3,480 research outputs found

    Cellular Automata Models of Road Traffic

    Full text link
    In this paper, we give an elaborate and understandable review of traffic cellular automata (TCA) models, which are a class of computationally efficient microscopic traffic flow models. TCA models arise from the physics discipline of statistical mechanics, having the goal of reproducing the correct macroscopic behaviour based on a minimal description of microscopic interactions. After giving an overview of cellular automata (CA) models, their background and physical setup, we introduce the mathematical notations, show how to perform measurements on a TCA model's lattice of cells, as well as how to convert these quantities into real-world units and vice versa. The majority of this paper then relays an extensive account of the behavioural aspects of several TCA models encountered in literature. Already, several reviews of TCA models exist, but none of them consider all the models exclusively from the behavioural point of view. In this respect, our overview fills this void, as it focusses on the behaviour of the TCA models, by means of time-space and phase-space diagrams, and histograms showing the distributions of vehicles' speeds, space, and time gaps. In the report, we subsequently give a concise overview of TCA models that are employed in a multi-lane setting, and some of the TCA models used to describe city traffic as a two-dimensional grid of cells, or as a road network with explicitly modelled intersections. The final part of the paper illustrates some of the more common analytical approximations to single-cell TCA models.Comment: Accepted for publication in "Physics Reports". A version of this paper with high-quality images can be found at: http://phdsven.dyns.cx (go to "Papers written"

    Complex Systems: A Survey

    Full text link
    A complex system is a system composed of many interacting parts, often called agents, which displays collective behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human society. Substantial progress has been made in the quantitative understanding of complex systems, particularly since the 1980s, using a combination of basic theory, much of it derived from physics, and computer simulation. The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here I give a survey of the main themes and methods of complex systems science and an annotated bibliography of resources, ranging from classic papers to recent books and reviews.Comment: 10 page

    A Cellular Automaton Model for the Traffic Flow in Bogota

    Full text link
    In this work we propose a car cellular automaton model that reproduces the experimental behavior of traffic flows in Bogot\'a. Our model includes three elements: hysteresis between the acceleration and brake gaps, a delay time in the acceleration, and an instantaneous brake. The parameters of our model were obtained from direct measurements inside a car on motorways in Bogot\'a. Next, we simulated with this model the flux-density fundamental diagram for a single-lane traffic road and compared it with experimental data. Our simulations are in very good agreement with the experimental measurements, not just in the shape of the fundamental diagram, but also in the numerical values for both the road capacity and the density of maximal flux. Our model reproduces, too, the qualitative behavior of shock waves. In addition, our work identifies the periodic boundary conditions as the source of false peaks in the fundamental diagram, when short roads are simulated, that have been also found in previous works. The phase transition between free and congested traffic is also investigated by computing both the relaxation time and the order parameter. Our work shows how different the traffic behavior from one city to another can be, and how important is to determine the model parameters for each city.Comment: 14 pages and 13 figures (gzipped tar file). Submitted to Int.J.Mod.Phys.C. Minor changes, specially at references and typoes, plus a clearer summary of the CA rule

    Cellular Automata Simulating Experimental Properties of Traffic Flows

    Full text link
    A model for 1D traffic flow is developed, which is discrete in space and time. Like the cellular automaton model by Nagel and Schreckenberg [J. Phys. I France 2, 2221 (1992)], it is simple, fast, and can describe stop-and-go traffic. Due to its relation to the optimal velocity model by Bando et al. [Phys. Rev. E 51, 1035 (1995)], its instability mechanism is of deterministic nature. The model can be easily calibrated to empirical data and displays the experimental features of traffic data recently reported by Kerner and Rehborn [Phys. Rev. E 53, R1297 (1996)].Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://traffic.comphys.uni-duisburg.de/member/home_schreck.htm
    corecore