chapter is dedicated to the numerical
solution of the convex QP

minimize
x∈Rn

1

2
xTBx+ bTx s. t. cl ≤ Cx ≤ cu, (8.1)

with symmetric Hessian matrix B ∈ Rn×n, constraint matrix C ∈ Rm×n, gradient
vector b ∈ Rn, and lower and upper constraint vectors cl, cu ∈ Rm. For most of
this chapter we furthermore assume B to be positive semidefinite. We describe the
generalization to nonconvex problems with indefinite B in Section 8.

The structure of this chapter is the following: We start with recalling the
Parametric Quadratic Programming (PQP) method [17] in Section 2 and identify its
fundamental numerical challenges in Section 3. In Section 4 we develop strategies
to meet these challenges. It follows a short description of the newly developed
Matlab R© code rpasm in Section 5 which we compare with other popular academic
and commercial QP solvers in Section 6. We continue in Section 7 with a description
of drawbacks of the reliability improving strategies. In Section 8 we discuss an
extension to compute local minima of nonconvex QPs.

1. General remarks on Quadratic Programming Problems

Although we are mainly concerned with QPs which arise as subproblems of the
inexact SQP method described in Chapter 4, in particular after a condensing step
according to Chapter 7, the class of convex QP problems is important in its own
right. Gould and Toint [65] have been compiling a bibliography of currently 979
publications which comprises many application papers from disciplines as diverse
as portfolio analysis, structural analysis, VLSI design, discrete-time stabilization,
optimal and fuzzy control, finite impulse response design, optimal power flow, eco-
nomic dispatch, etc. Several benchmark and application problems are collected in
a repository [109] which is accessible through the CUTEr testing environment [67].

1.1. Optimality conditions. For the characterization of solutions of QP
(8.1) we partition the index set m = {1, . . . ,m} into four disjoint sets

Ae(x) = {i ∈ m | cli = (Cx)i = cui }, Al(x) = {i ∈ m | cli = (Cx)i < cui },
Au(x) = {i ∈ m | cli < (Cx)i = cui }, Af(x) = {i ∈ m | cli < (Cx)i < cui }

of equality, lower active, upper active, and free constraint indices, respectively. It
is well known (see Chapter 3) that for any solution x∗ of QP (8.1) there exists a
vector y∗ ∈ Rm of dual variables such that

Bx∗ + b− CTy∗ = 0, cl ≤ Cx∗ ≤ cu, (8.2a)

(Cx∗ − cl)iy∗i = 0, i ∈ Al(x∗), y∗i ≥ 0, i ∈ Al(x∗), (8.2b)

(Cx∗ − cu)iy
∗
i = 0, i ∈ Au(x∗), y∗i ≤ 0, i ∈ Au(x∗). (8.2c)

79

80 8. A PARAMETRIC ACTIVE SET METHOD FOR QP SOLUTION

Conversely, every primal-dual pair (x∗, y∗) which satisfies conditions (8.2) is a global
solution of QP (8.1) due to semidefiniteness of the Hessian matrix B. The primal-
dual solution is unique if and only if the following two conditions are satisfied:

(1) The active constraint rows Ci, i ∈ Ae ∪Al ∪Au, are linearly independent.
(2) Matrix B is positive definite on the null space of the active constraints.

1.2. Existing methods. All existing methods for solving QPs are iterative
and can be grossly divided into Active Set and Interior Point methods. Interior
Point methods are sometimes called Barrier methods due to the possibility of dif-
ferent interpretations of the resulting subproblems, see, e.g., Nocedal and Wright
[119]. As a defining feature, Active Set methods keep a working set of active con-
straints and solve a sequence of equality constrained QPs. The working set must
be updated between the iterates according to exchange rules which are based on
conditions (8.2). In contrast, Interior Point methods do not use a working set but
follow a nonlinear path, the so-called central path, from a strictly feasible point
towards the solution.

Active Set methods can be divided into primal, dual, and parametric methods,
of which the primal Active Set method is the oldest and can be seen as a direct
extension of the Simplex Algorithm [35]. Dual Active Set methods apply the primal
Active Set method to the dual of QP (8.1) (which exists if B is semidefinite). A
relatively new variant of Active Set methods are Parametric Active Set Methods
(PASM), e.g., the PQP method due to Best [17], which are the methods of interest
in this thesis. PASMs are based on an affine-linear homotopy between a QP with
known solution and the QP to be solved. It turns out that the optimal solutions
depend piecewise affine-linear on the homotopy parameter and that along each
affine-linear segment the active set is constant. The iterates of the method are
simply the start points of each segment.

The numerical behavior of Active Set and Interior Point methods is usually
quite different: While Active Set methods need on average substantially more it-
erations than Interior Point methods, the numerical effort for one iteration is sub-
stantially less for Active Set methods. Often one or the other method will perform
favorably on a certain problem instance, underlining that both approaches are im-
portant.

We want to concisely compare the main advantages of the different Active
Set versus Interior Point methods. One advantage of Interior Point methods is
the regularizing effect of the central path which leads to well-defined behavior on
problems with nonunique solutions due to, e.g., degeneracy or zero curvature in
a feasible direction at the solution. An advantage of all Active Set methods is
the possibility of hot starts which can give a substantial speed-up when solving
a sequence of related QPs because the active set between the solutions usually
changes only slightly. A unique advantage of PASM is that the so-called Phase 1
is not needed. The term Phase 1 describes the solution of an auxiliary problem to
find a feasible starting point for primal and dual Active Set methods or a strictly
feasible starting point for Interior Point methods. The generation of an appropriate
starting point with Phase 1 can be as expensive as the subsequent solution of the
actual problem.

1.3. Existing software. The popularity of primal/dual Active Set and In-
terior Point methods is reflected in the large availability of free and commercial
software products. A detailed list and comparison of the various implementations
is beyond the scope of this thesis. We restrict ourselves to citing a few imple-
mentations which we consider popular in Table 1. We further restrict our list to

2. PARAMETRIC ACTIVE SET METHODS 81

Code/Package
Interior primal/dual Parametric
Point Active Set Active Set

BPMPD [112] +
BQPD [54] +
COPL QP [166] +
CPLEX [87] + +
CVXOPT [34] +
GALAHAD [68] + +
HOPDM [61] +
HSL [6] + +
IQP [21] +
LOQO [155] +
MOSEK [114] +
OOQP [57] +
qpOASES [51] +
QPOPT [59] +
QuadProg++ [45] +
quadprog [110] +
QuadProg [151] +
rpasm [126] +
Xpress Optim. Suite [53] + +

Table 1. Software for convex Quadratic Programming (in alpha-
betical order).

implementations which are specifically designed for QPs, although any NLP solver
should be able to solve QPs.

The packages GALAHAD and FICO(TM) Xpress also provide the possibility of
using crossover algorithms which start with an Interior Point method to eventually
refine the solution by few steps of an Active Set method. CPLEX additionally
offers the option of a concurrent optimizer which starts a Barrier and an Active
Set method in parallel and returns the solution which was found in the shortest
amount of CPU time.

For Parametric Active Set methods we are only aware of the code qpOASES
(see Ferreau [51], Ferreau et al. [52]). We have developed a prototype Matlab R© code
called rpasm to demonstrate the efficacy of the proposed techniques and strategies
to fortify reliability of PASM.

2. Parametric Active Set methods

2.1. The Parametric QP. The idea behind Parametric Active Set methods
consists of following the optimal solutions on a homotopy path between two QP
instances. Figuratively speaking, the homotopy morphs a QP with known solution
into the QP to be solved. Let this homotopy be parametrized by τ ∈ [0, 1]. We
then want to solve the one-parametric family of τ -dependent QP problems

minimize
x(τ)∈Rn

1

2
x(τ)TBx(τ) + b(τ)Tx(τ) s. t. cl(τ) ≤ Cx(τ) ≤ cu(τ), (8.3)

with b, cl, and cu now being continuous functions b(τ), cl(τ), cu(τ). For fixed τ , let
the optimal primal-dual solution be denoted by z(τ) = (x(τ), y(τ)) which necessar-
ily satisfies (8.2) (with b = b(τ), cl = cl(τ), cu = cu(τ)). If we furthermore restrict

82 8. A PARAMETRIC ACTIVE SET METHOD FOR QP SOLUTION

the homotopy to affine-linear functions b ∈ Hn, cl, cu ∈ Hm, where

Hk = {f : [0, 1]→ R | f(τ) = (1− τ)f(0) + τf(1), τ ∈ [0, 1]},

it turns out that the optimal solutions z(τ) depend piecewise linearly but not nec-
essarily continuously on τ (see Best [17]). On each linear segment the active set is
constant. Parametric Active Set algorithms follow z(τ) by jumping from one be-
ginning of a segment to the next. We can immediately observe that this approach
allows hot-starts in a natural way. As mentioned already in Section 1.2, no Phase
1 is needed to begin the method: We can always recede to the homotopy start
b(0) = 0, cl(0) = 0, cu(0) = 0, x(0) = 0, y(0) = 0, although this is certainly not the
best choice as we discuss in Section 3 and Section 4.

2.2. The Parametric Quadratic Programming algorithm. A Paramet-
ric Active Set method was described by Best [17] under the name Parametric Qua-
dratic Programming (PQP) algorithm. Algorithm 17 displays the main steps. The
lines preceded by a number deserve further explanation.

Algorithm 17: The Parametric Quadratic Programming Algorithm.

Data: B,C, b(1), cl(1), cu(1), and z(0) = (x(0), y(0)) optimal for
b(0), cl(0), cu(0) with working set W ∈ {−1, 0, 1}m

Result: z(1) = (x(1), y(1)) or infeasible or unbounded
τ := 0;
Compute step direction ∆z = (∆x,∆y) with current working set W ;1

Determine maximum homotopy step ∆τ ;2

if ∆τ ≥ 1− τ then return solution z(1) := z(τ) + (1− τ)∆z;
Set τ+ := τ + ∆τ, z(τ+) := z(τ) + ∆τ∆z, and W+ := W ;
if constraint l is blocking constraint then

Set W+
l := ±1;

Linear independence test for new working set W+;3

if linear dependent then
Try to find exchange index k;4

if not possible then return infeasible;
Adjust dual variables y(τ+);5

Set W+
k := 0;

end

else (sign change of k-th dual variable is blocking)
Set W+

k := 0;
Test for curvature of B on new working set W+;6

if nonpositive curvature then
Try to find exchange index l;7

if not possible then return unbounded ;
Adjust primal variables x(τ+);8

Set W+
l := ±1;

end

end

Set τ := τ+ and W := W+;
Possibly update matrix decompositions;9

Continue with Step 1;

2. PARAMETRIC ACTIVE SET METHODS 83

Step 1: Computation of step direction. The working set W is encoded as an m-
vector with entries 0 or ±1, where the i-th component indicates whether constraint
i is inactive (Wi = 0), active at the lower bound (Wi = −1), or active at the upper
bound (Wi = +1). Let CW denote the matrix consisting of the rows Ci with Wi 6= 0
and let cW (τ) denote a vector which consists of entries cli(τ) or cui (τ) depending
on which (if any) bound is marked active in Wi. We can then determine the step
direction (∆x,∆y) by solving

KW (τ)

(
∆x
−∆yW

)
:=

(
B CT

W

CW 0

)(
∆x
−∆yW

)
=

(
−(b(1)− b(τ))
cW (1)− cW (τ)

)
. (8.4)

The dual step ∆y must be assembled from ∆yW by filling in zeros at the entries of
constraints i which are not in the working set (i.e., Wi = 0). For the initial working
set W we assume matrix CW to have full rank and matrix B to be positive definite
on the null space of CW . Thus matrix KW (0) is invertible. As we shall see in Steps 3
and 6, the PQP algorithm ensures the full rank and positive definiteness properties
and thus invertibility of KW (τ) for all further steps through exchange rules for
the working set W . We shall discuss a null space approach for the factorization of
KW (τ) in Step 9.

Step 2: Determination of step length. We can follow z(τ) in direction ∆z along
the current segment until either an inactive constraint becomes active (blocking
constraint) or until the dual variable of a constraint in the working set becomes
zero (blocking dual variable). Following the straight line with direction ∆z beyond
this point would lead to violation of conditions (8.2). The step length ∆τ can be
determined by ratio tests

RT : Rm+m → R ∪ {∞}, RT(u, v) = min{ui/vi | i ∈ m, vi > 0}. (8.5)

If the set of ratios is empty the minimum yields ∞ by convention. With the help
of RT, the maximum step towards the first blocking constraint is given by

tp = min{RT(Cx(τ)− cl,−C∆x),RT(cu − Cx(τ), C∆x)}, (8.6)

and towards the first blocking dual variable by

td = RT(W ◦ y(τ),W ◦∆y), (8.7)

where ◦ denotes elementwise multiplication to compensate for the opposite signs
of the dual variables for lower and upper active constraints. The maximum step
allowed is therefore

∆τ = min{tp, td}.
Best [17] assumes that each occurring minimization yields either ∞ or a unique
minimizer with corresponding index l ∈ m if ∆τ = tp or index k ∈ m if ∆τ = td
from the sets of the ratio tests. The occurrence of at least one nonunique minimizer
is called a tie. We can distinguish between primal-dual ties if tp = td, primal ties if
l is not unique, and dual ties if k is not unique. In case of a tie it is not clear which
constraint should be added or removed from the working set W and bad choices
can lead to cycling or even stalling of the method. Thus successful treatment of
ties is paramount to the reliability of Parametric Active Set methods and shall be
further discussed in Section 4.3.

Step 3: Linear independence test. The addition of a new constraint l to the
working set W can lead to rank deficiency of CW+ and thus loss of invertibility of
matrix KW (τ+). The linear dependence of Cl on Ci, i : Wi 6= 0 can be verified by
solving (

B CT
W

CW 0

)(
s
ξW

)
=

(
CT
l

0

)
. (8.8)

84 8. A PARAMETRIC ACTIVE SET METHOD FOR QP SOLUTION

Only if s = 0 then Cl is linearly dependent on Ci, i : Wi 6= 0 (see Best [17]).
The linear independence test can be evaluated cheaply by reusing the factorization
needed to solve the step equation (8.4).

Step 4: Determination of exchange index k. It holds that s = 0. Let ξ be
constructed from ξW like ∆y from ∆yW . Equation (8.8) then yields

Cl =
∑

i:Wi 6=0

ξiCi. (8.9)

Multiplying equation (8.9) by λW+
l with λ ≥ 0 and adding this as a special form

of zero to the stationarity condition in equations (8.2) yields

B(x(τ) + ∆τ∆x)− b(τ+) =
∑

i:Wi 6=0
yi(τ

+)CT
i

= −λW+
l C

T
l +

∑
i:Wi 6=0

(yi(τ
+) + λW+

l ξi)C
T
i .

(8.10)

Thus all coefficients of Ci, i : W+
i 6= 0 on the right hand side of equation (8.10) are

also valid choices ỹ for the dual variables as long as they satisfy the sign condition
W+
i ỹi ≤ 0. Hence we can compute the largest such λ with the ratio test

λ = RT(−W+
l (W ◦ y(τ+)),W+

l (W ◦ ξ)). (8.11)

If λ =∞ then the parametric QP does not possess a feasible point beyond τ+ and
thus the QP to be solved (at τ = 1) is infeasible. Otherwise, let k be a minimizing
index of the ratio set.

Step 5: Jump in dual variables. Now let

ỹi =

{
−λW+

i for i = l,

yi(τ
+) + λW+

i ξi for i : Wi 6= 0,

and set y(τ+) := ỹ. It follows from construction of λ that ỹk = 0 and thus,
constraint k can leave the working set. As a consequence, matrix CW+\{k} preserves
the full rank property and has the same null space as CW , thus securing regularity
of matrix KW+(τ+).

Step 6: Curvature test. The removal of a constraint from the working set can
lead to exposure of directions of zero curvature on the null space of CW+ (which
is larger than the null space of CW) leading to singularity of matrix KW+(τ+).
Singularity can be detected by solving(

B CT
W

CW 0

)(
s
ξW

)
=

(
0

−(ek)W

)
, (8.12)

where ek is the k-th column of the m-by-m identity matrix. Only if ξ = 0 then B is
singular on the null space of CW+ (see Best [17]). As for the linear independence test
of Step 3, the curvature test can be evaluated cheaply by reusing the factorization
needed to solve the step equation (8.4).

Step 7: Determination of exchange index l. It holds that ξ = 0 and s solves

Bs = 0, Cks = −1, CW+s = 0. (8.13)

Therefore all points x̃ = x(τ+) + σs are also solutions if x̃ is feasible. We can
compute the largest such σ = min{σl, σu} with the ratio tests

σl = RT(Cx(τ+)− cl,−Cs), σu = RT(cu − Cx(τ+), Cs). (8.14)

If σ = ∞ then the parametric QP is unbounded beyond τ+, including the QP to
be solved (at τ = 1). Otherwise, let l be a minimizing index of a ratio set which
delivers a final minimizer of σ.

2. PARAMETRIC ACTIVE SET METHODS 85

Step 8: Jump in primal variables. Now set x(τ+) := x(τ+) + σs. By construc-
tion of σ we have that either Clx(τ+) = cll (if σ = σl) or Clx(τ+) = cul (otherwise).
Thus l can be added to the working set via W+

l := −1 (if σ = σl) or W+
l := +1.

Step 9: Update matrix decompositions. We summarize a null space approach
for the solution of systems (8.4), (8.8), and (8.12). A range space approach is in
general not possible if B is only semidefinite (see, e.g., Nocedal and Wright [119]).
A direct factorization of KW (τ) via LDLT factorization is also possible but update
formulae are in the general case not as efficient as for the null space approach (see
Lauer [99]). The alternative of iterative linear algebra methods for the indefinite
matrix KW (τ) are beyond the scope of this thesis.

The null space approach is based on a QR decomposition of the transposed
active constraint matrix

CT
W = QR̃ =

(
Y Z

)(R
0

)
= Y R, QTQ = I.

Thus the columns of Z constitute an orthonormal basis of the null space of CW .
The columns of Y are an orthonormal basis of the range space of CT

W and the
upper triangular matrix R is invertible due to the full rank assumption on CW . By
assumption, the projected Hessian ZTBZ is positive definite and lends itself to a
Cholesky decomposition

ZTBZ = LLT

with invertible triangular matrix L. Exploiting CWZ = 0 and CWY = R, the
unitary basis transformation(

Y Z 0
0 0 I

)T(
B CT

W

CW 0

)(
Y Z 0
0 0 I

)
=

Y TBY Y TBZ R
ZTBY LLT 0
RT 0 0

yields a block-triangular system which can be solved via backsubstitution. When
the working set W changes by addition, removal, or substitution of constraints,
the QR decomposition of CW+ and following the Cholesky decomposition can be
updated cheaply from the previous decompositions (see Gill et al. [58]). For ex-
ploitation of special structures of B and C in large scale applications we refer the
interested reader to Kirches et al. [95, 94].

This concludes our presentation of the Parametric Quadratic Programming
algorithm.

2.3. Far bounds. Many applications lead to QPs where some of the con-
straint bounds cli, c

u
j , i 6= j, are infinite to allow for one-sided constraints, e.g.,

0 ≤ xi ≤ ∞. However, a homotopy from finite to infinite cl(τ) and cu(τ) is not
possible. The flipping bounds strategy to be described in Section 4.1 relies on finite-
ness of cl(τ) and cu(τ). We circumvent this problem by application of a so-called
far bounds strategy. It is based on the following idea: Let M > 0 be given. If M is
large enough then a solution (x, y) of (8.1) is also a solution of

minimize
x∈Rn

1

2
xTBx+ bTx s. t. c̃l ≤ Cx ≤ c̃u, (8.15)

where c̃li = max(cli,−M), c̃ui = min(cui ,M), i = 1, . . . ,m. We call a constraint bound
which attains the value ±M a far bound. Algorithmically we solve a sequence of
QPs with growing far bounds value M , see Algorithm 18. The total solution time
will mostly be dominated by the solution of the first QP as consecutive QPs of the
form (8.15) can be efficiently hot-started.

86 8. A PARAMETRIC ACTIVE SET METHOD FOR QP SOLUTION

Algorithm 18: The far bounds strategy.

Initialize M = 103;
repeat

Solve QP (8.15);
if no far bounds active then return QP solution;
Grow far bounds: M := 103M ;

until M > 1020 ;
if last QP infeasible then return QP infeasible;
else return QP unbounded;

3. Fundamental numerical challenges

In this section we describe the numerical challenges that occur in the PQP
algorithm. We shall develop countermeasures in Section 4.

One fundamental challenge in many applications is ill-posedness of problems:
Small changes in the data of the problem lead to large changes in the solution. This
challenge necessarily propagates through the algorithm and leads to ill-conditioned
matrices KW . As a consequence the results of the step computation (8.4), the
linear independence test (8.8), and the curvature test (8.12) can be erroneous up
to cond(KW) times machine precision in relative error (see, e.g., Wilkinson [163]).
This, in turn, can lead to very instable ratio tests (8.5) and wrong choices for the
working set which can cause the algorithm to break down.

Rounding errors can also accumulate over several iterations and lead to the
parametric “solution” z(τ) being optimal with an accuracy much less than machine
precision. We call this phenomenon drift. Large drift can also lead to breakdown
of the algorithm because the general assumption of optimality of z(τ) is violated.

Furthermore, the termination criterion must be adapted to work reliably on
both well- and ill-conditioned problems.

Ill-conditioning can also be introduced if the null space of CW captures two
eigenvalues of B with high ratio, leading to ill-conditioning of the Cholesky factors
L. In the extreme case, the next step for the dual variables can be afflicted with a
large error, causing again instability in the ratio tests.

The second fundamental challenge is the occurrence of comparisons with zero,
a delicate subject in the presence of rounding errors. These comparisons permeate
the algorithm from the sign condition in the ratio tests (8.5) to the tests for linear
dependence (8.8) or zero curvature (8.12).

The third fundamental challenge is the treatment of ties, i.e., nonuniqueness of
minimizers of the ratio tests (8.5). Consider the case mentioned in Section 2.1 of
a homotopy starting at x(0) = 0, y(0) = 0, b(0) = 0, cl(0) = 0, cu(0) = 0,W = 0.
Clearly (x(0), y(0)) is an optimal solution at τ = 0 regardless of the choice of B and
C. Note that for the PQP algorithm the choice of W = 0 is only possible if B is
positive definite. The first step direction will then point towards the unconstrained
minimizer of the objective. If more than one constraint is active in the solution at
τ = 1 then the primal ratio test (8.6) for determination of the step length yields
a (multiple) primal tie with ∆τ = tp = 0. Of all possible ratio test minimizers,
one has to be chosen. One approach seems to be to employ pricing heuristics
from primal/dual Active Set methods but we prefer a different approach which
we discuss in Section 4.3. In the following iterations primal-dual ties can occur
while still ∆τ = 0. Thus cycling, the repeated addition and removal of the same
constraints without any progress, can be possible which leads to stalling of the
method. We are not aware of any pricing strategy which can avoid the problem of

4. STRATEGIES TO MEET NUMERICAL CHALLENGES 87

cycling. Ties also occur naturally in the case of degenerate QPs, where the optimal
primal or dual variables are not uniquely determined.

4. Strategies to meet numerical challenges

We propose to employ the following strategies for Parametric Active Set meth-
ods to meet the fundamental numerical challenges described in Section 3.

4.1. Rounding errors and ill-conditioning. The most effective counter-
measure against the challenges of ill-conditioning is to iteratively improve the qual-
ity of the linear system solutions via

Iterative Refinement (see, e.g., Wilkinson [163]). We have already mentioned
that the relative error in the solution z of

KW z = d

can be as high as cond(KW) times machine precision. Thus if cond(KW) ≈ 1010

and we perform computations in double precision, the solution z can have as little
as six valid decimal digits. Iterative Refinement

z0 = 0, rk = KW z
k − d, KW δz

k = rk, zk+1 = zk − δzk

recovers a fixed number of extra valid digits in each iteration. In the previous
example, the iterate z2 has at least twelve valid decimal digits after only one extra
step of Iterative Refinement. It is worth noticing that compared to the original
“solution” z1 each iteration only needs to perform one additional matrix-vector-
multiplication with KW and one backwards solve with the decomposition of KW

described in Section 2.2. In exact arithmetic zk+1 = zk for all k ≥ 1.

Drift correction. A very effective strategy to avoid drift can be formulated if
the PQP algorithm is cast in a slightly different framework. After each iteration,
we rescale the homotopy parameter to τ = 0, thus interpreting the iterate z(τ+) as
a new starting value z(0). This does not avoid drift yet but allows for modifications
to restore consistency of the starting point via

cli(0) :=

{
Cix(0) if Wi = −1,

min{cli(0), Cix(0)} otherwise,

cui (0) :=

{
Cix(0) if Wi = +1,

max{cui (0), Cix(0)} otherwise,

yi(0) :=

max{0, yi(0)} if Wi = −1,

min{0, yi(0)} if Wi = +1,

0, otherwise,

b(0) := Bx(0)− CTy(0),

for i ∈ m. This annihilates the effects of drift after every iteration, at the cost of
splitting up the single homotopy into a sequence of homotopies which are, however,
very close to the remaining part of the original homotopy. In exact arithmetic the
proposed modification does not alter any value.

88 8. A PARAMETRIC ACTIVE SET METHOD FOR QP SOLUTION

Termination Criterion. It is tempting to use the homotopy parameter τ in the
termination criterion as proposed in Algorithm 17. However, this choice renders the
termination criterion dependent on the choice of the homotopy start, an undesirable
property. Instead we propose to use the relative distance δ in the data space

∆0 = (b(τ), cl(τ), cu(τ)), sj = (∆1
j −∆0

j)/max{1, |∆1
j |}, j = 1, . . . , n+m+m,

∆1 = (b(1), cl(1), cu(1)), δ = ‖s‖∞.
This choice also renders the termination criterion independent of the condition
number of KW (1). We observe that the termination criterion can give no guarantee
for the distance to the exact solution. Instead a backwards analysis result holds:
The computed solution is the exact solution to a problem which is as close as δ to
the one to be solved. The numerical results presented in Section 6 were obtained
with the tolerance δ ≤ δterm = 1e7 eps.

Ill-conditioning of the Cholesky factors L. To avoid ill-conditioning of the Chol-
esky factors L we have developed the so-called flipping bounds strategy. Flipping
bounds is similar to taking long steps in the dual Simplex method (see Kostina
[96], Sager [135]), where one variable changes in the working set from upper to lower
bound immediately without becoming inactive in between, i.e., it flips. Flipping
is only possible if cl(1) and cu(1) have only finite entries, which is guaranteed by
the far bounds strategy described in Section 2.3. We modify the PQP algorithm
in the following way: If a constraint l was removed without requiring another
constraint k to enter the active set, we monitor the size of the smallest entry `i of
the diagonal of L in Step 9. If `2i < δcurv we have detected a small eigenvalue in L
which corresponds to a small eigenvalue of B now uncovered through the removal
of constraint l. To avoid ill-conditioning of LLT, we introduce a jump in the QP
homotopy by requiring that the other bound of constraint l is moved such that it
becomes active immediately (hence the name flipping bounds) through setting

c̃ll(τ
+) := cul (τ+),W+

l = −1, if Wl = +1,

c̃ul (τ+) := cll(τ
+),W+

l = +1, if Wl = −1.

The entries j 6= l of c̃l and c̃u are set to the corresponding entries of cl and cu.
Consequently the Cholesky decomposition from the previous step stays valid for
the current projected Hessian.

The numerical results presented in Section 6 were obtained with the curvature
tolerance δcurv = 1e4 eps.

4.2. Comparison with zero.

Ratio tests. In the ideal ratio test (8.5) we take a minimum over a subset
of m quotients with strictly positive denominator. The presence of round-off error
makes it necessary to substitute the ideal ratio test by an expression with adjustable
tolerances, e.g.,

ucut
i = max(ui, εcut), i ∈ m,

RTr(u, v, εcut, εden, εnum) = min{ucut
i /vi | i ∈ m, vi ≥ εden, u

cut
i ≥ εnum}.

We now explain the purpose of the three tolerances: The denominator tolerance
εden > 0 describes which small but positive values of vi should already be considered
less than or equal to zero. They are consequently discarded as candidates for the
minimum.

The cutting tolerance εcut and the numerator tolerance εnum offer the freedom
of two different treatments for numerators close to zero. If εcut > εnum then negative
numerators are simply cut off at εcut before the quotients are taken, yielding that

4. STRATEGIES TO MEET NUMERICAL CHALLENGES 89

the minimum is greater or equal to εcut/εden. For instance, we set εcut = 0 in
the ratio tests for determination of the step length (8.6) and (8.7). This choice is
motivated by the fact that in exact arithmetic ui ≥ 0 for all i ∈ m with vi > 0.
Thus only values ui which are negative due to round-off are manipulated and the
step length satisfies ∆τ ≥ 0 also in finite precision arithmetic.

If εcut ≤ εnum then cutting does not have any effect. We have found it beneficial
for the reliability of PASM to set εnum = εden in the ratio tests (8.11) and (8.14)
for finding exchange indices.

The numerical results presented in Section 6 were obtained with the ratio test
tolerances εden = −εnum = 1e3 eps and εcut = 0 for step length determination and
εden = εnum = −εcut = 1e3 eps for the remaining ratio tests.

Linear independence and zero curvature test. After solution of systems (8.8)
and (8.12) for s and ξW we must compare the norm of s or ξ with zero. Let
ζ = (s, ξ). We propose to use the relative conditions

‖s‖∞ ≤ εtest‖ζ‖∞ for the linear dependence test and (8.16)

‖ξ‖∞ ≤ εtest‖ζ‖∞ for the zero curvature test. (8.17)

We remark that ‖ζ‖∞ = ‖ξ‖∞ if s = 0 and ‖ζ‖∞ = ‖s‖∞ if ξ = 0. Thus we can
replace ‖ζ‖∞ in the code by ‖ξ‖∞ in test (8.16) and by ‖s‖∞ in test (8.17).

The numerical results presented in Section 6 were obtained with εtest = 1e5 eps.

4.3. Cycling and ties. Once ties have occurred, their resolution is a costly
affair because of the combinatorial nature of the decision which subset of the pos-
sible constraints should be chosen to leave or enter the working set. This decision
can be based on the solution of yet another QP of larger size than the original prob-
lem (see Wang [158]) or on heuristics similar to anti-cycling rules in the Simplex
method.

We prefer a different approach instead. The idea behind the strategy we propose
for ties is simple: Instead of trying to treat ties, we try to avoid them in the first
place. The strategy is as simple as the idea and exploits the homotopy framework
of PASM. Let a homotopy start b(0), cl(0), cu(0) with optimal solution (x(0), y(0))
and working set W be given. Then for every triple of m-vectors r0, r1, r2 ≥ 0 the
primal-dual pair (x(0), ỹ(0)) with

ỹi(0) =

yi(0) + ri if Wi = −1,

yi(0) if Wi = 0,

yi(0)− ri if Wi = +1,

i ∈ m,

is an optimal solution to the homotopy start b̃(0), c̃l(0), c̃u(0), where for i ∈ m

c̃li(0) =

{
cli(0), if Wi = −1,

cli(0)− r1
i , otherwise,

c̃ui (0) =

{
cui (0), if Wi = +1,

cui (0) + r2
i , otherwise,

b̃(0) = −(Bx(0)− CTỹ(0)).

In other words, if we move the inactive constraint bounds further away from Cx(0)
and the dual variables of the active constraints further away from zero, x(0) stays
feasible and b(0) can be adapted to restore optimality of (x(0), ỹ(0)) with the same
working set W . Recall that the ratio tests depend exactly on the residuals of

90 8. A PARAMETRIC ACTIVE SET METHOD FOR QP SOLUTION

the inactive constraints and the dual variables of the active constraints. In our
numerical tests, the simple choice of

rji = (1 + (i− 1)/(m− 1))/2, j = 0, 1, 2, i ∈ m,
has proved to work reliably. Because of the shape of rj , we call this strategy
ramping. It is important to avoid two entries of rj to have the same value because
many QP problems exhibit special structures, e.g., variable bounds of the same
value for several variables which lead to primal ties if the homotopy starts with
the same value for each of these variables. Of course, the choice of linear ramping
is somewhat arbitrary and if a problem happens to have variable bounds in the
form of a ramp, ties are again possible. However, this kind of structure is far less
common than equal variable bounds.

We employ ramping in the starting point of the homotopy and also after an
iteration which resulted in a zero step ∆τ = 0. Of course, this can lead to large
jumps in the problem homotopy and practically catapult the current b(0) := b̃(0)
further away from b(1). However, a PASM is capable of reducing even a large
distance in the data space to zero in one step, provided the active set is correct.
Thus the distance of the working set W to the active set of the solution is a more
appropriate measure of the progress of a PASM. By construction, the active set is
preserved by the ramping strategy.

We further want to remark that ties can never be completely avoided. For
instance in case of a QP whose solution lies in a degenerate corner, a tie must occur
in (at least) one iteration of a PASM. In the numerical examples we have treated
so far, the ramping strategy effectively deferred these ties to the final step, where a
tie is not a problem any more because the solution at the end of the last homotopy
segment is already one of infinitely many solutions of the QP to be solved and no
ties must be resolved in the solution.

5. The code rpasm: A PASM in Matlab R©

We have implemented the strategies proposed in Section 4 in a Matlab R© code
called rpasm. The main purpose of the code is to demonstrate reliability and
solution quality on the test set. In favor of code simplicity we have refrained from
employing special structure exploiting linear algebra routines which could further
enhance the runtime of the code. The three main features in the C++ PASM
code qpOASES (see Ferreau [51], Ferreau et al. [52]) for runtime improvement in
the linear algebra routines are special treatment of variable bounds, updates for
QR decompositions, and appropriate updates for Cholesky decompositions. Of
the three, rpasm only performs QR updates. Variable bounds are simply treated
as general inequality constraints. Cholesky decompositions are computed from
scratch after a change in the active set. Another feature which is common in
most commercial QP solvers is the use of a preprocessing/presolve step to reduce
the problem size by eliminating fixed variables and dispensable constraints and
possibly scaling the data. We shall see that rpasm works reliably even without
preprocessing.

6. Comparison with existing software

From the codes contained in Table 1 we use the ones which are freely available
for academic purposes and come with a Matlab R© interface, i.e., CPLEX, OOQP,
qpOASES, plus the Matlab R© solver quadprog and the newly developed rpasm. The
programs cover the range of Primal Active Set (CPLEXP, quadprog), Dual Active
Set (CPLEXD), Barrier/Interior Point (CPLEXB, OOQP), and Parametric Active

6. COMPARISON WITH EXISTING SOFTWARE 91

Time factor

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

rpasm0
rpasm1
quadprog
OOQP
qpOASES
CPLEXP
CPLEXD
CPLEXB

100 101 102 103 104 105
0

10

20

30

40

50

60

70

80

90

100

Figure 1. Performance comparison with loose residual threshold
ρ ≤ 1e-2.

Set (qpOASES, rpasm). For rpasm, we further differentiate between a version with-
out iterative refinement (rpasm0) and with one possible step of iterative refinement
(rpasm1). All codes were used with their default settings on all problems.

6.1. Criteria for comparison. We compare the runtime and the quality of
the solution. Runtime was measured as the average runtime of three runs on one
core of an Intel R© CoreTM i7 with 2.67 GHz and 8 MB cache in Matlab R© 7.6 under
Linux 2.6 (64 bit). The quality of solutions (x∗, y∗) was measured using a residual
ρ of conditions (8.2) defined via

ρstat = ‖Bx∗ + b− CTy∗‖∞,
ρfeas = max(0, cl − Cx∗, Cx∗ − cu),

ρl
cmpl = max{|(Cx∗ − cl)iy∗i | | y∗i ≥ +10 eps},
ρu

cmpl = max{|(Cx∗ − cu)iy
∗
i | | y∗i ≤ −10 eps},

ρ = max(ρstat, ρfeas, ρ
l
cmpl, ρ

u
cmpl).

We visualize the results for problems from the Maros-Mészáros test set [109] with
at most n = 1000 variables and m = 1001 two-sided inequality constraints (not
counting variable bound constraints) in the performance graphs of Figures 1 and 2.
The graphs display a time factor on the abscissa versus the percentage of problems
that each code was able to solve within the time factor times the runtime of the
fastest method for each problem. Roughly speaking, the graph of a fast method is
close to the left hand side of the diagram, the graph of a reliable method is close to
the top of the diagram. We remark that the results for rpasm were obtained using
only dense linear algebra routines.

There is a certain arbitrariness in the notion of a “solved problem” between
the different codes. We choose to consider a problem as solved if ρ is less than or
equal to a certain threshold. This approach is not unproblematic either: A not

92 8. A PARAMETRIC ACTIVE SET METHOD FOR QP SOLUTION

Time factor

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

rpasm0
rpasm1
quadprog
OOQP
qpOASES
CPLEXP
CPLEXD
CPLEXB

100 101 102 103 104 105
0

10

20

30

40

50

60

70

80

90

100

Figure 2. Performance comparison with tight residual threshold
ρ ≤ 1e-8.

tight enough termination threshold of a code can lead to premature termination
and the problem would be considered “not solved” by our criterion, although the
method might have been able to recover a better solution with more iterations.
This is especially an issue for Interior Point/Barrier methods. Thus the graphs in
Figures 1 and 2 show reliability of the methods only in connection with their default
settings. However, we are not aware of any simple procedure which would lead to
a fairer comparison. Figure 1 shows the results with a relatively loose threshold of
ρ ≤ 1e-2 and Figure 2 with a tighter threshold of ρ ≤ 1e-8.

6.2. Discussion of numerical results. We first discuss the results depicted
in Figure 1 and continue with the differences to the tighter residual tolerance in
Figure 2.

From Figure 1 we see that the newly developed code rpasm with iterative refine-
ment is the only code which solves all of the problems to the prescribed accuracy.
The version of rpasm without iterative refinement fails on three problems (95 %).
Furthermore, both versions of rpasm dominate quadprog both in runtime and the
number of solved problems (62 %). The primal and dual versions of CPLEX are
the second most reliable with 96 % and 97 %. CPLEX solves no problem in less
than 1.3 s, not even the small examples which are solved in a few milliseconds by
rpasm. We suspect that this is due to a calling overhead in CPLEX, e.g., for li-
cense checking. This is also one reason why OOQP is much faster than the Barrier
version of CPLEX, albeit they both solve roughly the same number of problems
(70 % and 73 %, respectively). Even though the code qpOASES is only appropriate
for QPs with positive definite Hessian, which make up only 27 % of the considered
problems, it still solves 44 % of the test problems. Additionally, we want to stress
that those problems solved by qpOASES were indeed solved quickly.

8. NONCONVEX QUADRATIC PROGRAMS 93

Now we discuss the differences between Figure 2 and Figure 1, i.e., when
switching to a tighter residual tolerance of ρ ≤ 1e-8: The ratio of solved prob-
lems drops dramatically for the Interior Point/Barrier methods (CPLEXB: 29 %,
OOQP: 37 %). This is a known fact and the reason for the existence of crossover
methods which refine the results of Interior Point/Barrier methods with an Active
Set method. The code qpOASES still solves 44 % of the problems, which indicates
that the solutions that qpOASES yields are of high quality. Furthermore, qpOASES
is fast: It solves 36 % of the problems within 110 % of the time of the fastest method
for each of these problems. The number of problems solved by quadprog decreases
to 53 %. The primal and dual Active Set versions of CPLEX solve 78 % of the
problems. Only the code rpasm is able to solve more than 80 % of the problems to
a residual of ρ ≤ 1e-8 (rpasm0: 82 %, rpasm1: 84 %).

We can conclude that the strategies proposed in Section 4 indeed lead to a
reliable method for the solution of convex QPs.

7. Drawbacks of the proposed PASM

Although the method has proved to work successfully on the test set, the im-
provement in reliability is achieved only at the price of breaking the pure homotopy
paradigm which complicates an otherwise straightforward proof of convergence for
the method: Drift correction, ramping, and the flipping bounds strategy lead to
jumps in the trajectories of b(τ), cl(τ), and cu(τ) and thus to a sequence of (possibly
nonphysical) homotopies. Proving the nonexistence or possibility of cycles caused
by these strategies is future work.

8. Nonconvex Quadratic Programs

The flipping bounds strategy presented in Section 4.1 can also be extended to
the case of nonconvex QPs with indefinite Hessian matrix B. When the Cholesky
factorization or update breaks down due to a negative diagonal entry, we also
flip instead of remove the constraint l. Hence the projected Hessian always stays
positive definite. By the second order necessary optimality condition, the projected
Hessian in every isolated local minimum of the nonconvex QP is guaranteed to be
positive semi-definite. Conversely, if the projected Hessian is positive definite and
strict complementarity holds at τ = 1 we obtain a local minimum because the
second order sufficient condition is satisfied. No guarantees can be given in the
case of violation of strict complementarity.

Finding a global minimum of a nonconvex QP is known to be an NP-hard
problem, even if the Hessian has only one single negative eigenvalue (see Murty
[116]). However, a local solution returned by the PASM can be refined by flipping all
combinations of active bounds whose removal would lead to an indefinite projected
Hessian and restarting the PASM for each of these flipped Active Sets, revealing
again the combinatorial nature of finding the global solution of the nonconvex QP.

In the context of SQP with indefinite Hessian approximations (e.g., symmetric
rank one updates, the exact Hessian, etc.), a local solution of a nonconvex QP is
sufficient because the SQP method can only find local minima anyway.

For proof of concept we seek a local solution of the nonconvex problem

minimize
1

2

k−2∑
i=1

(xk+i+1 − xk+i)
2 − 1

2

k=1∑
i=1

(xk−i + xk+i+αk−i+1)2 (8.18a)

s. t. xk+i − xi+1 + xi = 0, i = 1, . . . , k − 1, (8.18b)

αi ≤ xi ≤ αi+1, i = 1, . . . , k, (8.18c)

0.4(αi+2 − αi) ≤ xk+i ≤ 0.6(αi+2 − αi), i = 1, . . . , k − 1, (8.18d)

94 8. A PARAMETRIC ACTIVE SET METHOD FOR QP SOLUTION

with given constants αi = 1+1.01i, i = 1, . . . , k−1. We have adapted problem (8.18)
from problem class 3 by Gould [63] by switching the sign in front of the second sum
and the α terms in the objective. We start the computation with an initial guess
of x(0) = 0, y(0) = 0, set the lower bounds of equations (8.18c) and (8.18d) active
in the initial working set, and adjust the variables via ramping (see Section 4.3).
The changes of the working set are depicted in Figure 3 for k = 100 and therefore
n = 199,m = 298. Row l of the depicted image corresponds to the working set in
iteration l and column j corresponds to the status of constraint j in the working
set when the iterations advance. The shades indicate constraints which are inactive
(gray), active at the lower bound (black), or active at the upper bound (white).
Thus direct transitions from black to white or vice versa along a vertical line indicate
flipping bounds. We can observe that the chosen initial working set is completely
different to the final working set in the solution. Still the number of iterations is
less than two times the number of constraints which indicates that the proposed
method works efficiently on this instance of the nonconvex problem (8.18).

In the solution which corresponds to Figure 3, n = 199 out of m constraints
are active and strict complementarity is satisfied. Thus we indeed have obtained a
local optimum.

Constraint number

It
er
a
ti
o
n

50 100 150 200 250

50

100

150

200

250

300

350

Figure 3. Active set changes for nonconvex problem (8.18), k =
100. Each line of the image corresponds to the working set in one
iteration. The colors indicate constraints which are inactive (gray),
active at the lower bound (black), or active at the upper bound
(white). Direct transitions from black to white or vice versa along
a vertical line indicate flipping bounds.

CHAPTER 9

Automatic derivative generation

The inexact SQP method which we describe in Chapter 4 requires first and
second order derivatives of the problem functions. There are several ways how
derivatives can be provided. The first is to have them provided along with the
problem-dependent model functions by the user. This can be cumbersome for the
user and it is impossible for the program to check whether the derivatives are free
of errors, even though consistency tests evaluated in a few points can somewhat
mitigate the problem. These are, however, severe drawbacks.

A second way is the use of symbolic calculation of derivatives. Although in
principle possible by the use of symbolic computer algebra systems, the resulting
expressions for the derivatives can become too large to be evaluated efficiently.

A third way is the use of numerical schemes. Finite differences can be computed
efficiently but they inevitably involve cancellation and truncation errors. While the
cancellation errors can be circumvented by using a complex step derivative (see
Squire and Trapp [146]) two further drawbacks still remain: First, complex step
derivatives without cancellation are limited to first order derivatives. Second, the
evaluation of the gradient of a scalar-valued function of many variables cannot be
carried out efficiently.

The aim of this chapter is to recapitulate an efficient and automated way to
compute derivatives from a given computer code. This fourth way does not suffer
from the drawbacks of the previous three. The main principles are Algorithmic
Differentiation (AD) and Internal Numerical Differentiation (IND). We refer the
reader to Griewank [69] and Bock [22, 23], respectively.

The chapter is structured in four sections. In Section 1 we give a concise survey
about the idea behind AD and in Section 2 about the principle of IND. We continue
with the discussion of a subtle difficulty in the application of the IND principle to
implicit time-stepping methods with monitor strategy in Section 3 and conclude
the chapter in Section 4 with a short note on the numerical effort needed for the
first and second order derivative generation needed in the inexact SQP method for
NLP (2.3) described in Chapter 4.

1. Algorithmic Differentiation

Every computer code that approximates a mathematical function performs the
calculation by concatenating a possibly large number of evaluations of a few el-
emental operations like +,−, ∗, /, sin, exp, etc., yielding an evaluation graph with
intermediate results as vertices and elemental operations as edges. The principle of
AD is to apply the chain rule to the concatenation of elemental operations. This is
possible because the elemental operations are (at least locally) smooth functions.

There are two main ways how AD can be applied to compute derivatives of a
function

F : Rnind → Rndep

to machine precision.

95

96 9. AUTOMATIC DERIVATIVE GENERATION

Forward mode. We traverse the evaluation graph from the independent input
variables towards the dependent output variables. The numerical effort of the
forward mode to compute a directional derivative at x ∈ Rnind in the direction of
s ∈ Rnind

∇F (x)Ts

is only a small multiple of the evaluation of F (x).

Backward mode. We traverse the evaluation graph backwards from the de-
pendent variables to the independent variables while accumulating the derivative
information. The numerical effort of the backward mode to compute an adjoint
directional derivative at x ∈ Rnind in the direction of s′ ∈ Rndep

∇F (x)s′

is also only a small multiple of the evaluation of F (x). For the backward mode,
however, the function F (x) has to be evaluated in advance and all intermediate
results must be accessible when traversing backwards through the evaluation graph.
This is usually accomplished by storing all intermediate results to a contiguous
memory block, the so called tape, or by a checkpointing strategy which stores only
a few intermediate results and recomputes the remaining ones on the fly. Both
approaches have their value depending on the ratio of computation speed and access
time to the memory hierarchy on a particular computer architecture.

The elemental operations can be formally generalized to operate on truncated
Taylor series. This approach makes the evaluation of arbitrary-order derivatives
possible in a unified framework. To circumvent the drawback of high memory
requirements and irregular memory access patterns, Griewank et al. [73] suggest to
use only univariate truncated Taylor series from which mixed derivatives can be
obtained by an interpolation procedure. Univariate Taylor coefficient propagation
can also be used in forward and backward mode.

2. The principle of IND

For the solution of the NLP (2.3) we also need the derivatives of the state
trajectories ui and vi with respect to initial values and controls on each multiple
shooting interval which we denoted by the G-matrices and H-matrices in Chapter 7.
For numerical efficiency reasons we compute the values of ui and vi with adaptive
control of accuracy. Two problems arise for the computation of derivatives in this
case:

First, if we consider the differential equation solver as a black box and em-
ploy finite differences or AD to the solver as a whole we inevitably also differenti-
ate the adaptive components of the solver. This approach of External Numerical
Differentiation (END) yields derivatives which are not consistent, i.e., in general
they do not converge to the derivative of the exact solution when we increase the
demanded accuracy. Even worse, the END-derivative is polluted with large errors
if the adaptive components are not differentiable. This is rather the common case
than the exception, e.g., if the adaptive components use conditional statements.

Second, we could try a differentiate-then-discretize approach: The derivative
of the exact solution is given by a Variational Differential Equation (VDE) which
exists in a forward and adjoint form (see, e.g., Hairer et al. [76], Hartman [77]).
If only forward derivatives are needed then we can use a solver for the combined
system of nominal and variational differential equations to obtain derivatives which
are also consistent on a discretized level. However, if we apply a solver to the
adjoint VDE we in general obtain a different discretization scheme due to adaptive
error control. Thus the derivatives are not consistent on the discrete level which can
severely impede the local convergence of the superordinate inexact SQP method.

3. IND FOR IMPLICIT TIME-STEPPING WITH MONITOR STRATEGY 97

IND solves these two problems. The principle of IND states:

(1) The derivatives of an adaptive numerical procedure must be computed
from the numerical scheme where all adaptive components are kept con-
stant (frozen).

(2) The numerical scheme must be convergent for the nominal value and the
derivative.

IND can be applied directly on the discrete level, e.g., by performing AD subject
to skipping the differentiation of adaptive components, or indirectly, e.g., by choos-
ing the same discretization scheme for the original and the variational differential
equation.

3. IND for implicit time-stepping with monitor strategy

In this section we focus on a prototypical example which demonstrates the sub-
tle issue of stability of the scheme for the VDE with implicit time-stepping methods.
We restrict our presentation to the Backward Euler method although the results
transfer to other implicit methods like Backward Differentiation Formula (BDF)
methods with IND as described by Bauer et al. [13, 12], Bauer [11], Albersmeyer
and Bock [3], Albersmeyer [2].

Example 5. Let us consider the linear heat equation on Ω = (0, π) with
homogeneous Dirichlet boundary conditions

∂tu = ∆u in (0, 1)× Ω,

u = 0 on (0, 1)× ∂Ω,

u
∣∣
t=0

= u0.

We discretize the problem with the FDM in space on the equidistant grid

xj = jh, j = 0, . . . , N, h = π/N,

and obtain the linear IVP

u̇(t) = Au(t), u(0) = u0, (9.1)

where the matrix A is given by

A =
1

h2

−2 1

1
. . .

. . .

. . .
. . . 1
1 −2

 ∈ R(N−1)×(N−1).

To satisfy the boundary conditions the values in the nodes x0 and xN are implicitly
set to zero and are not a part of the discretized vector u(t).

Lemma 9.1. For k = 1, . . . , N − 1 define the pair (vk, λk) ∈ RN−1 × R by

vkj = sin(jkh), λk = 2h−2(cos(kh)− 1).

Then (vk, λk) is an eigenpair of A.

Proof. Because sin(0kh) = 0 and sin(Nkh) = sin(kπ) = 0 we obtain

h2(Avk)j = sin(jkh− kh) + sin(jkh+ kh)− 2 sin(jkh)

= 2 sin(jkh) cos(kh)− 2 sin(jkh)

= 2(cos(kh)− 1)vkj ,

for j = 1, . . . , N − 1. This proves the assertion.

98 9. AUTOMATIC DERIVATIVE GENERATION

We see that the eigenvalue of smallest modulus is

λ1 = 2h−2(cos(h)− 1) = 2h−2
∞∑
i=1

(−1)i

(2i)!
h2i = −1 +O(h2),

and that the eigenvalue of largest modulus tends towards minus infinity

λN−1 =
2

π2
N2(cos(π(N − 1)/N)− 1) ≈ −4N2

π2
.

Thus ODE (9.1) is stiff and becomes stiffer for finer spatial discretizations.
Because the vectors vk are N − 1 eigenvectors to pairwise different eigenvalues

λk they form a basis of RN−1. If we rewrite ODE (9.1) in the basis spanned by
{vk} we obtain the decoupled ODE of Dahlquist type

˙̃u(t) = diag(λ1, . . . , λN−1)ũ(t). (9.2)

Consider now a Backward Euler method for ODE (9.2). Starting from ũ0 at
t0 = 0 we compute a sequence {ũn} such that the value ũn at tn = tn−1 + ∆tn

solves approximately

0 = (I−∆tn diag(λ1, . . . , λN−1))ũn − ũn−1 =: Mnũn − ũn−1. (9.3)

Although we could solve equation (9.3) exactly without much effort, this is not the
case for nonlinear ODEs. Efficient numerical integrators employ a Newton-type
method for the efficient solution of the nonlinear counterpart of equation (9.3).
The so called monitor strategy is a Simplified Newton method for equation (9.3)
where the decomposition of the iteration matrix Mk of a previous step is utilized
and the contraction of the iteration is monitored. Usually we update the iteration
matrix if the error has not been reduced satisfactorily within three Newton-type
iterations. For simplification of presentation we assume that we perform enough
iterations to reduce the error to machine precision. In the case of ODE (9.2) the
iteration boils down to

ũn,i = ũn,i−1 − (Mk)−1(Mnũn,i−1 − ũn−1).

Thus we obtain for the j-th component of ũn,i the expression

ũn,ij =

(
1− 1−∆tnλj

1−∆tkλj

)
ũn,i−1
j +

ũn−1
j

1−∆tkλj
.

This iteration is unstable if and only if there exists an index j with ũn,0j 6= 0 and
such that

|1− (1−∆tnλj)/(1−∆tkλj)| > 1,

or, equivalently,

1−∆tnλj
1−∆tkλj

> 2 ⇔ 1−∆tnλj > 2− 2∆tkλj ⇔ ∆tn >
1

|λj |
+ 2∆tk. (9.4)

A numerically optimal step size controller for stiff systems must maximize the step
length such that the method is always on the verge of becoming unstable. We see
from condition (9.4) that the step size can be more aggressively increased if the
initial value does not contain modes which belong to eigenvalues of large modulus.

The following problem now becomes apparent: Assume that the initial value is
a linear combination of only the first p� N (low-frequency) modes, i.e.,

u0 =

p∑
j=1

ũ0
jv
j .

4. NUMERICAL EFFORT OF IND 99

Assume further that the monitor strategy keeps the iteration matrix at M0 for the
first steps and that the step size controller chooses

∆tj =
1

|λp+1|
+ 2∆t1 <

1

|λp|
+ 2∆t1, j = 2, . . . , n,

which yields a stable scheme. Say we want to compute the derivative of u(tn) with
respect to u0 in direction d by using the chosen scheme on the VDE for ODE (9.1),
which is again ODE (9.1) with initial value d because ODE (9.1) is linear. If d
has nonzero components in the directions of vk, k = p + 2, . . . , N − 1, then this
computation is not stable and thus not convergent. Hence this approach does not
satisfy the IND principle.

One possible solution to this problem is to perform adaptive error control on
the nominal values simultaneously with the forward derivative values (see, e.g.,
Albersmeyer [2, Section 6.7.5]). However, computing the gradient of the Lagrangian
with forward sweeps is prohibitively expensive for large nind. Thus this approach
is computationally not feasible for the problems considered in this thesis.

Our pragmatic approach, which has worked reliably for the examples in Part 3,
is to tighten the required tolerance for the Simplified Newton method that approx-
imates the solution of the implicit system (equation (9.3) in our previous example)
by a factor of 1000. This leads to more frequent reevaluation of the iteration matrix
within the monitor strategy and enlarges thus the numerical stability regions. We
have not yet performed a thorough comparison of the extra numerical effort of this
approach which seems to amount to roughly 20%.

4. Numerical effort of IND

We have computed all numerical applications in Part 3 with the adaptive BDF
method with IND derivative generation described by Albersmeyer [2]. The methods
that he has developed enable us to evaluate matrix vector products of the form

J(xk, yk)v =

(
∇2
xxL(xk, yk) −∇g(xk)
∇g(xk)T 0

)(
v1

v2

)
occurring in Chapter 4 in only a small multiple of the numerical effort spent for
evaluation of F (zk). Even though the upper left block contains second derivatives
of ui and vi they need only be evaluated in one adjoint direction given by the
current Lagrange multipliers in yk and the forward direction given by v1.

CHAPTER 10

The software package MUSCOP

We have implemented the inexact SQP method based on the GINKO algorithm
with two-grid Newton-Picard generalized LISA as described in Chapter 4. It is our
goal in this chapter to highlight the most important software design decisions and
features. We have named the software package MUSCOP, which is an acronym for
Multiple Shooting Code for PDEs. The name alludes to the successful software
package MUSCOD-II (see Leineweber [103], Leineweber et al. [105] with extensions
by Leineweber [104], Diehl [46], Schäfer [139], Sager [136]) because we had originally
intended to design it as a MUSCOD-II extension. In Section 1 we discuss why we
have decided to develop the method in a stand-alone parallel form and outline which
programming paradigms have proved to be useful in the development of MUSCOP.
Afterwards we explain the orchestration of the different software components in
Section 2.

1. Programming paradigms

The programming paradigms of a software package should be chosen to support
the main goals and target groups of the project. We identify two equally important
target groups for MUSCOP: Practitioners and algorithm developers. Both groups
have different perspectives on the goals of MUSCOP. In our opinion the main goals
are:

(1) Hassle-free setup of new application problems
(2) Quick, accurate, and reliable solution of optimization problems
(3) Fast development of algorithmical extensions

While goal (2) is of equal importance to both practitioners and developers, goal (1)
will be more important than goal (3) for a practitioner and vice versa for a devel-
oper. A user of MUSCOP is in most real-life cases partly practitioner and developer
at the same time.

1.1. Hybrid language programming. Quick problem solution and fast de-
velopment of extensions sometimes are diametrically opposed goals: On the one
hand the fastest runtimes might be achieved by only writing assembler machine
code for a specific computer architecture, but such a code might soon become too
complex and surpass a developer’s capacity to maintain or extend it in a reasonable
amount of time. On the other hand, the sole use of a high-level numerical program-
ming language like Matlab R© or GNU Octave might result in a considerable loss of
performance, especially if algorithms are not easily vectorizable, while the devel-
opment time of the code and its extensions might be dramatically reduced, mainly
because debugging problems on a numerical level is possible in a more accessible
way by the use of well-tested built-in methods like cond, eig, svd, etc., and data
visualization.

We use hybrid language programming in the following way: All time-critical
algorithmic components should be implemented in lower-level programming lan-
guages and all other components in higher-level programming languages. This
concept is not new, GNU Octave being one example because it is written in C++

101

102 10. THE SOFTWARE PACKAGE MUSCOP

while most dense linear algebra components are based on an architecture-optimized
BLAS and LAPACK implementation called ATLAS (see Whaley et al. [161]).

In the case of MUSCOP the most time-critical component is the evaluation
of the shooting trajectories and their derivatives of first and second order (see
Part 3). This task is performed by the software package SolvIND (see Albersmeyer
and Kirches [5]) which is entirely written in C++ and uses ATLAS, UMFPACK (see
Davis [38]), and ADOL-C (see Griewank et al. [71, 72], Walther et al. [157]). Most
of the remaining code is written in Matlab R©/GNU Octave except for the interface
to SolvIND which is at the time of writing only available for GNU Octave and
not for Matlab R©. This approach has proven to be beneficial for the development
speed of MUSCOP while only minor performance penalties have to be accepted
(see Part 3).

The GNU Octave and C++ components of MUSCOP are separated on the left
hand and right hand side of Figure 1, respectively. We shall give a more detailed
explanation of Figure 1 in Section 2.

1.2. No data encapsulation. Figure 1 already indicates that the different
software components of MUSCOP are heavily interwoven. This is not a result of
poor design of programming blocks (or classes if you will). It is rather the inevitable
consequence of intelligent structure exploitation in the MUSCOP algorithm. The
efficiency of MUSCOP lies in the reuse of intermediate data of one logic program
block in another one, which is a major efficiency principle not only but particularly
in complex numerical methods.

Take for instance the use of the Newton-Picard Hessian approximation in Chap-
ter 7, Section 4. It can only be assembled after half of the condensing steps, namely
the computation of Ẑ, has been performed. Only then can we evaluate the partially

projected (coarse grid) Hessian B̃′ = ẐTB̂Ẑ.
We do not want to suggest that a functional encapsulation in logical blocks like

function evaluation, condensing, QP solution, etc. is impedimental. We believe,
however, that the encapsulation of the data of these blocks is. In our opinion the
structure of the code should indeed follow the logical structure of a mathemati-
cal exposition of the method but the exchange of data should not be artificially
obstructed by interfaces which follow the functional blocks.

Object Oriented Programming (OOP) raises the rigid coupling of function and
data interfaces (methods and private members in the language of OOP) to a design
principle. We believe that OOP is a valid approach for software which is supposed to
be used in a black-box fashion but we believe it to be more obstructive than helpful
for the structure exploiting numerical methods we develop in this thesis. This is
the main reason why MUSCOP is not OOP and not an extension of MUSCOD-II.

In MUSCOP we use a global, hierarchical data structure which is accessible
in all software components, at least on the Matlab R©/GNU Octave level. Hierar-
chical here means that the data structure consists of substructures which map the
functional blocks to data blocks without hiding them. The biggest disadvantage of
global variables is if course that users and developers have to know which variables
they are allowed to write access and in what states the variables are when perform-
ing a read access. This task is without doubt a difficult one to accomplish. But
the difficulty really stems from the complexity of the numerical method and not
from the choice of computer language or programming paradigm. No programming
paradigm can turn a complex and difficult-to-understand method into a simple and
easy-to-understand code.

1. PROGRAMMING PARADIGMS 103

GINKONonconvex

QP: rpasm

Linearized

systems:

PCRI

Two–grid

Newton–Picard

SolvIND

DAESOL–II

GNU Octave C++

Model

functions

Problem

setupU
se

r

co
d
e

M
U

S
C

O
P

 c
o
d
e

Parallelization:

MPITB

Multiple

Shooting

ADOL–C

Spatial

discretization

Condesing

Figure 1. Schematic of the MUSCOP software architecture.

1.3. Algorithm centered not model centered. Another distinguishing de-
sign decision is that MUSCOP is centered around the GINKO Algorithm 1 of Chap-
ter 4, in contrast to MUSCOD-II which is centered around the OCP model. This
enables us to use the GINKO algorithm in MUSCOP also as a stand-alone inex-
act SQP method or LISA-Newton method. We shall describe in Section 2 how
MUSCOP orchestrates the different software components around GINKO.

1.4. Reverse Communication interface. Reverse Communication seemed
to be an antiquated method of interface design until it regained acceptance in
the mid 90’s within the linear algebra community (see, e.g., Dongarra et al. [48],
Lehoucq et al. [102]). Its most compelling features are simplicity and flexibility,
especially when multiple programming languages are in use.

A program with Reverse Communication interface is called with an incomplete
set of input data first. If more input data is needed the program returns to the
caller indicating which input data is needed next. After computation of this data
the user calls the program again passing the new input data. This procedure is
iterated until the program signals termination to the user.

A typical example is an iterative linear algebra solver which returns to ask the
user for a matrix vector multiplication or a preconditioner vector multiplication.
Obviously the solver does not need to know the matrix or the preconditioner, nor
does it need to pose restrictions on how they are represented.

GINKO also uses Reverse Communication. When called without input param-
eters GINKO initializes a data structure which is then modified by the user and
passed back to GINKO. In this data structure there are two state flags, the flow
control and the action flag. The flow control flag tells GINKO which part of the
code is the next to be evaluated and the action flag tells the user on return which
variables in the data structure must be freshly computed before GINKO can be
called again. As a side note we want to remark that Reverse Communication is
strongly coupled with a Finite State Machine programming paradigm.

104 10. THE SOFTWARE PACKAGE MUSCOP

The main advantage of Reverse Communication lies in the fact that GINKO
does not pose any requirements on the form of function representations which allows
for great flexibility and easy extensibility of the method. The disadvantage is that
the developer has the responsibility to provide input data in a manner consistent
with the method. But this is not a problem of programming but rather a problem
of the numerical computing: The developer must know what he or she is doing (at
least to a large extent).

2. Orchestration of software components

We now turn to the explanation of Figure 1 which depicts a schematic overview
of the software components of MUSCOP and how they interact. As mentioned
earlier the figure is divided into four areas: The lower area is MUSCOP code
written in GNU Octave on the left hand side (white background) and in C++ on
the right hand side (light gray background). The upper area depicts the user code
written in GNU Octave on the left (light gray background) and C++ code on the
right (dark gray background).

The two dashed boxes symbolize conceptual entities which do not necessarily
have one block of code but are rather a placeholder to signify special structure
in the data that flows along the connecting edges of the diagram. The Spatial
discretization box is located over the border of the GNU Octave/C++ regions to
indicate that the code for spatial discretization can be in either language (or even
both).

2.1. Function and derivative evaluation. The model functions, in partic-
ular the discretized ODE and PDE right hand side functions fODE(l) and fPDE(l),
need to be evaluated many times and thus they are programmed in C++. We
evaluate them via SolvIND either directly or via the IND integrator DAESOL-II
(see Albersmeyer and Bock [3], Albersmeyer [2]).

SolvIND uses ADOL-C (see Walther et al. [157]) to automatically obtain first
and second order derivatives of the model functions in forward and backward mode.

In MUSCOP we also take special care to extend the principle of IND to the
function evaluations within the GINKO algorithm: When we evaluate the simplified
Newton step in the monotonicity test we must freeze the integration scheme to ob-
tain monotonicity on the discretized level. This feature avoids numerical pollution
of the monotonicity test by effects of the adaptive error control of the integrator.
When a step is accepted, we recompute the function values with a new adaptive
scheme.

We parallelize the calls to the integrator on the Multiple Shooting structure so
that the numerically most expensive part, the solution and differentiation of the
local IVPs, can be evaluated concurrently. For parallelization we use the toolbox
MPITB (see Fernández et al. [50]) which provides access to the message pass-
ing interface MPI (see, e.g., Gropp et al. [74]) from Matlab R©/GNU Octave. Our
manager-worker approach allows for parallel processing both on cluster computers
and multi-core workstations. An advantage of computation on cluster comput-
ers is that the integration AD tapes can be stored locally and do not need to be
exchanged between the cluster nodes, yielding an efficient memory parallelization
without communication overhead.

The functions which need to be provided in GNU Octave code are loading
of model libraries via SolvIND, grid prolongation and restriction, evaluation of
variable norms suitable for the PDE discretization, visualization, and preparation
of an initial solution guess.

2. ORCHESTRATION OF SOFTWARE COMPONENTS 105

2.2. Condensing and condensed QP solution. We carry out the solution
of the large-scale QP subproblems via condensing and a PASM for the resulting
small-scale to medium-scale QP (see Chapter 7). These QPs need to be solved
within the generalized LISA (see Chapter 4). For the solution of the first QP in a
major GINKO iteration, i.e., k loop, we need to compute the coarse grid Hessian
and constraint Jacobian matrices. There is no need to reevaluate them for the
following QP solutions until we increment k. We do need to reevaluate the fine
grid Lagrange gradient and constraint residuals, plus one fine grid Hessian-vector
product for the condensing procedure for each QP subproblem.

The QP solver rpasm (see Chapter 8) allows for efficient hot-starting of the
first QP of a major GINKO iteration by reusing the working set of the previous
iteration. MUSCOP then freezes the working set of the first QP for all following
QPs until we increment k to commence the next major iteration.

If the working set of the previous iteration leads to a projected Hessian matrix
which is not positive definite at the current iterate then we need to resort to a safe
cold start of the PASM with trivial 0-by-0 projected Hessian.

2.3. Estimation of κ and ω. MUSCOP currently estimates κ in two ways:
If the coarse grid and the fine grid are identical then GINKO is explicitly run with
the information that κ = 0. This allows for performing only one step of LISA
instead of the minimum of two steps required for an a-posteriori estimate of κ. If
κ = 0 then one step of LISA already delivers the exact solution of the linearized
system. If the fine grid does not coincide with the coarse grid we employ the Ritz
κ-estimator.

The nonlinearity constant ω is implicitly estimated in the inexact Simplified
Newton step via

ω‖δzk‖ ≈ [hδk]∗ =
2(1− ρ̄i+1)‖δzk+1

i+1 − δzk+1
0 ‖

α2
k‖δzk‖

. (10.1)

We observe that the right hand side of equation (10.1) is afflicted with a cancellation
error in the norm of the numerator. This error is then amplified by α−2

k causing

that if the step size αk drops below, say, 10−4 then [hδk]∗ might be overestimated.
This in turn leads to even smaller step sizes

αk =
1

(1 + ρ)[hδk]∗
.

Thus GINKO gradually reduces αk to zero and the method stalls. We have imple-
mented an estimator for the cancellation error. The cancellation error is displayed
for each iteration of MUSCOP but does not influence the iterations of MUSCOP.
It rather serves as an indicator for failure analysis.

2.4. Automatic mesh refinement. In general the refinement is performed
within the following framework: The user provides a conforming hierarchy of grids.
MUSCOP starts with both coarse and fine grids on level l = 0. If the inexact

Simplified Newton increment ‖δ̃zk‖ is smaller than a given threshold then we ei-
ther terminate if level l is already the finest level or we increment l and use the
prolongation of the current iterate as a starting guess for NLP (3.1) on the next
level.

The variable steps on the following grid level can be used as a rough a-posteriori
error estimation for the discretization error.

If in the course of computation GINKO signals that Mk needs to be improved
because κ is too large then we automatically refine the coarse grid until κ is small
enough again.

106 10. THE SOFTWARE PACKAGE MUSCOP

As mentioned earlier it will surely be advantageous to perform adaptive a-
posteriori mesh refinement independently for the fine and the coarse grid and seper-
ately for each shooting interval. This aspect, however, is beyond the scope of this
thesis.

Part 3

Applications and numerical results

CHAPTER 11

Linear boundary control for the periodic 2D heat
equation

We presents numerical results for the model problem (5.1) in this chapter. The
computations have been published in Potschka et al. [128] and are given here for
completeness.

This chapter is structured as follows: In Section 1 we list the problem pa-
rameters for the computations. Afterwards we discuss the effects of the Euclidean
and the L2 projector in the projective approximation of the Jacobian blocks in
Section 2. In Section 3 we present numerical evidence for the mesh independence
result of Theorem 5.7. We conclude this chapter with a comparison of the sym-
metric indefinite Newton-Picard preconditioners with a symmetric positive definite
Schur complement preconditioner in a Krylov method setting in Section 4.

1. General parameters

The calculations were performed on Ω = [−1, 1]2. We varied the diffusion
coefficient D ∈ {0.1, 0.01, 0.001} which results in problems with almost only fast
modes for D = 0.1 and problems with more slow modes in the case of D = 0.001.
The functions α and β were chosen identically to be a multiple of the characteristic
function of the subset

Γ = Γ1 ∪ Γ2 := ({1} × [−1, 1]) ∪ ([−1, 1]× {1}) ⊂ ∂Ω,

with α = β = 100χΓ. Throughout, we used the two boundary control functions

ψ̃1(x) = χΓ1(x), ψ̃2(x) = χΓ2(x).

In other words, the two controls act each uniformly on one edge Γi of the domain.
With γ = 0.001, we chose the regularization parameter rather small such that

the objective function is dominated by the tracking term which penalizes devia-
tion of the state at the end of the period from the desired state û. We used the
discontinuous target function

û(x) =
(
1 + χ[0,1]×[−1,0](x)

)
/2.

The controls were discretized in time on an equidistant grid of m = 100 intervals.
For the discretization of the initial state u(0) we used quadrilateral high-order

nodal Finite Elements. The reference element nodes are the Cartesian product of
the Gauss-Lobatto nodes on the 1D reference element. We used part of the code
which comes with the book of Hesthaven and Warburton [82], and extended the
code with continuous elements in addition to discontinuous elements.

The evaluations of matrix-vector products with Gu and Gq were obtained from
the Numerical Differentiation Formula (NDF) time-stepping scheme implemented
in ode15s [144], which is part of the commercial software package Matlab R©, with
a relative integration tolerance of 10−11. Due to the discontinuities in the controls,
the integration was performed intervalwise on the control discretization grid. A
typical spectrum of the monodromy matrix Gu can be seen in Figure 1. The

109

110 11. LINEAR BOUNDARY CONTROL FOR THE PERIODIC 2D HEAT EQUATION

E
ig
en
va
lu
e
µ
i

Index i

0 50 100 150 200
0

0.5

1

Figure 1. The eigenvalues µi of the spectrum of the monodromy
matrix Gu decay exponentially fast. Only few eigenvalues are
greater than 0.5. Shown are the first 200 eigenvalues calculated
with D = 0.01 and β = 100χ(Γ) on a grid of 8-by-8 elements of
order 5.

Time t

C
o
n
tr
o
ls
q

x1x2
-1

0

1

0 0.5 1
-1

0

1

-0.5

0

0.5

1

1.5

2

0

0.5

1

1

Figure 2. Optimal controls q (left) and optimal states u0 (right)
for target function û, calculated for D = 0.01 on a grid of 32-by-32
elements of order 5. The displayed mesh is not the finite element
mesh but an evaluation of the Finite Element function on a coarser
equidistant mesh.

approximations G̃u are calculated directly from the fundamental system projected
on the slow modes or on the coarse grid.

Figure 2 shows the solution states and controls (u0, q).

2. Euclidean vs. L2 projector

Figure 4 summarizes the spectral properties of the iteration matrices J̃−1∆J .
The spectrum of the iteration matrix can also be interpreted as the deviation of
the preconditioned system matrix from the identity. The discretization with 4-by-4
elements of order 5 is moderately fine in order to achieve reasonable computation
times for the spectra.

Figures 3 and 4 depict that the appropriate choice of the projector for the
Newton-Picard approximation leads to fast convergence which is monotonically

2. EUCLIDEAN VS. L2 PROJECTOR 111

C
o
n
tr
a
ct
io
n

Subspace dimension p Subspace dimension p

0 100 200 300 4000 100 200 300 400

10−12

10−10

10−8

10−6

10−4

10−2

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. LISA contraction with Newton-Picard preconditioning
versus the subspace dimension p for the Euclidean projector (left)
and the L2 projector. Note that the plot on the right hand side is
in logarithmic scale.

-1 -0.5 0 0.5 1-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Figure 4. Top row: Unit circle and spectrum of iteration matrix
for the classical Newton-Picard with p = 20 using Euclidean pro-
jector (left column) and L2 projector (right column). Bottom row:
Like top row with p = 45.

112 11. LINEAR BOUNDARY CONTROL FOR THE PERIODIC 2D HEAT EQUATION

Subspace dimension p

C
o
n
tr
a
ct
io
n
σ
r
(J̃

−
1
∆
J
)

D = 0.01, nu = 441

D = 0.01, nu = 1681

D = 0.01, nu = 6561

D = 0.1, nu = 441

D = 0.1, nu = 1681

D = 0.1, nu = 6561

100 101 102
10−6

10−4

10−2

100

Figure 5. Asymptotic contraction rate for classical Newton-
Picard preconditioning versus subspace dimension p for varying
diffusion coefficient D and spatial degrees of freedom nu.

decreasing in the dimension p of the slow subspace. In Figure 3 we see that both the
Euclidean and the L2 projector eliminate many large eigenvalues, but the Euclidean
projector leaves out a few large eigenvalues which belong to eigenvectors which
exhibit mesh-specific characteristics. Numerically we observe that the Euclidean
projector leads to a non-monotone behavior of the contraction rate with respect to
the subspace dimension, and also exhibits clear plateaus. The L2 projector leads to
an exponential decay of the contraction rate with respect to the subspace dimension
and is by far superior to the Euclidean projector. Thus, only the L2 projector will
be considered further.

3. Mesh independence

Figure 5 shows the asymptotic contraction rate of the iteration matrix J̃−1∆J
of the basic linear splitting approach (5.2) with the classical Newton-Picard pre-
conditioner for diffusion coefficients D ∈ {0.1, 0.01} and spatial degrees of freedom
nu ∈ {441, 1681, 6561} with respect to the subspace dimension. Figure 6 shows
the same quantities for the two-grid version of the preconditioner for diffusion co-
efficients of D = {0.1, 0.01, 0.001}. We can observe that the contraction rate is
independent of nu in accordance with Corollary 5.8.

If we compare Figures 5 and 6 we see that the contraction for classical Newton-
Picard is better than for two-grid Newton-Picard with subspace dimension p =
nc
u. However, better contraction is outweighed by the effort for constructing the

dominant subspace spanned by V through IRAM already for rather small values
of p. In particular for the case of D = 0.001, computation of V with p > 10 is
prohibitively slow.

However, using a Krylov method like GMRES (see Saad and Schultz [134])
to accelerate the basic linear splitting approach (5.2) yields acceptable iteration
numbers also for low values of p even though there is almost no contraction due to
σr(J̃

−1∆J) > 0.99. For the extreme pure Picard case p = 0, we obtain a solution
within 11, 34, 98 iterations for D = 0.1, 0.01, 0.001, respectively, with a termination
tolerance εO = 10−4. We remark that for inexact inner solutions with εM , εH

4. COMPARISON WITH SCHUR COMPLEMENT PRECONDITIONING 113

Coarse grid degrees of freedom nc
u

C
o
n
tr
a
ct
io
n
σ
r
(J̃

−
1
∆
J
)

D = 0.001, nf
u = 6561

D = 0.001, nf
u = 25921

D = 0.01, nf
u = 6561

D = 0.01, nf
u = 25921

D = 0.1, nf
u = 6561

D = 0.1, nf
u = 25921

101 102
10−5

10−4

10−3

10−2

10−1

100

Figure 6. Asymptotic contraction rate for two-grid Newton-
Picard preconditioning versus coarse grid degrees of freedom nc

u
for varying diffusion coefficient D and fine grid degrees of freedom
nf
u.

much larger than machine precision, Flexible GMRES (see Saad [132]) should be
employed.

As we have seen in Section 3.6, the effort on the coarse grid for the two-
grid Newton-Picard preconditioner is negligible compared to the effort on the fine
grid. Thus, even medium scale coarse grid degrees of freedom nc

u are possible in
practical computations and lead to fast contraction rates. In this case, acceleration
of LISA (5.2) by nonlinear Krylov subspace methods does not lead to considerable
savings in the number of iterations.

4. Comparison with Schur complement preconditioning

In Murphy et al. [115] it was shown that the symmetric positive definite exact
Schur complement preconditioner

JMGW =

M 0 0
0 N 0
0 0 (Gu − Inu

)M−1(GT
u − Inu

) + γ−1GqN
−1GT

q

leads to J−1

MGWĴ having exactly three different eigenvalues 1 and (1±
√

5)/2. As a
consequence, any Krylov subspace method with an optimality or Galerkin property
converges within 3 iterations for the preconditioned system. Inversion of the lower
right block of JMGW is computationally prohibitively expensive but we can approx-
imate this block by the Newton-Picard approach presented in Section 3 which leads
with X̃ = (G̃u − Inu

)M−1(G̃T
u − Inu

) ∈ Rnu×nu to the preconditioner

J̃MGW =

M 0 0
0 N 0

0 0 X̃ + γ−1GqN
−1GT

q

 .

114 11. LINEAR BOUNDARY CONTROL FOR THE PERIODIC 2D HEAT EQUATION

Coarse grid degrees of freedom nc
u

It
er
a
ti
o
n
s

MINRES with J̃MGW, nf
u = 6561

MINRES with J̃MGW, nf
u = 25921

GMRES with J̃ , nf
u = 6561

GMRES with J̃ , nf
u = 25921

0 50 100 150 200 250 300
0

50

100

Figure 7. Comparison of the iterations of MINRES with Newton-
Picard Schur complement preconditioner J̃MGW and GMRES with
the symmetric indefinite Newton-Picard preconditioner J̃ for vary-
ing fine and coarse grid degrees of freedom nf

u and nc
u.

Now we can invoke again the Sherman-Morrison-Woodbury formula to obtain(
X̃ + γ−1GqN

−1GT
q

)−1

= X̃−1 − X̃−1Gq(γN +GT
q X̃
−1Gq)

−1GT
q X̃
−1

= X̃−1 − X̃−1GqHG
T
q X̃
−1,

with X̃−1 = (G̃u− Inu
)−1M(G̃T

u − Inu
)−1. We observe that the occurring matrices

coincide with the matrices which need to be inverted for the indefinite Newton-
Picard preconditioner J̃ we have developed in Section 3. Thus, one iteration of an
iterative method with J̃MGW can be considered computationally as expensive as
one iteration with J̃ .

Because the preconditioner J̃MGW is positive definite we can employ it within
a symmetry exploiting Krylov subspace method like MINRES (see Paige and Saun-

ders [121]), which is not possible with the indefinite preconditioner J̃ . On the down-

side, it is not possible to use J̃MGW in the basic linear splitting approach (5.2) be-

cause the (real) eigenvalues of the iteration matrix In1+n2
− J̃−1

MGWJ cluster around

0 and (1±
√

5)/2. Since (1 +
√

5)/2 > 1 LISA does not converge.
In Figure 7 we compare the number of iterations for symmetry exploiting MIN-

RES preconditioned by J̃MGW with the number of iterations for GMRES precon-
ditioned by J̃ for varying fine and coarse grid degrees of freedom nf

u and nc
u. We

observe that the indefinite preconditioner J̃ is superior to J̃MGW by a factor of 2–4
even though J̃ is not employed in a symmetry exploiting Krylov method.

We remark that the indefinite preconditioning approach taken by Schöberl and
Zulehner [141] does not work in a straight forward way without an approximation

of the M -block in the preconditioner by a matrix M̂ such that M̂ −M is positive
definite. Thus, we do not include a comparison here.

CHAPTER 12

Nonlinear boundary control of the periodic 1D
heat equation

In this chapter we consider the problem of optimal nonlinear boundary control
of the periodic heat equation

minimize
q∈L2(Σ),u∈W (0,1)

1

2

∫
Ω

(u(1; .)− û)2+
γ

2

∫∫
Σ

(q − q̂)2 (12.1a)

s. t. ∂tu = D∆u, in (0, 1)× Ω, (12.1b)

∂νu+ αu4 = βq4, in (0, 1)× ∂Ω, (12.1c)

u(0; .) = u(1; .), in Ω, (12.1d)

on Ω = (0, 1). We see that problem (12.1) is very similar to the model problem (5.1)
except for the polynomial terms in the boundary control condition (12.1c) of Stefan–
Boltzmann type.

1. Problem and algorithmical parameters

For our computations the desired state and control profiles are

û(x) = 1 + cos(π(x− 1))/10, q̂(t, x) = 1.

The other problem parameters are given by

γ = 10−4, D = 1, α(t, 0) = β(t, 0) = 1, α(t, 1) = β(t, 1) = 0,

effectively resulting in a homogeneous Neumann boundary condition without con-
trol at x = 1. The control acts only via the boundary at x = 0.

We performed all computations with a relative integrator tolerance of 10−5.
The algorithm terminates if the primal-dual SQP step is below 10−4 in the suitable
norm

‖z‖ :=
(
‖xPDE‖2I⊗MV

+ ‖xrem‖22 + ‖yPDE‖2I⊗M−1
V

+ ‖yrem‖22
)1/2

,

where for any symmetric positive definite matrix A we define ‖x‖2A = xTAx and
where xPDE denotes the composite vector of PDE states and yPDE denotes the
composite vector of dual variables for the PDE state dependent part of the time
boundary constraint (2.3b) and the PDE continuity condition (2.3c). The variables
xrem and yrem are placeholders for the remaining primal and dual variables. The
occurrences of the mass matrices MV in the Kronecker products (see Chapter 7)
make sure that the PDE variables are measured in an L2 sense. For the correct
weighting of the dual PDE variables we have to consider that a dual PDE variable
ỹ of NLP (3.1) is from the canonical dual space of RNV . To obtain a discretized
Riesz representation ŷ ∈ RNV in an L2 sense we need to require that

ỹTx = ŷTMV x for all x ∈ RNV

and thus we obtain

‖ŷ‖MV
= ‖M−1

V ỹ‖MV
= ‖ỹ‖M−1

V
.

115

116 12. NONLINEAR BOUNDARY CONTROL OF THE PERIODIC 1D HEAT EQUATION

space x time t

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.85

0.9

0.95

1

1.05

1.1

1.6

Figure 1. Solution of problem (12.1) with nMS = 24. In the left
panel we depict the state u(1; .) at the period end (solid line) and
the desired state û (dashed line). In the right panel we depict the
optimal control q over one period.

We performed the computations on a hierarchy of spatial FDM meshes with

N l
V = 4 · 8l−1 + 1

equidistant grid points on levels l = 1, . . . , 5 and controls which are piecewise con-
stant on grids of nMS = 12, 24, 48 equally sized intervals.

Figure 1 depicts the solution on the finest grid for the case of nMS = 24.

2. Discussion of numerical convergence

2.1. Grid refinements. We display the numerical self-convergence in Fig-
ure 2 for the case nMS = 24. The first 10 iterations are performed fully on grid
level l = 1. In iterations 9–12 and starting again from iteration 16 on only full steps
are taken (αk = 1). MUSCOP refines the fine grid for the first time after iteration

11 because the norm of the inexact Simplified Newton increment ‖δ̃z11‖ is small
enough. Iteration 12 is the first iteration with κ̂ > 0. An estimate of [κ̂] = 1.21
signals MUSCOP in iteration 13 that the coarse grid must be refined, too. The
next refinements of the fine grid happen after iterations 18, 21, and 23. Only three
iterations are performed on the finest grid level.

For the computations of the distances ‖zk − z∗‖ of the iterates zk to the final
solution approximation z∗ we prolongate the iterates on coarser levels l < 5 to the
finest level l = 5 and evaluate the norm on the finest level. We can observe that in
contrast to the step norm ‖δzk‖ the error ‖zk−z∗‖ forms clear plateaus in iterations
10–12, 18–19, 21–22, and 23–24. These plateaus occur because the error in these
iterations is dominated by the interpolation error of the spatial grid on the coarser
levels. We thus suggest for efficiency reasons to couple the fine grid refinements to
the contraction κ: If we can reduce the error by a factor of κ in one step then we
should refine the grid such that the interpolation error is reduced with a similar
magnitude. Thus we perform an aggressive refinement leading to eight times more
grid points after each refinement. We observe a reduction in the (interpolation)
error of about 1/8 in Figure 2 between iterations 19–22 and 22–24. We can thus
infer by extrapolation that the final error is dominated by the spatial interpolation
error and lies around 7 · 10−4. The observed error reduction of O(h) in the grid size

2. DISCUSSION OF NUMERICAL CONVERGENCE 117

iteration k

Damping αk

Step norm ‖δzk‖
Error ‖zk − z∗‖
Coarse grid refinement

Fine grid refinement

0 5 10 15 20 25
10−6

10−4

10−2

100

102

Figure 2. Self-convergence plot for problem (12.1).

h is optimal from a theoretical point of view because it coincides with the error of
the spatial discretization.

We also perform refinement of the coarse grid aggressively. The rationale behind
an efficient choice of the coarse grid is to choose the coarse grid fine enough to get
fast convergence and thus fewer iterations on the numerically more expensive finer
grids while maintaining moderate or negligible cost of the full derivatives on the
coarse grid compared to the few directional derivatives on the fine grid.

2.2. Computation times. The computations were performed on up to four
cores of an Intel R© CoreTM i7 with 2.67 GHz, 8 MB cache, and 18 GB RAM. In
Table 1 we list the computation times of the different algorithmic parts of the
code. We see that with 97.6 % most of the runtime is spent in the simulation and
IND derivative generation of the dynamic systems. The evaluation and derivative
generation for the non-dynamic functions, i.e., Φl, rb(l), ri, re, the solution of the
QP subproblems, which comprises the condensing step for matrices and vectors, the
PASM solution of the medium-scale QP, and the blow-up of the condensed solution
to the uncondensed space all take up a negligible amount of time.

The numbers underline the hybrid programming approach that we have cho-
sen. Most of the runtime is spent within the C++ code to generate solutions and
derivatives of the dynamic systems.

The runtime can be reduced from 3289.3 s to 1714.9 s by exploitation of four
cores. The resulting speedup of 1.9 is clearly suboptimal. There are two main
reasons: First, each pair of the four cores shares one L2 cache and thus there are
penalties in cache efficiency when running on four cores. Second, the adaptive
timestepping results in different integration times on each shooting interval espe-
cially when on some intervals fast transients have to be resolved and on others not
as we can observe in Figure 3. Such transients can for instance be caused by large
jumps in the control variables (compare Figure 1). We have only implemented

118 12. NONLINEAR BOUNDARY CONTROL OF THE PERIODIC 1D HEAT EQUATION

Task Time [s] % of total

Simulation/IND 3209.8 97.6
Non-dynamic functions/AD 22.5 0.7

QP matrix condensing 6.2 0.2
QP vector condensing 3.7 0.1

QP solution 0.5 0.0
QP solution blow-up 5.9 0.2
Norm computations 1.7 0.1
Grid prolongations 6.7 0.2
Grid restrictions 15.5 0.5

GINKO 1.4 0.0
Remaining computations 15.4 0.5

Total 3289.3 100.0

Table 1. Timings for serial computation with nMS = 24.

Shooting interval

In
te
g
ra
ti
o
n
st
ep
s

Shooting interval

In
te
g
ra
ti
o
n
ti
m
e
[s
]

0 10 200 10 20
0

2

4

6

8

0

100

200

300

Figure 3. Steps and integration times per shooting interval on
the finest level in the solution. The solid black lines indicate the
average.

equal distribution of the shooting intervals to the different processes. This leads
to many processes being idle until the last one has finished all its work. Optimal
distribution of the processes is known as the job shop scheduling problem. One sim-
ple solution heuristic is, e.g., greedy work balancing which adaptively distributes
the IVPs over the available processes by assigning the currently largest job to the
first free process. The relative sizes of the jobs can be assumed to be known from
the previous SQP step. In Figure 4 we can see that a greedy distribution leads to
improved parallelism. A rigorous investigation of efficient parallelization is beyond
the scope of this thesis.

2.3. Exact Hessian vs. two-grid approximation. In Tables 2 and 3 we
compare the cumulative time spent in the simulation/IND of the dynamic systems
for two different types of Hessian approximation: The exact Hessian and the two-
grid version (see Chapter 7). The quality of the two-grid Hessian approximation is
so good that we obtain the solution after 25 major iterations in both cases. Usage
of a two-grid approximation yields more evaluations of matrix vector products with

2. DISCUSSION OF NUMERICAL CONVERGENCE 119

co
re

n
u
m
b
er

Integration time [s]

co
re

n
u
m
b
er

0 5 10 15 20 25

0 5 10 15 20 25

1
2
3
4

1
2
3
4

Figure 4. Comparison of regular distribution of IVPs to four pro-
cesses/cores (upper) and greedy scheduling (lower). The termina-
tion time (makespan) can be significantly reduced.

Level Spatial Forward Jacobian Jacobian Hessian
l N l

V simulation MVP transpose MVP MVP

1 5 11.5 2.3 2.9 40.8
2 33 24.7 15.0 7.6 110.7
3 257 11.9 3.2 9.0 151.6
4 2049 46.6 12.9 39.5 715.1
5 16385 584.8 187.1 498.6 10556.8

Table 2. Cumulative time [s] for simulation and IND on different
mesh levels for exact Hessian approximation with nMS = 24.

Level Spatial Forward Jacobian Jacobian Hessian
l N l

V simulation MVP transpose MVP MVP

1 5 16.8 3.0 3.9 81.4
2 33 32.5 17.7 9.5 158.4
3 257 14.0 3.2 8.9 33.1
4 2049 54.3 12.9 39.5 151.5
5 16385 659.1 187.6 499.9 1994.7

Table 3. Cumulative time [s] for simulation and IND on different
mesh levels for two-grid Hessian approximation with nMS = 24.

the Hessian on the coarser grids but less on the finer grids. We observe that the two-
grid Hessian approximation yields a performance increase of 84 % for the Hessian
evaluation on the finest grid. The overall wall-time savings on four cores amount
to 68 % in this example.

2.4. Refinement of control in time. In Table 4 we present the number
of SQP iterations on each spatial discretization level when we refine the control

120 12. NONLINEAR BOUNDARY CONTROL OF THE PERIODIC 1D HEAT EQUATION

Control time SQP iters on level l = Runtime [s]

discretization nMS 1 2 3 4 5 QP grid transfers total

12 9 6 3 2 3 5.5 6.5 1042.4
24 11 7 3 2 3 20.7 19.0 1396.4
48 17 19 3 2 3 93.7 48.2 1842.0

Table 4. SQP iterations on each spatial discretization level and
runtimes of selected parts for varying time discretizations of the
control computed on four cores.

Level Spatial Forward Jacobian Jacobian Hessian
l N l

V simulation MVP transpose MVP MVP

1 5 9.2 1.6 1.9 30.3
2 33 21.6 11.6 5.4 72.9
3 257 10.9 2.7 7.6 28.0
4 2049 41.6 10.8 33.3 126.7
5 16385 508.0 162.0 419.4 1714.9

Table 5. Cumulative time [s] for simulation and IND on different
mesh levels for two-grid Hessian approximation with nMS = 12.

Level Spatial Forward Jacobian Jacobian Hessian
l N l

V simulation MVP transpose MVP MVP

1 5 16.9 4.6 6.7 176.5
2 33 60.6 45.8 22.3 720.2
3 257 18.2 3.8 10.7 39.5
4 2049 68.6 15.2 46.6 178.0
5 16385 836.7 231.5 604.2 2417.2

Table 6. Cumulative time [s] for simulation and IND on different
mesh levels for two-grid Hessian approximation with nMS = 48.

discretization in time. We observe that more iterations are needed for finer control
discretizations but they are all spent on the coarsest levels l = 1, 2. The SQP
iterations on the finer levels l = 3, 4, 5 coincide. The overall runtime for finer
control discretizations increases due to three main reasons: First, the number of
necessary grid transfer operations, i.e., prolongations and restrictions, increases
linearly with number of shooting intervals nMS. Second, the effort for the solution
of the QP subproblems increases because the amount of linear algebra operations for
the condensing step (see Chapter 7) increases quadratically with nMS and because
the condensed QP grows linearly in size with nMS. Third, we can see in Tables 5
and 6 that the effort for simulation and IND increases. The reason lies in the
adaptivity of the IVP solver because every jump in the controls leads to transients
in the dynamic system which require finer time steps to be resolved to the requested
accuracy.

CHAPTER 13

Optimal control for a bacterial chemotaxis system

Chemotaxis is the phenomenon of single cells moving in a directed fashion in
reaction to a chemical substance in their environment, e.g., to seek for food. In the
seminal paper of Keller and Segel [93] a mathematical model for bacterial chemo-
taxis was proposed for the first time. For further information and bibliographical
references see Horstmann [85, 86].

Chemotaxis can be explained by two phases of bacterial movement: A phase
of tumbling movement similar to a random walk and a phase of directed movement
through propulsion by flagella rotation (see Figure 1). The duration of each phase
is controlled by a chemical substance in the environment, the so called chemoattrac-
tant. In environments with low chemoattractant concentration tumbling movement
prevails while directed movement prevails in environments with higher chemoattrac-
tant concentration. The effect of this simple mechanism is that for large numbers
of bacteria the bacteria will on average move upwards gradients of the chemoat-
tractant concentration. This behavior leads to interesting dynamic phenomena like
pattern formation and traveling waves of bacteria.

Figure 1. Simplified schematic of E.coli with rotating flagella for
directed movement.

1. Problem formulation

We use the model of Tyson et al. [152, 153] which has been also used in a
optimizing boundary control scenario by Lebiedz and Brandt-Pollmann [100] with
the software MUSCOD-II. In contrast to their results, our approach allows for a
much higher accuracy in the spatial discretization.

More specifically we consider the tracking type boundary control problem

minimize
z,c,q

1

2

∫
Ω

(z(1, ·)− ẑ)2 +
γc
2

∫
Ω

(c(1, ·)− ĉ)2 +
γq
2

∫ 1

0

q2 (13.1a)

s. t. ∂tz = Dz∆z + α∇ ·
(∇c

(1 + c)2
z

)
, in (0, 1)× Ω, (13.1b)

∂tc = ∆c+ w
z2

(µ+ z2)
− ρc in (0, 1)× Ω, (13.1c)

∂νz = 0, in (0, 1)× ∂Ω, (13.1d)

∂νc = β(q − c), in (0, 1)× ∂Ω, (13.1e)

z(0, .) = z0, (13.1f)

c(0, .) = c0, (13.1g)

qu ≥ q ≥ ql, in (0, 1)× ∂Ω, (13.1h)

where ∂ν denotes the derivative in direction of the outwards pointing normal on Ω.

121

122 13. OPTIMAL CONTROL FOR A BACTERIAL CHEMOTAXIS SYSTEM

Symbol Value Description

Ω [0, 1] spatial domain
ẑ(x) 2x target cell density distribution
γc 0.5 weight for concentration tracking
ĉ(x) 0 target chemoattractant distribution
γq 1e-3 weight for control penalization
Dz 0.33 cell diffusion
α 80 chemotaxis coefficient
w 1 chemoattractant production coefficient
µ 1 chemoattractant production denominator
ρ 0 chemoattractant decay coefficient
β 0.1 Robin boundary control coefficient

z0(x) 1 initial cell density distribution
c0(x) 0 initial chemoattractant distribution
qu 0.2 upper control bound
ql 0.0 lower control bound

Table 1. Chemotaxis boundary control model data.

The objective (13.1a) penalizes the deviation of the cell density and the chemo-
attractant concentration from given desired distributions at the end of the time
horizon, and penalizes excessive use of the control. The governing system of
PDEs is nonlinear. The difficulty lies in the chemotaxis term (preceded by α)
of equation (13.1b) which is a convection term with nonlinear convection velocity
(1 + c)−2∇c for z. In equation (13.1c) we see that the chemoattractant evolves
due to diffusion, is produced proportional to a nonlinear function of the cell den-
sity, and decays with a factor ρ. There is no flux of bacteria over the domain
boundaries due to the Neumann condition (13.1d) but we can control the system
via chemoattractant influx over the boundary in a Robin-type fashion according to
condition (13.1e), where q describes a controllable chemoattractant concentration
outside of the domain Ω. The optimization scenario (13.1) is not periodic in time.
Instead, we prescribe initial values for the cell density and the chemoattractant
concentration in equations (13.1f)–(13.1g). Finally we require the control q to be
bounded between qu and ql.

2. Numerical results

We computed approximate solutions to the optimal control problem (13.1) with
the problem data listed in Table 1. We used a four level hierarchy of spatial FDM
grids with 17, 65, 257, and 1025 equidistant points for z and c and nMS = 36
multiple shooting intervals. The computation ran 31 iterations in 15 min 40 s on
four cores. The IVP integrator performed between 19 and 64 integration steps per
shooting interval with an average of 27.1 steps in the solution on the finest grid.
Figure 2 shows a self-convergence plot. We observe that after refinement of the
fine and the coarse grid, the globalization strategy needs to recede to damped steps
for iterations 15 and 16. Afterwards only full steps are taken. Only four iterations
are performed on the finest grid level with derivatives generated on the second
coarsest level. The error plateaus are even more prominent than for the example
in Chapter 12. From extrapolation of the error at iterations 15, 23, and 27, we can
expect the final solution to be accurate to about ‖zk − z∗‖ ≈ 0.1. This accuracy
is not satisfactory but on our current system and with our implementation, finer

2. NUMERICAL RESULTS 123

iteration k

Damping αk
Step norm ‖δzk‖
Error ‖zk − z∗‖
Coarse grid refinement
Fine grid refinement

0 5 10 15 20 25 30

10−4

10−2

100

102

Figure 2. Self convergence plot for the chemotaxis problem (13.1).

spatial discretizations are not possible. We do not believe that this is a generic
problem of our approach because the main memory problem is that DAESOL-
II currently keeps all IND tapes (including right hand side Jacobians and their
decompositions) in main memory. This takes up the largest amount of memory
within GINKO. We are positive that this memory bottleneck can be circumvented
by previsional swapping out and in of tape entries to hard disk or by checkpointing
techniques.

From Figure 2 we also see that many iterations on coarser grids, namely the
iterations on the plateaus, can be saved if a reliable estimator for the interpolation
error is available. For efficiency reasons the fine grid should be refined as soon as

the inexact Simplified Newton increment ‖δ̃zk‖ is below the interpolation error of
the spatial grid. This aspect is, however, beyond the scope of this thesis.

Moreover, if we consider the error reduction between iterations 21–22, 25–26,
29–30, and 30–31 we observe that the error reduction in the last iterates on each
of the three finest grid levels is roughly (fine) grid independent.

We depict the optimal states at different snapshots in time in Figure 3 and
the corresponding controls in Figure 4. We observe that in order to achieve the
unnatural linear distribution ẑ the optimal solution consists of a control action
on the left boundary at the beginning, followed by a control action on the right
boundary shortly afterwards. This effects the formation of two cell heaps close to
the boundary. Finally a control action on the right boundary makes the left heap of
cells move to the middle of the domain and the right heap to grow further towards
the target cell distribution ẑ.

124 13. OPTIMAL CONTROL FOR A BACTERIAL CHEMOTAXIS SYSTEM

t = 0.00
d
en
s.

z
,
co
n
c.

c
t = 0.17

t = 0.33

d
en
s.

z
,
co
n
c.

c

t = 0.50

t = 0.67

d
en
s.

z
,
co
n
c.

c

t = 0.92

t = 0.94

d
en
s.

z
,
co
n
c.

c

x coordinate

t = 1.00

x coordinate

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

Figure 3. Optimal states for the chemotaxis problem (13.1). For
different time points t we plot the bacteria density z (solid line)
the chemoattractant concentration c (dashed line) and the bacteria
target distribution (dash-dotted line).

2. NUMERICAL RESULTS 125

time t

co
n
tr
o
l
q

time t

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

Figure 4. Optimal control profiles for the chemotaxis prob-
lem (13.1). The left hand panel shows the control at the boundary
x = 0 and the right hand panel at x = 1.

CHAPTER 14

Optimal control of a Simulated Moving Bed
process

In this chapter we describe a variant of the Simulated Moving Bed (SMB)
process. For completeness we quote in large parts from the article Potschka et al.
[127].

In a chromatographic column, different components that are dissolved in a
liquid are separated due to different affinities to the adsorbent. As a result the dif-
ferent components move with different velocities through the column and hence can
be separated into nearly pure fractions at the outlet. The SMB process consists of
several chromatographic columns which are interconnected in series to constitute
a closed loop (see Figure 1). An effective counter-current movement of the sta-
tionary phase relative to the liquid phase is realized by periodic and simultaneous
switching of the inlet and outlet ports by one column in the direction of the liquid
flow. Compared to batch operation of a single chromatographic column, the SMB
process offers great improvements of process performance in terms of desorbent
consumption and utilization of the solid bed. In the basic SMB process all flow
rates are constant and the switching of the columns is simultaneous with a fixed
switching period. By introducing more degrees of freedom the efficiency of the sep-
aration can be increased further. The flow rates for instance can be varied during
the switching periods (PowerFeed), the feed concentration can be varied during
the switching periods (ModiCon) or asynchronous switching of the ports can be
introduced (VariCol) (see Schramm et al. [142, 143]).

Figure 1. SMB configuration with six columns and four zones.

127

128 14. OPTIMAL CONTROL OF A Simulated Moving Bed PROCESS

1. Mathematical modeling of adsorption processes

Accurate dynamic models of such multi-column continuous chromatographic
processes consist of the dynamic process models of the single chromatographic
columns, the node balances which describe the connection of the columns, and the
port switching. The behavior of radially homogeneous chromatographic columns is
described by the General Rate Model (see Schmidt-Traub [140]).

1.1. General Rate Model. For both species i = 1, 2 the General Rate Model
considers three phases, namely the instationary phase ci which moves through the
columns between the fixed bed particles, the liquid stationary phase cp,i inside the
porous fixed bed particles, and the adsorbed stationary phase qp,i on the inner
surface of the particles.

We assume that the columns are long and thin enough that radial concentration
profiles can be neglected. The fixed bed particles are assumed to be spherical and
the concentrations inside the particles are assumed to be rotationally symmetric.
The governing equations in non-dimensional form are

∂tci = Pe−1
i ∂zzci − ∂zci − Sti (ci − cp,i|r=1) , (t, z) ∈ (0, T)× (0, 1), (14.1a)

∂t ((1− εp)qp,i + εpcp,i) = ηi
(
r−2∂r

(
r2∂rcp,i

))
, (t, r) ∈ (0, T)× (0, 1), (14.1b)

together with the boundary conditions

∂zci(t, 0) = Pei
(
ci(t, 0)− cin(t)

)
, ∂rcp,i(t, 0) = 0, (14.2a)

∂zci(t, 1) = 0, ∂rcp,i(t, 1) = Bii (ci(t, z)− cp,i(t, 1)) , (14.2b)

with positive constants εp (porosity), ηi (nondimensional diffusion coefficient), Pei
(Péclet number), Sti (Stanton number), and Bii (Biot number). The stationary
phases are coupled by an algebraic condition, e.g., the nonlinear extended Langmuir
isotherm equation

qp,i = H1
i cp,i +

H2
i cp,i

1 + (k1cp,1 + k2cp,2)cref
, (14.3)

with non-negative constants H1
i , H

2
i (Henry coefficients), ki (isotherm parameters),

and reference concentration cref .
The model poses a number of difficulties:

(1) The isotherm equations are algebraic constraints.
(2) The time derivatives ∂tqp,i and ∂tcp,i are coupled on the left hand side of

equation (14.1b).
(3) For each point z ∈ [0, 1] in the axial direction a stationary phase equa-

tion (14.1b) is supposed to hold.
(4) The stationary phase equation has a singularity for r = 0.

Regarding point (3), we should think of equation (14.1b) as living on the two-
dimensional (z, r) domain without any derivatives in the axial direction. The
coupling occurs through the boundary conditions and equation (14.1a). Gu [75]
proposed to address this issue by using a low order collocation discretization of the
stationary phase in each grid point of the mesh for the moving phase. We now
explain this procedure in detail.

We address points (1) and (2) by elimination of qp,i via substitution of the
algebraic constraints (14.3) into equation (14.1b). After differentiation with respect
to t we obtain a system of the form(

∂tcp,1
∂tcp,2

)
= G(cp,1, cp,2)−1

(
η1

(
r−2∂r

(
r2∂rcp,1

))
η2

(
r−2∂r

(
r2∂rcp,2

))) ,

1. MATHEMATICAL MODELING OF ADSORPTION PROCESSES 129

where the coupling 2-by-2 matrix G depends nonlinearly on cp,i via

G11 = (1− εp)
[
H1

1 +
H2

1

1 + cref

∑2
j=1 kjcp,j

(
1− crefk1cp,1

1 + cref

∑2
j=1 kjcp,j

)]
+ εp,

G12 = (εp − 1)
crefH

2
1 cp,1k2

(1 + cref

∑2
j=1 kjcp,j)

2
,

G21 = (εp − 1)
crefH

2
2 cp,2k1

(1 + cref

∑2
j=1 kjcp,j)

2
,

G22 = (1− εp)
[
H1

2 +
H2

2

1 + cref

∑2
j=1 kjcp,j

(
1− crefk2cp,2

1 + cref

∑2
j=1 kjcp,j

)]
+ εp.

This 2-by-2 matrix can be inverted with the closed formula

G−1 =
1

G11G22 −G21G12

(
G22 −G12

−G21 G11

)
.

As proposed by Gu [75] we approximate Cp,i(t, r) by a quadratic collocation
polynomial ϕ(r). We impose that ϕ(r) satisfies the two boundary conditions (14.2).
Thus we are left with one degree of freedom which we choose to be the point value

bi(t, z) := ϕ(0.5).

We are lead to the form

ϕ(r) = 4σi(ci(t, z)− bi(t, z))r2 + bi(t, z)− σi(ci(t, z)− bi(t, z))
with the abbreviation

σi =
Bii

8 + 3Bii
.

The properties ϕ(0.5) = bi(t, z) and ∂rϕ(0) = 0 are readily verified. The second
boundary condition holds true due to

ϕ(1) = 4σi(ci − bi) + bi − σi(ci − bi) = 3σi(ci − bi) + bi,

Bii(ci − ϕ(1)) = Bii(ci − 3σi(ci − bi)− bi)

=
Bii

8 + 3Bii
[(8 + 3Bii)(ci − bi)− 3Bii(ci − bi)]

= 8σi(ci − bi) = ϕ′(1).

For completeness we assemble here the derivatives and surface values required for
the substitution of the cp,i terms by bi:

∂ϕ

∂t
(0.5) =

∂bi
∂t
,

∂ϕ

∂r
(r) = 8σi(ci − bi)r,

1

r2

∂

∂r

(
r2 ∂ϕ

∂r

)
= 24σi(ci − bi), ϕ(1) = 3σi(ci − bi) + bi.

All in all we have transformed equations (14.1a) and (14.1b) to

∂tci = Pe−1
i ∂zzci − ∂zci − Sti (ci − (3σi(ci − bi)) + bi), (14.4a)(

∂tb1
∂tb2

)
= G(b1, b2)−1

(
η124σ1(c1 − b1)
η224σ2(c2 − b2)

)
, (14.4b)

with boundary conditions

∂zci(t, 0) = Pei
(
ci(t, 0)− cin(t)

)
, ∂zci(t, 1) = 0.

In the case of several connected columns we use one reference flow velocity uref

for the non-dimensionalization. For a flow velocity uj 6= uref in zone j = I, . . . , IV

130 14. OPTIMAL CONTROL OF A Simulated Moving Bed PROCESS

we have to multiply the right hand sides of equations (14.1) or (14.4), respectively,
with the quotient uj/uref .

1.2. Mass balances. The model for the whole SMB process consists of a
fixed number Ncol of columns described by the General Rate Model and mass
balances at the ports between the columns. The concentrations of column j are
denoted by a superscript j. In the ModiCon variant, the process is controlled by
the time-independent flow rates QDe (desorbent), QEx (extract), QRec (recycle),
QFe (feed), and the time-dependent feed concentration cFe(t). The remaining flow
rates, which are the raffinate flow rate QRa and the zone flow rates QI , . . . , QIV ,
are fully determined by conservation of mass via

QRa = QDe −QEx +QFe,

QI = QDe +QRec, QII = QI −QEx,

QIII = QII +QFe, QIV = QIII −QRa = QRec.

The inflow concentrations of each column are the outflow concentrations of the
preceding column, except for the column after the feed and after the desorbent
ports which can be calculated from the feed concentration cFe,i and from the outflow
concentrations cout

.,i of the previous column according to

cinI,iQI = cout
IV,iQIV, cinIII,iQIII = cout

II,iQII + cFe,iQFe,

for i = 1, 2. With the port concentrations and the flow rates the feed, extract, and
raffinate masses, and the product purities can be calculated via

mFe,i(t) =

∫ t

0

cFe,i(τ)QFedτ, mEx,i(t) =

∫ t

0

cout
I,i (τ, 1)QExdτ,

mRa,i(t) =

∫ t

0

cout
III,i(τ, 1)QRadτ,

PurEx(t) =
mEx,1(t)

mEx,1(t) +mEx,2(t)
, PurRa(t) =

mRa,2(t)

mRa,1(t) +mRa,2(t)
.

1.3. Objective and constraints. We consider the optimization of an SMB
process with variable feed concentration (ModiCon process) which minimizes des-
orbent consumption ∫ T

0

QDe(t)dt

subject to purity constraints for the two product streams

PurEx(T) ≥ Purmin and PurRa(T) ≥ Purmin

at a constant feed flow QFe but varying feed concentration cFe(t). Over one period
T the average feed concentration must be equal to the given feed concentration
cSMB
Fe of a reference SMB process.

At the end of each period the switching of ports leads to a generalized period-
icity constraint of the form

cji (0, .)− c
succ(j)
i (T, .) = 0,

bji (0, .)− b
succ(j)
i (T, .) = 0,

}
i = 1, 2, j = 1, . . . , Ncol,

where succ(j) denotes the index of the column which is the successor of column j
in the investigated SMB configuration.

Furthermore we require the total feed mass of one period to satisfy

mFe(T) = cSMB
Fe QFeT, (14.5)

2. NUMERICAL RESULTS 131

Figure 2. Chemical structure of EMD–53986.

where cSMB
Fe is a given feed concentration of a (non-ModiCon) SMB reference pro-

cess.
The remaining constraints bound the maximum and minimum feed concentra-

tion
cFe,max ≥ cFe(t) ≥ 0

and the flow rates

Qmax ≥ QDe, QEx, QFe, QRa, QRe, QI, QII, QIII, QIV ≥ Qmin.

2. Numerical results

The results in this chapter were computed for EMD–53986 enantiomer sepa-
ration. EMD–53986, or 5-(1,2,3,4-tetra-hydroquinolin-6-yl)-6-methyl-3,6-dihydro-
1,3,4-thiadiazin-2-one (see Figure 2), is a chiral precursor for a pharmaceutical
reagent (see, e.g., Jupke [89] as cited by Küpper [98]). Only the R-enantiomer
has pharmaceutical activity and needs to be separated from the S-enantiomer after
chemical synthesis. We list the model parameters (taken from Küpper [98]) in Ta-
ble 1. Further model quantities are derived from these parameters which we display
in Table 2.

We computed the solution with nMS = 24 shooting intervals on a two level
hierarchy of spatial FDM grids with 21 and 81 equidistant grid points for each of
the Ncol = 6 columns and each species. The relative accuracy for the time-stepping
scheme was set to 10−5 on the coarse and 10−6 on the fine level and the GINKO
termination tolerance was 5 · 10−3.

The optimization problem becomes more and more difficult for higher values of
product purity Purmin. We had to successively generate primal starting values via
a naive homotopy approach using ascending values for Purmin = 0.8, 0.9, 0.93, 0.95
on the coarse level. For Purmin = 0.95, GINKO needed 9 iterations on the coarse
level and then 11 iterations on the fine level with coarse grid derivatives. The
computed κ-estimates suggest [κ̂] ≤ 0.66. For the last four iterations only two LISA
are needed for each inexact solution of the linearized systems. Table 3 shows the
optimal values for the ModiCon SMB separation of EMB–53986 enantiomers. We
display the optimal feed concentration profile in Figure 3 and the optimal moving
concentration fronts of the moving phase for one period in Figure 4. We can observe
that the two concentration profiles travel to the right with different velocities and
thus there is almost only slow substance present at the extract port after column 1
and almost only fast substance present at the raffinate port after column 5.

The solution was computed on four cores within a total wall time of 98 min.
Due to memory restrictions for the IND tape sizes, finer grid levels were not possible.
In the solution there are between 24 and 177 integration steps per shooting interval
with an average of 42.1 steps per interval.

132 14. OPTIMAL CONTROL OF A Simulated Moving Bed PROCESS

Symbol Value Unit Description

L 9.0 cm column length
D 2.5 cm column diameter
εp 0.567 – particle void fraction
εb 0.353 – bulk void fraction
dp 0.002 cm particle diameter
ρ 0.799 g/cm3 fluid density
ν 0.012 g/(cm s) fluid viscosity
Dp 0.001 cm2/s particle diffusion (estimated)
kapp,1 1.5e-4 1/s apparent mass transfer coefficient
kapp,2 2.0e-4 1/s apparent mass transfer coefficient
H1

1 2.054 – Henry coefficient
H1

2 2.054 – Henry coefficient
H2

1 19.902 – Henry coefficient
H2

2 5.847 – Henry coefficient
k1 472.0 cm3/g isotherm parameter
k2 129.0 cm3/g isotherm parameter
cref 2.5e-3 g/cm3 reference concentration

Purmin 95 % minimum product purity
cSMB
Fe 2.5e-3 g/cm3 reference feed concentration

cFe,max 1.25e-2 g/cm3 maximum feed concentration
Qmax 300 ml/min maximum flow rate
Qmin 30 ml/min minimum flow rate

Table 1. Model and optimization parameters for the ModiCon
SMB process to separate EMD–53986 enantiomers.

Time t

F
ee
d
co
n
ce
n
tr
a
ti
o
n
c F

e
[g
/
l]

0 2 4 6 8 10
0

5

10

15

Figure 3. Optimal feed concentration profile cFe for ModiCon
SMB separation of EMB–53986 enantiomers. All feed mass is
injected at the end of the period with maximum concentration
cFe,max, subject to satisfaction of total feed mass constraint (14.5).

2. NUMERICAL RESULTS 133

Symbol Formula Description

keff,i
6

dp
kapp,i effective mass transfer coefficient

kl,i
dp

6

keff,i15εpDp

15εpDp − (dp/2)2keff,i
mass transfer coefficient

Bii
kl,idp

2εpDp
Biot number

uref
4QIII

πD2εb
reference flow velocity

uj
4Qj
πD2εb

flow velocity

Rej
ρujdp

ν
Reynolds number

Pej
0.2 + 0.011(Rejεb)0.48

εb

L

dp
Péclet number

ηj
4εpDpL

d2
puj

particle diffusion coefficient

Stji 3Biiηj
1− εb
εb

Stanton number

Table 2. Derived model quantities for the ModiCon SMB process.
Index i = 1, 2 denotes the species, index j = I, . . . , IV the zone.

Description Symbol Optimal value Unit

period duration T 10.68 min
desorbent flow QDe 86.33 ml/min

extract flow QEx 86.33 ml/min
feed flow QFe 30.00 ml/min

recycle flow QRe 30.00 ml/min

objective
∫ T

0
QDe(t)dt 921.8 ml

Table 3. Optimal values for the ModiCon SMB separation of
EMB–53986 enantiomers.

134 14. OPTIMAL CONTROL OF A Simulated Moving Bed PROCESS

t = 0.00 min
C
o
n
ce
n
tr
a
ti
o
n
[g
/
l]

t = 1.78 min

t = 3.56 min

C
o
n
ce
n
tr
a
ti
o
n
[g
/
l]

t = 5.34 min

t = 7.12 min

C
o
n
ce
n
tr
a
ti
o
n
[g
/
l]

Column index

t = 8.90 min

Column index

0 1 2 3 4 5 60 1 2 3 4 5 6

0 1 2 3 4 5 60 1 2 3 4 5 6

0 1 2 3 4 5 60 1 2 3 4 5 6

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Figure 4. Traveling concentration profiles over one period t ∈
[0, T]. The six columns are arranged from left to right in each
panel. The feed port is located after column 3, extract after column
1, raffinate after colum 5 and desorbent after column 6.

Conclusions and future work

In this thesis we have developed a numerical method based on Direct Multiple
Shooting for Optimal Control Problems (OCPs) with time-periodic Partial Differ-
ential Equation (PDE) constraints. We have achieved an asymptotically optimal
scale-up of the numerical effort with the number of spatial discretization points
based on inexact Sequential Quadratic Programming (SQP) with an inner gener-
alized Newton-Picard preconditioned Linear Iterative Splitting Approach (LISA)
which features extensive structure exploitation in a two-stage solution process for
the possibly nonconvex Quadratic Programming Problems (QPs) for which we have
developed a condensing approach and a Parametric Active Set Method (PASM).
We have implemented a numerical code called MUSCOP and have demonstrated
the applicability, efficiency, and reliability of the proposed methods on PDE OCPs
from illustrating academic to challenging real-world applications.

Our research inspires a number of now exposed questions for future research
directions and projects. We want to conclude this thesis with a list of the most
obvious ones:

Convergence analysis for PASMs on nonconvex QP. We have developed numer-
ical techniques for the solution of nonconvex QPs with PASMs. In our experience
the resulting QP solver works unexpectedly well on these difficult problems. We
believe it worthwhile to construct examples for which it does not work or investi-
gate proofs if none can be found. These examples, if found, might also serve as the
basis for further improvement of the numerical method.

Restrictive Monotonicity Test (RMT) for inexact SQP. We have presented a
Natural Monotonicity Test (NMT) globalization strategy for LISA-Newton based
inexact SQP methods. However, no proof of convergence exists for this approach.
We conjecture such a proof is possible even for the inexact SQP case on the basis
of RMT techniques.

A-posteriori mesh error estimation and mesh refinement. For simplicity we
have computed all numerical examples in this thesis on uniformly refined spatial
meshes. Obviously locally refined meshes promise a great improvement of the ratio
of numerical effort vs. accuracy (see, e.g., Becker and Rannacher [14], Meidner and
Vexler [111], Hesse [81]). Furthermore, we should refine the fine and coarse grid
according to two different goals: The fine grid for highest accuracy (in terms of
the question which inspires the problem) and the coarse grid for best contraction,
i.e., smallest κ. Moreover the required global error estimators should be exploited
to trigger fine grid refinement as soon as the inexact Simplified Newton increment
becomes smaller than the grid interpolation error.

DAESOL-II tape management. Currently the tape management of DAESOL-
II is the memory bottleneck of MUSCOP. We propose to implement asynchronous
swapping of tape entries in and out of main memory to hard disk. Because the tape
must always be read in sequential order either forward or backward, it is possible
to prompt swapping of the required blocks into main memory in advance. This

135

136 CONCLUSIONS AND FUTURE WORK

process does not require CPU cycles on most current hardware platforms and can
be performed concurrently with the remaining required computations.

Load balancing techniques. For simplicity we have only implemented regular
distribution of Multiple Shooting Initial Value Problems (IVPs) for simulation and
Internal Numerical Differentiation (IND) to worker processes in parallel. As we
have demonstrated in Chapter 12 even a simple adaptive greedy heuristic could
considerably improve the speed-up of MUSCOP.

Computations on a cluster computer. The numerical results which we have
presented in this thesis were computed on a desktop machine on four CPU cores.
We have designed MUSCOP to also run on a distributed cluster computer. This
approach would also mitigate the memory bottleneck issue because memory con-
sumption is also parallelized in the proposed algorithm on the Multiple Shooting
structure.

Nonlinear instationary 2D and 3D problems. As we can see from the analy-
sis (e.g., Theorem 5.7), the proposed methods are not generally restricted by the
dimensionality of the considered geometry. After completion of the projects men-
tioned in the three previous paragraphs we believe it is possible to treat even larger
instationary problems in 2D. For 3D problems we anticipate that numerical fill-
in in the direct sparse linear algebra routines within DAESOL-II can become a
bottleneck and would have to be addressed before.

Bibliography

[1] A. Agarwal, L.T. Biegler, and S.E. Zitney. Simulation and optimization of
pressure swing adsorption systems using reduced-order modeling. Industrial
& Engineering Chemistry Research, 48(5):2327–2343, 2009.

[2] J. Albersmeyer. Adjoint based algorithms and numerical methods for sen-
sitivity generation and optimization of large scale dynamic systems. PhD
thesis, Ruprecht–Karls–Universität Heidelberg, 2010. URL http://www.ub.

uni-heidelberg.de/archiv/11651/.
[3] J. Albersmeyer and H.G. Bock. Efficient sensitivity generation for large scale

dynamic systems. Technical report, SPP 1253 Preprints, University of Erlan-
gen, 2009.

[4] J. Albersmeyer and M. Diehl. The Lifted Newton method and its application
in optimization. SIAM Journal on Optimization, 20(3):1655–1684, 2010.

[5] J. Albersmeyer and C. Kirches. The SolvIND webpage, 2007. URL http:

//www.solvind.org.
[6] M. Arioli, I.S. Duff, N.I.M. Gould, J.D. Hogg, J.A. Scott, and H.S. Thorne.

The HSL mathematical software library, 2007.
[7] U. Ascher and M.R. Osborne. A note on solving nonlinear equations and the

natural criterion function. Journal of Optimization Theory and Applications,
55(1):147–152, 1987.

[8] V. Bär. Ein Kollokationsverfahren zur numerischen Lösung allgemeiner
Mehrpunktrandwertaufgaben mit Schalt- und Sprungbedingungen mit An-
wendungen in der optimalen Steuerung und der Parameteridentifizierung.
Diploma thesis, Rheinische Friedrich–Wilhelms–Universität zu Bonn, 1983.

[9] A. Battermann and M. Heinkenschloss. Preconditioners for Karush-Kuhn-
Tucker matrices arising in the optimal control of distributed systems. In
Control and estimation of distributed parameter systems (Vorau, 1996), vol-
ume 126 of Internat. Ser. Numer. Math., pages 15–32. Birkhäuser, Basel,
1998.

[10] A. Battermann and E.W. Sachs. Block preconditioners for KKT systems
in PDE-governed optimal control problems. In Fast solution of discretized
optimization problems (Berlin, 2000), volume 138 of Internat. Ser. Numer.
Math., pages 1–18. Birkhäuser, Basel, 2001.

[11] I. Bauer. Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur
Generierung von ersten und zweiten Ableitungen mit Anwendungen bei Opti-
mierungsaufgaben in Chemie und Verfahrenstechnik. PhD thesis, Universität
Heidelberg, 1999. URL http://www.ub.uni-heidelberg.de/archiv/1513.

[12] I. Bauer, H.G. Bock, S. Körkel, and J.P. Schlöder. Numerical methods for
initial value problems and derivative generation for DAE models with appli-
cation to optimum experimental design of chemical processes. In Scientific
Computing in Chemical Engineering II, pages 282–289. Springer, 1999.

[13] I. Bauer, H.G. Bock, and J.P. Schlöder. DAESOL – a BDF-code for the
numerical solution of differential algebraic equations, 1999.

137

138 Bibliography

[14] R. Becker and R. Rannacher. An optimal control approach to error estimation
and mesh adaptation in finite element methods. Acta Numerica 2000, pages
1–101, 2001.

[15] R.E. Bellman. Dynamic Programming. University Press, Princeton, N.J., 6th
edition, 1957.

[16] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle–point
problems. Acta Numerica, 14:1–137, 2005.

[17] M.J. Best. An algorithm for the solution of the parametric quadratic pro-
gramming problem. In H. Fischer, B. Riedmüller, and S. Schäffler, editors,
Applied Mathematics and Parallel Computing – Festschrift for Klaus Ritter,
chapter 3, pages 57–76. Physica-Verlag, Heidelberg, 1996.

[18] L.T. Biegler. Solution of dynamic optimization problems by successive qua-
dratic programming and orthogonal collocation. Computers and Chemical
Engineering, 8:243–248, 1984.

[19] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods
for PDE-constrained optimization. Part I: The Krylov-Schur solver. SIAM
Journal on Scientific Computing, 27(2):687–713, 2005.

[20] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods
for PDE-constrained optimization. Part II: The Lagrange-Newton solver and
its application to optimal control of steady viscous flows. SIAM Journal on
Scientific Computing, 27(2):714–739, 2005.

[21] J. Blue, P. Fox, W. Fullerton, D. Gay, E. Grosse, A. Hall, L. Kaufman,
W. Petersen, and N. Schryer. PORT mathematical subroutine library, 1997.
URL http://www.bell-labs.com/project/PORT/.

[22] H.G. Bock. Numerical treatment of inverse problems in chemical reaction
kinetics. In K.H. Ebert, P. Deuflhard, and W. Jäger, editors, Modelling
of Chemical Reaction Systems, volume 18 of Springer Series in Chemical
Physics, pages 102–125. Springer, Heidelberg, 1981. URL http://www.iwr.

uni-heidelberg.de/groups/agbock/FILES/Bock1981.pdf.
[23] H.G. Bock. Recent advances in parameter identification techniques for ODE.

In P. Deuflhard and E. Hairer, editors, Numerical Treatment of Inverse Prob-
lems in Differential and Integral Equations, pages 95–121. Birkhäuser, Boston,
1983. URL http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/

Bock1983.pdf.
[24] H.G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Sys-

temen nichtlinearer Differentialgleichungen, volume 183 of Bonner Mathe-
matische Schriften. Universität Bonn, Bonn, 1987. URL http://www.iwr.

uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf.
[25] H.G. Bock and K.J. Plitt. A Multiple Shooting algorithm for direct solution

of optimal control problems. In Proceedings of the 9th IFAC World Congress,
pages 242–247, Budapest, 1984. Pergamon Press. URL http://www.iwr.

uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf.
[26] H.G. Bock, E.A. Kostina, and J.P. Schlöder. On the role of natural level

functions to achieve global convergence for damped Newton methods. In
M.J.D. Powell and S. Scholtes, editors, System Modelling and Optimization.
Methods, Theory and Applications, pages 51–74. Kluwer, 2000.

[27] H.G. Bock, W. Egartner, W. Kappis, and V. Schulz. Practical shape opti-
mization for turbine and compressor blades by the use of PRSQP methods.
Optimization and Engineering, 3(4):395–414, 2002.

[28] Dietrich Braess. Finite elements. Cambridge University Press, Cambridge,
3rd edition, 2007.

Bibliography 139

[29] J.H. Bramble and J.E. Pasciak. A preconditioning technique for indefinite sys-
tems resulting from mixed approximations of elliptic problems. Mathematics
of Computation, 50(181):1–17, 1988.

[30] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin for-
mulations for convection dominated flows with particular emphasis on the
incompressible Navier-Stokes equations. Computational Methods in Applied
Mechanics and Engineering, 32(1-3):199–259, 1982.

[31] K. Burrage, J. Erhel, B. Pohl, and A. Williams. A deflation technique for
linear systems of equations. SIAM Journal on Scientific Computing, 19(4):
1245–1260, 1998.

[32] R.H. Byrd, F.E. Curtis, and J. Nocedal. An inexact SQP method for equality
constrained optimization. SIAM Journal on Optimization, 19(1):351–369,
2008.

[33] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to derivative-free
optimization, volume 8 of MPS/SIAM Series on Optimization. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.

[34] J. Dahl and L. Vandenberghe. CVXOPT user’s guide, release 1.1.3, 2010.
URL http://abel.ee.ucla.edu/cvxopt/userguide/index.html.

[35] G.B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

[36] R. Dautray and J.-L. Lions. Evolution problems I. In A. Craig, editor, Mathe-
matical analysis and numerical methods for science and technology, volume 5.
Springer, 1992.

[37] D.F. Davidenko. On a new method of numerical solution of systems of non-
linear equations. Doklady Akademii nauk SSSR, 88:601–602, 1953.

[38] T.A. Davis. Algorithm 832: UMFPACK – an unsymmetric-pattern multi-
frontal method with a column pre-ordering strategy. ACM Transactions on
Mathematical Software, 30:196–199, 2004.

[39] V. de la Torre, A. Walther, and L.T. Biegler. Optimization of periodic ad-
sorption processes with a novel problem formulation and nonlinear program-
ming algorithm. In AD 2004 – Fourth International Workshop on Automatic
Differentiation, July 19-23, 2004, Argonne National Laboratory, USA, 2004.
(extended conference abstract).

[40] R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact Newton methods.
SIAM Journal on Numerical Analysis, 19(2):400–408, 1982.

[41] P. Deuflhard. Ein Newton-Verfahren bei fastsingulärer Funktionalmatrix zur
Lösung von nichtlinearen Randwertaufgaben mit der Mehrzielmethode. PhD
thesis, Universität zu Köln, 1972.

[42] P. Deuflhard. A Modified Newton Method for the Solution of Ill-conditioned
Systems of Nonlinear Equations with Applications to Multiple Shooting. Nu-
merische Mathematik, 22:289–311, 1974.

[43] P. Deuflhard. Newton Methods for Nonlinear Problems. Affine Invariance
and Adaptive Algorithms, volume 35 of Springer Series in Computational
Mathematics. Springer, 2006.

[44] P. Deuflhard, R. Freund, and A. Walter. Fast secant methods for the iterative
solution of large nonsymmetric linear systems. IMPACT of Computing in
Science and Engineering, 2(3):244–276, 1990.

[45] L. Di Gaspero. QuadProg++, 2010. URL http://www.diegm.uniud.it/

digaspero/index.php/software/.
[46] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes. PhD

thesis, Universität Heidelberg, 2001. URL http://www.ub.uni-heidelberg.

de/archiv/1659/.

140 Bibliography

[47] M. Diehl, A. Walther, H.G. Bock, and E. Kostina. An adjoint-based SQP
algorithm with quasi-Newton Jacobian updates for inequality constrained op-
timization. Optimization Methods and Software, 2009.

[48] J. Dongarra, V. Eijkhout, and A. Kalhan. LAPACK working note 99: Reverse
communication interface for linear algebra templates for iterative methods.
Technical Report UT-CS-95-292, University of Tennessee, 1995.

[49] N. Dunford and J.T. Schwartz. Linear operators part I: General theory. In
R. Courant, L. Bers, and J.J. Stoker, editors, Pure and applied mathematics,
volume VII. Wiley, New York, 1958.

[50] J. Fernández, M. Anguita, E. Ros, and J.L. Bernier. SCE toolboxes for
the development of high–level parallel applications. In Proceedings of the
6th International Conference Computational Science – ICCS 2006, Reading,
United Kingdom, Part II, volume 3992, pages 518–525, 2006.

[51] H.J. Ferreau. An online active set strategy for fast solution of parametric
quadratic programs with applications to predictive engine control. Diploma
thesis, Ruprecht–Karls–Universität Heidelberg, 2006. URL http://homes.

esat.kuleuven.be/~jferreau/pdf/thesisONLINE.pdf.
[52] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategy to

overcome the limitations of explicit MPC. International Journal of Robust
and Nonlinear Control, 18(8):816–830, 2008.

[53] FICO. FICO(TM) Xpress Optimization Suite, Xpress-Optimizer Reference
manual, Release 20.00. Fair Isaac Corporation, Warwickshire, UK, 2009.

[54] R. Fletcher. Resolving degeneracy in quadratic programming. Annals of
Operations Research, 46-47:307–334, 1993.

[55] C.A. Floudas and P.M. Pardalos, editors. State of the art in global optimiza-
tion: computational methods and applications. Springer, Dordrecht, 1995.

[56] H. Gajewski, K. Gröger, and K. Zacharias. Nichtlineare Operatorgleichungen
und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974.

[57] E.M. Gertz and S.J. Wright. Object-oriented software for quadratic program-
ming. ACM Transactions on Mathematical Software, 29:58–81, 2003.

[58] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. Procedures for op-
timization problems with a mixture of bounds and general linear constraints.
ACM Transactions on Mathematical Software, 10(3):282–298, 1984.

[59] P.E. Gill, W. Murray, and M.A. Saunders. User’s Guide For QPOPT 1.0:
A Fortran Package For Quadratic Programming, 1995. URL http://www.

sbsi-sol-optimize.com/manuals/QPOPT%20Manual.pdf.
[60] G.H. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins Uni-

versity Press, Baltimore, 3rd edition, 1996.
[61] J. Gondzio. HOPDM (version 2.12) – a fast LP solver based on a primal-

dual interior point method. European Journal of Operational Research, 85
(1):221–225, 1995.

[62] N.I.M. Gould. On practical conditions for the existence and uniqueness of so-
lutions to the general equality quadratic programming problem. Mathematical
Programming, 32(1):90–99, 1985.

[63] N.I.M. Gould. An algorithm for large-scale quadratic programming. IMA
Journal of Numerical Analysis, 11(3):299–324, 1991.

[64] N.I.M. Gould and Ph.L. Toint. Nonlinear programming without a penalty
function or a filter. Mathematical Programming, Series A, 122:155–196, 2010.

[65] N.I.M. Gould and P.L. Toint. A quadratic programming bibliography. Techni-
cal Report 2000-1, Rutherford Appleton Laboratory, Computational Science
and Engineering Department, 2010.

Bibliography 141

[66] N.I.M. Gould, M.E. Hribar, and J. Nocedal. On the solution of equality
constrained quadratic programming problems arising in optimization. SIAM
Journal on Scientific Computing, 23(4):1376–1395, 2001.

[67] N.I.M. Gould, D. Orban, and P.L. Toint. CUTEr testing environment for
optimization and linear algebra solvers, 2002. URL http://cuter.rl.ac.

uk/cuter-www/.
[68] N.I.M. Gould, D. Orban, and Ph.L. Toint. GALAHAD, a library of thread-

safe Fortran 90 packages for large-scale nonlinear optimization. ACM Trans-
actions on Mathematical Software, 29(4):353–372, 2004.

[69] A. Griewank. Evaluating Derivatives, Principles and Techniques of Algorith-
mic Differentiation. Number 19 in Frontiers in Applied Mathematics. SIAM,
Philadelphia, 2000.

[70] A. Griewank. Projected Hessians for preconditioning in One-Step One-Shot
design optimization. In Large-Scale Nonlinear Optimization, volume 83 of
Nonconvex Optimization and Its Applications, pages 151–171. Springer US,
2006.

[71] A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: A package
for the automatic differentiation of algorithms written in C/C++. ACM
Transactions on Mathematical Software, 22(2):131–167, 1996.

[72] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, and A. Walther.
ADOL-C: A package for the automatic differentiation of algorithms written
in C/C++. Technical report, Technical University of Dresden, Institute of
Scientific Computing and Institute of Geometry, 1999. Updated version of
the paper published in ACM Trans. Math. Software 22:131–167, 1996.

[73] A. Griewank, J. Utke, and A. Walther. Evaluating higher derivative tensors by
forward propagation of univariate Taylor series. Mathematics of Computation,
pages 1117–1130, 2000.

[74] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Pro-
gramming with the Message Passing Interface. Scientific and Engineering
Computation Series. MIT Press, Cambridge, MA, USA, 2nd edition, 1999.

[75] T. Gu. Mathematical Modelling and Scale Up of Liquid Chromatography.
Springer Verlag, New York, 1995.

[76] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equa-
tions I, volume 8 of Springer Series in Computational Mathematics. Springer,
Berlin, 2nd edition, 1993.

[77] P. Hartman. Ordinary differential equations, volume 38 of Classics in Applied
Mathematics. SIAM, second edition, 2002.

[78] S.B. Hazra, V. Schulz, J. Brezillon, and N.R. Gauger. Aerodynamic shape
optimization using simultaneous pseudo-timestepping. Journal of Computa-
tional Physics, 204(1):46–64, 2005.

[79] M. Heinkenschloss and D. Ridzal. An Inexact Trust-Region SQP method
with applications to PDE-constrained optimization. In K. Kunisch, G. Of,
and O. Steinbach, editors, Proceedings of ENUMATH 2007, the 7th Eu-
ropean Conference on Numerical Mathematics and Advanced Applications,
Graz, Austria, September 2007. Springer Berlin Heidelberg, 2008.

[80] M. Heinkenschloss and L.N. Vicente. Analysis of Inexact Trust-Region SQP
algorithms. SIAM Journal on Optimization, 12(2):283–302, 2001.

[81] H.K. Hesse. Multiple Shooting and Mesh Adaptation for PDE Constrained
Optimization Problems. PhD thesis, University of Heidelberg, 2008.

[82] J.S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods,
volume 54 of Texts in Applied Mathematics. Springer New York, 2008.

142 Bibliography

[83] J.S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral methods for time-
dependent problems, volume 21 of Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, Cambridge, 2007.

[84] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE
Constraints. Springer, New York, 2009.

[85] D. Horstmann. From 1970 until present: The Keller-Segel model in chemo-
taxis and its consequences I. Jahresbericht der DMV, 105(3):103–165, 2003.

[86] D. Horstmann. From 1970 until present: The Keller-Segel model in chemo-
taxis and its consequences II. Jahresbericht der DMV, 106(2):51–69, 2004.

[87] IBM ILOG. IBM ILOG CPLEX V12.1, User’s Manual for CPLEX. IBM
Corp., New York, USA, 2009.

[88] H. Jarausch and W. Mackens. Numerical treatment of bifurcation branches
by adaptive condensation. In Numerical methods for bifurcation problems
(Dortmund, 1983), volume 70 of Internat. Schriftenreihe Numer. Math., pages
296–309. Birkhäuser, Basel, 1984.

[89] A. Jupke. Experimentelle Modellvalidierung und modellbasierte Auslegung
von Simulated Moving Bed (SMB) Chromatographieverfahren, volume 807 of
Fortschrittberichte VDI, Reihe 3. VDI-Verlag, Düsseldorf, 2004. Dissertation,
Universität Dortmund.

[90] W. Karush. Minima of functions of several variables with inequalities as
side conditions. Master’s thesis, Department of Mathematics, University of
Chicago, 1939.

[91] Y. Kawajiri and L.T. Biegler. Optimization strategies for Simulated Moving
Bed and PowerFeed processes. AIChE Journal, 52(4):1343–1350, 2006.

[92] Y. Kawajiri and L.T. Biegler. Large scale nonlinear optimization for asym-
metric operation and design of simulated moving beds. Journal of Chromatog-
raphy A, 1133:226–240, 2006.

[93] E.F. Keller and L.A. Segel. Model for chemotaxis. Journal of Theoretical
Biology, 30(2):225–234, 1971.

[94] C. Kirches, H.G. Bock, J.P. Schlöder, and S. Sager. A factorization
with update procedures for a KKT matrix arising in direct optimal con-
trol. Mathematical Programming Computation, 2010. URL http://www.

optimization-online.org/DB_HTML/2009/11/2456.html. Submitted.
[95] C. Kirches, H.G. Bock, J.P. Schlöder, and S. Sager. Block structured qua-

dratic programming for the direct multiple shooting method for optimal con-
trol. Optimization Methods and Software, 26(2):239–257, 2011.

[96] E. Kostina. The long step rule in the bounded-variable dual simplex method:
Numerical experiments. Mathematical Methods of Operations Research, 55
(3):413–429, 2002.

[97] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor,
Proceedings of the Second Berkeley Symposium on Mathematical Statistics
and Probability, pages 481–492, Berkeley, 1951. University of California Press.

[98] A. Küpper. Optimization, State Estimation, and Model Predictive Con-
trol of Simulated Moving Bed Processes, volume 2010,1 of Schriftenreihe des
Lehrstuhls für Systemdynamik und Prozessführung. Prof. Dr.-Ing. Sebastian
Engell, Dortmund, 2010. Dissertation.

[99] S. Lauer. SQP–Methoden zur Behandlung von Problemen mit indefiniter
reduzierter Hesse–Matrix. Diploma thesis, Ruprecht–Karls–Universität Hei-
delberg, 2010.

[100] D. Lebiedz and U. Brandt-Pollmann. Manipulation of Self-Aggregation Pat-
terns and Waves in a Reaction-Diffusion System by Optimal Boundary Con-
trol Strategies. Physical Review Letters, 91(20):208301, 2003.

Bibliography 143

[101] R.B. Lehoucq and D.C. Sorensen. Deflation techniques for an implicitly
restarted Arnoldi iteration. SIAM Journal on Matrix Analysis and Appli-
cations, 17(4):789–821, 1996.

[102] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users’ Guide: So-
lution of Large–Scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods. Society for Industrial and Applied Mathematics (SIAM), 1998.

[103] D.B. Leineweber. The theory of MUSCOD in a nutshell. IWR-Preprint 96-19,
Universität Heidelberg, 1996.

[104] D.B. Leineweber. Efficient reduced SQP methods for the optimization of
chemical processes described by large sparse DAE models, volume 613 of
Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik. VDI Verlag, Düssel-
dorf, 1999.

[105] D.B. Leineweber, I. Bauer, A.A.S. Schäfer, H.G. Bock, and J.P. Schlöder. An
efficient multiple shooting based reduced SQP strategy for large-scale dynamic
process optimization (Parts I and II). Computers and Chemical Engineering,
27:157–174, 2003.

[106] R.J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge
Texts in Applied Mathematics. Cambridge University Press, Cambridge,
2002.

[107] R.J. LeVeque. Finite difference methods for ordinary and partial differential
equations. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2007.

[108] K. Lust, D. Roose, A. Spence, and A. R. Champneys. An adaptive Newton-
Picard algorithm with subspace iteration for computing periodic solutions.
SIAM Journal on Scientific Computing, 19(4):1188–1209, 1998.

[109] I. Maros and C. Mészáros. A repository of convex quadratic programming
problems. Optimization Methods and Software, 11:671–681, 1999.

[110] The Mathworks. Matlab optimization toolbox user’s guide, 2010.
[111] D. Meidner and B. Vexler. Adaptive space-time finite element methods for

parabolic optimization problems. SIAM Journal on Control and Optimiza-
tion, 46(1):116–142, 2007.

[112] C. Mészáros. The BPMPD interior point solver for convex quadratic prob-
lems. Optimization Methods and Software, 11(1):431–449, 1999.

[113] B. Morini. Convergence behaviour of inexact Newton methods. Mathematics
of Computation, 68(228):1605–1613, 1999.

[114] MOSEK. The MOSEK optimization tools manual, version 6.0 (revision 85),
2010. URL http://www.mosek.com/.

[115] M.F. Murphy, G.H. Golub, and A.J. Wathen. A note on preconditioning
for indefinite linear systems. SIAM Journal on Scientific Computing, 21(6):
1969–1972, 2000.

[116] K.G. Murty. Some NP-complete problems in quadratic and nonlinear pro-
gramming. Mathematical Programming, 39:117–129, 1987.

[117] R.A. Nicolaides. Deflation of conjugate gradients with applications to bound-
ary value problems. SIAM Journal on Numerical Analysis, 24(2):355–365,
1987.

[118] S. Nilchan and C. Pantelides. On the optimisation of periodic adsorption
processes. Adsorption, 4:113–147, 1998.

[119] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Verlag, Berlin
Heidelberg New York, 2nd edition, 2006.

[120] J.M. Ortega and W.C. Rheinboldt. Iterative solution of nonlinear equations
in several variables. Academic Press, New York, 1970.

144 Bibliography

[121] C.C. Paige and M.A. Saunders. Solutions of sparse indefinite systems of linear
equations. SIAM Journal on Numerical Analysis, 12(4):617–629, 1975.

[122] B.N. Parlett and W.G. Poole, Jr. A geometric theory for the QR, LU and
power iterations. SIAM Journal on Numerical Analysis, 10:389–412, 1973.

[123] L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze, and E.F. Miscenko. The
Mathematical Theory of Optimal Processes. Wiley, Chichester, 1962.

[124] A. Potschka. Handling path constraints in a direct multiple shooting method
for optimal control problems. Diploma thesis, Universität Heidelberg, 2006.
URL http://apotschka.googlepages.com/APotschka2006.pdf.

[125] A. Potschka, H.G. Bock, and J.P. Schlöder. A minima tracking variant of
semi-infinite programming for the treatment of path constraints within direct
solution of optimal control problems. Optimization Methods and Software, 24
(2):237–252, 2009.

[126] A. Potschka, C. Kirches, H.G. Bock, and J.P. Schlöder. Reliable solution
of convex quadratic programs with parametric active set methods. Technical
Report 2010–11–2828, Heidelberg University, Interdisciplinary Center for Sci-
entific Computing, Heidelberg University, Im Neuenheimer Feld 368, 69120
Heidelberg, Germany, 2010. URL http://www.optimization-online.org/

DB_HTML/2009/02/2224.html.
[127] A. Potschka, A. Küpper, J.P. Schlöder, H.G. Bock, and S. Engell. Optimal

control of periodic adsorption processes: The Newton-Picard inexact SQP
method. In Recent Advances in Optimization and its Applications in Engi-
neering, pages 361–378. Springer Verlag, 2010.

[128] A. Potschka, M.S. Mommer, J.P. Schlöder, and H.G. Bock. A Newton-
Picard approach for efficient numerical solution of time-periodic parabolic
PDE constrained optimization problems. Technical Report 2010–03–2570,
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg Univer-
sity, 2010. URL http://www.optimization-online.org/DB_HTML/2010/

03/2570.html.
[129] A. Potschka, H.G. Bock, S. Sager, and J.P. Schlöder. On the connection

between forward and optimization problem in one-shot one-step methods. In
G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz,
M. Ulbrich, and S. Ulbrich, editors, Constrained Optimization and Optimal
Control for Partial Differential Equations, volume 160 of International Series
of Numerical Mathematics, pages 161–173. Springer Basel, 2011.

[130] S.M. Robinson. Perturbed Kuhn-Tucker points and rates of convergence for
a class of nonlinear programming algorithms. Mathematical Programming, 7:
1–16, 1974.

[131] Y. Saad. Numerical methods for large eigenvalue problems. Algorithms
and Architectures for Advanced Scientific Computing. Manchester Univer-
sity Press, Manchester, 1992.

[132] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM
Journal on Scientific Computing, 14(2):461–469, 1993.

[133] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelpha,
PA, 2nd edition, 2003.

[134] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on Scientific and
Statistical Computing, 7:856–869, 1986.

[135] S. Sager. Lange Schritte im Dualen Simplex-Algorithmus. Diploma the-
sis, Universität Heidelberg, 2001. URL http://mathopt.de/PUBLICATIONS/

Sager2001.pdf.

Bibliography 145

[136] S. Sager. Numerical methods for mixed–integer optimal control problems. Der
andere Verlag, Tönning, Lübeck, Marburg, 2005. URL http://mathopt.de/

PUBLICATIONS/Sager2005.pdf.
[137] S. Sager, C. Barth, H. Diedam, M. Engelhart, and J. Funke. Optimization

as an analysis tool for human complex problem solving. SIAM Journal on
Optimization, 2011. Accepted.

[138] A. Schäfer, H. Mara, J. Freudenreich, C. Bathow, B. Breuckmann, and H.G.
Bock. Large scale Angkor style reliefs: High definition 3D acquisition and im-
proved visualization using local feature estimation. In Proc. of 39th Annual
Conference of Computer Applications and Quantitative Methods in Archaeol-
ogy (CAA), Beijing, China, 2011. Accepted.

[139] A.A.S. Schäfer. Efficient reduced Newton-type methods for solution of large-
scale structured optimization problems with application to biological and chem-
ical processes. PhD thesis, Universität Heidelberg, 2005. URL http://

archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2005/5264/.
[140] H. Schmidt-Traub, editor. Preparative Chromatography of Fine Chemicals

and Pharmaceuticals. Harwell Report. Wiley-VCH, 2005.
[141] J. Schöberl and W. Zulehner. Symmetric indefinite preconditioners for saddle

point problems with applications to PDE-constrained optimization problems.
SIAM Journal on Matrix Analysis and Applications, 29(3):752–773, 2007.

[142] H. Schramm, S. Grüner, and A. Kienle. Optimal operation of Simulated
Moving Bed chromatographic processes by means of simple feedback control.
Journal of Chromatography A, 1006:3–13, 2003.

[143] H. Schramm, M. Kaspereit, A. Kienle, and A. Seidel-Morgenstern. Simulated
moving bed process with cyclic modulation of the feed concentration. Journal
of Chromatography A, 1006:77–86, 2003.

[144] L.F. Shampine and M.W. Reichelt. The MATLAB ODE suite. SIAM Journal
on Scientific Computing, 18(1):1–22, 1997.

[145] G.M. Shroff and H.B. Keller. Stabilization of unstable procedures: the re-
cursive projection method. SIAM Journal on Numerical Analysis, 30(4):
1099–1120, 1993.

[146] W. Squire and G. Trapp. Using complex variables to estimate derivatives of
real functions. SIAM Review, 40:110–112, 1998.

[147] G.W. Stewart. Simultaneous iteration for computing invariant subspaces of
non-Hermitian matrices. Numerische Mathematik, 25:123–136, 1976.

[148] Vidar Thomée. Galerkin finite element methods for parabolic problems, vol-
ume 25 of Springer Series in Computational Mathematics. Springer-Verlag,
Berlin, 2nd edition, 2006.

[149] A. Toumi, S. Engell, M. Diehl, H.G. Bock, and J.P. Schlöder. Efficient op-
timization of Simulated Moving Bed Processes. Chemical Engineering and
Processing, 46 (11):1067–1084, 2007.

[150] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen: Theo-
rie, Verfahren und Anwendungen. Vieweg+Teubner Verlag, Wiesbaden, 2nd
edition, 2009.

[151] B.A. Turlach. QuadProg (quadratic programming routines), release
1.4, 1998. URL http://school.maths.uwa.edu.au/~berwin/software/

quadprog.html.
[152] R. Tyson, S. R. Lubkin, and J. D. Murray. Model and analysis of chemotactic

bacterial patterns in a liquid medium. Journal of Biology, 38:359–375, 1999.
[153] R. Tyson, S. R. Lubkin, and J. D. Murray. A minimal mechanism for bacterial

pattern formation. Proceedings of the Royal Society B: Biological Sciences,
266:299–304, 1999.

146 Bibliography

[154] T.L. van Noorden, S.M. Verduyn Lunel, and A. Bliek. Optimization of cycli-
cally operated reactors and separators. Chemical Engineering Science, 58:
4114–4127, 2003.

[155] R.J. Vanderbei. LOQO: An interior point code for quadratic programming.
Optimization Methods and Software, 11(1–4):451–484, 1999.

[156] A. Walther. A first-order convergence analysis of Trust-Region methods with
inexact Jacobians. SIAM Journal on Optimization, 19(1):307–325, 2008.

[157] A. Walther, A. Kowarz, and A. Griewank. ADOL-C: A package for the
automatic differentiation of algorithms written in C/C++. Technical report,
Institute of Scientific Computing, Technical University Dresden, 2005.

[158] X. Wang. Resolution of ties in parametric quadratic programming. Master’s
thesis, University of Waterloo, Ontario, Canada, 2004.

[159] T. Warburton and M. Embree. The role of the penalty in the local discontin-
uous galerkin method for Maxwell’s eigenvalue problem. Computer Methods
Applied Mechanical Engineering, 195:3205–3223, 2006.

[160] A.J. Wathen. Realistic eigenvalue bounds for the Galerkin mass matrix. IMA
Journal of Numerical Analysis, 7(4):449–457, 1987.

[161] R.C. Whaley, A. Petitet, and J.J. Dongarra. Automated empirical optimiza-
tion of software and the ATLAS project. Parallel Computing, 27(1–2):3–35,
2001.

[162] E.P. Wigner. The unreasonable effectiveness of mathematics in the natu-
ral sciences. Communications on Pure and Applied Mathematics, 13:1–14,
1960. Richard Courant lecture in mathematical sciences delivered at New
York University, May 11, 1959.

[163] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford,
1965.

[164] L. Wirsching. An SQP algorithm with inexact derivatives for a Direct Multiple
Shooting method for optimal control problems. Diploma thesis, Universität
Heidelberg, 2006.

[165] J. Wloka. Partielle Differentialgleichungen: Sobolevräume u. Randwertauf-
gaben. B.G. Teubner, Stuttgart, 1982.

[166] X. Zhang and Y. Ye. User’s guide of COPL QP, computational optimization
program library: Convex quadratic programming, 1998. URL http://www.

stanford.edu/~yyye/Col.html.

