57 research outputs found

    The Complexity of Model Checking Higher-Order Fixpoint Logic

    Full text link
    Higher-Order Fixpoint Logic (HFL) is a hybrid of the simply typed \lambda-calculus and the modal \lambda-calculus. This makes it a highly expressive temporal logic that is capable of expressing various interesting correctness properties of programs that are not expressible in the modal \lambda-calculus. This paper provides complexity results for its model checking problem. In particular we consider those fragments of HFL built by using only types of bounded order k and arity m. We establish k-fold exponential time completeness for model checking each such fragment. For the upper bound we use fixpoint elimination to obtain reachability games that are singly-exponential in the size of the formula and k-fold exponential in the size of the underlying transition system. These games can be solved in deterministic linear time. As a simple consequence, we obtain an exponential time upper bound on the expression complexity of each such fragment. The lower bound is established by a reduction from the word problem for alternating (k-1)-fold exponential space bounded Turing Machines. Since there are fixed machines of that type whose word problems are already hard with respect to k-fold exponential time, we obtain, as a corollary, k-fold exponential time completeness for the data complexity of our fragments of HFL, provided m exceeds 3. This also yields a hierarchy result in expressive power.Comment: 33 pages, 2 figures, to be published in Logical Methods in Computer Scienc

    A Decidable Non-Regular Modal Fixpoint Logic

    Get PDF

    Temporal Logic with Recursion

    Get PDF
    We introduce extensions of the standard temporal logics CTL and LTL with a recursion operator that takes propositional arguments. Unlike other proposals for modal fixpoint logics of high expressive power, we obtain logics that retain some of the appealing pragmatic advantages of CTL and LTL, yet have expressive power beyond that of the modal ?-calculus or MSO. We advocate these logics by showing how the recursion operator can be used to express interesting non-regular properties. We also study decidability and complexity issues of the standard decision problems

    Three notes on the complexity of model checking fixpoint logic with chop

    Get PDF
    This paper analyses the complexity of model checking fixpoint logic with Chop – an extension of the modal μ-calculus with a sequential composition operator. It uses two known game-based characterisations to derive the following results: the combined model checking complexity as well as the data complexity of FLC are EXPTIME-complete. This is already the case for its alternation-free fragment. The expression complexity of FLC is trivially P-hard and limited from above by the complexity of solving a parity game, i.e. in UP ∩ co-UP. For any fragment of fixed alternation depth, in particular alternation- free formulas it is P-complete

    Model Checking Timed Recursive CTL

    Get PDF
    We introduce Timed Recursive CTL, a merger of two extensions of the well-known branching-time logic CTL: Timed CTL is interpreted over real-time systems like timed automata; Recursive CTL introduces a powerful recursion operator which takes the expressiveness of this logic CTL well beyond that of regular properties. The result is an expressive logic for real-time properties. We show that its model checking problem is decidable over timed automata, namely 2-EXPTIME-complete

    Towards a unified theory of intensional logic programming

    Get PDF
    AbstractIntensional Logic Programming is a new form of logic programming based on intensional logic and possible worlds semantics. Intensional logic allows us to use logic programming to specify nonterminating computations and to capture the dynamic aspects of certain problems in a natural and problem-oriented style. The meanings of formulas of an intensional first-order language are given according to intensional interpretations and to elements of a set of possible worlds. Neighborhood semantics is employed as an abstract formulation of the denotations of intensional operators. Then we investigate general properties of intensional operators such as universality, monotonicity, finitariness and conjunctivity. These properties are used as constraints on intensional logic programming systems. The model-theoretic and fixpoint semantics of intensional logic programs are developed in terms of least (minimum) intensional Herbrand models. We show in particular that our results apply to a number of intensional logic programming languages such as Chronolog proposed by Wadge and Templog by Abadi and Manna. We consider some elementary extensions to the theory and show that intensional logic program clauses can be used to define new intensional operators. Intensional logic programs with intensional operator definitions are regarded as metatheories

    Verification of Non-Regular Program Properties

    Get PDF
    Most temporal logics which have been introduced and studied in the past decades can be embedded into the modal mu-calculus. This is the case for e.g. PDL, CTL, CTL*, ECTL, LTL, etc. and entails that these logics cannot express non-regular program properties. In recent years, some novel approaches towards an increase in expressive power have been made: Fixpoint Logic with Chop enriches the mu-calculus with a sequential composition operator and thereby allows to characterise context-free processes. The Modal Iteration Calculus uses inflationary fixpoints to exceed the expressive power of the mu-calculus. Higher-Order Fixpoint Logic (HFL) incorporates a simply typed lambda-calculus into a setting with extremal fixpoint operators and even exceeds the expressive power of Fixpoint Logic with Chop. But also PDL has been equipped with context-free programs instead of regular ones. In terms of expressivity there is a natural demand for richer frameworks since program property specifications are simply not limited to the regular sphere. Expressivity however usually comes at the price of an increased computational complexity of logic-related decision problems. For instance are the satisfiability problems for the above mentioned logics undecidable. We investigate in this work the model checking problem of three different logics which are capable of expressing non-regular program properties and aim at identifying fragments with feasible model checking complexity. Firstly, we develop a generic method for determining the complexity of model checking PDL over arbitrary classes of programs and show that the border to undecidability runs between PDL over indexed languages and PDL over context-sensitive languages. It is however still in PTIME for PDL over linear indexed languages and in EXPTIME for PDL over indexed languages. We present concrete algorithms which allow implementations of model checkers for these two fragments. We then introduce an extension of CTL in which the UNTIL- and RELEASE- operators are adorned with formal languages. These are interpreted over labeled paths and restrict the moments on such a path at which the operators are satisfied. The UNTIL-operator is for instance satisfied if some path prefix forms a word in the language it is adorned with (besides the usual requirement that until that moment some property has to hold and at that very moment some other property must hold). Again, we determine the computational complexities of the model checking problems for varying classes of allowed languages in either operator. It turns out that either enabling context-sensitive languages in the UNTIL or context-free languages in the RELEASE- operator renders the model checking problem undecidable while it is EXPTIME-complete for indexed languages in the UNTIL and visibly pushdown languages in the RELEASE- operator. PTIME-completeness is a result of allowing linear indexed languages in the UNTIL and deterministic context-free languages in the RELEASE. We do also give concrete model checking algorithms for several interesting fragments of these logics. Finally, we turn our attention to the model checking problem of HFL which we have already studied in previous works. On finite state models it is k-EXPTIME-complete for HFL(k), the fragment of HFL obtained by restricting functions in the lambda-calculus to order k. Novel in this work is however the generalisation (from the first-order case to the case for functions of arbitrary order) of an idea to improve the best and average case behaviour of a model checking algorithm by using partial functions during the fixpoint iteration guided by the neededness of arguments. This is possible, because the semantics of a closed HFL formula is not a total function but the value of a function at some argument. Again, we give a concrete algorithm for such an improved model checker and argue that despite the very high model checking complexity this improvement is very useful in practice and gives feasible results for HFL with lower order fuctions, backed up by a statistical analysis of the number of needed arguments on a concrete example. Furthermore, we show how HFL can be used as a tool for the development of algorithms. Its high expressivity allows to encode a wide variety of problems as instances of model checking already in the first-order fragment. The rather unintuitive -- yet very succinct -- problem encoding together with an analysis of the behaviour of the above sketched optimisation may give deep insights into the problem. We demonstrate this on the example of the universality problem for nondeterministic finite automata, where a slight variation of the optimised model checking algorithm yields one of the best known methods so far which was only discovered recently. We do also investigate typical model-theoretic properties for each of these logics and compare them with respect to expressive power

    Reasoning about LTL Synthesis over finite and infinite games

    Get PDF
    In the last few years, research formal methods for the analysis and the verification of properties of systems has increased greatly. A meaningful contribution in this area has been given by algorithmic methods developed in the context of synthesis. The basic idea is simple and appealing: instead of developing a system and verifying that it satisfies its specification, we look for an automated procedure that, given the specification returns a system that is correct by construction. Synthesis of reactive systems is one of the most popular variants of this problem, in which we want to synthesize a system characterized by an ongoing interaction with the environment. In this setting, large effort has been devoted to analyze specifications given as formulas of linear temporal logic, i.e., LTL synthesis. Traditional approaches to LTL synthesis rely on transforming the LTL specification into parity deterministic automata, and then to parity games, for which a so-called winning region is computed. Computing such an automaton is, in the worst-case, double-exponential in the size of the LTL formula, and this becomes a computational bottleneck in using the synthesis process in practice. The first part of this thesis is devoted to improve the solution of parity games as they are used in solving LTL synthesis, trying to give efficient techniques, in terms of running time and space consumption, for solving parity games. We start with the study and the implementation of an automata-theoretic technique to solve parity games. More precisely, we consider an algorithm introduced by Kupferman and Vardi that solves a parity game by solving the emptiness problem of a corresponding alternating parity automaton. Our empirical evaluation demonstrates that this algorithm outperforms other algorithms when the game has a small number of priorities relative to the size of the game. In many concrete applications, we do indeed end up with parity games where the number of priorities is relatively small. This makes the new algorithm quite useful in practice. We then provide a broad investigation of the symbolic approach for solving parity games. Specifically, we implement in a fresh tool, called SPGSolver, four symbolic algorithms to solve parity games and compare their performances to the corresponding explicit versions for different classes of games. By means of benchmarks, we show that for random games, even for constrained random games, explicit algorithms actually perform better than symbolic algorithms. The situation changes, however, for structured games, where symbolic algorithms seem to have the advantage. This suggests that when evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only random benchmarks, as the common practice has been. LTL synthesis has been largely investigated also in artificial intelligence, and specifically in automated planning. Indeed, LTL synthesis corresponds to fully observable nondeterministic planning in which the domain is given compactly and the goal is an LTL formula, that in turn is related to two-player games with LTL goals. Finding a strategy for these games means to synthesize a plan for the planning problem. The last part of this thesis is then dedicated to investigate LTL synthesis under this different view. In particular, we study a generalized form of planning under partial observability, in which we have multiple, possibly infinitely many, planning domains with the same actions and observations, and goals expressed over observations, which are possibly temporally extended. By building on work on two-player games with imperfect information in the Formal Methods literature, we devise a general technique, generalizing the belief-state construction, to remove partial observability. This reduces the planning problem to a game of perfect information with a tight correspondence between plans and strategies. Then we instantiate the technique and solve some generalized planning problems
    • …
    corecore