40 research outputs found

    Dense Vision in Image-guided Surgery

    Get PDF
    Image-guided surgery needs an efficient and effective camera tracking system in order to perform augmented reality for overlaying preoperative models or label cancerous tissues on the 2D video images of the surgical scene. Tracking in endoscopic/laparoscopic scenes however is an extremely difficult task primarily due to tissue deformation, instrument invasion into the surgical scene and the presence of specular highlights. State of the art feature-based SLAM systems such as PTAM fail in tracking such scenes since the number of good features to track is very limited. When the scene is smoky and when there are instrument motions, it will cause feature-based tracking to fail immediately. The work of this thesis provides a systematic approach to this problem using dense vision. We initially attempted to register a 3D preoperative model with multiple 2D endoscopic/laparoscopic images using a dense method but this approach did not perform well. We subsequently proposed stereo reconstruction to directly obtain the 3D structure of the scene. By using the dense reconstructed model together with robust estimation, we demonstrate that dense stereo tracking can be incredibly robust even within extremely challenging endoscopic/laparoscopic scenes. Several validation experiments have been conducted in this thesis. The proposed stereo reconstruction algorithm has turned out to be the state of the art method for several publicly available ground truth datasets. Furthermore, the proposed robust dense stereo tracking algorithm has been proved highly accurate in synthetic environment (< 0.1 mm RMSE) and qualitatively extremely robust when being applied to real scenes in RALP prostatectomy surgery. This is an important step toward achieving accurate image-guided laparoscopic surgery.Open Acces

    Visual Tracking of Instruments in Minimally Invasive Surgery

    Get PDF
    Reducing access trauma has been a focal point for modern surgery and tackling the challenges that arise from new operating techniques and instruments is an exciting and open area of research. Lack of awareness and control from indirect manipulation and visualization has created a need to augment the surgeon's understanding and perception of how their instruments interact with the patient's anatomy but current methods of achieving this are inaccurate and difficult to integrate into the surgical workflow. Visual methods have the potential to recover the position and orientation of the instruments directly in the reference frame of the observing camera without the need to introduce additional hardware to the operating room and perform complex calibration steps. This thesis explores how this problem can be solved with the fusion of coarse region and fine scale point features to enable the recovery of both the rigid and articulated degrees of freedom of laparoscopic and robotic instruments using only images provided by the surgical camera. Extensive experiments on different image features are used to determine suitable representations for reliable and robust pose estimation. Using this information a novel framework is presented which estimates 3D pose with a region matching scheme while using frame-to-frame optical flow to account for challenges due to symmetry in the instrument design. The kinematic structure of articulated robotic instruments is also used to track the movement of the head and claspers. The robustness of this method was evaluated on calibrated ex-vivo images and in-vivo sequences and comparative studies are performed with state-of-the-art kinematic assisted tracking methods

    基于误差标定的医疗机器人视觉跟踪方法研究

    Get PDF
    影像在疾病诊断和手术计划中占有重要地位,随着机器人技术的发展以及微创手术的广泛采用,影像与机器人构成一体,形成计算机集成外科手术系统。影像不仅是疾病诊断的重要工具,它也对手术机器人进行定位、引导,对手术器械进行跟踪和控制。由于视觉和机器人具有各自的坐标系统,它们之间存在误差,当在视觉空间控制机器人运动时,该误差会映射到机器人的轨迹上。在前期手术计划、机器人视觉控制、自动显微操作的研究成果基础上,研究计算机集成外科中的手术机器人轨迹精确控制问题。采用机器人在视觉空间的运动误差对视觉系统和机器人系统间的坐标系误差进行标定,从而精确控制机器人的轨迹。误差标定方法只需要让机器人走三个点就可以完成系统坐标标定。在实验中,利用视觉系统控制机器人运动,模仿微创手术中对机器人末端器械的导引,结果表明,采用递归标定方法可以将机器人的轨迹误差控制在2个像素范围内。国家自然基金资助(50875222);福建省自然基金资助(2009J01265

    Augmentation Of Human Skill In Microsurgery

    Get PDF
    Surgeons performing highly skilled microsurgery tasks can benefit from information and manual assistance to overcome technological and physiological limitations to make surgery safer, efficient, and more successful. Vitreoretinal surgery is particularly difficult due to inherent micro-scale and fragility of human eye anatomy. Additionally, surgeons are challenged by physiological hand tremor, poor visualization, lack of force sensing, and significant cognitive load while executing high-risk procedures inside the eye, such as epiretinal membrane peeling. This dissertation presents the architecture and the design principles for a surgical augmentation environment which is used to develop innovative functionality to address the fundamental limitations in vitreoretinal surgery. It is an inherently information driven modular system incorporating robotics, sensors, and multimedia components. The integrated nature of the system is leveraged to create intuitive and relevant human-machine interfaces and generate a particular system behavior to provide active physical assistance and present relevant sensory information to the surgeon. These include basic manipulation assistance, audio-visual and haptic feedback, intraoperative imaging and force sensing. The resulting functionality, and the proposed architecture and design methods generalize to other microsurgical procedures. The system's performance is demonstrated and evaluated using phantoms and in vivo experiments

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Measuring Behavior 2018 Conference Proceedings

    Get PDF
    These proceedings contain the papers presented at Measuring Behavior 2018, the 11th International Conference on Methods and Techniques in Behavioral Research. The conference was organised by Manchester Metropolitan University, in collaboration with Noldus Information Technology. The conference was held during June 5th – 8th, 2018 in Manchester, UK. Building on the format that has emerged from previous meetings, we hosted a fascinating program about a wide variety of methodological aspects of the behavioral sciences. We had scientific presentations scheduled into seven general oral sessions and fifteen symposia, which covered a topical spread from rodent to human behavior. We had fourteen demonstrations, in which academics and companies demonstrated their latest prototypes. The scientific program also contained three workshops, one tutorial and a number of scientific discussion sessions. We also had scientific tours of our facilities at Manchester Metropolitan Univeristy, and the nearby British Cycling Velodrome. We hope this proceedings caters for many of your interests and we look forward to seeing and hearing more of your contributions
    corecore